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Abstract

In general, the solution to a normal-ordered white noise differen-
tial equation involving quadratic quantum white noise is a white noise
operator and is not an operator acting in the L?-space over the orig-
inal Gaussian space where the quantum white noise is defined. The
solution happens to be a unitary operator on a certain subspace of the
L?-space over a Gaussian space with different variance. This regular-
ity property is referred to as partial unitarity.

1 Introduction

Given a quantum stochastic process { L; }, we consider a normal-ordered white
noise differential equation
d=y
dt
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where ¢ is the Wick product (or normal-ordered product). Roughly speak-
ing, the unique solution is always found in a space of white noise operators,
suitably chosen according to the coefficient {L;} and the initial value =,
see e.g., Chung-Ji-Obata [4] and Ji-Obata [6]. Let {a, a;} be the quantum
white noise. If L, is a linear combination of {a;ay, a;, af, 1}, the equation (1)
is reduced essentially to a usual quantum stochastic differential equation for
which the quantum It6 theory works well, see Parthasarathy [15]. As is well
known, the higher powers of quantum white noise have rather singular nature
but are well formulated in quantum white noise theory. The case when {L;}
involves a quadratic quantum white noise {a?, a;?} is a non-trivial step going
beyond the traditional quantum Ité theory and the regularity properties of
the solution are of great interest. Recall also that the quadratic quantum
white noise is related to the Lévy Laplacian, see Ji-Obata—Ouerdiane [9] and
Obata [14].

This paper is devoted to one of the simplest cases. We consider
dl:vafoE, 2|,y =Hap, (2)
where v, a,b € C are constant numbers and H, 5 a Fourier-Gauss transform.
In general, the solution is merely a white noise operator. We shall prove that
the solution happens to be unitary on a certain subspace of L2-space over a
Gaussian space whose variance is different from the one of the original space
where the quantum white noise is defined. This property is called partial
unitarity. Our result is relevant to unitarity of a (generalized) Fourier—Gauss
transform investigated by Ji-Obata [7, 8]. The main results will be stated in
Section 5.

There are different approaches to the quadratic quantum white noise, see
e.g., Accardi-Amosov-Franz [1], Accardi-Franz—Skeide [2], Lytvynov [12],
and references cited therein.

2 Generalized Fourier—Gauss Transforms

We adopt mostly the same notations as in [7]. Let us start with a real Gelfand
triple
N =8(R)cC H=L*R,dt) c N* = S'(R), (3)

where H = L*(R) is the Hilbert space of R-valued square-integrable func-
tions on the real line R with respect to the Lebesgue measure dt, S(R) the
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space of rapidly decreasing functions and §'(R) the space of tempered distri-
butions. The canonical bilinear form on AN* x A is denoted by (-, ), which
is compatible with the inner product of H. By the same symbol we de-
note the canonical C-bilinear form on N x N, where the suffix means the
complexification.
With @ € C and & € N we associate a continuous function ¢, ¢ on N*
defined by
bae(T) = eTO=uED/2 e A (4)

which we call a coherent vector or an exponential vector. Let £ be the linear
space spanned by {¢,¢; £ € Nc}. Due to the obvious relation

page = elTTNED 20, a,a' €C, €N, (5)

the space £ does not depend on the choice of a € C. In general, two locally
convex spaces X, Y we denote by £({X',Y) the space of continuous operators
equipped with the bounded convergence topology. In the next, we will use
such space for X and Y are equal to N¢ or W or their dual spaces.

With a pair A € L(Ng, V) and B € L(N¢, Nc) we associate an operator
G(A, B) on & defined by

G(A, B)gr e = 4824, e £eNe.

The above formula is sufficient to define a linear operator on £ since the
exponential vectors {@,¢; & € N} are linearly independent. The operator
G(A, B) is called a generalized Fourier-Gauss transform. Our definition is
due to Chung-Ji [3], while an equivalent definition is given by Lee-Liu [11]
in terms of an integral formula.

Lemma 2.1 (1) Q(Al, Bl)Q(AQ, Bg) = Q(B;AlBQ -+ AQ, BlBQ).

(2) G(A,B) = 1 (the identity operator on &) if and only if A = 0 and
B =1 (the identity operator on Ng).

(3) G(A, B) is invertible if and only if so is B, i.e., B € GL(N¢). In that
case, G(A, B)™' = G(—(B™")*AB~', B™).

The proof is immediate from definition. In particular,

& ={G(A,B); Aec L(Nc,N¢), Be GL(Ng)}
> L(Ne, N&) x GL(Ng)



becomes a group of linear automorphisms of £. If both A, B are scalar
operators, say, A = al and B = 1, we write simply G(«, §) and is called a
Fourier—Gauss transform. We have

G, B)pre = e* 0%, g £eMNe. (6)
We naturally comes to a subgroup of &:
&) ={G(a,0); € C, peC} =CxC",

where C* is the multiplicative group of non-zero complex numbers.
For later use we define one-parameter subgroups of &,. First, for a € C
we define
T, = g(CL, 1) : ¢1’§ — 6a<§’§>/2¢1’§, f € Nc.

It follows immediately that

T 1w =Thrw, Tt=T,.
Moreover, by a straightforward computation we obtain

To142b: Pag — eb<§’§>(/>1,§, EeNe, abeC. (7)

Next, for a,b € C let H,, be a linear operator on £ by

Hap @ g+ Dape, £ e M. (8)
Obviously,

HopHap = Happs H;,l, = Hap1 for b#£0.

On the other hand, by straightforward computation we obtain

Hopdre = (a=1)(1-b%)(¢,6)/2 Drse

which reads

Haop=G((a—1)(1 —b*),b). (9)



3 Unitarity

The Gaussian measure with variance a > 0 is a probability measure p, on
N* uniquely specified by

a2 _ / F@O, (dr), £ N
N*
Then we have

(rieun = [ Gusl)bon(a) pld) = 0, EmeNe. (10

Lemma 3.1 For a > 0 and |b| = 1, the linear automorphism Hap of €
extends uniquely to a unitary operator Hap on L2 (N*, p,).

ProoOF. Note that the inner product of L2(N*, p1,) is defined by {f, g)).
Since £ C L*(N*, u,) is a dense subspace, it is sufficient to show that

«%a,bf? ,Ha,bg»#a = <<77 g>>#a ’ f7 g € 5
Verification of the above identity is straightforward from (10). |

Let I C R be a closed (finite or infinite) interval. We denote by & the
subspace of £ spanned by {¢,¢; & € Ng, suppé C I}. By (5), £ does not
depend on the choice of a € C either. In view of the action (6), we are ready
to claim the following

Lemma 3.2 Fach G(«, 8) € B induces a linear automorphism of ;. In
particular, so is Hayp for any pair a,b € C with b # 0.

For an interval I let 1; denote the indicator function. The associated
multiplication operator is denoted by the same symbol. For a > 0 we define
a linear map F¢ from & into L?(N*, u,) by

E? : ¢a,f = ¢a,1]§7 f 6 N(C.

It is shown that E¢ extends to a projection on L*(N™*, u,), which is de-
noted by the same symbol. The image of this projection will be denoted by
L*(pe| I). Tt is noted that & is a dense subspace of L? (| I).

Now we may state a generalization of Lemma 3.1, the proof of which is
similar. We only need to note that ’;':[a,b commutes with the projection LY.

Lemma 3.3 Let I C R be a closed interval and a,b € C a pair of complex
numbers with a > 0 and |b] = 1. Then the linear automorphism H.p | Er
extends uniquely to a unitary operator on L?(ug|I), which coincides with

?'N[a,b [ LQ(MaM)-



4 White Noise Operators

We take a white noise triple
W C T'(He) & LA N*, ) € W* (11)

constructed in the standard manner [5, 6, 10, 13]. Recall that I'(H¢) is the
Boson Fock space over He which is canonically identified with L2(AN™) 1)
through the Wiener-It6-Segal isomorphism. For instance, we may take the
Hida-Kubo-Takenaka space for (11). The canonical C-bilinear form on W* x
W is denoted by (-, -).

In general, a continuous operator from W into W* is called a white noise
operator. Since the canonical injection YW — W* is continuous, we have
a natural inclusion LW, W) C L(W,W*). By simple application of the
famous characterization of operator symbols [6, 13] we see that every gen-
eralized Fourier-Gauss transform G(A, B) extends uniquely to a white noise
operator in L(W, W). In fact, the symbol is given by

(G0 Bong, o) = exp {514, + (BEm) |, €ne N,

so the check is straightforward. The continuous extension is also called a
generalized Fourier-Gauss transform and is denoted by the same symbol.
Moreover, we note the following

Proposition 4.1 Every G(A, B) € & is a topological linear automorphism
of W. In this sense & is a subgroup of GL(W).

We say that {L;; t € R} is a quantum stochastic process if t — L; €
LW, W*) is continuous. Let a; and a be the annihilation and creation
operators at a time point ¢ € R, respectively. It is known that both

L ar € LOV, W), L a) € LOV, W),

are C°-maps [6]. The pair {a;, af ; t € R} is called the quantum white noise
process. We then see that higher powers of quantum white noise (in normal-
order) are well defined white noise operators.

As is mentioned in Introduction, we focus on the normal-ordered white
noise differential equation:

d=
dt

_ 2 0= =
=va; =, =

- H(z,b 5 (12)
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where 7v,a,b € C are constant numbers and H,; is defined in (8). Recall
that H,p is a Fourier-Gauss transform and hence, is a white noise operator.
By the general theory [4, 6] there exists a unique solution to (12) in a space
of white noise operators suitably chosen and is given by

t ¢
St =Hap© exp/ 7@? ds =Hgp 0 exp/ *yaz ds, t>0. (13)
0 0

Here the Wick product ¢ is replaced with the usual product (composition)
of operators since the integral contains only annihilation operators.

5 The Main Results

Theorem 5.1 Let a,b,v € C satisfy the following conditions:

27y

5 > 0.

o] =1, b# +1, ad=a+
Let {Z} be the solution to (12), i.e., given as in (13). Then, for any t > 0,
the white noise operator =; possesses the following properties:

(1) ¢ I Epy extends uniquely to a unitary operator on L*(pq|[0,]).

2) If a > 0 in addition, =, | & _ g and = | Ep ooy €xtend uniquely to
(—00,0] [t,+00)
unitary operators on L*(u,| (—00,0]) and L*(pe] [t, +00)), respectively.

As a matter of fact, it will be seen that

_ Ha’,b on S[O,t]
Ha,b on 5(,OO,O] U g[t’+oo).

1]

Taking into account the canonical factorizations:

LN, pta) = L*(ptal (=00, 0]) @ L*(p1a] [0,1]) ® L*(pral [t, +00)),
LN, prar) = L* (ptar [ (=00, 0]) ® L*(pr| [0, 1]) ® L*(prar | [t, +00)),

we see that &0 ® o,y ® &ps400) becomes their common dense subspace.
Then Theorem 5.1 says that, according to this factorization we have

E't - Ha,b ® Ha’,b ® 7"a,b
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and each factor in the right hand side extends to a unitary operator on the
corresponding subspace of L2(N”, u,) or L*(N”, o). We call this property
of =; the partial unitarity.

In fact, we prove the following more general result.

Theorem 5.2 Givena, b,y € C, let =, be defined as in (13). Assume |b] = 1,
b # +1 and choose a',b' € C in such a way that

%<a_a'+b'><1 — )+ =0, (14)

(1) If a' > 0, the restriction T,;lEth/ I £, extends uniquely to a unitary
operator on L*(py| [0, 1]).
(2) If
[/ — ! _ 27

1—02
then the restrictions T,;lEth/ I E(—ooy0] and TbTIEth/ [ Eft400) extend
uniquely to unitary operators on L*(pgr| (—o0, 0]) and L?(pgr | [t, +00)),
respectively.

> 0, (15)

Theorem 5.1 follows immediately from Theorem 5.2 by setting &’ = 0. The
proof of Theorem 5.2 will be divided into a few steps. The Gross Laplacian
process is defined by

¢
G = / a2 ds, t>0. (16)
0
In fact, t — Gy € LW, W) is a C™-map.
Lemma 5.3 For any v € C we have

expvG; = g(271[0,t]7 1)~ (17)

PROOF. Since a;¢1 ¢ = &(t)d1¢, we have

t
(exp¥Gy)¢1 ¢ = exp (’Y /0 3 (5)2d5> pr e = eMM00E0g,

which implies (17). |



Lemma 5.4 Givena,b,y € C, let =, be defined as in (13). For anya’,b' € C
and & € N¢ we have

Ty 'Sy o ¢
t
—ewp{ S d 006+ [ e6Pdsbonw. (9
0

ProOF. Combining (9) and (17), we obtain the solution (13) written in
terms of generalized Fourier-Gauss transforms:

By = Hap o expyGr = G((a — 1)(1 = b?),0) G(2710,4, 1).

Then, using Ty = G(',1) and applying the composition rule (Lemma 2.1),
we have

T, 5Ty = G(—V, 1)g((a (1= 6%),b) G271y, 1) GV, 1)
=G0 + (a = 1)(1 = b*),6) G271 + V', 1)
=G(=0" + (a—1)(1 — b°) + 2v1p4 + V', b)
=G((a—1+b)(1 = 0°) + 2v1p,b).

We take the action on ¢g ¢ = e!=¢)&0/2¢,  to obtain
T, BTy o e = e(l—a’)<§,£>/26<{(a—1+b’)(1—62)+271[o,t]}§7§>/2¢1 be
— e(1*11')(§:€>/26<{(a*1+b’)(1*b2)+271[o,t]}§7§>/26(a’*1)b2(€7§>/2¢a, be
— e<{(a*a’+b’)(1472)+271[0,t]}&5)/2(/5&,,[)f 7
from which (18) follows immediately. |
Lemma 5.5 Given a,b,vy € C, let Z; be defined as in (13). Assume b # £1
and choose o', b' € C in such a way that
1
§(a—a'+b')(1—62)+720. (19)
Then, fort > 0 we have
Ho Eo s
7,051y = b O (20)
Harp 01 E o] U Eltt00) 5

where

(21)



PROOF. Let & € N with supp& C [0,¢]. Then, by (18) and (19) we see
that

1
TS Ty = exp { 50— o+ )1 = B)EE) + 16 | b
= ¢a’,b§ .

Hence T,;lEth/%/,g = My pda ¢ and the first part of (20) is proved.
We next take & € N with supp & C (—o0,0]U [t, +00). Again, in view of
(18) and (19) we see that

Ty ' EiTy b e = € 7S b pe

namely, :
pl1—a )<§’§>/2Tb715th'¢1,§ — o~ NEOHH(A=a)b <£,§>/2¢1’b€.

Therefore we have

T, STy dr e = @—’Y<£,§>—(1—a’)(1—1)2)<§,§)/2¢1,b§
=G(=2y = (1 —a) (1 - 0"),b)¢i¢

- g((a’ "1 2_752 - 1)(1 N 62)’b)¢1’5'

Taking (9) and (21) into account, we conclude that
Ty By dre = Harpbre,

which proves the second half of (20). |

Remark 5.6 Lemma 5.5 becomes uninteresting when b = +1. In fact, in
that case v = 0 so that Z; is reduced to a constant independent of ¢, see (13).

PrOOF OF THEOREM 5.2. (1) We already know from Lemma 5.5 that
TleEth/ [ €0 = Harp | Eo,- (22)

Noting by assumption that |b] = 1 and o’ > 0, we see from Lemma 3.3
that (22) extends to a unitary operator on L*(pq|[0,t]). The proof of (2) is
similar. i
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