Kesten Measures, Wigner Semicircle Law and Beyond

Nobuaki Obata
Graduate School of Information Sciences
Tohoku University
Sendai 980-8579 Japan
http://www.math.is.tohoku.ac.jp/~obata

1 Independence and Central Limit Theorem

Classical Central Limit Theorem

 $\{X_n\}$: a sequence of independent random variables, $\mathbf{E}(X_i)=0$, $\mathbf{E}(X_i^2)=1$

$$\frac{X_1 + X_2 + \dots + X_N}{\sqrt{N}}$$
 — Gaussian measure

which means, for example,

$$\lim_{N \to \infty} \mathbf{E} \left[\left(\frac{X_1 + X_2 + \dots + X_N}{\sqrt{N}} \right)^m \right] = \int_{-\infty}^{+\infty} x^m \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx, \qquad m = 1, 2, \dots$$

Free Central Limit Theorem

 $\{a_n\}$: a sequence of free independent random variables in (\mathcal{A}, φ)

$$a_i = a_i^*, \ \varphi(a_i) = 0, \ \varphi(a_i^2) = 1$$

$$\frac{a_1 + a_2 + \cdots + a_N}{\sqrt{N}}$$
 \longrightarrow Wigner semicircle law

which means that

$$\lim_{N \to \infty} \varphi \left[\left(\frac{X_1 + X_2 + \dots + X_N}{\sqrt{N}} \right)^m \right] = \int_{-2}^{+2} x^m \frac{1}{2\pi} \sqrt{4 - x^2} \, dx, \qquad m = 1, 2, \dots$$

Various Concepts of Independence

 (\mathcal{A}, φ) : Algebraic probability space

independence = a rule of computing mixed moments: $\varphi(a_{i_1} \dots a_{i_n})$

independence	commutative	free	Boolean	monotone
$\varphi(aba) =$	$\varphi(a^2)\varphi(b)$	$arphi(a^2)arphi(b)$	$\varphi(a)^2 \varphi(b)$	$\boxed{\varphi(a^2)\varphi(b)}$
$\varphi(bab) =$	$\varphi(a)\varphi(b^2)$	$\varphi(a)\varphi(b^2)$	$\varphi(a)\varphi(b)^2$	$\boxed{\varphi(a)\varphi(b)^2}$
$\varphi(abab) =$	$\varphi(a^2)\varphi(b^2)$	$\varphi(a)^2\varphi(b^2) + \varphi(a^2)\varphi(b)^2 - \varphi(a)^2\varphi(b)^2$	$\varphi(a)^2 \varphi(b)^2$	$\left arphi(a^2)arphi(b)^2 ight $
CLM	Gaussian	Wigner	Bernoulli	arcsine

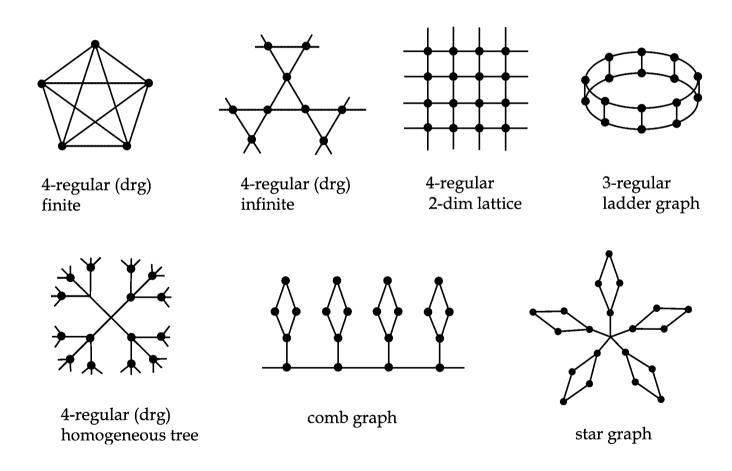
CLM (=central limit measure) is defined as

$$\lim_{N \to \infty} \varphi \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} a_n \right)^m \right] = \int_{-\infty}^{+\infty} x^m \mu(dx), \quad m = 1, 2, \dots,$$

where $\{a_i\}$ is a sequence of {commutative/free/Boolean/monotone} independent random variables such that $a_i = a_i^*$, $\varphi(a_i) = 0$, $\varphi(a_i^2) = 1$.

2 Spectral Analysis on Graphs

<u>Definition</u> A graph is a pair $\mathcal{G} = (V, E)$, where V is the set of vertices and E the set of edges. We write $x \sim y$ (adjacent) if they are connected by an edge.



Definition The adjacency matrix A of a graph $\mathcal{G} = (V, E)$ is defined by

$$A_{xy} = \begin{cases} 1, & x \sim y, \\ 0, & \text{otherwise.} \end{cases}$$

Question 1 Given a graph $\mathcal{G} = (V, E)$ and a certain state $\langle \cdot \rangle$, find a probability measure μ on R (spectral distribution in $\langle \cdot \rangle$) satisfying

$$\langle A^m \rangle = \int_{-\infty}^{+\infty} x^m \mu(dx) \quad m = 1, 2, \dots$$

Question 2 Given a growing family of graphs $\mathcal{G}_{\nu} = (V^{(\nu)}, E^{(\nu)})$ and a certain state $\langle \cdot \rangle$, find a probability measure μ on R (spectral distribution in $\langle \cdot \rangle$) satisfying

$$\langle A_{\nu}^{m} \rangle \approx \int_{-\infty}^{+\infty} x^{m} \mu(dx), \quad m = 1, 2, \dots, \quad \text{as } \nu \to \infty$$

States under consideration

- (1) $\langle X \rangle = \langle \delta_o, X \delta_o \rangle$: vacuum state, where $o \in V$ is a fixed origin.
- (2) $\langle X \rangle = \langle T_q \delta_o, X \delta_o \rangle$: deformed vacuum state, where T_q is a certain positive operator.

Assumptions on $\mathcal{G} = (V, E)$

- (a) A graph is connected,i.e., any pair of distinct vertices are connected by a walk.
- (b) A graph is *locally finite*, i.e.,

 \blacklozenge A is a selfadjoint operator acting on $\ell^2(V)$:

$$Af(x) = \sum_{y \in V} A_{xy} f(y) = \sum_{y \sim x} f(y)$$
 or equivalently, $A_{xy} = \langle \delta_x, A \delta_y \rangle$

 \blacklozenge A is bounded if and only if \mathcal{G} is uniformly locally finite, i.e.,

$$\sup_{x \in V} \kappa(x) < \infty$$

3 Quantum Decomposition of Adjacency Matrix A

Fix an origin $o \in V$ of $\mathcal{G} = (V, E)$.

Stratification (Distance Partition)

$$V = \bigcup_{n=0}^{\infty} V_n, \qquad V_n = \{x \in V ; \partial(o, x) = n\}$$

Hilbert space $\Gamma(\mathcal{G}) \subset \ell^2(V)$

$$\Gamma(\mathcal{G}) = \sum_{n=0}^{\infty} \oplus \mathbf{C}\Phi_n, \quad \Phi_n = |V_n|^{-1/2} \sum_{x \in V_n} \delta_x$$



 $(A^{\circ})_{yx}=1$

$$V_{n+1}$$

 V_n

 V_{n-1}

Quantum decomposition

$$A = A^+ + A^- + A^\circ$$

$$(A^+)^* = A^-, \quad (A^\circ)^* = A^\circ$$

- (Case 1) $\Gamma(\mathcal{G})$ is invariant under A^{ϵ}
- (Case 2) $\Gamma(\mathcal{G})$ is asymptotically invariant under A^{ϵ}

(Case 3) $\Gamma(\mathcal{G})$ is not invariant under A^{ϵ}

Theorem 1 If $\Gamma(\mathcal{G})$ is invariant under A^+, A^-, A° , there exists a pair of sequences $\{\alpha_n\}$ and $\{\omega_n\}$ such that

$$A^+\Phi_n = \sqrt{\omega_{n+1}} \Phi_{n+1}, \qquad A^-\Phi_n = \sqrt{\omega_n} \Phi_{n-1}, \qquad A^\circ\Phi_n = \alpha_{n+1}\Phi_n.$$

In particular, $(\Gamma(\mathcal{G}), A^+, A^-)$ is an interacting Fock space with Jacobi sequence $\{\omega_n\}$.

<u>Theorem</u> 2 Notations and Assumptions being as above, there exists a probability measure μ on \mathbf{R} such that

$$\langle \Phi_0, A^m \Phi_0 \rangle = \langle \Phi_0, (A^+ + A^- + A^\circ)^m \Phi_0 \rangle = \int_{-\infty}^{+\infty} x^m \mu(dx), \qquad m = 1, 2, \dots$$

Moreover, the Stieltjes transform $G_{\mu}(z)$ of μ satisfies

$$G_{\mu}(z) = \int_{-\infty}^{+\infty} \frac{\mu(dx)}{z - x} = \frac{1}{z - \alpha_1} - \frac{\omega_1}{z - \alpha_2} - \frac{\omega_2}{z - \alpha_3} - \frac{\omega_3}{z - \alpha_4} - \dots$$

<u>Remark</u> μ is the orthogonalizing measure for the polynomials defined by

$$P_0(x) = 1$$
, $P_1(x) = x - \alpha_1$, $xP_n(x) = P_{n+1}(x) + \alpha_{n+1}P_n(x) + \omega_n P_{n-1}(x)$.

 $(\{\omega_n\}, \{\alpha_n\})$ is called the **Szegö-Jacobi parameter of** μ .

Continued fraction

$$G_{\mu}(z) = \frac{1}{z - \alpha_1} - \frac{\omega_1}{z - \alpha_2} - \frac{\omega_2}{z - \alpha_3} - \frac{\omega_3}{z - \alpha_4} - \cdots$$

$$= \frac{1}{z - \alpha_1} - \frac{\omega_1}{z - \alpha_2} - \frac{\omega_2}{z - \alpha_3} - \frac{\omega_2}{z - \alpha_4} - \cdots$$

$$z - \alpha_2 - \frac{\omega_3}{z - \alpha_4} - \frac{\omega_3}{z - \alpha_4} - \cdots$$

$Stieltjes\ transform$

$$G_{\mu}(z) = \int_{-\infty}^{+\infty} \frac{\mu(dx)}{z - x} = \int_{-\infty}^{+\infty} \frac{dF(x)}{z - x} \qquad z \in \mathbf{C}, \quad \text{Im } z \neq 0,$$

$$F(x) = \mu((-\infty, x]) \quad \text{distribution function (right-continuous)}$$

$Stieltjes\ inversion\ formula$

$$\frac{1}{2}\{F(t) + F(t-0)\} - \frac{1}{2}\{F(s) + F(s-0)\} = -\frac{1}{\pi} \lim_{y \to +0} \int_{s}^{t} \operatorname{Im} G_{\mu}(x+iy) dx, \quad s < t$$

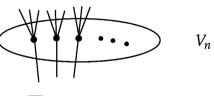
$$\rho(x) = -\frac{1}{\pi} \lim_{y \to +0} \operatorname{Im} G_{\mu}(x+iy) \quad \text{absolutely continuous part of } \mu(dx)$$

4 Kesten Measures

4.1 Homogeneous Trees

 T_{κ} : homogeneous tree of degree $\kappa \geq 2$

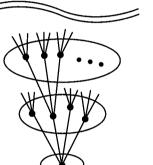
 $(T_{2N}$ Cayley graph of the free group on N generators)



Quantum decomposition $A = A^+ + A^- + A^\circ$

$$A^+\Phi_0 = \sqrt{\kappa} \, \Phi_1, \quad A^+\Phi_n = \sqrt{\kappa - 1} \, \Phi_{n+1} \quad \text{for } n \ge 1$$

$$A^{-}\Phi_{0} = 0$$
, $A^{-}\Phi_{1} = \sqrt{\kappa} \Phi_{0}$, $A^{-}\Phi_{n} = \sqrt{\kappa - 1} \Phi_{n-1}$ for $n \ge 2$
 $A^{\circ} = 0$.



 V_2

 V_1

 V_0

Stratification of T_4

$Szeg\"{o}\text{-}Jacobi\ parameter$

$$\omega_1 = \kappa, \quad \omega_2 = \omega_3 = \dots = \kappa - 1, \qquad \alpha_n \equiv 0$$

Stieltjes transform

$$\int_{-\infty}^{+\infty} \frac{\mu(dx)}{z - x} = G_{\mu}(z) = \frac{1}{z} - \frac{\omega_1}{z} - \frac{\omega_2}{z} - \frac{\omega_3}{z} - \frac{\omega_4}{z} - \cdots$$
$$= \frac{1}{z} - \frac{\kappa}{z} - \frac{\kappa - 1}{z} - \frac{\kappa - 1}{z} - \frac{\kappa - 1}{z} - \cdots$$

Definition The probability measure $\mu = \mu_{a,b}$ determined by

$$\int_{-\infty}^{+\infty} \frac{\mu(dx)}{z - x} = \frac{1}{z} - \frac{a}{z} - \frac{b}{z} - \frac{b}{z} - \frac{b}{z} - \dots \qquad a > 0, \quad b > 0,$$

is called the *Kesten measure* with parameter a, b. The density is given by

$$\mu_{a,b}(dx) = \begin{cases} \rho_{a,b}(x)dx, & \text{if } 0 < a \le 2b, \\ \rho_{a,b}(x)dx + \frac{a - 2b}{2(a - b)} \left(\delta_{-a/\sqrt{a - b}} + \delta_{a/\sqrt{a - b}}\right), & \text{if } 0 < 2b < a, \end{cases}$$

where

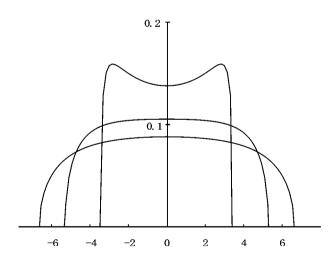
$$\rho_{a,b}(x) = \frac{a}{2\pi} \frac{\sqrt{4b - x^2}}{a^2 - (a - b)x^2}, \qquad |x| \le 2\sqrt{b}.$$

For a homogeneous tree T_{κ} ($\kappa \geq 2$)

Setting $a = \kappa$, $b = \kappa - 1$, we obtain

$$\langle A_{\kappa}^{m} \rangle = \int_{-2\sqrt{\kappa-1}}^{+2\sqrt{\kappa-1}} x^{m} \frac{\kappa}{2\pi} \frac{\sqrt{4(\kappa-1) - x^{2}}}{\kappa^{2} - x^{2}} dx$$

$$m = 1, 2, \dots$$



Kesten measures (for T_4, T_8, T_{12})

4.2 Asymptotics: T_{κ} as $\kappa \to \infty$

Actions of normalized quantum components $\langle A_{\kappa} \rangle = 0, \ \langle A_{\kappa}^2 \rangle = \kappa.$

$$\frac{A^{+}}{\sqrt{\kappa}}\Phi_{0} = \Phi_{1}, \quad \frac{A^{+}}{\sqrt{\kappa}}\Phi_{n} = \sqrt{\frac{\kappa - 1}{\kappa}}\Phi_{n+1} \quad \text{for } n \geq 1$$

$$\frac{A^{-}}{\sqrt{\kappa}}\Phi_{0} = 0, \quad \frac{A^{-}}{\sqrt{\kappa}}\Phi_{1} = \Phi_{0}, \quad \frac{A^{-}}{\sqrt{\kappa}}\Phi_{n} = \sqrt{\frac{\kappa - 1}{\kappa}}\Phi_{n-1} \quad \text{for } n \geq 2$$

$$\frac{A^{\circ}}{\sqrt{\kappa}} = 0.$$

Szegö-Jacobi parameter in the limit as $\kappa \to \infty$

$$\omega_n = \lim_{\kappa \to \infty} \omega_n(\kappa) = 1$$
 for all $n \ge 1$; $\alpha_n = 0$ for all $n \ge 1$

Theorem 3 For the adjacency matrix A_{κ} of the homogeneous tree T_{κ} ,

$$\left\langle \left(\frac{A_{\kappa}}{\sqrt{\kappa}} \right)^m \right\rangle = \left\langle (B_{\text{free}}^+ + B_{\text{free}}^-)^m \right\rangle = \int_{-2}^{+2} x^m \frac{1}{2\pi} \sqrt{4 - x^2} \, dx, \qquad m = 1, 2, \dots$$

<u>Remark</u> Let $(\pi, \ell^2(F_N))$ be the regular representation of $F_N = \langle g_1, \dots, g_N \rangle$.

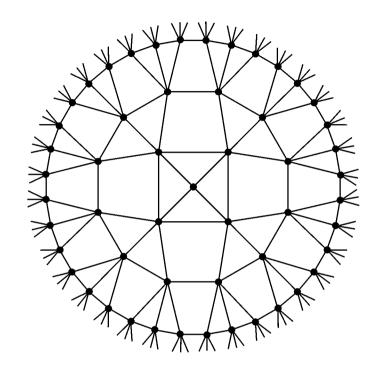
$$\frac{A_{2N}}{\sqrt{2N}} = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} \frac{\pi(g_k) + \pi(g_k^{-1})}{\sqrt{2}}$$
 is a sum of free independent random variables.

4.3 Spidernet S(a,b,c) where $a \ge 1$, $b \ge 2$, $b-1 \ge c \ge 1$

also called a *semi-regular graph* [Urakawa (2003)]

$$\kappa(x) = \begin{cases} a & x = o \text{ (origin)} \\ b & x \neq o \end{cases}$$

$$\begin{cases} \omega_{-}(x) = 1 \\ \omega_{+}(x) = c \\ \omega_{\circ}(x) = b - 1 - c \end{cases}$$
 for $x \neq o$.



S(4,6,3)

Actions of quantum components of A

$$A^{+}\Phi_{0} = \sqrt{a}\,\Phi_{1}, \qquad A^{+}\Phi_{n} = \sqrt{c}\,\Phi_{n+1}, \quad n \ge 1,$$

$$A^{-}\Phi_{0} = 0, \qquad A^{-}\Phi_{1} = \sqrt{a}\,\Phi_{0}, \qquad A^{-}\Phi_{n} = \sqrt{c}\,\Phi_{n-1}, \quad n \ge 2,$$

$$A^{\circ}\Phi_{0} = 0, \qquad A^{\circ}\Phi_{n} = (b-1-c)\Phi_{n}, \quad n \ge 1.$$

Szegö-Jacobi parameter

$$\omega_1 = a,$$
 $\omega_2 = \omega_3 = \cdots = c,$
 $\alpha_1 = 0,$ $\alpha_2 = \alpha_3 = \cdots = b - 1 - c.$

Asymptotics: S(a, b, c) as $a \to \infty$ Noting $\langle A \rangle = 0$ and $\langle A^2 \rangle = a$,

$$\frac{A^{+}}{\sqrt{a}} \Phi_{0} = \Phi_{1}, \qquad \frac{A^{+}}{\sqrt{a}} \Phi_{n} = \sqrt{\frac{c}{a}} \Phi_{n+1}, \quad n \ge 1,$$

$$\frac{A^{-}}{\sqrt{a}} \Phi_{0} = 0, \qquad \frac{A^{-}}{\sqrt{a}} \Phi_{1} = \Phi_{0}, \qquad \frac{A^{-}}{\sqrt{a}} \Phi_{n} = \sqrt{\frac{c}{a}} \Phi_{n-1}, \quad n \ge 2,$$

$$\frac{A^{\circ}}{\sqrt{a}} \Phi_{0} = 0, \qquad \frac{A^{\circ}}{\sqrt{a}} \Phi_{n} = \frac{b - 1 - c}{\sqrt{a}} \Phi_{n}, \quad n \ge 1.$$

Letting $a \to \infty$ with

$$\frac{c}{a} \longrightarrow p, \qquad \frac{b-1-c}{\sqrt{a}} \longrightarrow q,$$

Szegö-Jacobi parameter in the limit

$$\omega_1 = 1, \quad \omega_2 = \omega_3 = \dots = p, \quad 0 \le p < \infty$$
 $\alpha_1 = 0, \quad \alpha_2 = \alpha_3 = \dots = q, \quad 0 \le q < \infty$

<u>Definition</u> Let a > 0, $p \ge 0$, $q \ge 0$. The probability measure $\mu = \mu_{a,p,q}$ determined by

$$\int_{-\infty}^{+\infty} \frac{\mu(dx)}{z - x} = \frac{1}{z} - \frac{a}{z - q} - \frac{p}{z - q} - \frac{p}{z - q} - \frac{p}{z - q} - \cdots$$

is called the *deformed Kesten measure*.

<u>Theorem</u> 4 Let A = A(a, b, c) be the adjacency matrix of a spidernet S(a, b, c). Then we have

$$\langle A^m \rangle = \int_{-\infty}^{+\infty} x^m \mu(dx) \quad m = 1, 2, \dots,$$

where $\mu = \mu_{a,c,b-1-c}$ is the deformed Kesten measure.

Theorem 5 Let A = A(a,b,c) be the adjacency matrix of a spidernet S(a,b,c). Then in the limit as $a \to \infty$, $c/a \to p$, $(b-c)/\sqrt{a} \to q$ we have

$$\lim \left\langle \left(\frac{A_{a,b,c}}{\sqrt{a}} \right)^m \right\rangle = \int_{-\infty}^{+\infty} x^m \mu(dx), \quad m = 1, 2, \dots,$$

where $\mu = \mu_{1,p,q}$ is the deformed Kesten measure.

<u>Remark</u> (1) $\mu_{a,p,0}$ is the <u>Kesten measure</u> with parameter (a,p).

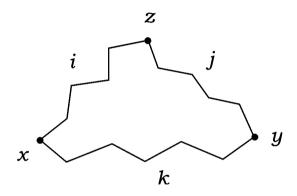
(2) $\mu_{1,1,0}$ is the Wigner semicircle law.

5 Distance Regular Graphs

<u>Definition</u> A graph $\mathcal{G} = (V, E)$ is called <u>distance regular</u> if the intersection numbers:

$$p_{i,j}^k = |\{z \in V ; \, \partial(x,z) = i, \, \partial(y,z) = j\}|,$$

is constant for all pairs x,y such that $\partial(x,y)=k$.



Theorem 6 Let $\mathcal{G} = (V, E)$ be a distance-regular graph with a fixed origin $o \in V$. Then $\Gamma(\mathcal{G})$ is invariant under the quantum components A^{ϵ} . Moreover,

$$A^+\Phi_n = \sqrt{\omega_{n+1}} \Phi_{n+1}, \qquad A^-\Phi_n = \sqrt{\omega_n} \Phi_{n-1}, \qquad A^\circ\Phi_n = \alpha_{n+1}\Phi_n,$$

holds with the coefficients given by

$$\omega_n = p_{1,n-1}^n p_{1,n}^{n-1}$$
 $\alpha_n = p_{1,n-1}^{n-1}, \quad n = 1, 2, \dots$

Examples (a) Homogeneous tree T_{κ}

$$p_{1,1}^0 = \kappa, \quad p_{n,n}^0 = \kappa(\kappa - 1)^{n-1}, \quad p_{1,n}^{n-1} = \kappa - 1, \quad p_{1,n}^n = 0.$$

Kesten measure (Kesten 1959)

Wigner semicircle law in the limit as $\kappa \to \infty$ (Voiculescu 1980s)

(b) *Hamming graphs* H(d, N) $V = \{1, 2, ..., N\}^d$

$$p_{1,1}^0 = d(N-1), \quad p_{n,n}^0 = \binom{d}{n}(N-1)^n, \quad p_{1,n}^{n-1} = (d-n+1)(N-1), \quad p_{1,n}^n = n(N-2).$$

Gaussian measure or Poisson measure in the limit as $d, N \to \infty$

"Semiclassical" method (Hora 1998)

Quantum decomposition (Hashimoto-Obata-Tabei 2001)

(c) **Johnson graphs** J(v, d) $V = \{x \subset \{1, 2, ..., v\}; |x| = d\}$ $(2d \le v)$

$$p_{1,1}^0 = d(v-d), \quad p_{n,n}^0 = \binom{d}{n} \binom{v-d}{n}, \quad p_{1,n}^{n-1} = (d-n+1)(v-d-n+1), \quad p_{1,n}^n = n(v-2n).$$

Exponential distribution or geometric distribution in the limit as $v, d \to \infty$

"Semiclassical" method (Hora 1998)

Quantum decomposition (Hashimoto-Hora-Obata 2003)

(New Example) Odd graph O_k $(k \ge 2)$

Vertex set

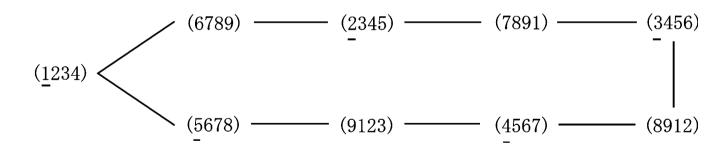
$$V = \{x \subset \Omega; |x| = k - 1\}, \qquad \Omega = \{1, 2, \dots, 2k - 1\}.$$

Adjacency matrix A defined by

$$A_{xy} = \begin{cases} 1, & \text{if } x \cap y = \emptyset, \\ 0, & \text{otherwise.} \end{cases}$$

Some geometric data

$$\deg O_k = k, \qquad \operatorname{diam} O_k = k - 1$$



a cycle of O_5

$Intersection\ numbers$

$$p_{1,n-1}^n = \begin{cases} \frac{n}{2} \\ \frac{n+1}{2} \end{cases} \qquad p_{1,n+1}^n = \begin{cases} k - \frac{n}{2}, & n \text{: even} \\ k - \frac{n+1}{2}, & n \text{: odd} \end{cases} \qquad p_{1,n}^n = \begin{cases} 0, & 1 \le n \le k-2 \\ \frac{k+1}{2}, & n = k-1, k \text{: odd} \\ \frac{k}{2}, & n = k-1, k \text{: even} \end{cases}$$

Limit as $k \to \infty$

$$\omega_{2n+1} = \lim_{k \to \infty} \frac{p_{1,2n}^{2n+1} p_{1,2n+1}^{2n}}{k} = n+1, \quad \omega_{2n} = \lim_{k \to \infty} \frac{p_{1,2n-1}^{2n} p_{1,2n}^{2n-1}}{k} = n, \quad \alpha_n = \lim_{k \to \infty} \frac{p_{1,n-1}^{2n}}{\sqrt{k}} = 0.$$

<u>Theorem</u> 7 (Igarashi-Obata 2004) For the adjacency matricx A_k of the odd graph O_k we have

$$\lim_{k \to \infty} \left\langle \left(\frac{A_k}{\sqrt{k}} \right)^m \right\rangle = \left\langle \Phi_0, (B^+ + B^-)^m \Phi_0 \right\rangle, \qquad m = 1, 2, \dots,$$

where B^{\pm} are the annihilation and creation operators on the interacting Fock space associated with the Jacobi parameter $\{\omega_n\} = \{1, 1, 2, 2, 3, 3, \dots\}$.

$Stieltjes\ transform$

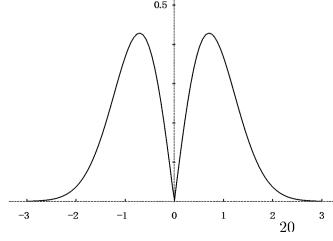
$$\int_{-\infty}^{+\infty} \frac{\mu(dx)}{z - x} = G(z) = \frac{1}{z} - \frac{1}{z} - \frac{1}{z} - \frac{2}{z} - \frac{2}{z} - \frac{3}{z} - \frac{3}{z} - \frac{4}{z} - \cdots$$

$$= \frac{z}{z^2 - 1} - \frac{1^2}{z^2 - 3} - \frac{2^2}{z^2 - 5} - \frac{3^2}{z^2 - 7} - \cdots - \frac{(n - 1)^2}{z^2 - (2n - 1)} - \cdots$$

$$= \int_{-\infty}^{+\infty} \frac{|x|e^{-x^2}}{z - x} dx$$

<u>Theorem</u> 8 (Igarashi-Obata, 2004) For the adjacency matrix A_k of the odd graph O_k we have

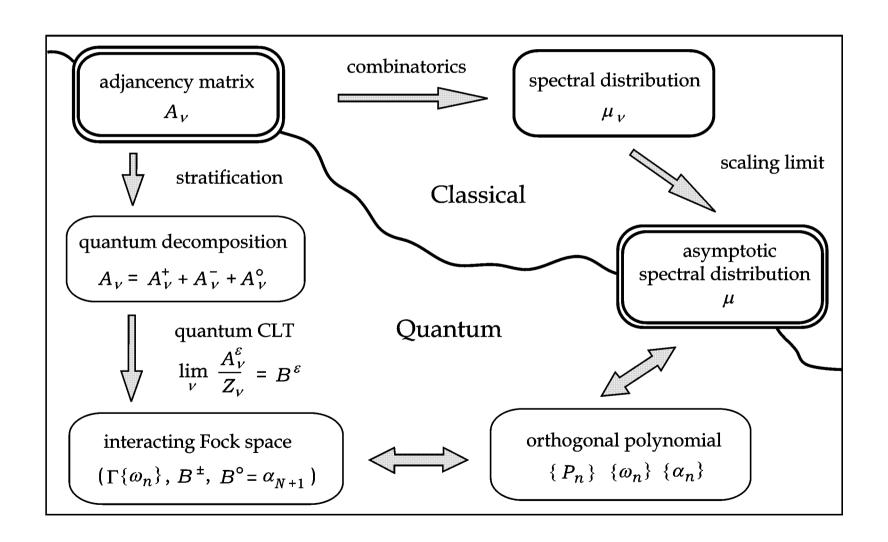
$$\lim_{k \to \infty} \left\langle \left(\frac{A_k}{\sqrt{k}} \right)^m \right\rangle = \int_{-\infty}^{+\infty} x^m |x| e^{-x^2} dx, \qquad m = 1, 2, \dots$$



"two-sided" Rayleigh distribution

Overview of Our Method

Given $\{\mathcal{G}_{\nu}=(V_{\nu},E_{\nu})\}$, we wish to find μ such that $\langle A_{\nu}^{m}\rangle\approx\int_{-\infty}^{+\infty}x^{m}\mu(dx)$



SUMMARY

- 1. Free CLT was revisited from the viewpoint of Asymptotic Spectral Analysis on homogeneous trees.
- 2. Method of *Quantum Decomposition* of the adjacency matrix $A = A^+ + A^- + A^\circ$ was discussed.
- 3. Deformed Kesten measures, generalizing Kesten measures and Wigner semicircle law, emerged from spidernets.
- 4. Another direction of generalization of Free CLT was discussed from the viewpoint of *Asymptotic Spectral Analysis* on distance regular graphs.
- 5. A new example (odd graphs) was shown.

A. Hora and N. Obata: "Quantum Probability and Spectral Analysis on Graphs,"

A monograph in preparation

5.1 A New Aspect: Graph Products \iff Independence Concepts

$$\mathcal{G}=$$
 "product" of \mathcal{G}_1 and \mathcal{G}_2
$$\updownarrow$$

$$A=\widetilde{A^{(1)}}+\widetilde{A^{(2)}}=\text{sum of "independent" random variables}$$

independence	monotone	Boolean	commutative	free
CLM	arcsine	Bernoulli	Gaussian	Wigner
graph product	comb	star	direct	free
examples	comb graph	star graph	integer lattice	homogeneous tree

