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1. Digraphs and Spectra
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1.1. Graphs and Adjacency Matrices

.
Definition (graph)
..

......

A graph is a pair G = (V,E), where V is the set of vertices and E the set of edges.

We write x ∼ y (adjacent) if they are connected by an edge.

complete graph K5 2-dim lattice homogeneous treestar graph T4

.
Definition (adjacency matrix)
..

......

The adjacency matrix of a graph G = (V,E) is defined by

A = [Axy]x,y∈V Axy =

1, x ∼ y,

0, otherwise.

▶ The adjacency matrix possesses all the information of a graph.
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1.2. Digraphs and Adjacency Matrices

.
Definition (digraph)
..

......

A digraph (directed graph) is a pair G = (V,E), where V is a non-empty set and E is

a subset of V × V . An element x ∈ V is called a vertex and e = (x, y) ∈ E an arc

(arrow) from x to y. In that case we also write x → y.

▶ A digraph may have a loop, i.e., an arc from a vertex to itself.

▶ We study finite digraphs, i.e., with finite number of vertices.

.
Definition (adjacency matrix)
..

......
The adjacency matrix A = [Axy]x,y∈V is defined by Axy =

{
1, x → y,

0, otherwise.
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1.3. Spectra of Graphs and of Digraphs

A: adjacency matrix of a graph or of a digraph G = (V,E), |V | = n.

Characteristic equation

φG(x) = det(x − A) =
∏
i

(x − λi)
mi

=⇒ eigenvalue λi with algebraic multiplicity mi

Eigenvalue problem

Ax = λx, W (λi) = {x ∈ Cn ; Ax = λix}
=⇒ eigenvalue λi with geometric multiplicity li = dimW (λi)

.
Definition (Spectrum)
..

......

ASpec (G) =

(
· · · λi · · ·
· · · mi · · ·

)
, GSpec (G) =

(
· · · λi · · ·
· · · li · · ·

)

▶ 1 ≤ li ≤ mi and li < mi may happen for a general digraph.

▶ For a graph (= a symmetric digraph), we have ASpec (G) = GSpec (G).

▶ The spectral (eigenvalue) distribution of G is defined by

µG =
1

|V |
∑
i

miδλi
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2. Product Structure
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2.1. Product structures

Spectral graph theory

...1 A large graph may consist of smaller components with “product” operation:

G = G1“ ∗ ”G2

...2 This implies a notion of “product” of adjacency matrices:

A = A1“ ∗ ”A2

...3 and a “convolution product” of spectral distributions:

µG = µG1“ ∗ ”µG2

Quantum probability

...1 We have several different concepts of independence.

...2 The distribution of the sum of “independent” random variables gives rise to a new

notion of “convolution product” of probability distribution.

X = X1 + X2 =⇒ µX = µX1“ ∗ ”µX2

...3 Associated quantum central limit theorems
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2.2. Graph Products (I) Direct Product

.
Definition (Direct (Cartesian) product)
..

......

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We say that

(x, y), (x′, y′) ∈ V = V1 × V2 are adjacent, (x, y) ∼ (x′, y′), if

(i) x = x′ and y ∼ y′; or (ii) x ∼ x′ and y = y′.

Then V becomes a graph which is called the direct product of G1 and G2, and is

denoted by G1 × G2.

.
Example (C4 × C3)
..

......

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C   C
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2.3. Graph Products (II) Comb Product

.
Definition
..

......

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We fix a vertix o2 ∈ V2. For

(x, y), (x′, y′) ∈ V1 × V2 we write (x, y) ∼ (x′, y′) if

(i) x = x′ and y ∼ y′; or (ii) x ∼ x′ and y = y′ = o2.

Then V1 × V2 becomes a graph, denoted by G1 ▷o2 G2, and is called the comb

product. This is a subgraph of G1 × G2.

.
Example (C4 ▷ C3)
..

......

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C      C
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2.4. Graph Products (III) Star Product

.
Definition
..

......

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with distinguished vertices

o1 ∈ V1 and o2 ∈ V2. Define a subset of V1 × V2 by

V1 ⋆ V2 = {(x, o2) ; x ∈ V1} ∪ {(o1, y) ; y ∈ V2}

The induced subgraph of G1 × G2 spanned by V1 ⋆ V2 is called the star product of G1

and G2 (with contact vertices o1 and o2), and is denoted by G1 ⋆ G2 = G1 o1⋆o2 G2.

.
Example (C4 ⋆ C3)
..

......

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C      C
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2.5. Graph Products and Concepts of Independence

(I) Direct (Cartesian) product G = G1 × G2

...1 A = A1 ⊗ I2 + I1 ⊗ A2: sum of commutative (tensor) independent rv’s in a

suitable state
...2 Spec(G) = Spec(G1) ∗ Spec(G2) — usual convolution
...3 Examples include: integer lattice, Hamming graph, ...
...4 Gaussian (normal) distribution in the limit (classical CLT)

(II) Comb product G = G1 ▷o2 G2

...1 A = A1 ⊗ P2 + I1 ⊗ A2: sum of monotone independent rv’s in a sutable state

...2 Spec(G) = Spec(G1) ▷ Spec(G2) — monotone convolution

...3 Examples include: comb graphs

...4 Arcsine law in the limit (monotone CLT)

(III) Star product G = G1 ⋆ G2 = G1 o1⋆o2 G2

...1 A = A1 ⊗ P2 + P1 ⊗ A2: sum of Boolean independent rv’s in a suitable state

...2 Spec(G) = Spec(G1) ⋆ Spec(G2) — Boolean convolution

...3 Examples include: star graphs

...4 Bernoulli distribution in the limit (Boolean CLT)

cf. (IV) Free product — Free independence — Homogeneous tree
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2.6. Summary: Graph Products and Independence in Quantum Probability

graph product comb star direct free

independence monotone Boolean commutative free

CLM arcsine Bernoulli Gaussian Wigner

examples comb graph star graph integer lattice homogeneous tree

A. Hora and N. Obata:

Quantum Probability and Spectral Analysis of Graphs, Springer, 2007.

More varieties of graph products studied by Wysoczański, Lenczewski, ...

⇒ What about digraphs?
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3. Manhattan Products of Digraphs
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3.1. Manhattan Street Networks with Periodic Boundary Condition

M(2m, 2n) = C2m#C2n

...1 F. Comellas, C. Dalfó, M. A. Fiol and M. Mitjana: A spectral study of the

Manhattan networks, Electronic Notes in Discrete Mathematics 29 (2007) 267–271.

...2 F. Comellas, C. Dalfó, M. A. Fiol and M. Mitjana: The spectra of Manhattan street

networks, Linear Algebra Appl. 429 (2008), 1823–1839.
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3.2. G#C2

G: a digraph

C2: a symmetric digraph on two vertices

G

G
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3.3. Bipartite Digraphs

.
Definition
..

......

A digraph G = (V,E) is called bipartite if the vertex set admits a partition

V = V (0) ∪ V (1) such that every arc bridges V (0) and V (1).

V V

▶ A bipartite digraph does not contain a cycle of odd degree. More generally, a bipartite

digraph does not contain a colliding cycle of odd degree.

▶ Examples: paths Pm, cycles of even degree C2m, etc.
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3.4. Manhattan Product of Bipartite Digraphs

V

V

V

V

G

G

G v

G v

G
G

x

y

x’

Gi = (Vi, Ei): bipartite digraphs

G∨
i = (Vi, E

∨
i ): opposite digraphs

V = V1 × V2

Define arcs in V as follows:

(i) If y = y′ ∈ V
(0)
2 and x → x′

then (x, y) → (x′, y′).

(i′) If y = y′ ∈ V
(1)
2 and x → x′

then (x′, y′) → (x, y).

(ii) If x = x′ ∈ V
(0)
1 and ....

(ii′) If x = x′ ∈ V
(1)
1 and ....

The digraph obtained in this manner

is called the Manhattan product and

is denoted by

G = G1#G2 .
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3.5. Adjacency Matrix

.
Theorem
..

......

The adjacency matrix A of G = G1#G2 satisfies

(A)(x,y)(x′,y′) = δxx′(tπ1(x)(A2))yy′ + (tπ2(y)(A1))xx′δyy′ ,

for x, x′ ∈ V1 and y, y′ ∈ V2, where t(A) = AT and πi is the “parity function”.

cf) For a direct product G1 × G2 we have

(A)(x,y)(x′,y′) = δxx′(A2)yy′ + (A1)xx′δyy′ ,

which means that

A = I ⊗ A2 + A1 ⊗ I

=⇒ commutative independence in quantum probability.
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4. Spectral Analysis of Manhattan Products of Digraphs
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4.1. Pn#C2

The characteristic polynomial of Pn#C2 is given by (B: adjacency matrix of Pn)

φn(x) = det(x − A) = det

[
x − B −I

−I x − BT

]
= det((x − B)(x − BT ) − I) = x2φn−1(x) − x2φn−2(x),

φ1(x) = x2 − 1, φ2(x) = x4 − 2x2.

Using the recurrence relation of the Chebyshev polynomial of the second kind, we obtain

φn(x) = xn−1Ũn+1(x), where Ũn(2 cos θ) =
sin(n + 1)θ

sin θ
.
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4.1. Pn#C2 (cont)

.
Theorem (H.-O. Lee: Master Thesis (2011))
..

......

ASpec(Pn#C2) =

{
2 cos

kπ

n + 2
; k = 1, 2, . . . , n + 1

}
∪
(

0

n − 1

)
,

where every non-zero eigenvalue has algebraic multiplicity one. The geometric

multiplicity of zero eigenvalue is n − 1.

cf) ASpec(Pn × C2) =

(
−1 1

n n

)

.
Theorem (H.-O. Lee: Master Thesis (2011))
..

......

The asymptotic (algebraic) spectral distribution of Pn#C2 is given by

1

2
δ0 +

1

2
ρ(x)dx, ρ(x) =

1

π
√
4 − x2

χ(−2,2)(x)

is the arcsine law with mean 0 and variance 2.
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4.2. M(2m, 2n) = C2m#C2n

.
Theorem (Comellas–Dalfó–Fiol–Mitjana (2007))
..

......

The GSpec of the two-dimensional Manhattan network M(2m, 2n) = C2m#C2n is

given by

0 and ±
√

2 cos
2πk

m
+ 2 cos

2πl

m
,

0 ≤ k ≤ m − 1,

0 ≤ l ≤ n − 1,

with the geometric multiplicity of every non-zero eigenvalue coincides with the times it

appears in the above expression. In particular,

l(0) ≥ 2mn

(
=

2m × 2n

2

)
,

and equality happens when both m,n are odd numbers.

▶ Proof by constructing eigenvecotors from those of C2m and C2n .

A natural question: what about Pm#Pn?

(removing the periodic boundary condition)
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4.3. Pn#P2

The adjacency matrix is given by

A =

[
B P

Q BT

]
,

B =



0 1

0 1

. . .
. . .

1

0

 , P =



1

0

1

0

. . .

 , Q = I − P.

We have immediately

φn(x) = det(x − A) = xn det(x − BT − Q(x − B)−1P )
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4.3. Pn#P2 (cont)

.
Theorem (O. IIS 18 (2012))
..

......

For n = 1, 2, . . . , the characteristic polynomial φn(x) of Pn#P2 is given by

φ2n−1(x) = x2n−2Ũn(x
2),

φ2n(x) = x2nŨn(x
2),

where Ũn is defined by Ũn(2 cos θ) =
sin(n + 1)θ

sin θ
(= U(cos θ) is the Chebyshev

polynomial of the second kind).

Proof. By standard cofactor expansion we obtain

φ1(x) = x2,

φ2(x) = x4,

φ3(x) = x6 − x2,

φ4(x) = x8 − x4,

φn(x) = x4φn−2 − x4φn−4(x), n ≥ 5.

Then the result is easily verified.
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4.3. Pn#P2 (cont)

.
Corollary
..

......

For Pn#P2 we have:

(1) Concentration of zero-eigenvalues:

m(0) ∼ n, i.e., lim
n→∞

m(0)

2n
=

1

2

(2) Asymptotic spectral distribution as n → ∞ is given by

1

2
δ0 +

1

4
ρ(x)δ(y)dxdy +

1

4
ρ(y)δ(x)dxdy, z = x + iy,

where

ρ(x) =
2|x|

π
√

4 − x4
χ[−

√
2,+

√
2](x)

Proof. Straightforward from

φ2n−1(x) = x2n−2Ũn(x
2), φ2n(x) = x2nŨn(x

2)

and the spectral distribution associated with Ũ(x) (see §5.1).
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Asymptotic spectral distribution of Pn#P2 as n → ∞

1

2
δ0 +

1

4
ρ(x)δ(y)dxdy +

1

4
ρ(y)δ(x)dxdy, z = x + iy,

where

ρ(x) =
2|x|

π
√
4 − x4

χ[−
√

2,+
√

2](x)

C

i

i

x

y

▶ Open question: For general m,n determine ASpec (Pn#Pm).

Only numerical calculation was done [B. J. Choi (2012)]. Looks very interesting!
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4.4. Non-standard Manhattan Product Pn#
′P2

Non-standard Manhattan product Pn#
′Pm only for even m,n

▶ Non-standard Manhattan product is characterized by the “beltway”

P8#
′P2

▶ Results for non-standard case are similar to the standard case [O. IIS 18 (2012)].

cf) Standard Manhattan product P8#P2

P8#P2
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5. Applications to Coupled Oscillators
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5.1. Coupled Oscillators on a Digraph

A basic model of coupled oscillators on a digraph G is described by
ϕ̇k = ωk − c

∑
j∈V

Akj sin(ϕk − ϕj),

ω̇k = −s
∑
j∈V

Akj sin(ϕk − ϕj)

where A = [Akj] is the adjacency matrix of G, and c > 0, s > 0.

Motivation: Kuramoto model (1975) + self-adaptive dynamics

▶ We focus on the linearized system:

.
Coupled oscillators on a digraph
..

......

Let G = (V,E) be a digraph and L = D − A its Laplacian. Thenϕ̇ = ω − cLϕ

ω̇ = −sLϕ
or

[
ϕ̇

ω̇

]
=

[
−cL 1

−sL 0

] [
ϕ

ω

]
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5.2. Synchronization of Coupled Oscillators

For a large class of graphs (symmetric digraphs with no loops) and for a large enough

coupling constant c > 0 we observe the synchronization, namely,

lim
t→∞

ωk(t) = ω̄

exists and the limit is independent of k ∈ V . Moreover,

ω̄ =
1

|V |
∑
k∈V

ωk(0) (independent of the network topology!)
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5.3. Synchronization of Coupled Oscillators: Numerical Calculations

J. Rodriguez and M-O. Hongler:

Networks of self-adaptive dynamical systems, IMA J. Appl. Math. (2012)
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5.3. Coupled Oscillators on Digraphs

.
Question
..

......

...1 Does synchronization occur for coupled oscillators on a digraph?

...2 If so, find condition to have synchronization.

▶ The Laplacian L is no longer symmetric

=⇒ complex spectrum + non-diagonalizable
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5.4. Coupled Oscillators on P4#P2 (standard): Numerical Calculation

Time evolution of ωk on P4#P2 with initial conditions:

ϕk(0) = 0 for all k,

ω1(0) = 0.7, ω2(0) = 0.8, ω3(0) = 0.9, ω4(0) = 1

ω5(0) = 1, ω6(0) = 1.1, ω7(0) = 1.2, ω8(0) = 1.3.

0 5 10 15 20

0.6

0.8

1.2

1.4

Time

ω
k
1.0

vertex 1 = dashed red vertex 2 = dashed blue vertex 3 = dashed green vertex 4 =

dashed black vertex 5 = red vertex 6 = blue vertex 7 = green vertex 8 = black
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5.5. Coupled Oscillators on P4#
′P2 (non-standard): Numerical Calculation

Time evolution of ωk on P4#
′P2 with initial conditions:

ϕk(0) = 0 for all k,

ω1(0) = 0.7, ω2(0) = 0.8, ω3(0) = 0.9, ω4(0) = 1

ω5(0) = 1, ω6(0) = 1.1, ω7(0) = 1.2, ω8(0) = 1.3.

0 5 10 15 20

0.6

0.8

1.2

1.4

Time

ω
k
1.0

vertex 1 = dashed red vertex 2 = dashed blue vertex 3 = dashed green vertex 4 =

dashed black vertex 5 = red vertex 6 = blue vertex 7 = green vertex 8 = black
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5.6. Asymptotic Stability (Toward Synchronization)

Our system is: [
ϕ̇

ω̇

]
= M

[
ϕ

ω

]
, M =

[
−cL 1

−sL 0

]
.
Lemma
..

......

Let L ∈ M(n,C), c > 0, s > 0 and M as above. Let λ1, . . . , λn ∈ C be the

eigenvalues of L. Then, the eigenvalues of M are exhausted by µ±(λ1), . . . , µ±(λn),

where

µ±(λ) =
c

2

(
−λ ±

√
λ2 − 4s

c2
λ

)
.

For κ > 0 let Λ(κ) be the domain defined by

Λ(κ) =
{
λ = x + iy ∈ C ; x3 + (x − κ)y2 > 0, x > 0

}
.
Theorem
..

......

If all non-zero eigenvalues of L are in Λ(s/c2), then Reµ < 0 for every non-zero

eigenvalue µ of M .
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5.6. Asymptotic Stability (Toward Synchronization) (cont)

[
ϕ̇

ω̇

]
= M

[
ϕ

ω

]
, M =

[
−cL 1

−sL 0

]
.
Theorem (O. and J. Rodriguez (2013))
..

......

Let L be the Laplacian of a digraph G. Assume

...1 Reλ > 0 for all non-zero eigenvalue λ of L;

...2 the algebraic and geometric multiplicities of zero-eigenvalue coincide.

Then, choosing s > 0 and c > 0 with s/c2 is sufficient small, every eigenvalue µ of M

satisfies Reµ < 0.

Hence the solution to our system satisfies

lim
t→∞

[
ϕ(t)

ω(t)

]
= lim

t→∞
etM

[
ϕ(0)

ω(0)

]
= (constant vector).

Open Problem: limt→∞ ωk(t) = ω̄ (independent of k).

Digraphs satisfying the condition in the above theorem: C2m#C2n, P2n#P2 (for

small n)
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Some Open Questions

...1 Determine the spectra of (the adjacency matrix) of the Manhattan street digraphs

Pn#Pm (standard) and Pn#
′Pm (non-standard) for general m,n.

...2 Work in progress for Pn#P3 (standard) and Pn#
′P3 (non-standard).

...3 Determine the spectra of (the Laplacian) of the Manhattan street digraphs

Pn#Pm (standard) and Pn#
′Pm (non-standard) for general m,n.

...4 Work in progress for P2n#P2 (standard) .

...5 Prove synchronization for a large class of Manhattan products of digraphs.
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