Spectral Analysis of Manhattan Street Networks

Nobuaki Obata

GSIS, Tohoku University

Hammamet, 2013.11.15

- Digraphs and Spectra
- 2 Product Structure
- Manhattan Products of Digraphs
- Spectral Analysis of Manhattan Products of Digraphs
- S Applications to Coupled Oscillators

1. Digraphs and Spectra

1.1. Graphs and Adjacency Matrices

Definition (graph)

A graph is a pair G = (V, E), where V is the set of vertices and E the set of edges. We write $x \sim y$ (adjacent) if they are connected by an edge.

Definition (adjacency matrix)

The *adjacency matrix* of a graph G = (V, E) is defined by

$$A = [A_{xy}]_{x,y \in V}$$
 $A_{xy} = egin{cases} 1, & x \sim y, \ 0, & ext{otherwise.} \end{cases}$

► The adjacency matrix possesses all the information of a graph.

1.2. Digraphs and Adjacency Matrices

Definition (digraph)

A digraph (directed graph) is a pair G = (V, E), where V is a non-empty set and E is a subset of $V \times V$. An element $x \in V$ is called a vertex and $e = (x, y) \in E$ an arc (arrow) from x to y. In that case we also write $x \to y$.

▶ A digraph may have a *loop*, i.e., an arc from a vertex to itself.

▶ We study *finite* digraphs, i.e., with finite number of vertices.

Definition (adjacency matrix)

The adjacency matrix $A = [A_{xy}]_{x,y \in V}$ is defined by $A_{xy} = \begin{cases} 1, & x \to y, \\ 0, & \text{otherwise.} \end{cases}$

1.3. Spectra of Graphs and of Digraphs

A: adjacency matrix of a graph or of a digraph G=(V,E), |V|=n. Characteristic equation

$$arphi_G(x) = \det(x-A) = \prod_i (x-\lambda_i)^{m_i}$$

 \implies eigenvalue λ_i with algebraic multiplicity m_i

Eigenvalue problem

$$Ax=\lambda x,\qquad W(\lambda_i)=\{x\in\mathbb{C}^n\,;\,Ax=\lambda_ix\}$$

 \implies eigenvalue λ_i with geometric multiplicity $l_i = \dim W(\lambda_i)$

Definition (Spectrum)

$$\operatorname{ASpec}\left(G
ight) = egin{pmatrix} \cdots & \lambda_i & \cdots \\ \cdots & m_i & \cdots \end{pmatrix}, \qquad \operatorname{GSpec}\left(G
ight) = egin{pmatrix} \cdots & \lambda_i & \cdots \\ \cdots & l_i & \cdots \end{pmatrix}$$

- $\blacktriangleright 1 \leq l_i \leq m_i$ and $l_i < m_i$ may happen for a general digraph.
- ▶ For a graph (= a symmetric digraph), we have ASpec(G) = GSpec(G).
- ▶ The spectral (eigenvalue) distribution of G is defined by

$$\mu_G = rac{1}{|V|} \sum_i m_i \delta_{\lambda_i}$$

2. Product Structure

2.1. Product structures

Spectral graph theory

() A large graph may consist of smaller components with "product" operation:

$$G = G_1 "* "G_2$$

On This implies a notion of "product" of adjacency matrices:

$$A = A_1 "* "A_2$$

Ind a "convolution product" of spectral distributions:

$$\mu_G = \mu_{G_1} "*" \mu_{G_2}$$

Quantum probability

- We have several different concepts of independence.
- On the distribution of the sum of "independent" random variables gives rise to a new notion of "convolution product" of probability distribution.

$$X = X_1 + X_2 \qquad \Longrightarrow \qquad \mu_X = \mu_{X_1} " * " \mu_{X_2}$$

Associated quantum central limit theorems

2.2. Graph Products (I) Direct Product

Definition (Direct (Cartesian) product)

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs. We say that $(x,y),(x',y')\in V=V_1 imes V_2$ are adjacent, $(x,y)\sim (x',y')$, if

(i)
$$x=x'$$
 and $y\sim y';$ or (ii) $x\sim x'$ and $y=y'.$

Then V becomes a graph which is called the *direct product* of G_1 and G_2 , and is denoted by $G_1 \times G_2$.

2.3. Graph Products (II) Comb Product

Definition

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs. We fix a vertix $o_2\in V_2$. For $(x,y),(x',y')\in V_1\times V_2$ we write $(x,y)\sim (x',y')$ if

(i)
$$x=x'$$
 and $y\sim y'$; or (ii) $x\sim x'$ and $y=y'=o_2$.

Then $V_1 \times V_2$ becomes a graph, denoted by $G_1 \triangleright_{o_2} G_2$, and is called the *comb* product. This is a subgraph of $G_1 \times G_2$.

2.4. Graph Products (III) Star Product

Definition

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs with distinguished vertices $o_1\in V_1$ and $o_2\in V_2$. Define a subset of $V_1\times V_2$ by

$$V_1 \star V_2 = \{(x,o_2)\,;\, x \in V_1\} \cup \{(o_1,y)\,;\, y \in V_2\}$$

The induced subgraph of $G_1 \times G_2$ spanned by $V_1 \star V_2$ is called the *star product* of G_1 and G_2 (with contact vertices o_1 and o_2), and is denoted by $G_1 \star G_2 = G_1 \circ_1 \star \circ_2 G_2$.

2.5. Graph Products and Concepts of Independence

(I) Direct (Cartesian) product $G = G_1 imes G_2$

- $\bullet \ A = A_1 \otimes I_2 + I_1 \otimes A_2 \text{: sum of commutative (tensor) independent rv's in a suitable state}$
- \bigcirc Spec(G) = Spec $(G_1) *$ Spec (G_2) usual convolution
- S Examples include: integer lattice, Hamming graph, ...
- Gaussian (normal) distribution in the limit (classical CLT)

2.5. Graph Products and Concepts of Independence

(I) Direct (Cartesian) product $G = G_1 imes G_2$

- $A = A_1 \otimes I_2 + I_1 \otimes A_2$: sum of commutative (tensor) independent rv's in a suitable state
- **3** $\operatorname{Spec}(G) = \operatorname{Spec}(G_1) * \operatorname{Spec}(G_2)$ usual convolution
- S Examples include: integer lattice, Hamming graph, ...
- Gaussian (normal) distribution in the limit (classical CLT)
- (II) Comb product $G = G_1 arphi_{o_2} G_2$
 - $\textcircled{0} A = A_1 \otimes P_2 + I_1 \otimes A_2 \text{: sum of monotone independent rv's in a sutable state}$
 - **2** $\operatorname{Spec}(G) = \operatorname{Spec}(G_1) \triangleright \operatorname{Spec}(G_2)$ monotone convolution
 - Examples include: comb graphs
 - Arcsine law in the limit (monotone CLT)

2.5. Graph Products and Concepts of Independence

(I) Direct (Cartesian) product $G = G_1 imes G_2$

- $A = A_1 \otimes I_2 + I_1 \otimes A_2$: sum of commutative (tensor) independent rv's in a suitable state
- \bigcirc Spec(G) = Spec $(G_1) *$ Spec (G_2) usual convolution
- S Examples include: integer lattice, Hamming graph, ...
- Gaussian (normal) distribution in the limit (classical CLT)
- (II) Comb product $G=G_1 arphi_{o_2} G_2$
 - $\textcircled{0} A = A_1 \otimes P_2 + I_1 \otimes A_2 \text{: sum of monotone independent rv's in a sutable state}$
 - **3** $\operatorname{Spec}(G) = \operatorname{Spec}(G_1) \triangleright \operatorname{Spec}(G_2)$ monotone convolution
 - Examples include: comb graphs
 - Arcsine law in the limit (monotone CLT)
- (III) Star product $G = G_1 \star G_2 = G_1 \, {}_{o_1} \star {}_{o_2} \, G_2$
 - $\textcircled{0} A = A_1 \otimes P_2 + P_1 \otimes A_2 : \text{ sum of Boolean independent rv's in a suitable state}$
 - **2** $\operatorname{Spec}(G) = \operatorname{Spec}(G_1) \star \operatorname{Spec}(G_2)$ Boolean convolution
 - Second Se
 - Bernoulli distribution in the limit (Boolean CLT)
- cf. (IV) Free product Free independence Homogeneous tree

graph product	comb	star	direct	free
independence	monotone	Boolean	commutative	free
CLM	arcsine	Bernoulli	Gaussian	Wigner
examples	comb graph	star graph	integer lattice	homogeneous tree

A. Hora and N. Obata:

Quantum Probability and Spectral Analysis of Graphs, Springer, 2007.

More varieties of graph products studied by Wysoczański, Lenczewski, ...

\Rightarrow What about digraphs?

3. Manhattan Products of Digraphs

3.1. Manhattan Street Networks with Periodic Boundary Condition

- F. Comellas, C. Dalfó, M. A. Fiol and M. Mitjana: A spectral study of the Manhattan networks, Electronic Notes in Discrete Mathematics 29 (2007) 267–271.
- F. Comellas, C. Dalfó, M. A. Fiol and M. Mitjana: The spectra of Manhattan street networks, Linear Algebra Appl. 429 (2008), 1823–1839.

3.2. $G \# C_2$

G: a digraph

 C_2 : a symmetric digraph on two vertices

Definition

A digraph G = (V, E) is called *bipartite* if the vertex set admits a partition $V = V^{(0)} \cup V^{(1)}$ such that every arc bridges $V^{(0)}$ and $V^{(1)}$.

► A bipartite digraph does not contain a cycle of odd degree. More generally, a bipartite digraph does not contain a colliding cycle of odd degree.

▶ Examples: paths P_m , cycles of even degree C_{2m} , etc.

3.4. Manhattan Product of Bipartite Digraphs

 $G_i=(V_i,E_i)$: bipartite digraphs $G_i^{ee}=(V_i,E_i^{ee})$: opposite digraphs $V=V_1 imes V_2$

Define arcs in V as follows:

(i) If
$$y = y' \in V_2^{(0)}$$
 and $x \to x'$
then $(x,y) \to (x',y')$.

(i') If $y = y' \in V_2^{(1)}$ and $x \to x'$ then $(x', y') \to (x, y)$. (ii) If $x = x' \in V_1^{(0)}$ and

(ii') If $x = x' \in V_1^{(1)}$ and

The digraph obtained in this manner is called the *Manhattan product* and is denoted by

$$G=G_1\#G_2.$$

Theorem

The adjacency matrix A of $G = G_1 \# G_2$ satisfies

$$(A)_{(x,y)(x',y')} = \delta_{xx'}(t^{\pi_1(x)}(A_2))_{yy'} + (t^{\pi_2(y)}(A_1))_{xx'}\delta_{yy'},$$

for $x, x' \in V_1$ and $y, y' \in V_2$, where $t(A) = A^T$ and π_i is the "parity function".

cf) For a direct product $G_1 imes G_2$ we have

$$(A)_{(x,y)(x',y')} = \delta_{xx'}(A_2)_{yy'} + (A_1)_{xx'}\delta_{yy'}\,,$$

which means that

$$A = I \otimes A_2 + A_1 \otimes I$$

⇒ commutative independence in quantum probability.

4. Spectral Analysis of Manhattan Products of Digraphs

4.1. $P_n \# C_2$

The characteristic polynomial of $P_n \# C_2$ is given by (B: adjacency matrix of P_n)

$$egin{aligned} arphi_n(x) &= \det(x-A) = \detegin{bmatrix} x-B & -I \ -I & x-B^T \end{bmatrix} \ &= \det((x-B)(x-B^T)-I) = x^2arphi_{n-1}(x) - x^2arphi_{n-2}(x), \ &arphi_1(x) = x^2 - 1, \qquad arphi_2(x) = x^4 - 2x^2. \end{aligned}$$

Using the recurrence relation of the Chebyshev polynomial of the second kind, we obtain

$$arphi_n(x) = x^{n-1} ilde{U}_{n+1}(x), \hspace{1em} ext{where} \hspace{1em} ilde{U}_n(2\cos heta) = rac{\sin(n+1) heta}{\sin heta}\,.$$

4.1. $P_n \# C_2$ (cont)

Theorem (H.-O. Lee: Master Thesis (2011))

$$\operatorname{ASpec}(P_n \# C_2) = \left\{ 2\cosrac{k\pi}{n+2} \, ; \, k=1,2,\ldots,n+1
ight\} \cup egin{pmatrix} 0 \ n-1 \end{pmatrix},$$

where every non-zero eigenvalue has algebraic multiplicity one. The geometric multiplicity of zero eigenvalue is n - 1.

cf) ASpec
$$(P_n \times C_2) = \begin{pmatrix} -1 & 1 \\ n & n \end{pmatrix}$$

Theorem (H.-O. Lee: Master Thesis (2011))

The asymptotic (algebraic) spectral distribution of $P_n \# C_2$ is given by

$$rac{1}{2}\,\delta_0+rac{1}{2}\,
ho(x)dx,\qquad
ho(x)=rac{1}{\pi\sqrt{4-x^2}}\,\chi_{(-2,2)}(x)$$

is the arcsine law with mean ${f 0}$ and variance ${f 2}.$

4.2. $M(2m, 2n) = C_{2m} \# C_{2n}$

Theorem (Comellas–Dalfó–Fiol–Mitjana (2007))

The GSpec of the two-dimensional Manhattan network $M(2m, 2n) = C_{2m} \# C_{2n}$ is given by

$$0 \quad \text{and} \quad \pm \sqrt{2\cos\frac{2\pi k}{m} + 2\cos\frac{2\pi l}{m}}, \quad \begin{array}{l} 0 \leq k \leq m-1, \\ 0 \leq l \leq n-1, \end{array}$$

with the geometric multiplicity of every non-zero eigenvalue coincides with the times it appears in the above expression. In particular,

$$l(0)\geq 2mn\left(=rac{2m imes 2n}{2}
ight),$$

and equality happens when both m,n are odd numbers.

▶ Proof by constructing eigenvecotors from those of C_{2m} and C_{2n} .

A natural question: what about $P_m \# P_n$? (removing the periodic boundary condition)

4.3. $P_n \# P_2$

The adjacency matrix is given by

$$A = \begin{bmatrix} B & P \\ Q & B^T \end{bmatrix},$$

$$B = \begin{bmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & \ddots & \ddots & \\ & & & & 1 \\ & & & & & 0 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & & & \\ & 0 & & \\ & & 1 & & \\ & & 0 & & \\ & & & \ddots & \end{bmatrix}, \quad Q = I - P.$$

We have immediately

$$\varphi_n(x) = \det(x - A) = x^n \det(x - B^T - Q(x - B)^{-1}P)$$

4.3. $P_n \# P_2$ (cont)

Theorem (O. IIS 18 (2012))

For $n=1,2,\ldots$, the characteristic polynomial $arphi_n(x)$ of $P_n \# P_2$ is given by

$$arphi_{2n-1}(x) = x^{2n-2} \tilde{U}_n(x^2),$$

 $arphi_{2n}(x) = x^{2n} \tilde{U}_n(x^2),$

where \tilde{U}_n is defined by $\tilde{U}_n(2\cos\theta) = \frac{\sin(n+1)\theta}{\sin\theta}$ (= $U(\cos\theta)$ is the Chebyshev polynomial of the second kind).

Proof. By standard cofactor expansion we obtain

$$egin{aligned} &arphi_1(x) = x^2, \ &arphi_2(x) = x^4, \ &arphi_3(x) = x^6 - x^2, \ &arphi_4(x) = x^8 - x^4, \ &arphi_n(x) = x^4 arphi_{n-2} - x^4 arphi_{n-4}(x), \quad n \geq 5. \end{aligned}$$

Then the result is easily verified.

4.3. $P_n \# P_2$ (cont)

Corollary

For $P_n # P_2$ we have: (1) Concentration of zero-eigenvalues:

$$m(0)\sim n,$$
 i.e., $\lim_{n
ightarrow\infty}rac{m(0)}{2n}=rac{1}{2}$

(2) Asymptotic spectral distribution as $n
ightarrow \infty$ is given by

$$rac{1}{2}\,\delta_0+rac{1}{4}\,
ho(x)\delta(y)dxdy+rac{1}{4}\,
ho(y)\delta(x)dxdy, \hspace{2mm} z=x+iy,$$

where

$$ho(x) = rac{2|x|}{\pi\sqrt{4-x^4}}\,\chi_{[-\sqrt{2},+\sqrt{2}]}(x)$$

Proof. Straightforward from

$$\varphi_{2n-1}(x) = x^{2n-2} \tilde{U}_n(x^2), \quad \varphi_{2n}(x) = x^{2n} \tilde{U}_n(x^2)$$

and the spectral distribution associated with $ilde{U}(x)$ (see §5.1).

Asymptotic spectral distribution of $P_n \# P_2$ as $n o \infty$

$$rac{1}{2}\,\delta_0+rac{1}{4}\,
ho(x)\delta(y)dxdy+rac{1}{4}\,
ho(y)\delta(x)dxdy, \hspace{1em} z=x+iy,$$

where

▶ Open question: For general m, n determine ASpec (P_n#P_m). Only numerical calculation was done [B. J. Choi (2012)]. Looks very interesting!

4.4. Non-standard Manhattan Product $P_n \#' P_2$

Non-standard Manhattan product $P_n \#' P_m$ only for even m, n

▶ Non-standard Manhattan product is characterized by the "beltway"

- ▶ Results for non-standard case are similar to the standard case [O. IIS 18 (2012)].
- cf) Standard Manhattan product $P_8 \# P_2$

5. Applications to Coupled Oscillators

5.1. Coupled Oscillators on a Digraph

A basic model of coupled oscillators on a digraph G is described by

$$egin{split} \dot{\phi}_k &= \omega_k - c \sum_{j \in V} A_{kj} \sin(\phi_k - \phi_j), \ \dot{\omega}_k &= -s \sum_{j \in V} A_{kj} \sin(\phi_k - \phi_j) \end{split}$$

where $A = [A_{kj}]$ is the adjacency matrix of G, and c > 0, s > 0.

Motivation: Kuramoto model (1975) + self-adaptive dynamics

▶ We focus on the *linearized system*:

Coupled oscillators on a digraph

Let G = (V, E) be a digraph and L = D - A its Laplacian. Then

$$\begin{cases} \dot{\phi} = \omega - cL\phi \\ \dot{\omega} = -sL\phi \end{cases} \quad \text{or} \quad \begin{bmatrix} \dot{\phi} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} -cL & 1 \\ -sL & 0 \end{bmatrix} \begin{bmatrix} \phi \\ \omega \end{bmatrix}$$

For a large class of graphs (symmetric digraphs with no loops) and for a large enough coupling constant c > 0 we observe the *synchronization*, namely,

 $\lim_{t\to\infty}\omega_k(t)=\bar{\omega}$

exists and the limit is independent of $k \in V$. Moreover,

$$ar{\omega} = rac{1}{|V|} \sum_{k \in V} \omega_k(0)$$
 (independent of the network topology!)

5.3. Synchronization of Coupled Oscillators: Numerical Calculations

J. Rodriguez and M-O. Hongler:

Networks of self-adaptive dynamical systems, IMA J. Appl. Math. (2012)

FIG. 4. Time evolution of the parametric variables λ_k (a and b) for five Hopf oscillators interacting through a 'Crystal' network (c) (AC = 3) and an 'All-to-One' network (d) (AC = 1), respectively.

Question

- Obes synchronization occur for coupled oscillators on a digraph?
- If so, find condition to have synchronization.

► The Laplacian L is no longer symmetric ⇒ complex spectrum + non-diagonalizable

5.4. Coupled Oscillators on $P_4 \# P_2$ (standard): Numerical Calculation

Time evolution of ω_k on $P_4 \# P_2$ with initial conditions:

$$egin{aligned} \phi_k(0) &= 0 & ext{ for all } k, \ \omega_1(0) &= 0.7, \omega_2(0) = 0.8, \omega_3(0) = 0.9, \omega_4(0) = 1 \ \omega_5(0) &= 1, \omega_6(0) = 1.1, \omega_7(0) = 1.2, \omega_8(0) = 1.3. \end{aligned}$$

vertex 1 = dashed red vertex 2 = dashed blue vertex 3 = dashed green vertex 4 = dashed black vertex 5 = red vertex 6 = blue vertex 7 = green vertex 8 = black Nabulati Obsta (GSIS, Tohoku University) Spectral Analysis of Manhattan Street Networks Hammamet, 2013.11.15

34 / 39

5.5. Coupled Oscillators on $P_4 \#' P_2$ (non-standard): Numerical Calculation

Time evolution of ω_k on $P_4 \#' P_2$ with initial conditions:

$$\phi_k(0) = 0$$
 for all k ,
 $\omega_1(0) = 0.7, \omega_2(0) = 0.8, \omega_3(0) = 0.9, \omega_4(0) = 1$
 $\omega_5(0) = 1, \omega_6(0) = 1.1, \omega_7(0) = 1.2, \omega_8(0) = 1.3$

vertex 1 = dashed red vertex 2 = dashed bluevertex 4 =vertex 3 = dashed greendashed black vertex 5 = redvertex 6 = bluevertex 7 = greenvertex 8 = blackNobuaki Obata (GSIS, Tohoku University) Spectral Analysis of Manhattan Street Networks Hammamet, 2013.11.15

5.6. Asymptotic Stability (Toward Synchronization)

Our system is:

$$egin{bmatrix} \dot{\phi} \ \dot{\omega} \end{bmatrix} = M egin{bmatrix} \phi \ \omega \end{bmatrix}, \qquad M = egin{bmatrix} -cL & 1 \ -sL & 0 \end{bmatrix}$$

Lemma

Let $L \in M(n, \mathbb{C})$, c > 0, s > 0 and M as above. Let $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ be the eigenvalues of L. Then, the eigenvalues of M are exhausted by $\mu_{\pm}(\lambda_1), \ldots, \mu_{\pm}(\lambda_n)$, where

$$\mu_{\pm}(\lambda) = rac{c}{2} \left(-\lambda \pm \sqrt{\lambda^2 - rac{4s}{c^2}\,\lambda}
ight).$$

For $\kappa > 0$ let $\Lambda(\kappa)$ be the domain defined by

$$\Lambda(\kappa)=ig\{\lambda=x+iy\in\mathbb{C}\,;\,x^3+(x-\kappa)y^2>0,\,\,x>0ig\}$$

Theorem

If all non-zero eigenvalues of L are in $\Lambda(s/c^2)$, then $\operatorname{Re} \mu < 0$ for every non-zero eigenvalue μ of M.

$$\Lambda(\kappa)=\{\lambda=x+iy\in\mathbb{C}\,;\,x^3+(x-\kappa)y^2>0,\;x>0\}$$

5.6. Asymptotic Stability (Toward Synchronization) (cont)

$$egin{bmatrix} \dot{\phi} \ \dot{\omega} \end{bmatrix} = M egin{bmatrix} \phi \ \omega \end{bmatrix}, \qquad M = egin{bmatrix} -cL & 1 \ -sL & 0 \end{bmatrix}$$

Theorem (O. and J. Rodriguez (2013))

Let L be the Laplacian of a digraph G. Assume

- Re $\lambda > 0$ for all non-zero eigenvalue λ of L;
- Ithe algebraic and geometric multiplicities of zero-eigenvalue coincide.

Then, choosing s > 0 and c > 0 with s/c^2 is sufficient small, every eigenvalue μ of M satisfies $\operatorname{Re} \mu < 0$.

Hence the solution to our system satisfies

$$\lim_{t o\infty} egin{bmatrix} \phi(t) \ \omega(t) \end{bmatrix} = \lim_{t o\infty} e^{tM} egin{bmatrix} \phi(0) \ \omega(0) \end{bmatrix} = ext{(constant vector)}.$$

Open Problem: $\lim_{t \to \infty} \omega_k(t) = \bar{\omega}$ (independent of k).

Digraphs satisfying the condition in the above theorem: $C_{2m} \# C_{2n}$, $P_{2n} \# P_2$ (for small n)

- Determine the spectra of (the adjacency matrix) of the Manhattan street digraphs $P_n \# P_m$ (standard) and $P_n \#' P_m$ (non-standard) for general m, n.
- **(a)** Work in progress for $P_n \# P_3$ (standard) and $P_n \# P_3$ (non-standard).
- Determine the spectra of (the Laplacian) of the Manhattan street digraphs $P_n \# P_m$ (standard) and $P_n \#' P_m$ (non-standard) for general m, n.
- Work in progress for $P_{2n} \# P_2$ (standard).
- Prove synchronization for a large class of Manhattan products of digraphs.