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1 Motivation of Our Work

1.1 Classical and quantum stochastic integrals of Itô type

⋆ Classical stochastic integral (Itô):

Xt =

∫ t

0

F dBs for an adapted integrand

⋆ Quantum stochastic integral (Hudson-Parthasarathy):

Ξt =

∫ t

0

EdAs +

∫ t

0

FdA∗
s +

∫ t

0

GdΛs for adapted integrands

• taking the actions on exponential vectors (operator symbols)

• and using a pararell arguments as in the case of classical Itô integrals

• {At}, {A∗
t}, {Λt} appear in quantum decompositions of Brownian motion and Poisson

process:

Bt = At + A∗
t =

∫ t

0

as ds +

∫ t

0

a∗sds

Pt = Λt +
√

λ(At + A∗
t ) + λ =

∫ t

0

(a∗s +
√

λ)(as +
√

λ)ds

⋆ How about generalizations to non-adapted integrands?
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1.2 Classical stochastic gradient and its adjoint action

H = L2(R, dt) with norm ∥f∥2
0 = ⟨f̄ , f⟩ =

∫
R

|f (t)|2dt

Γ(H) = (Boson Fock space over H) =

{
ϕ = (fn) ; fn ∈ H⊗̂n, ∥ϕ∥2

0 =

∞∑
n=0

n! |fn|20 < ∞

}

Definition The classical stochastic gradient is defined by

∇ϕ(t) = ((n + 1)fn+1(t, ·))∞n=0 for a suitable ϕ = (fn) ∈ Γ(H).

The domain of ∇ is taken, for example, to be

D =

{
ϕ = (fn) ; ∥ϕ∥2

D =

∞∑
n=0

(n + 1)n! |fn|20 < ∞

}
[Malliavin,Nualart, Kuo,...]

G∗ = ind lim
p→−∞

Gp , Gp =

{
ϕ = (fn) ; |||ϕ|||2p =

∞∑
n=0

n!e2pn|fn|20 < ∞

} [
Belavkin,

Øksendal,...

]

Then, we obtain continuous linear maps:

∇ : D → L2(R, Γ(H)) or G∗ → L2(R,G∗)

δ = ∇∗ : L2(R, Γ(H)) → D∗ or L2(R,G) → G
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The adjoint map δ = ∇∗ (also called the divergence operator) defines (non-adapted) stochastic

integrals which generalize the Itô integrals (Hitsuda-Skorokhod, Zakai-Nualart-Pardoux), see e.g.,

Malliavin: “Stochastic Analysis.”

1.3 Non-adapted quantum stochastic integrals

Belavkin (1991), Lindsay (1993) defined quantum stochastic integrals δ+(Ξ), δ−(Ξ), δ0(Ξ) by

δ+(Ξ)ϕ = δ(Ξϕ), δ−(Ξ)ϕ =

∫
R

Ξ(t)(∇ϕ(t))dt, δ0(Ξϕ) = δ(Ξ∇ϕ)

• taking a suitable vector ϕ to apply the classical δ

Our Aim

(1) Introduce quantum stochastic gradients acting on “quantum random variables,” as the clas-

sical stochastic gradient acts on “random variables.”

(2) Define non-adapted quantum stochastic integrals directly by the adjoint actions of quantum

stochastic gradients.

(3) Show some applications (regularity properties of quantum stochastic integrals, quantum white

noise derivatives, representations of quantum martingales,...)
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2 Classical Stochastic Gradient Revisited

2.1 White noise triple

(E) ⊂ Γ(H) ⊂ (E)∗: originally by Kubo-Takenaka (1980), later many generalizations.

Ep = completion of S(R) with respect to |f |p = |Apf |0, A = 1 + t2 − d2

dt2
,

(E) = proj lim
p→∞

Γ(Ep)

⋆ (E) is a nuclear Fréchet space.

2.2 Quantum white noise

at : (0, . . . , 0, ξ⊗n, 0, . . . ) 7→ (0, . . . , 0, nξ(t)ξ⊗(n−1), 0, 0, . . . ) annihilation process

a∗t : (0, . . . , 0, ξ⊗n, 0, . . . ) 7→ (0, . . . , 0, 0, ξ⊗n⊗̂δt, 0, . . . ) creation process

Fundamental Lemma The map t 7→ at is an L((E), (E))-valued rapidly decreasing function, i.e.,

belong to S(R) ⊗ L((E), (E)) ∼= L((E),S(R) ⊗ (E)) ∼= S(R,L((E), (E))).

Definition Define a continuous linear map ∇ : (E) → S(R) ⊗ (E) ∼= S(R, (E)) by

∇ϕ(t) = atϕ, ϕ ∈ (E), t ∈ R.
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2.3 Several domains of classical stochastic gradient

According to the inclusion relations:

(E) ⊂ G ⊂ D ⊂ Γ(H) ⊂ D∗ ⊂ G∗ ⊂ (E)∗

we can define the classical stochastic gradients as continuous linear maps:

(E) −−→ G −−→ D −−→ Γ(H) −−→ G∗

∇
y ∇

y ∇
y ∇

y ∇
y

S(R, (E)) −−→ L2(R,G) −−→ L2(R, Γ(H)) −−→ L2(R,D∗) −−→ L2(R,G∗)

where L2(R,G)
def
= proj lim

p→∞
L2(R,Gp) ∼= proj lim

p→∞
L2(R) ⊗ Gp

L2(R,G∗)
def
= ind lim

p→∞
L2(R,G−p) ∼= ind lim

p→∞
L2(R) ⊗ G−p

Norm estimates

∥∇ϕ∥L2(R,Γ(H)) ≤ ∥ϕ∥D, ϕ ∈ D,

∥∇ϕ∥L2(R,D∗) ≤ ∥ϕ∥Γ(H), ϕ ∈ Γ(H),

∥∇ϕ∥2
L2(R,Gp)

=

∫
R

|||∇ϕ(t)|||2p dt ≤ K(p, r)|||ϕ|||2p+r, K(p, r) = sup
n

ne−2rn−2p, r > 0.
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2.4 The adjoint actions of ∇ (Hitsuda–Skorohod integrals)

Taking the adjoint maps in the above diagram,

L2(R,G) −−→ L2(R,D) −−→ L2(R, Γ(H)) −−→ L2(R,G∗) −−→ S ′(R, (E)∗)

δ=∇∗
y δ

y δ

y δ

y δ

y
G −−→ Γ(H) −−→ D∗ −−→ G∗ −−→ (E)∗

Definition We call δ(Ψ) the Hitsuda–Skorohod integral .

By definition it holds that

⟨⟨δ(Ψ), ϕ⟩⟩ =

∫
R

⟨⟨Ψ(t), ∇ϕ(t)⟩⟩ dt, for a suitable pair Ψ and ϕ.

• The adjoint action of the classical stochastic gradient defines a (non-adapted) stochastic integrals

which generalize the Itô integral.

⋆ This idea can be applied to quantum stochastic integrals!

We first introduce three kinds of quantum stochastic gradients:

creation gradient ∇+ annihilation gradient ∇− conservation gradient ∇0
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3 Quantum Stochastic Gradients

3.1 White noise operators

We have already introduced the inclusion relations:

(E) ⊂ G ⊂ D ⊂ Γ(H) ⊂ D∗ ⊂ G∗ ⊂ (E)∗

• classical random variables ⇐⇒ vectors in these spaces

• quantum random variables ⇐⇒ operators between these spaces

Definition A continuous linear operator from (E) into (E)∗ is called a white noise operator . The

space of white noise operators is denoted by L((E), (E)∗) and is equipped with the bounded

convergence topology.

• L((E), (E)∗) covers a wide class of Fock space operators, e.g., L(X ,Y).

• The nuclear kernel theorem (since (E) is a nuclear space) claims the canonical isomorphism:

K : L((E), (E)∗)
∼=−→ (E)∗ ⊗ (E)∗ defined by ⟨⟨Ξϕ, ψ⟩⟩ = ⟨⟨KΞ, ψ ⊗ ϕ⟩⟩, ϕ, ψ ∈ (E).

• This K induces many isomorphisms such as

L((E), (E)) ∼= (E) ⊗ (E)∗, L((E)∗,X ) ∼= X ⊗ (E), etc.

where ⊗ is the completed π-tensor product.
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3.2 Creation gradient ∇+

Classical stochastic gradient ∇ : D → L2(R, Γ(H)), i.e., (random variables) → (stochastic processes)

Quantum stochastic gradient ∇ϵ : (quantum random variables) → (quantum stochastic processes)

Consider ∇+ acting on L((E),D)

L((E),D)
∼=−−→ D ⊗ (E)∗

∇⊗I−−−→ L2(R, Γ(H)) ⊗ (E)∗

The last space becomes

L2(R, Γ(H)) ⊗ (E)∗ ∼= ind lim
p→∞

L2(R, Γ(H)) ⊗ Γ(E−p)

∼= ind lim
p→∞

L2(R, Γ(H) ⊗ Γ(E−p))
def
= L2(R, Γ(H) ⊗ (E)∗)

∼= ind lim
p→∞

L2(R,L2(Γ(Ep), Γ(H)))
def
= L2(R,L((E), Γ(H)))

Thus, the creation gradient is defined:

∇+ :L((E),D) → L2(R, Γ(H) ⊗ (E)∗) ∼= L2(R,L((E), Γ(H)))

L2(Γ(Ep),D) → L2(R, Γ(H) ⊗ Γ(E−p)) ∼= L2(R,L2(Γ(Ep), Γ(H)))

Norm estimate

∥∇+Ξ∥2
L2(R,L2(Γ(Ep),Γ(H))) =

∫
R

∥∇+Ξ(t)∥2
L2(Γ(Ep),Γ(H)) dt ≤ ∥Ξ∥2

L2(Γ(Ep),D).

In particular,
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Theorem 3.1 (HS criterion) For any Ξ ∈ L2(Γ(H),D) we have∫
R

∥∇+Ξ(t)∥2
L2(Γ(H),Γ(H))dt ≤ ∥Ξ∥2

L2(Γ(H),D).

Therefore, ∇+Ξ(t) is a Hilbert–Schmidt operator on Γ(H) for a.e. t ∈ R.

The above discussion on the creation gradient is summarized into the following diagram:

L((E)∗,D) −−→ L2(Γ(Ep),D) −−→ L((E),D)

∇+

y ∇+

y ∇+

y
L2(R,L((E)∗, Γ(H))) −−→ L2(R,L2(Γ(Ep), Γ(H))) −−→ L2(R,L((E), Γ(H)))

Different domains:

L((E)∗, Γ(H)) −−→ L2(Γ(Ep), Γ(H)) −−→ L((E), Γ(H))

∇+

y ∇+

y ∇+

y
L2(R,L((E)∗,D∗)) −−→ L2(R,L2(Γ(Ep),D

∗)) −−→ L2(R,L((E),D∗))

where p runs over R and

L((E), Γ(H)) ∼= ind lim
p→∞

L2(Γ(Ep), Γ(H)), L((E)∗, Γ(H)) ∼= proj lim
p→∞

L2(Γ(E−p), Γ(H)).

10



3.3 Annihilation gradient ∇−

The annihilation gradient is defined by

∇− : L(D∗, (E)∗)
∼=−−→ (E)∗ ⊗ D

I⊗∇−−−→ (E)∗ ⊗ L2(R, Γ(H))

∼=−−→ L2(R, (E)∗ ⊗ Γ(H))
∼=−−→ L2(R,L(Γ(H), (E)∗)),

where L2(R, (E)∗ ⊗ Γ(H))
def
= ind lim

p→∞
L2(R, Γ(E−p) ⊗ Γ(H)).

L(D∗, (E)) −−→ L2(D
∗, Γ(Ep)) −−→ L(D∗, (E)∗)

∇−
y ∇−

y ∇−
y

L2(R,L(Γ(H), (E))) −−→ L2(R,L2(Γ(H), Γ(Ep))) −−→ L2(R,L(Γ(H), (E)∗))

where

L(D∗, (E)) ∼= proj lim
p→∞

L2(D
∗, Γ(Ep)), L(D∗, (E)∗) ∼= ind lim

p→∞
L2(D

∗, Γ(E−p)).

Different domains:

L(Γ(H), (E)) −−→ L2(Γ(H), Γ(Ep)) −−→ L(Γ(H), (E)∗)

∇−
y ∇−

y ∇−
y

L2(R,L(D, (E))) −−→ L2(R,L2(D, Γ(Ep))) −−→ L2(R,L(D, (E)∗))
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Norm estimate, e.g.,

∥∇−Ξ∥2
L2(R,L2(Γ(H),Γ(Ep)))

=

∫
R

∥∇−Ξ(t)∥2
L2(Γ(H),Γ(Ep))

dt ≤ ∥Ξ∥2
L2(D∗,Γ(Ep))

.

Theorem 3.2 (HS criterion) For any Ξ ∈ L2(D
∗, Γ(H)) we have∫

R

∥∇−Ξ(t)∥2
L2(Γ(H),Γ(H))dt ≤ ∥Ξ∥2

L2(D∗,Γ(H)).

In particular, ∇−Ξ(t) is a Hilbert–Schmidt operator on Γ(H) for a.e. t ∈ R.

Theorem 3.3 (Relation between annihilation and creation gradients) Let Ξ be a member of one

of the domains of the creation gradient in the above diagrams. Then,

∇−Ξ(t) = (∇+Ξ∗(t))∗ for a.e. t ∈ R.

Theorem 3.4 (Annihilation and creation gradients as densities) Let Ξ be a member of one of the

domains of the creation gradient in the above diagrams. Then, for ζ ∈ H = L2(R) the

compositions a(ζ)Ξ and Ξa(ζ)∗ are well defined (as continuous operators) and admit the integral

expressions:

a(ζ)Ξ =

∫
R

ζ(t)∇+Ξ(t) dt, Ξa∗(ζ) =

∫
R

ζ(t)∇−Ξ(t) dt.
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3.4 Conservation gradient ∇0

creation gradiaent ∇+ : L((E),D)
∼=−−→ D ⊗ (E)∗

∇⊗I−−−→ L2(R, Γ(H)) ⊗ (E)∗ → · · ·

annihilation gradient ∇− : L(D∗, (E)∗)
∼=−−→ (E)∗ ⊗ D

I⊗∇−−−→ (E)∗ ⊗ L2(R, Γ(H)) → · · ·

The conservation gradient will be defined as

∇0 : L((E)∗,D)
∼=−−→ D ⊗ (E)

∇⊘∇−−−−→ L2(R, Γ(H) ⊗ (E))
∼=−−→ L2(R,L((E)∗, Γ(H))),

where ∇⊘∇ is the “diagonalized” tensor product.

[(∇⊘∇)ϕ ⊗ ψ](t) = ∇ϕ(t) ⊗∇ψ(t) for suitable ϕ, ψ

Lemma ∇⊘∇ : D ⊗ (E) → L2(R, Γ(H) ⊗ (E)) is a continuous linear map.

Proof (1) For any p ≥ 0 and q > 0 with p + q > 5/12 there exists a constant C(p, q) > 0

such that

sup
t∈R

∥∇ψ(t)∥2
p ≤ C(p, q) ∥ψ∥2

p+q, ψ ∈ (E).

(2) Then one can show easily that∫
R

∥[(∇⊘∇)ϕ ⊗ ψ](t)∥2
Γ(H)⊗Γ(Ep)

dt ≤ C(p, q)∥ϕ∥2
D∥ψ∥2

p+q.

Therefore, ∇⊘∇ : D ⊗π Γ(Ep+q) → L2(R, Γ(H) ⊗ Γ(Ep)) is continuous.

(3) Combine a continuous injection D ⊗ (E) = D ⊗π (E) → D ⊗π Γ(Ep+q).
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Remarks (1) 5/12 arises from sup
t∈R

| δt |−r < ∞ for r > 5/12.

(2) L2(R, Γ(H) ⊗ (E))
def
= proj limp→∞ L2(R, Γ(H) ⊗ Γ(Ep)) ∼= (L2(R) ⊗ Γ(H)) ⊗ (E).

With a different domain,

L((E)∗,D) −−→ L((E)∗, Γ(H))

∇0

y y∇0

L2(R,L((E)∗, Γ(H))) −−→ L2(R,L((E)∗,D∗)).

We call ∇0 the conservation gradient.
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4 Hitsuda–Skorokhod Quantum Stochastic Integrals

4.1 Creation integral

The creation integral δ+ is by definition the adjoint map of the creation gradient ∇+.

L2(R,L((E)∗, Γ(H))) −−→ L2(R,L2(Γ(Ep), Γ(H))) −−→ L2(R,L((E), Γ(H)))

δ+

y δ+

y δ+

y
L((E)∗,D∗) −−→ L2(Γ(Ep),D

∗) −−→ L((E),D∗)

Different domains:

L2(R,L((E)∗,D)) −−→ L2(R,L2(Γ(Ep),D)) −−→ L2(R,L((E),D))

δ+

y δ+

y δ+

y
L((E)∗, Γ(H)) −−→ L2(Γ(Ep), Γ(H)) −−→ L((E), Γ(H)).

Norm estimates:

∥δ+(Ξ)∥2
L2(Γ(Ep),D∗) ≤

∫
R

∥Ξ(t)∥2
L2(Γ(Ep),Γ(H)) dt

∥δ+(Ξ)∥2
L2(Γ(Ep),Γ(H)) ≤

∫
R

∥Ξ(t)∥2
L2(Γ(Ep),D) dt
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Theorem 4.1 (HS criterion) For any Ξ ∈ L2(R,L2(Γ(H),D)) the creation integral δ+(Ξ) is a

Hilbert–Schmidt operator on Γ(H).

Theorem 4.2 Let Ξ be a member of one of the domains of the creation integral in the above

diagrams. Then it holds that

⟨⟨δ+(Ξ)ϕ, ψ⟩⟩ =

∫
R

⟨⟨Ξ(t)ϕ,∇ψ(t)⟩⟩ dt

for a suitable pair ϕ, ψ. Therefore, denoting (Ξϕ)(t) = Ξ(t)ϕ we have

δ+(Ξ)ϕ = δ (Ξϕ) , ϕ ∈ (E). (BL1)

Remark (BL1) means that our δ+(Ξ) coincides with the non-adapted quantum stochastic integrals

defined by Belavkin (1991) and Lindsay (1993) when Ξ is in the common domain.

• We have some criteria for boundedness of δ+(Ξ), for example,

Theorem 4.3 (Boundedness criterion. cf. Theorem 4.1) For any Ξ ∈ L2(R,L(Γ(H),D)) the

creation integral δ+(Ξ) is a bounded operator on Γ(H).
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4.2 Annihilation Integral

The annihilation integral δ− is defined to be the adjoint map of the annihilation gradient ∇−:

L2(R,L(Γ(H), (E))) −−→ L2(R,L2(Γ(H), Γ(Ep))) −−→ L2(R,L(Γ(H), (E)∗))

δ−
y δ−

y δ−
y

L(D, (E)) −−→ L2(D, Γ(Ep)) −−→ L(D, (E)∗)

Different domains:

L2(R,L(D∗, (E))) −−→ L2(R,L2(D
∗, Γ(Ep))) −−→ L2(R,L(D∗, (E)∗))

δ−
y δ−

y δ−
y

L(Γ(H), (E)) −−→ L2(Γ(H), Γ(Ep)) −−→ L(Γ(H), (E)∗),

Norm estimates:

∥δ−(Ξ)∥2
L2(D,Γ(Ep))

≤
∫

R

∥Ξ(t)∥2
L2(Γ(H),Γ(Ep))

dt

∥δ−(Ξ)∥2
L2(Γ(H),Γ(Ep))

≤
∫

R

∥Ξ(t)∥2
L2(D∗,Γ(Ep))

dt
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Theorem 4.4 (HS criterion) For any Ξ ∈ L2(R,L2(D
∗, Γ(H))) the annihilation integral δ−(Ξ) is

a Hilbert–Schmidt operator on Γ(H).

Theorem 4.5 Let Ξ be a member of one of the domains of the annihilation integral in the above

diagrams. Then it holds that

⟨⟨δ−(Ξ)ϕ, ψ⟩⟩ =

∫
R

⟨⟨Ξ(t)(∇ϕ(t)), ψ⟩⟩ dt

for a suitable pair ϕ, ψ. Therefore,

δ−(Ξ)ϕ =

∫
R

Ξ(t)(∇ϕ(t)) dt. (BL2)

Remark (BL2) means that our δ−(Ξ) coincides with the non-adapted quantum stochastic integrals

defined by Belavkin (1991) and Lindsay (1993) when Ξ is in the common domain.

Theorem 4.6 (Relation between creation and annihilation integrals)

(δ−(Ξ))∗ = δ+(Ξ∗).

• Boundedness criteria follow from those for creation integrals.
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4.3 Conservation Integral

The conservation integral δ0 is defined by the adjoint actions of the conservation gradient ∇0:

L2(R,L((E),D)) −−→ L2(R,L((E), Γ(H)))

δ0

y δ0

y
L((E), Γ(H)) −−→ L((E),D∗).

• We have similar “boundedness criterion” as in the case of creation and annihilation integrals.

Theorem 4.7 Let Ξ be a member of one of the domains of the conservation integral in the above

diagram. Then it holds that

⟨⟨δ0(Ξ)ϕ, ψ⟩⟩ =

∫
R

⟨⟨Ξ(t)∇ϕ(t),∇ψ(t)⟩⟩ dt

for a suitable pair ϕ, ψ. Therefore,

δ0(Ξ)ϕ = δ(Ξ∇ϕ), (BL3)

where Ξ∇ϕ is defined by Ξ∇ϕ(t) = Ξ(t)(∇ϕ(t)).

Remark (BL3) means that our δ0(Ξ) coincides with the non-adapted quantum stochastic integrals

defined by Belavkin (1991) and Lindsay (1993) when Ξ is in the common domain.
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4.4 Further extensions in terms of G

The creation integral:

δ+ :
L2(R,L((E)∗,G)) → L((E)∗,G),

L2(R,L((E),G∗)) → L((E),G∗).

The annihilation integral:

δ− :
L2(R,L(G∗, (E))) → L(G, (E)∗),

L2(R,L(G, (E)∗)) → L(G, (E)∗),

The conservation integral:

δ0 : L2(R,L((E),G∗)) → L((E),G∗), etc.

Remark For the conservation integral, we used the estimate of the diagonalized tensor product ∇⊘∇
as follows: For any p ≥ 0, q ∈ R, r > 0 and s > 0 with p + s > 5/12,∫

R

|||[(∇⊘∇)ϕ ⊗ ψ](t)|||2Gq⊗Γ(Ep)
dt ≤ K(q, r)C(p, s)|||ϕ|||2q+r∥ψ∥2

p+s, ϕ ∈ G, ψ ∈ (E).

Hence ∇⊘∇ is a continuous linear map from Gq+r⊗πΓ(Ep+s) into L2(R,Gq⊗Γ(Ep)). Consequently,

the conservation gradient

∇0 : L((E)∗,G) → L2(R,L((E)∗,G))

becomes a continuous linear map, and so is δ0 = (∇0)∗.
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4.5 The classical-quantum correspondence

(classical random variables) ⊂ (quantum random variables)

Fundamental Lemma Each Φ ∈ (E)∗ gives rise to a white noise operator MΦ ∈ L((E), (E)∗) by

multiplication, i.e.,

⟨⟨MΦϕ, ψ⟩⟩ = ⟨⟨Φ, ϕψ⟩⟩, ϕ, ψ ∈ (E),

where ϕψ is the pointwise product defined through the Wiener–Itô–Segal isomorphism. Moreover,

Φ 7→ MΦ is a continuous linear injection.

Note: MΦϕ0 = Φ, where ϕ0 = (1, 0, 0, . . . ) ∈ (E) is the vacuum vector.

Theorem 4.8 Let Φ ∈ L2(R,G∗) and MΦ(t) = MΦ(t). Then MΦ ∈ L2(R,L((E),G∗)) and it

holds that

δ+(MΦ)ϕ0 = δ(Φ), δ−(MΦ)ϕ0 = 0, δ0(MΦ)ϕ0 = 0.

Proof (1) We can show that Mϕ ∈ L((E),G∗) for any ϕ ∈ G∗.

(2) Hence MΦ ∈ L2(R,L((E),G∗)) and their quantum stochastic integrals are defined.

(3) The three relations follow by direct verification, e.g., for any ψ ∈ (E) we have
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⟨⟨δ+(MΦ)ϕ0, ψ⟩⟩ = ⟨⟨Kδ+(MΦ), ψ ⊗ ϕ0⟩⟩ = ⟨⟨KMΦ, (∇⊗ I)(ψ ⊗ ϕ0)⟩⟩

=

∫
R

⟨⟨KMΦ(t), (∇ψ(t)) ⊗ ϕ0⟩⟩dt =

∫
R

⟨⟨MΦ(t)ϕ0, ∇ψ(t)⟩⟩dt

=

∫
R

⟨⟨Φ(t),∇ψ(t)⟩⟩dt = ⟨⟨δ(Φ), ψ⟩⟩,

which proves the first identity.
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5 Quantum White Noise Derivatives

5.1 Motivation

Every white noise operator Ξ ∈ L((E), (E)∗) is a “function” of quantum white noise:

Ξ = Ξ(as, a
∗
t ; s ∈ R, t ∈ R)

Fock expansion of a white noise operator Ξ ∈ L((E), (E)∗):

Ξ =

∞∑
l,m=0

∫
Rl+m

κl,m(s1, . . . , sl, t1, . . . , tm)a∗s1
. . . a∗sl

at1 . . . atm ds1 . . . dsldt1 . . . dtm

where κ ∈ S ′
sym(Rl) ⊗ S ′

sym(Rm).

• What are the derivatives with respect to at and a∗t? say, D−
t =

∂

∂at
, D+

t =
∂

∂a∗t
• We expect:

D−
t [a(f)] = D−

t

[∫
R

f (s)as ds

]
= f(t)I, D+

t [a(f )] = D+
t

[∫
R

f (s)as ds

]
= 0, etc.

• We wish to apply these derivetives to the quantum stochastic integrals:

δ−(Ξ) =

∫
R

Ξ(t)at dt, δ+(Ξ) =

∫
R

a∗tΞ(t) dt, δ0(Ξ) =

∫
R

a∗tΞ(t)at dt
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5.2 Creation- and Annihilation-Derivatives

Definition The creation derivative and annihilation derivative of a white noise operator Ξ ∈
L((E), (E)∗) with respect to ζ ∈ E are defined respectively by

D+
ζ Ξ = [a(ζ), Ξ] = a(ζ)Ξ − Ξa(ζ), D−

ζ Ξ = −[a∗(ζ), Ξ] = Ξa∗(ζ) − a∗(ζ)Ξ.

Note: The commutators are well-defined white noise operators, i.e., belongs to L((E), (E)∗).

• D± : E × L((E), (E)∗) ∋ (ζ, Ξ) 7→ D±
ζ Ξ ∈ L((E), (E)∗) is a continuous bilinear map.

Theorem 5.1 Let ζ ∈ E and Ξ ∈ L2(R,L((E), (E)∗). Then we have

D+
ζ (δ+(Ξ)) = δ+(D+

ζ Ξ) +

∫
R

ζ(t)Ξ(t)dt, D−
ζ (δ+(Ξ)) = δ+(D−

ζ Ξ).

D+
ζ (δ−(Ξ)) = δ−(D+

ζ Ξ), D−
ζ (δ−(Ξ)) = δ−(D−

ζ Ξ) +

∫
R

ζ(t)Ξ(t)dt,

D+
ζ (δ0(Ξ)) = δ0(D+

ζ Ξ) + δ−(ζΞ), D−
ζ (δ0(Ξ)) = δ0(D−

ζ Ξ) + δ+(ζΞ).

Proof is more or less by direct computation.

⋆ Taking ζ = δt, we could get Ξ(t) from δϵ(Ξ).
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Definition A white noise operator Ξ ∈ L((E), (E)∗) is called pointwisely differentiable if there

exists a measurable map t 7→ D±
t Ξ ∈ L((E), (E)∗) such that

⟨⟨(D±
ζ Ξ)ϕξ, ϕη⟩⟩ =

∫
R+

⟨⟨(D±
t Ξ)ϕξ, ϕη⟩⟩ζ(t)dt, ζ ∈ H, ξ, η ∈ E.

Then D+
t Ξ and D−

t Ξ are called the pointwise creation-derivative and pointwise annihilation-

derivative of Ξ, respectively.

Theorem 5.2 For Ξ ∈ L2(R,L(G,G∗)), the quantum stochastic integrals δϵ(Ξ) are pointwisely

differentiable. Moreover, for a.e. t ∈ R+ we have

D+
t (δ+(Ξ)) = δ+(D+

t Ξ) + Ξ(t) , D−
t (δ+(Ξ)) = δ+(D−

t Ξ),

D+
t (δ−(Ξ)) = δ−(D+

t Ξ), D−
t (δ−(Ξ)) = δ−(D−

t Ξ) + Ξ(t) ,

D+
t (δ0(Ξ)) = δ0(D+

t Ξ) + Ξ(t)at , D−
t (δ0(Ξ)) = δ0(D−

t Ξ) + a∗tΞ(t) .
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5.3 Application to Quantum Martingales

Representation Theorem [Parthasarathy–Sinha (1986), Ji (2003)] A regular quantum martingale

{Mt}t∈R+ ⊂ L(Gp(R+),Gq(R+)) admits an integral representation:

Mt = λI +

∫ t

0

(EdA + FdA∗ + GdΛ),

where {Et}, {Ft}, {Gt} in L(Gp(R+),Gq(R+)) are adapted processes and λ ∈ C.

Theorem 5.3 The integrands of Mt is obtained by

Es = D−
s

[
Ms −

∫ s

0

a∗u(D
+
u Mu)du

]
,

Fs = D+
s

[
Ms −

∫ s

0

(D−
u Mu)audu

]
,

Gs = D+
s

[∫ s

0

{
D−

u

(
Mu −

∫ u

0

Evavdv −
∫ u

0

a∗vFvdv

)}
du

]
.
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Summary

1. We introduced quantum stochastic gradients ∇+, ∇−, ∇0

2. We introduced quantum stochastic integrals δ+(Ξ), δ−(Ξ), δ0(Ξ) by the adjoint actions of quan-

tum stochastic gradients.

3. We discussed regularity properties (HS criteria, boundedness criteria, norm estimates) of δϵ(Ξ).

4. We introduced quantum white noise derivatives D+
t (Ξ) and D−

t (Ξ).

5. We discussed differentiability of quantum stochastic integrals and application to quantum mar-

tingales.
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