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GENERALIZED WHITE NOISE OPERATOR FIELDS

AND QUANTUM WHITE NOISE DERIVATIVES

by

Un Cig Ji & Nobuaki Obata

Abstract. — Regarding a Fock space operator Ξ as a function of quantum white

noise Ξ = Ξ(at, a∗t ; t ∈ T ), we introduce its quantum white noise derivatives (qwn-

derivatives) as a kind of functional derivatives with respect to at and a∗t . We prove

that every white noise operator is differentiable and the qwn-derivatives form a gen-

eralized white noise operator field on T . We show a relation between qwn-derivatives

and generalized quantum stochastic integrals. We obtain a condition under which

qwn-derivatives are defined pointwisely.

Résumé (Champs d’opérateurs de bruit blanc généralisé et dérivées de bruit blanc quantique)
Considérant un opérateur Ξ sur l’espace de Fock comme une fonction d’un bruit

blanc quantique Ξ = Ξ(at, a∗t ; t ∈ T ), nous introduisons ses dérivées de bruit blanc

quantique qui sont analogues à des dérivés fonctionnelles par rapport à at et a∗t .

Nous montrons que tout opérateur de bruit blanc est différentiable et que ses déri-

vées de bruit blanc quantique constituent un champ d’opérateurs de bruit blanc sur

T . Nous établissons une relation entre les dérivées de bruit blanc quantique et des

intégrales stochastiques quantiques généralisées. Nous obtenons une condition pour

que les dérivées de bruit blanc quantique soient définies en tout point.

1. Introduction

This paper is a continuation of the preceding work [6], where the new idea of

quantum white noise derivative (qwn-derivative for brevity) of a Fock space operator

was introduced. A Fock space of interest is of the form Γ(H), where H = L2(T, dt)

is the Hilbert space of L2-functions on a topological space T equipped with a σ-finite
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Borel measure dt. Many questions in quantum stochastic analysis, quantum physics

and infinite dimensional harmonic analysis are concerned with (often unbounded)

operators on Fock space Γ(H) and a key role is played by the quantum white noise,

i.e., the pair of annihilation and creation operators {at, a∗t ; t ∈ T} though some

difficulty is caused by their singularity. This difficulty may be overcome by adopting

a suitable Gelfand triple. In this paper, for simplicity and avoiding cumbersome

notation, we adopt the Hida-Kubo-Takenaka space:

(E) ⊂ Γ(H) ⊂ (E)∗,

see Section 2 for details. We then concentrate our attention to the class L((E), (E)∗)

of continuous linear operators from (E) into (E)∗. Such an operator is called a white

noise operator. This restriction, nevertheless, covers a wide class of Fock space opera-

tors including bounded operators on Γ(H) as well as pointwisely defined annihilation

and creation operators. A systematic study of white noise operators was started in

[12] and has developed into quantum white noise theory, see [4] and references cited

therein.

The idea of quantum white noise derivative is naive. Recall that every white noise

operator admits a Fock expansion, i.e., every Ξ ∈ L((E), (E)∗) is decomposed into an

infinite series:

(1.1) Ξ =
∞∑

`,m=0

Ξ`,m(κ`,m),

where the integral kernel operator Ξ`,m(κ`,m) is expressed in a formal integral (because

κ`,m may be a distribution):

Ξ`,m(κ`,m) =

∫
T `+m

κ`,m(s1, . . . , s`, t1, . . . , tm)(1.2)

× a∗s1 . . . a
∗
s`
at1 . . . atm ds1 . . . ds`dt1 . . . dtm.

Accepting (1.2) as a “polynomial” in at and a∗t , and hence (1.1) as a “function” of

them: Ξ = Ξ(at, a
∗
t ; t ∈ T ), we naturally come to a kind of functional derivatives:

(1.3) D−t Ξ =
δΞ

δat
, D+

t Ξ =
δΞ

δa∗t
·

These are respectively called the annihilation- and creation-derivatives of Ξ, and both

together the quantum white noise derivatives (qwn-derivatives for brevity). However,

the above intuitive definition does not work due to singularity brought by at and a∗t .

In the preceding paper [6], taking ζ ∈ H = L2(T ), we defined the annihilation-

and creation-derivatives D±ζ Ξ for an admissible white noise operator Ξ and proved

that D±ζ Ξ is again an admissible white noise operator. In comparison with (1.3) one
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GENERALIZED WHITE NOISE OPERATOR FIELDS 19

may write down the definition as

D−ζ Ξ =
δΞ

δa(ζ)
, D+

ζ Ξ =
δΞ

δa∗(ζ)
,

where a(ζ) and a∗(ζ) are smeared operators:

a(ζ) =

∫
T

ζ(t)atdt, a∗(ζ) =

∫
T

ζ(t)a∗t dt.

In fact, the derivatives D±ζ Ξ for an admissible white noise operator Ξ were defined by

means of the Gross derivative for an admissible white noise function.

In this paper, for an arbitrary white noise operator Ξ ∈ L((E), (E)∗) we define

its qwn-derivatives without using the Gross derivative. In general, t 7→ D±t Ξ does

not make sense but is given a meaning as a generalized white noise operator field

on T (Theorem 4.6 and corollaries). Moreover, we extend the qwn-derivatives for

generalized white noise operator fields (Corollary 4.13). A generalized integral kernel

operator has been discussed as a generalization of quantum stochastic integral [13,

14]. We find an interesting relation between the qwn-differential operators and such

stochastic integrals (Corollary 4.15). Finally, we discuss a condition under which the

qwn-derivative is defined pointwisely (Theorem 5.4).

This paper is organized as follows: In Section 2 we prepare some basic notation

of the Hida-Kubo-Takenaka space. In Section 3 we review white noise operators, in

particular, integral kernel operators, Fock expansion and operator symbols. In Section

4 we introduce generalized white noise operator fields and study the qwn-derivatives

in detail. In Section 5 we discuss pointwise qwn-derivatives.

The qwn-derivatives are considered as a quantum counterpart of“classical”stochas-

tic derivatives studied extensively by many authors, see e.g., Gross [1], Hida [2], Krée

[7], Kuo [8], Malliavin [9], Nualart [10], Strook [16], and references cited therein. We

expect that the qwn-derivatives have applications in quantum stochastic integrals,

particularly in representation theory of quantum martingales [3], [15]. Further study

is now in progress.

2. Preliminaries

2.1. Underlying Gelfand Triple. — Let T be a topological space equipped with a σ-

finite Borel measure dt (we do not use a specific symbol for this measure). Let

H = L2(T, dt) be the (complex) Hilbert space of L2-functions on T and the norm

is denoted by | . |0. Let A be a selfadjoint operator (densely defined) in H satisfying

conditions (A1)–(A4) below.

(A1) inf Spec(A) > 1 and A−1 is of Hilbert-Schmidt type.
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20 UN CIG JI & N. OBATA

Then there exist a sequence

(2.4) 1 < λ0 ≤ λ1 ≤ λ2 ≤ · · · , ‖A−1 ‖2HS =
∞∑
j=0

λ−2
j <∞,

and an orthonormal basis {ej}∞j=0 of H such that Aej = λjej . For p ∈ R we define

| ξ |2p = |Apξ |20 =
∞∑
j=0

λ2p
j

∣∣〈ξ,ej〉∣∣2, ξ ∈ H.

Now let p ≥ 0. Setting Ep = {ξ ∈ H ; | ξ |p < ∞} and defining E−p to be the

completion of H with respect to | . |−p, we obtain a chain of Hilbert spaces {Ep ; p ∈
R}. Define their limit spaces:

E = SA(T ) = proj lim
p→∞

Ep, E∗ = S∗A(T ) = ind lim
p→∞

E−p,

which are mutually dual spaces. Note also that SA(T ) becomes a countably Hilbert

nuclear space. Identifying H with its dual space, we obtain a complex Gelfand triple:

(2.5) E = SA(T ) ⊂ H = L2(T, dt) ⊂ E∗ = S∗A(T ).

As usual, we understand that SA(T ) and S∗A(T ) are spaces of test functions and

generalized functions (or distributions) on T , respectively. We denote by 〈.,.〉 the

canonical C-bilinear form on E∗ × E, which is characterized by 〈ei ,ej〉 = δij . The

same symbol is used for the canonical C-bilinear form on H.

For white noise theory S∗A(T ) must contain delta functions. But this is not auto-

matic and we need further assumptions:

(A2) For each function ξ ∈ SA(T ) there exists a unique continuous function ξ̃ on T

such that ξ(t) = ξ̃(t) for a.e. t ∈ T .

Thus SA(T ) is regarded as a space of continuous functions on T and we do not use

the exclusive symbol ξ̃. The uniqueness in (A2) is equivalent to that a continuous

function a.e. vanishing on T is identically zero.

(A3) For each t ∈ T the evaluation map δt : ξ 7→ ξ(t), ξ ∈ SA(T ), is a continuous

linear functional, i.e., δt ∈ S∗A(T ).

(A4) The map t 7→ δt ∈ S∗A(T ), t ∈ T , is continuous with respect to the strong dual

topology of S∗A(T ).

It is verified easily that

(2.6) ‖A−p ‖2HS =

∫
T

| δt |2−pdt <∞, p ≥ 1.

See [12, Chapter 1] for relevant discussion.
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Remark 2.1. — The space S(R) of rapidly decreasing functions is obtained by taking

H = L2(R, dt) together with the selfadjoint operator A = 1 + t2 − d2/dt2, where dt

is Lebesgue measure. This choice is suitable for stochastic processes for R plays a

role of the time axis. On the other hand, within our general framework T can be a

manifold (space-time), a discrete space or even a finite set.

2.2. Hida-Kubo-Takenaka space. — Let Ep be the Hilbert space defined in Section

2.1. The (Boson) Fock space over Ep is defined by

Γ(Ep) =
{
φ = (fn)∞n=0 ; fn ∈ E⊗̂np , ‖φ ‖2p =

∞∑
n=0

n!| fn |2p <∞
}
.

(The weight factor n! is for convention.) Having obtained a chain of Fock spaces

{Γ(Ep) ; p ∈ R}, we set

(E) = proj lim
p→∞

Γ(Ep), (E)∗ = ind lim
p→∞

Γ(E−p).

Then we obtain a complex Gelfand triple:

(E) ⊂ Γ(H) ⊂ (E)∗,

which is referred to as the Hida-Kubo-Takenaka space. It is known that (E) is a

countably Hilbert nuclear space.

By definition the topology of (E) is defined by the norms

‖φ ‖2p =
∞∑
n=0

n! | fn |2p, φ = (fn), p ∈ R.

On the other hand, for each Φ ∈ (E)∗ there exists p ≥ 0 such that Φ ∈ Γ(E−p). In

this case, we have

‖Φ ‖2−p ≡
∞∑
n=0

n! |Fn |2−p <∞, Φ = (Fn).

The canonical C-bilinear form on (E)∗ × (E) takes the form:

〈〈Φ,φ〉〉 =
∞∑
n=0

n!〈Fn ,fn〉, Φ = (Fn) ∈ (E)∗, φ = (fn) ∈ (E).

Here we recall two important elements of (E)∗.

(a) White noise. By assumption (A3),

Wt = (0, δt, 0, . . . ), t ∈ T,

belongs to (E)∗. The family {Wt ; t ∈ T} ⊂ (E)∗ is called a white noise field on T or

a white noise process when T is a time interval.
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(b) Exponential vector. An exponential vector (or also called a coherent vector)

associated with x ∈ E∗ is defined by

φx =
(

1, x,
x⊗2

2!
, · · · ,x

⊗n

n!
, · · ·

)
.

Obviously, φx ∈ (E)∗. Moreover, φξ belongs to (E) (resp. Γ(Ep)) if and only if ξ

belongs to E (resp. Ep). In particular, φ0 is called the vacuum vector.

Remark 2.2. — Let ER ⊂ HR ⊂ E∗R be the real Gelfand triple obtained by taking

the real parts of (2.5), i.e., for example, ER is the closed real subspace of E spanned

by {e0, e1, . . .}. Let µ be the standard Gaussian measure on E∗R. Since L2(E∗R, µ) is

unitarily isomorphic to Γ(H) by the celebrated Wiener-Itô decomposition theorem,

we may regard (E) as a subspace of L2(E∗, µ). In this sense an element of (E) is

called a test white noise function, and hence an element of (E)∗ is called a generalized

white noise function.

3. White noise operators

3.1. Integral kernel operators and Fock expansion. — A continuous operator from (E)

into (E)∗ is called a white noise operator. The space of white noise operators is

denoted by L((E), (E)∗) and is equipped with the bounded convergence topology. It

is noted that L((E), (E)) is a subspace of L((E), (E)∗).

For each t ∈ T there exists a continuous operator on (E) uniquely specified by

at : (0, . . . , 0, ξ⊗n, 0, . . . ) 7−→
(
0, . . . , 0, nξ(t)ξ⊗(n−1), 0, . . .

)
, ξ ∈ E.

This is called an annihilation operator at a point t. By duality, the creation operator

at a point t is defined by a∗t ∈ L((E)∗, (E)∗). Note that L((E)∗, (E)∗) is regarded

as a subspace of L((E), (E)∗) in an obvious manner. The pair of annihilation and

creation operators {at, a∗t ; t ∈ T} is called a quantum white noise (field) on T or a

quantum white noise process when T is a time interval.

Note that a normal-ordered composition of annihilation and creation operators is

always well defined, i.e., for any pair of integers ` ≥ 0, m ≥ 0, we have a map

(3.7) T `+m 3 (s1, . . . , s`, t1, . . . , tm) 7−→ a∗s1 · · · a
∗
s`
at1 · · · atm ∈ L

(
(E), (E)∗

)
.

As a consequence (see also below) we know that (3.7) is an L((E), (E)∗)-valued test

function on T `+m, and the canonical pairing with any κ`,m ∈ (E⊗(`+m))∗ defines a

white noise operator. This operator is called an integral kernel operator with kernel

distribution κ`,m and is often written in a formal integral form as in (1.2).
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To be more precise, given κ`,m ∈ (E⊗(`+m))∗ we take K`,m ∈ L(E⊗m, (E⊗`)∗)

uniquely specified through the kernel theorem as

〈κ`,m ,η⊗` ⊗ ξ⊗m〉 = 〈K`,mξ
⊗m ,η⊗`〉, ξ, η ∈ E.

We define

K0
`,m = Sn+` ◦ (In ⊗K`,m),

where In : E⊗n → E⊗n is the identity and Sn+` : E⊗(n+`) → E⊗̂(n+`) the symmetriz-

ing operator. The symbol K0
`,m is used commonly for all n ≥ 0. Then an integral

kernel operator Ξ`,m(K`,m) is defined by the action φ = (fn) 7→ (gn) given by

gn = 0, 0 ≤ n < `; gn+` =
(n+m)!

n!
K0
`,mfn+m, n ≥ 0.

It is proved by norm estimates that Ξ`,m(K`,m) ∈ L((E), (E)∗). We also

write Ξ`,m(κ`,m) for Ξ`,m(K`,m).

A role of integral kernel operators is shown in the following

Theorem 3.1 (see [11], [12]). — A white noise operator Ξ ∈ L((E), (E)∗) is decomposed

uniquely into a sum of integral kernel operators:

(3.8) Ξ =
∞∑

`,m=0

Ξ`,m(κ`,m),

where the right hand side converges in L((E), (E)∗).

The above (3.8) is called the Fock expansion of Ξ. Convergence of Fock expansion

has been considerably discussed for various classes of white noise operators, see e.g.,

[4].

3.2. Characterization theorem for operator symbols. — The symbol of a white noise

operator Ξ ∈ L((E), (E)∗) is defined by

Ξ̂(ξ, η) = 〈〈Ξφξ ,φη〉〉, ξ, η ∈ E.

A white noise operator is uniquely specified by the symbol since {φξ ; ξ ∈ E} spans a

dense subspace of (E). Moreover, we have an analytic characterization of symbols.

Theorem 3.2 (see [11], [12]). — A C-valued function Θ on E × E is the symbol of a

white noise operator Ξ ∈ L((E), (E)∗) if and only if

(i) Θ is Gâteaux entire;

(ii) there exist C ≥ 0, K ≥ 0 and p ≥ 0 such that∣∣Θ(ξ, η)
∣∣ ≤ C exp K

(
| ξ |2p + | η |2p

)
, ξ, η ∈ E.
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For an integral kernel operator Ξ = Ξ`,m(κ`,m) = Ξ`,m(K`,m), where κ`,m ∈
(E⊗(`+m))∗ and K`,m ∈ L(E⊗m, (E⊗`)∗) are in correspondence, we have

(3.9) Ξ̂(ξ, η) =
〈
K`,mξ

⊗m ,η⊗`
〉

e〈ξ,η〉 =
〈
κ`,m ,η

⊗` ⊗ ξ⊗m
〉

e〈ξ,η〉.

In particular, for the quantum white noise we have“at(ξ, η) = ξ(t)e〈ξ,η〉, “a∗t (ξ, η) = η(t)e〈ξ,η〉,

which follow directly from atφξ = ξ(t)φξ for ξ ∈ E.

The characterization theorem for operator symbols has been considerably studied

for various classes of white noise operators, see e.g., [5] and references cited therein.

Remark 3.3. — To avoid the factor e〈ξ,η〉 in (3.9) the Wick symbol of a white noise

operator Ξ is defined by

Ξ̃(ξ, η) = Ξ̂(ξ, η)e−〈ξ,η〉 = 〈〈Ξφξ ,φη〉〉e−〈ξ,η〉, ξ, η ∈ E.

The statement in Theorem 3.2 remains valid for the Wick symbol.

4. Quantum white noise derivatives

4.1. Generalized white noise operator fields

Definition 4.1. — A continuous linear map L : E → L((E), (E)∗) is called a gener-

alized white noise operator field on T . A generalized white noise operator field on a

time interval is called a generalized quantum stochastic process [13].

Obviously, if L is a generalized white noise operator field on T , so is the adjoint

L∗ defined by L∗(ζ) = L(ζ)∗.

Remark 4.2. — The symbol L∗ might be also used for the adjoint of

L : E −→ L
(
(E), (E)∗

) ∼= ((E)⊗ (E)
)∗
,

i.e., L∗ : (E)⊗ (E)→ E∗, but the confusion will not occur by context.

For f ∈ E∗ we define white noise operators:

a(f) = Ξ0,1(f) =

∫
T

f(t)atdt, a∗(f) = Ξ1,0(f) =

∫
T

f(t)a∗t dt,

which are called respectively the annihilation and creation operators associated with

f . Then, both ζ 7→ a(ζ) and ζ 7→ a∗(ζ) are generalized white noise operator fields.
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An important example of a generalized white noise operator field is obtained from

an integral kernel operator. We recall notation. For κ ∈ (E⊗n)∗ and ζ ∈ E we define

their right and left contractions κ ∗ ζ, ζ ∗ κ ∈ (E⊗(n−1))∗ by

〈κ ∗ ζ ,η1 ⊗ · · · ⊗ ηn−1〉 = 〈κ,η1 ⊗ · · · ⊗ ηn−1 ⊗ ζ〉,
〈ζ ∗ κ,η1 ⊗ · · · ⊗ ηn−1〉 = 〈κ,ζ ⊗ η1 ⊗ · · · ⊗ ηn−1〉,

where η1, . . . , ηn−1 ∈ E.

Proposition 4.3. — Let κ`,m ∈ (E⊗(`+m))∗. Then ζ 7→ Ξ`,m−1(κ`,m ∗ ζ) defines a

generalized white noise operator field on T (m ≥ 1). Similarly, so does ζ 7→ Ξ`−1,m(ζ∗
κ`,m) (` ≥ 1).

Proof. — By using a standard estimate of an integral kernel operator, see e.g., [12,

Theorem 4.3.2], we see that for any φ ∈ (E),∥∥Ξ`,m−1(κ`,m ∗ ζ)φ
∥∥
−p ≤ C|κ`,m ∗ ζ |−p · ‖φ ‖p(4.10)

≤ C|κ`,m |−p| ζ |p · ‖φ ‖p,

where p > 0 is chosen as |κ`,m |−p < ∞ and C is a constant depending on `,m, p.

Then the continuity of ζ 7→ Ξ`,m−1(κ`,m ∗ ζ) ∈ L((E), (E)∗) is a direct consequence

of the above estimate. For Ξ`−1,m(ζ ∗ κ`,m) the argument is similar.

4.2. Quantum white noise derivatives. — As is checked by direct norm estimate, for

f ∈ E∗ and φ ∈ (E) we have

‖ a(f)φ ‖p ≤ Cq| f |−(p+q)‖φ ‖p+q,(4.11)

‖ a∗(f)φ ‖p ≤ Cq| f |p‖φ ‖p+q,(4.12)

where p ∈ R, q > 0 and Cq = supn≥0

√
n+ 1λ−qn0 with λ0 being a constant defined

in (2.4). It then follows from (4.11) and (4.12) that a(f) ∈ L((E), (E)) and a∗(f) ∈
L((E)∗, (E)∗) for all f ∈ E∗ (that is, the integral kernel operator Ξ1,0(f) extends to

a continuous operator from (E)∗ into itself). Moreover, (4.11) and (4.12) imply the

following

Lemma 4.4. — If ζ ∈ E, then a(ζ) extends to a continuous linear operator from (E)∗

into itself (denoted by the same symbol) and a∗(ζ) (restricted to (E)) is a continuous

linear operator from (E) into itself.

Thus, for any white noise operator Ξ ∈ L((E), (E)∗) and ζ ∈ E the commutators[
a(ζ),Ξ

]
= a(ζ)Ξ− Ξa(ζ), −

[
a∗(ζ),Ξ

]
= Ξa∗(ζ)− a∗(ζ)Ξ,

are well-defined white noise operators, i.e., belongs to L((E), (E)∗). We define

D+
ζ Ξ =

[
a(ζ),Ξ

]
, D−ζ Ξ = −

[
a∗(ζ),Ξ

]
.
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Definition 4.5. — D+
ζ Ξ and D−ζ Ξ are respectively called the creation derivative and

annihilation derivative of Ξ, and both together the quantum white noise derivatives

(qwn-derivatives for brevity) of Ξ.

Clearly, D±ζ becomes a linear map from L((E), (E)∗) into itself. Moreover, we have

Theorem 4.6. — The map

E × L
(
(E), (E)∗

)
−→ L

(
(E), (E)∗

)
, (ζ,Ξ) 7−→ D±ζ Ξ

is continuous bilinear.

Proof. — For Ξ ∈ L((E), (E)∗) we denote by ‖Ξ ‖−p the norm of the corresponding

element in ((E)⊗ (E))∗ through the isomorphism:

L
(
(E), (E)∗

) ∼= ((E)⊗ (E)
)∗

= ind lim
p→∞

Γ(E−p)⊗ Γ(E−p).

Then, for φ, ψ ∈ (E) we have∣∣〈〈(D−ζ Ξ)φ,ψ
〉〉∣∣ =

∣∣〈〈Ξa∗(ζ)φ,ψ
〉〉
−
〈〈
a∗(ζ)Ξφ,ψ

〉〉∣∣
≤
∣∣〈〈Ξ,ψ ⊗ a∗(ζ)φ〉〉

∣∣+
∣∣〈〈Ξ,a(ζ)ψ ⊗ φ〉〉

∣∣
≤ ‖Ξ ‖−p · ‖ψ ‖p ·

∥∥ a∗(ζ)φ
∥∥
p

+ ‖Ξ ‖−p · ‖ a(ζ)ψ ‖p · ‖φ ‖p.

By (4.11) and (4.12) we obtain∣∣〈〈(D−ζ Ξ)φ,ψ
〉〉∣∣ ≤ ‖Ξ ‖−p

(
Cq| ζ |p·‖φ ‖p+q·‖ψ ‖p

+ Cq
∣∣ ζ ∣∣−(p+q)

·‖φ ‖p·‖ψ ‖p+q
)
.

Using | ζ |−(p+q) ≤ λ
−(2p+q)
0 | ζ |p and setting C = Cq + λ

−(2p+q)
0 Cq, we come to

(4.13)
∣∣〈〈(D−ζ Ξ)φ,ψ

〉〉∣∣ ≤ C‖Ξ ‖−p·| ζ |p·‖φ ‖p+q·‖ψ ‖p+q.

This proves that (ζ,Ξ) 7→ D−ζ Ξ is a continuous bilinear map from E × L((E), (E)∗)

into L((E), (E)∗). The proof for D+ is similar.

The following results are noteworthy, though immediate from Theorem 4.6.

Corollary 4.7. — For each ζ ∈ E, the qwn-differential operator D±ζ is a continuous

operator from L((E), (E)∗) into itself.

Corollary 4.8. — Let Ξ ∈ L((E), (E)∗). Then

E 3 ζ 7−→ D±ζ Ξ ∈ L
(
(E), (E)∗

)
is a generalized white noise operator field on T .

We define

D± : L
(
(E), (E)∗

)
−→ L(E,L

(
(E), (E)∗)

)
, D±Ξ(ζ) = D±ζ Ξ, .

SÉMINAIRES & CONGRÈS 16
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4.3. Symbol and Fock expansion. — The symbols of the qwn-derivatives D±ζ Ξ are ex-

pressed in a concise form by using the Wick product (see e.g., [8] for definition). The

proof is straightforward from definition and is omitted.

Proposition 4.9. — Let Ξ ∈ L((E), (E)∗) and ζ ∈ E. Then for ξ, η ∈ E we have’D−ζ Ξ(ξ, η) =
〈〈
a(ζ)(Ξ∗φη � φ−η),φξ

〉〉
e〈ξ,η〉,’D+

ζ Ξ(ξ, η) =
〈〈
a(ζ)(Ξφξ � φ−ξ),φη

〉〉
e〈ξ,η〉,

where � is the Wick product.

We next discuss the qwn-derivatives of Ξ ∈ L((E), (E)∗) in terms of Fock expan-

sion. Let us start with the following

Proposition 4.10. — The qwn-derivatives of an integral kernel operator Ξ`,m(κ`,m),

κ`,m ∈ (E⊗(`+m))∗ are given by

(4.14)

 D−ζ Ξ`,m(κ`,m) = mΞ`,m−1(κ`,m ∗ ζ),

D+
ζ Ξ`,m(κ`,m) = `Ξ`−1,m(ζ ∗ κ`,m),

where ζ ∈ E. (The right hand sides are understood to be zero for m = 0 and ` = 0,

respectively.)

Proof. — Note first that for any p ∈ R,∥∥∥ φξ+θζ − φξ
θ

− a∗(ζ)φξ

∥∥∥
p
≤ |θ| exp 1

2

(
| ξ |p + | ζ |p

)2
, ξ, ζ ∈ E, 0 < |θ| ≤ 1,

which is verified by direct calculation. We then have〈〈
Ξ`,m(κ`,m)a∗(ζ)φξ ,φη

〉〉
=

d

dθ

〈〈
Ξ`,m(κ`,m)φξ+θζ ,φη

〉〉
θ=0

.

The right hand side is then computed with the help of (3.9) and becomes

(4.15) =
〈
κ`,m ,η

⊗` ⊗mξ⊗(m−1) ⊗ ζ
〉

e〈ξ,η〉 + 〈ζ ,η〉
〈
κ`,m ,η

⊗` ⊗ ξ⊗m
〉

e〈ξ,η〉.

On the other hand,

(4.16)
〈〈
a∗(ζ)Ξ`,m(κ`,m)φξ ,φη

〉〉
= 〈ζ ,η〉

〈
κ`,m ,η

⊗` ⊗ ξ⊗m
〉

e〈ξ,η〉.

From (4.15) and (4.16) we see that〈〈
(D−ζ Ξ`,m(κ`,m))φξ ,φη

〉〉
=
〈〈

Ξ`,m(κ`,m)a∗(ζ)φξ ,φη
〉〉
−
〈〈
a∗(ζ)Ξ`,m(κ`,m)φξ ,φη

〉〉
=
〈
κ`,m ,η

⊗` ⊗mξ⊗(m−1) ⊗ ζ
〉

e〈ξ,η〉

= m
〈
κ`,m ∗ ζ ,η⊗` ⊗ ξ⊗(m−1)

〉
e〈ξ,η〉

= m
〈〈

Ξ`,m−1(κ`,m ∗ ζ)φξ ,φη
〉〉
,

which shows the first equality in (4.14). The second one is proved similarly.
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Theorem 4.11. — Let Ξ ∈ L((E), (E)∗) with Fock expansion

Ξ =
∞∑

`,m=0

Ξ`,m(κ`,m).

Then,

D−ζ Ξ =
∞∑
`=0

∞∑
m=1

mΞ`,m−1(κ`,m ∗ ζ), D+
ζ Ξ =

∞∑
`=1

∞∑
m=0

`Ξ`−1,m(ζ ∗ κ`,m),

where the right hand sides converge in L((E), (E)∗).

Proof. — By virtue of Proposition 4.10 one needs only to check the conver-

gence, which is verified by using standard estimates of integral kernel operators

(see [12, Section 4.3]).

4.4. QWN-derivatives of generalized white noise operator fields

Lemma 4.12. — Let L ∈ L(E,L((E), (E)∗)) be a generalized white noise operator

field. Then, (ζ, ξ) 7→ D±ζ (L(ξ)) is a continuous bilinear map from E × E into

L((E), (E)∗).

Proof. — Inequality (4.13) in the proof of Theorem 4.6 being applied to Ξ = L(ξ),

we obtain

(4.17)
∣∣〈〈(D−ζ L(ξ))φ,ψ

〉〉∣∣ ≤ C‖L(ξ) ‖−p · | ζ |p · ‖φ ‖p+q · ‖ψ ‖p+q.

Since L : E → L((E), (E)∗) ∼= ((E) ⊗ (E))∗ is continuous, there exists p ≥ 0 and

K ≥ 0 such that ‖L(ξ) ‖−p ≤ K| ξ |p. Hence (4.17) becomes

(4.18)
∣∣〈〈(D−ζ L(ξ))φ,ψ

〉〉∣∣ ≤ CK| ξ |p · | ζ |p · ‖φ ‖p+q · ‖ψ ‖p+q,
which proves the continuity of (ζ, ξ) 7→ D−ζ (L(ξ)). The rest is similar.

For L ∈ L(E,L((E), (E)∗)) the qwn-derivative D±ζ L, ζ ∈ E, is defined by

(4.19) (D±ζ L)(ξ) = D±ζ
(
L(ξ)

)
, ξ ∈ E.

Then D±ζ L ∈ L(E,L((E), (E)∗)) by Lemma 4.12. Moreover, (4.18) yields

Corollary 4.13. — For each ζ ∈ E, the qwn-differential operator D±ζ is a continuous

operator from L(E,L((E), (E)∗)) into itself.
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4.5. Generalized integral kernel operators. — Let

L ∈ L(E,L
(
(E), (E)∗)

)
be a generalized white noise operator field. Then by the characterization theorem for

operator symbols (Theorem 3.2) one may prove without difficulty that there exists a

unique Ξ1 ∈ L((E), (E)∗) satisfying

(4.20) 〈〈Ξ1φξ ,φη〉〉 =
〈〈
L(ξ)φξ ,φη

〉〉
, ξ, η ∈ E.

In a similar manner there exists Ξ2 ∈ L((E), (E)∗) such that

(4.21) 〈〈Ξ2φξ ,φη〉〉 =
〈〈
L(η)φξ ,φη

〉〉
, ξ, η ∈ E.

The white noise operators defined in (4.20) and (4.21) are written in formal integral

forms:

(4.22) Ξ1 = Q−(L) =

∫
T

Ltatdt, Ξ2 = Q+(L) =

∫
T

a∗tLtdt,

respectively and called generalized integral kernel operators [14]. These are considered

as generalizations of quantum stochastic integrals, see also [13].

A generalized integral kernel operator emerges naturally in an integral kernel op-

erator Ξ`,m(κ`,m). Assume m ≥ 1. Then L : ζ 7→ Ξ`,m−1(κ`,m ∗ ζ) is a generalized

white noise operator field by Proposition 4.3. We write∫
T

Ltatdt =

∫
T

Ξ`,m−1(κ`,m ∗ δt)atdt.

Similarly, if ` ≥ 1, a generalized integral kernel operator∫
T

a∗tΞ`−1,m(δt ∗ κ`,m)dt

is defined.

Proposition 4.14. — For κ ∈ (E⊗(`+m))∗ it holds that

Ξ`,m(κ`,m) =

∫
T

Ξ`,m−1(κ`,m ∗ δt)atdt, m ≥ 1,(4.23)

Ξ`,m(κ`,m) =

∫
T

a∗tΞ`−1,m(δt ∗ κ`,m)dt, ` ≥ 1,(4.24)

where the right hand sides are generalized integral kernel operators.

Proof. — We set L(ζ) = Ξ`,m−1(κ`,m ∗ ζ) and

Ξ =

∫
T

Ltatdt =

∫
T

Ξ`,m−1(κ`,m ∗ δt)atdt.
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By definition we have

〈〈Ξφξ ,φη〉〉 =
〈〈
L(ξ)φξ ,φη

〉〉
=
〈〈

Ξ`,m−1(κ`,m ∗ ξ)φξ ,φη
〉〉

=
〈
κ`,m ∗ ξ,η⊗` ⊗ ξ⊗(m−1)

〉
e〈ξ,η〉 =

〈
κ`,m ,η

⊗` ⊗ ξ⊗m
〉

e〈ξ,η〉

= 〈〈Ξ`,m(κ`,m)φξ ,φη〉〉,

which proves (4.23). The proof of (4.24) is similar.

Corollary 4.15. — For κ`,m ∈ (E⊗(`+m))∗ it holds that

(4.25) Q−D−Ξ`,m(κ`,m) = mΞ`,m(κ`,m), Q+D+Ξ`,m(κ`,m) = `Ξ`,m(κ`,m).

Moreover,

(4.26) [N,Ξ] = (Q+D+ −Q−D−)Ξ, Ξ ∈ L
(
(E), (E)∗

)
,

where N is the number operator.

Proof. — Formulae (4.25) follow by simple combination of Propositions 4.10 and 4.14.

From [N,Ξ`,m(κ`,m)] = (` −m) Ξ`,m(κ`,m), which is easily seen and well known, we

obtain (4.26).

Theorem 4.16. — For ζ ∈ E and L ∈ L(E,L((E), (E)∗)) it holds that

D−ζ

∫
T

Ltatdt =

∫
T

(D−ζ L)t atdt + L(ζ),(4.27)

D+
ζ

∫
T

a∗tLtdt =

∫
T

a∗t (D
+
ζ L)tdt + L(ζ).(4.28)

Proof. — We show only (4.27) for the proof of (4.28) is similar. Set

Ξ =

∫
T

Ltatdt.

Then we have〈〈
Ξa∗(ζ)φξ ,φη

〉〉
=

d

dθ

〈〈
Ξφξ+θζ ,φη

〉〉
θ=0

=
d

dθ

〈〈
L(ξ + θζ)φξ+θζ ,φη

〉〉
θ=0

=
〈〈
L(ξ)a∗(ζ)φξ ,φη

〉〉
+
〈〈
L(ζ)φξ ,φη

〉〉
(4.29)

and 〈〈
a∗(ζ)Ξφξ ,φη

〉〉
= 〈ζ ,η〉〈〈Ξφξ ,φη〉〉 = 〈ζ ,η〉〈〈L(ξ)φξ ,φη〉〉

=
〈〈
L(ξ)φξ ,a(ζ)φη

〉〉
=
〈〈
a∗(ζ)L(ξ)φξ ,φη

〉〉
.(4.30)

Then from (4.29) and (4.30) we see that〈〈
(D−ζ Ξ)φξ ,φη

〉〉
=
〈〈

[Ξ, a∗(ζ)]φξ ,φη
〉〉

=
〈〈

[L(ξ), a∗(ζ)]φξ ,φη
〉〉

+
〈〈
L(ζ)φξ ,φη

〉〉
=
〈〈

(D−ζ L(ξ))φξ ,φη
〉〉

+
〈〈
L(ζ)φξ ,φη

〉〉
.
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Therefore, by (4.19) we have〈〈
(D−ζ Ξ)φξ ,φη

〉〉
=
〈〈

(D−ζ L)(ξ)φξ ,φη
〉〉

+
〈〈
L(ζ)φξ ,φη

〉〉
which proves (4.27).

5. Pointwise quantum white noise derivatives

Corollary 4.8 says that for an arbitrary white noise operator

Ξ ∈ L
(
(E), (E)∗

)
the qwn-derivatives D±t Ξ are defined as L((E), (E)∗)-valued distributions in t ∈ T .

We shall discuss when D±t Ξ has a pointwise meaning.

Definition 5.1. — A generalized white noise operator field

L ∈ L
(
E,L

(
(E), (E)∗

))
is called L2-smooth if it admits a continuous extension to H = L2(T ).

Definition 5.2. — A map t 7→ Lt ∈ L((E), (E)∗) is called an L((E), (E)∗)-valued L2-

function on T if there exists a continuous norm ‖.‖+ on (E)⊗ (E) such that∫
T

‖Lt ‖2−dt <∞,

where ‖.‖− is the dual norm on ((E)⊗(E))∗ ∼= L((E), (E)∗) derived from ‖.‖+ through

(E)⊗ (E) ⊂ Γ(H)⊗ Γ(H) ⊂ ((E)⊗ (E))∗.

Lemma 5.3. — Let t 7→ Lt ∈ L((E), (E)∗) be an L((E), (E)∗)-valued L2-function on

T . Then for any φ, ψ ∈ (E) the function t 7→ 〈〈Ltφ,ψ〉〉 belongs to H = L2(T ).

Moreover, there exists an L2-smooth generalized white noise operator field Ξ such that

(5.31)
〈〈

Ξ(ζ)φ,ψ
〉〉

=

∫
T

ζ(t)〈〈Ltφ,ψ〉〉dt, ζ ∈ H, φ, ψ ∈ (E).

Proof. — Note first that∫
T

∣∣〈〈Ltφ,ψ〉〉∣∣2dt =

∫
T

∣∣〈〈Lt ,ψ ⊗ φ〉〉∣∣2dt ≤ ‖ψ ⊗ φ ‖2+
∫
T

‖Lt ‖2−dt.

It is then obvious that t 7→ 〈〈Ltφ,ψ〉〉 belongs to H = L2(T ). Moreover, since we have

(5.32)
∣∣∣ ∫
T

ζ(t)〈〈Ltφ,ψ〉〉dt
∣∣∣ ≤ ‖φ⊗ ψ ‖+| ζ |0(∫

T

‖Lt ‖2−dt
)1/2

,

there exists Ξ = Ξ(ζ) ∈ L((E), (E)∗) such that∫
T

ζ(t)〈〈Ltφ,ψ〉〉dt =
〈〈

Ξ(ζ)φ,ψ
〉〉
, φ, ψ ∈ (E).

In view of (5.32) again, we see that Ξ : H → L((E), (E)∗) is continuous. Namely, Ξ

is an L2-smooth generalized white noise operator field.
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For p, q ∈ R we define a new norm of κ ∈ (E⊗(`+m))∗ by

|κ |2`,m;p,q =
∑
i,j

∣∣〈κ,e(i)⊗ e(j)
〉∣∣2 · | e(i) |2p · | e(j) |2q,

where e(i) = ei1 ⊗ · · · ⊗ ei` and e(j) = ej1 ⊗ · · · ⊗ ejm , see Section 2.1.

Theorem 5.4. — For κ`,m ∈ (E⊗`)∗ ⊗ E⊗m1 , m ≥ 1, there exists an L((E), (E)∗)-

valued L2-function M : T → L((E), (E)∗) such that

(5.33)
〈〈

(D−ζ Ξ`,m(κ`,m))φ,ψ
〉〉

= m

∫
T

ζ(t)〈〈Mtφ,ψ〉〉dt, φ, ψ ∈ (E).

Similarly, for κ`,m ∈ E⊗`1 ⊗ (E⊗m)∗, ` ≥ 1, there exists an L((E), (E)∗)-valued L2-

function L : T → L((E), (E)∗) such that

(5.34)
〈〈

(D+
ζ Ξ`,m(κ`,m))φ,ψ

〉〉
= `

∫
T

ζ(t)〈〈Ltφ,ψ〉〉dt, φ, ψ ∈ (E).

Proof. — We show only (5.33) for the proof of (5.34) is similar. By assumption (A4)

the map t 7→ δt ∈ E∗ is continuous, however, it is not known whether there is p ≥ 0

such that | δt |−p <∞ for all t ∈ T . Nevertheless, from (2.6) we see that | δt |−1 <∞
for a.e. t ∈ T . For such a t ∈ T we define κ`,m ∗ δt by

〈κ`,m ∗ δt ,f ⊗ g〉 = 〈κ`,m ,f ⊗ g ⊗ δt〉, f ∈ E⊗`, g ∈ E⊗(m−1)
−1 .

In fact, taking q > 0 such that |κ`,m |`,m;−q,1 <∞, we obtain∣∣〈κ`,m ∗ δt ,f ⊗ g〉∣∣ ≤ |κ`,m |`,m;−q,1 · | δt |−1 · | f |q · | g |−1,

which means that κ`,m∗δt ∈ E⊗`−q⊗E
⊗(m−1)
1 . On the other hand, by similar argument

as in (4.10) we obtain∥∥Ξ`,m−1(κ`,m ∗ δt)φ
∥∥
−q ≤ C|κ`,m ∗ δt |−q · ‖φ ‖q
≤ C|κ`,m |`+m−1,1;−q,1 · | δt |−1 · ‖φ ‖q, φ ∈ (E).(5.35)

Define Mt = Ξ`,m−1(κ`,m ∗ δt) if | δt |−1 <∞ and and Mt = 0 otherwise. Then we see

easily from (5.35) that M : T → L((E), (E)∗) is an L((E), (E)∗)-valued L2-function.

Moreover, (5.33) follows by applying (5.31).

The pointwise qwn-derivatives of Ξ`,m(κ`,m) are defined by

D−t Ξ`,m(κ`,m) = mMt, D+
t Ξ`,m(κ`,m) = ` Lt,

where L,M are the L((E), (E)∗)-valued L2-functions introduced in Theorem 5.4. In

this case we also write

D−t Ξ`,m(κ`,m) = mΞ`,m−1(κ`,m ∗ δt), D+
t Ξ`,m(κ`,m) = `Ξ`,m−1(κ`,m ∗ δt).
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