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1. Digraphs and Spectra
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1.1. Graphs and Adjacency Matrices

Definition (graph)

A graph is a pair G = (V, E), where V is the set of vertices and E the set of edges.
We write  ~ y (adjacent) if they are connected by an edge.

complete graph K5 star graph 2-dim lattice homogeneous tree T4

Definition (adjacency matrix)

The adjacency matrix of a graph G = (V, E) is defined by

1, =~y
A = [Azylayev Agy = ’ ,
0, otherwise.

» The adjacency matrix possesses all the information of a graph.
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1.2. Digraphs and Adjacency Matrices

Definition (digraph)

A digraph (directed graph) is a pair G = (V, E), where V is a non-empty set and E is
a subset of V. X V. An element & € V is called a vertex and e = (z,y) € E an arc
(arrow) from « to y. In that case we also write x — y.

» A digraph may have a loop, i.e., an arc from a vertex to itself.
» We study finite digraphs, i.e., with finite number of vertices.

Definition (adjacency matrix)

. 1 —
The adjacency matrix A = [Azyla,yev is defined by Azy = { 0’ mth 2h
, otherwise.
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1.3. Spectra of Graphs and of Digraphs

A: adjacency matrix of a graph or of a digraph G = (V, E), |V| = n.
Characteristic equation
pc(x) = det(xz — A) = [[(z — A)™

= eigenvalue \; with algebraic multiplicity m;
Eigenvalue problem
Az = Az, W) ={xeC"; Ax = Az}
=—> eigenvalue A; with geometric multiplicity l; = dim W (\;)

Definition (Spectrum)

asee@ = (02 ) s = () )

m; l;

» 1 <1l; <m;and l; < m; may happen for a general digraph.
» For a graph (= a symmetric digraph), we have ASpec (G) = GSpec (G).
» The spectral (eigenvalue) distribution of G is defined by

1
B = 57 ) Milx;
Vi

Nobuaki Obata (GSIS, Tohoku University) Spectral Analysis of Manhattan Street Networks Hammamet, 2013.11.15 6 /39



2. Product Structure
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2.1. Product structures

Spectral graph theory

arge graph may consist of smaller components with “product” operation:
Q A large graph may t of small ponents with “product” operat
G = G]_ “ox ”Gz
is implies a notion of “product” of adjacency matrices:
Q@ Th pl t f “product” of adj y mat
A = Al “ox ”A2
© and a “convolution product” of spectral distributions:
pe = pe, “*pe,

Quantum probability

@ We have several different concepts of independence.

@ The distribution of the sum of “independent” random variables gives rise to a new
notion of “convolution product” of probability distribution.

X =X:14+ X2 - pwx = px; “*’ux,

© Associated quantum central limit theorems
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2.2. Graph Products () Direct Product

Definition (Direct (Cartesian) product)

Let G1 = (Va, E1) and G2 = (V2, E2) be two graphs. We say that
(z,y), (z',y’) € V = Vi X V> are adjacent, (z,y) ~ (z’,v’), if

()z=z"andy ~y’; o (i)z~az andy=1y".

Then V' becomes a graph which is called the direct product of G1 and G2, and is
denoted by G1 X Ga.

Example (C4 X C3)

1,3)
4 3 3’ \
& 7 \/
[ ,
@1) (31)
1 2 1 2
1,1) 1)
C4 C3 CyXx CS
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2.3. Graph Products (I1) Comb Product

Definition

Let Gy = (V4, F1) and G2 = (Va, E2) be two graphs. We fix a vertix oz € V2. For
(z,9), (', ") € Vi X V3 we write (z,y) ~ (2, y') if

Nzx=a"andy~y’; or (i)z~a’andy =9y" = o02.

Then Vi X V2 becomes a graph, denoted by G1 >o, G2, and is called the comb
product. This is a subgraph of G1 X Ga.

Example (C4 > C3)

4 3 2% & \
(12) / \ ' /
1) G1)
1 2 1 2
1) 1)
C4 C3 C/l =C 3
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2.4. Graph Products (I11) Star Product
Definition

Let G1 = (Vh, E1) and G2 = (V2, E2) be two graphs with distinguished vertices
o1 € Vi and o2 € V5. Define a subset of V4 X V3 by

Vix Vo = {(x,02); € € Vi} U {(01,9); y € V2}

The induced subgraph of G1 X G2 spanned by V7 x V4 is called the star product of G1
and G2 (with contact vertices 01 and 02), and is denoted by G1 x G2 = G1 o0;%0, Ga.

Example (C4 x Cs)

az)
4 3 3 ;
12) .. _ »
a6
1 2 T 2 '
1,1) 2,1)
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2.5. Graph Products and Concepts of Independence

(1) Direct (Cartesian) product G = G1 X G2
QO A=A1 I+ I, ® A2: sum of commutative (tensor) independent rv's in a
suitable state
@ Spec(G) = Spec(G1) * Spec(G2) — usual convolution
© Examples include: integer lattice, Hamming graph, ...
@ Gaussian (normal) distribution in the limit (classical CLT)
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2.5. Graph Products and Concepts of Independence

(1) Direct (Cartesian) product G = G1 X G2
QO A=A1 I+ I, ® A2: sum of commutative (tensor) independent rv's in a
suitable state
@ Spec(G) = Spec(G1) * Spec(G2) — usual convolution
© Examples include: integer lattice, Hamming graph, ...
@ Gaussian (normal) distribution in the limit (classical CLT)
(I1) Comb product G = G1 >o, G2
QO A=A, ® P> + I, ® A2: sum of monotone independent rv's in a sutable state
@ Spec(G) = Spec(G1) > Spec(G2) — monotone convolution
© Examples include: comb graphs
@ Arcsine law in the limit (monotone CLT)
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2.5. Graph Products and Concepts of Independence

(1) Direct (Cartesian) product G = G1 X G2
QO A=A1 I+ I, ® A2: sum of commutative (tensor) independent rv's in a
suitable state
@ Spec(G) = Spec(G1) * Spec(G2) — usual convolution
© Examples include: integer lattice, Hamming graph, ...
@ Gaussian (normal) distribution in the limit (classical CLT)
(I1) Comb product G = G1 >o, G2
QO A=A, ® P> + I, ® A2: sum of monotone independent rv's in a sutable state
@ Spec(G) = Spec(G1) > Spec(G2) — monotone convolution
© Examples include: comb graphs
@ Arcsine law in the limit (monotone CLT)
(1) Star product G = G1 * G2 = G1 o;%0, G2
QO A=A, ® P> + P1 ® A2: sum of Boolean independent rv's in a suitable state
@ Spec(G) = Spec(G1) * Spec(Gz) — Boolean convolution
© Examples include: star graphs
@ Bernoulli distribution in the limit (Boolean CLT)

cf. (IV) Free product — Free independence — Homogeneous tree
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2.6. Summary: Graph Products and Independence in Quantum Probability

graph product comb star direct free
independence monotone Boolean commutative free
CLM arcsine Bernoulli Gaussian Wigner
examples comb graph star graph integer lattice | homogeneous tree

A. Hora and N. Obata:
Quantum Probability and Spectral Analysis of Graphs, Springer, 2007.

More varieties of graph products studied by Wysoczariski, Lenczewski, ...

= What about digraphs?
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3. Manhattan Products of Digraphs
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3.1. Manhattan Street Networks with Periodic Boundary Condition

M(2m, 2n) = C2m#02'n

© F. Comellas, C. Dalfé, M. A. Fiol and M. Mitjana: A spectral study of the
Manhattan networks, Electronic Notes in Discrete Mathematics 29 (2007) 267-271.

@ F. Comellas, C. Dalfé, M. A. Fiol and M. Mitjana: The spectra of Manhattan street
networks, Linear Algebra Appl. 429 (2008), 1823-1839.
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3.2. G#C;

G: a digraph
C2: a symmetric digraph on two vertices

G\/
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3.3. Bipartite Digraphs

Definition

A digraph G = (V, E) is called bipartite if the vertex set admits a partition
V = V@ U v® such that every arc bridges V(® and V1.

» A bipartite digraph does not contain a cycle of odd degree. More generally, a bipartite
digraph does not contain a colliding cycle of odd degree.

» Examples: paths P,,, cycles of even degree Cay,, etc.
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3.4. Manhattan Product of Bipartite Digraphs

G; = (Vi, E;): bipartite digraphs
G; = (Vi, EY): opposite digraphs
V=VixVWVs
Define arcs in V' as follows:
M fy=y € Vi and 2 — '
then (z,y) — (=’,y’).

(i) y=y €V and 2 — 2’
then (z/,y’') — (z, y).

(i) ez =2’ € V{? and ...

(i) fe=a"€ V" and ....

The digraph obtained in this manner
is called the Manhattan product and

is denoted by

G =G1#G->.
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3.5. Adjacency Matrix

Theorem
The adjacency matrix A of G = G1# G2 satisfies

(A)(w,y)(w’,y') = 5wm'(tﬂ1(w)(A2))yy' + (tn(y)(Al))mm"syy"

for x, &’ € Vi and y,y’ € Va, where t(A) = AT and 7, is the “parity function”.

cf) For a direct product G1 X G2 we have

(A)(zvy)(mﬁy’) = 5mz’(A2)yy’ + (Al)wm"syy' s

which means that
A=TQRQ A2+ A1 Q1

—> commutative independence in quantum probability.
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4. Spectral Analysis of Manhattan Products of Digraphs
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4.1. P, #C,

The characteristic polynomial of P,# C2 is given by (B: adjacency matrix of Py,)

pn(x) = det(x — A) = det [m —_IB :c __IBT:|

= det((@ — B)(z — BY) — I) = 2*pn_1 () — 2°pn_2(x),

p1(z) = 2® — 1, pa2(x) = z* — 22°.

Using the recurrence relation of the Chebyshev polynomial of the second kind, we obtain

sin(n + 1)6

_ m—177 i _
pn(z) =2 Upt1(xz), where Up(2cosf) = e
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4.1. P,#C5 (cont)

Theorem (H.-O. Lee: Master Thesis (2011))

ASpec(Pr# C2) = {2 cos

where every non-zero eigenvalue has algebraic multiplicity one. The geometric
multiplicity of zero eigenvalue is m — 1.

km 0
n+2;k=1,2,...,n+1}u(n_1>,

-1 1
cf) ASpec(P, X C2) = ( )
n n

Theorem (H.-O. Lee: Master Thesis (2011))
The asymptotic (algebraic) spectral distribution of P,# C2 is given by

1 1 1
3 o + 2 p(x)dz, p(x) = ﬁ X (—2,2)(T)

is the arcsine law with mean O and variance 2.
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4.2. M(2m,2n) = C2,#Can

Theorem (Comellas—Dalfé-Fiol-Mitjana (2007))

The GSpec of the two-dimensional Manhattan network M (2m,2n) = Com#Can is
given by

27'rl 0<k<m-—1,
2¢ SkS
h *m 0<Ii<n-—1,

0 and :i:\/2cos

with the geometric multiplicity of every non-zero eigenvalue coincides with the times it
appears in the above expression. In particular,

1(0) > 2mn< M) ,

2

and equality happens when both m,n are odd numbers.

» Proof by constructing eigenvecotors from those of C2,, and Cay, .

A natural question: what about P,,#P,,?
(removing the periodic boundary condition)
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4.3. P,#P,

The adjacency matrix is given by

We have immediately

on(x) = det(x — A) = 2™ det(x — BT — Q(xz — B)"'P)
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4.3. P,#P, (cont)

Theorem (O. IIS 18 (2012))
Forn = 1,2,..., the characteristic polynomial ¢r () of Pr,# P2 is given by

Pan—1(x) = 2" 2Un(x?),
p2n () = " Un(x?),

sin(n + 1)60

where U, is defined by U (2 cos 8) = sin 6

polynomial of the second kind).

(= U(cos 0) is the Chebyshev

Proof. By standard cofactor expansion we obtain

p1(x) = m29
p2(x) = w49
903(112) =’ — m2,

504(:2) = mS - :134,
on(x) = 2 pn—2 — @' pn_a(x), n>5.

Then the result is easily verified.
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4.3. P,#P, (cont)

Corollary

For P,,# P> we have:
(1) Concentration of zero-eigenvalues:

. . m(0 1
m(0) ~ n, ie., nll_)ngo %) =

(2) Asymptotic spectral distribution as n — oo is given by

1 1 1 :
5 %0+ 7 p(@)é(y)dedy + 7 p(y)é(z)dady, ==z + iy,

where
2|z|

p(x) = ﬂ-\/ﬁ X[—vZ,+v3] (x)

Proof. Straightforward from
Pan—1(z) = " Un(2?), @an(z) = 2" Un(a?)

and the spectral distribution associated with U (x) (see §5.1).

Nobuaki Obata (GSIS, Tohoku University) Spectral Analysis of Manhattan Street Networks Hammamet, 2013.11.15

26 / 39



Asymptotic spectral distribution of P, # P2 as n — oo
1 1 1 .
5 %0+ 7 p(@)d(y)dady + | p(y)é(z)dady, =z =z +iy,

2|x|

p(@) = g X—va+va (@)

"""""""""""" A2

» Open question: For general m, n determine ASpec (Pn#Pp).
Only numerical calculation was done [B. J. Choi (2012)]. Looks very interesting!
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4.4. Non-standard Manhattan Product P, #'P;

Non-standard Manhattan product P, #’ P, only for even m, n

» Non-standard Manhattan product is characterized by the “beltway”

Ps#' P,
» Results for non-standard case are similar to the standard case [O. 1IS 18 (2012)].

cf) Standard Manhattan product Ps# P>

Ps# P>
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5. Applications to Coupled Oscillators
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5.1. Coupled Oscillators on a Digraph

A basic model of coupled oscillators on a digraph G is described by
Pr = wi — ¢ Y A sin(dr — ¢;),
JEV

W = —8 Z Agjsin(dr — ¢;)

JEV
where A = [Ag;] is the adjacency matrix of G, and ¢ > 0, s > 0.
Motivation: Kuramoto model (1975) + self-adaptive dynamics
» We focus on the linearized system:

Coupled oscillators on a digraph
Let G = (V, E) be a digraph and L = D — A its Laplacian. Then

—cL 1

W= —sL¢ w —sL O

¢ =w—cLo¢ o H _

¥
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5.2. Synchronization of Coupled Oscillators

For a large class of graphs (symmetric digraphs with no loops) and for a large enough
coupling constant ¢ > 0 we observe the synchronization, namely,

lim we(t) =@
t— oo

exists and the limit is independent of k € V. Moreover,

o= ﬁ keszk(O) (independent of the network topology!)
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5.3. Synchronization of Coupled Oscillators: Numerical Calculations

J. Rodriguez and M-O. Hongler:
Networks of self-adaptive dynamical systems, IMA J. Appl. Math. (2012)

Parametric variables A, (b) Parametric variables A,

3 4 5 3
Time Time

4 3

FiG. 4. Time evolution of the parametric variables A (a and b) for five Hopf oscillators interacting through a ‘Crystal’ network
(¢) (AC = 3) and an ‘All-to-One’ network (d) (AC = 1), respectively.
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5.3. Coupled Oscillators on Digraphs

Question
@ Does synchronization occur for coupled oscillators on a digraph?

@ If so, find condition to have synchronization.

» The Laplacian L is no longer symmetric
=—> complex spectrum 4 non-diagonalizable
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5.4. Coupled Oscillators on P,# P> (standard): Numerical Calculation

Time evolution of wg on Py# P, with initial conditions:
¢k (0) =0 for all k,
w1(0) = 0.7, w2(0) = 0.8, ws3(0) = 0.9,w4(0) =1
ws(0) = 1, we(0) = 1.1, w7 (0) = 1.2, ws(0) = 1.3.

1.4

o, 10

0'8 (P :l,

0.6

0 5 10 15 20
Time
vertex 1 = dashed red vertex 2 = dashed blue vertex 3 = dashed green vertex 4 =

dashed black vertex 5 = red vertex 6 = blue vertex 7 = green vertex 8 = black
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5.5. Coupled Oscillators on P,#’P> (non-standard): Numerical Calculation

Time evolution of wy on Py#’ P2 with initial conditions:
¢k (0) =0 for all k,
w1(0) = 0.7, w2(0) = 0.8, ws3(0) = 0.9,w4(0) =1
ws(0) = 1, we(0) = 1.1, w7 (0) = 1.2, ws(0) = 1.3.

1.4
12 |
o 10 KON/ NSt
gl <
08 | ]
0.6 :
0 5 10 15 20

Time

vertex 1 = dashed red vertex 2 = dashed blue vertex 3 = dashed green vertex 4 =

dashed black vertex 5 = red vertex 6 = blue vertex 7 = green vertex 8 = black
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5.6. Asymptotic Stability (Toward Synchronization)

Our system is:
—cL 1
—sL O

1
€ o
| I
Il
S
1
€ o
| I
S
Il

Lemma

Let L € M(n,C), ¢ >0, s > 0 and M as above. Let A1,...,An € C be the
eigenvalues of L. Then, the eigenvalues of M are exhausted by pi+ (A1), ..., p+(An),

pr(A) = % (—A:I:\/)\z— j’j)\).

For k > 0 let A(k) be the domain defined by

where

Ak)={A=z+iyeC; 2’ + (z —Kk)y*> >0, = > 0}

Theorem

If all non-zero eigenvalues of L are in A(s/c?), then Re u < O for every non-zero

eigenvalue p of M.
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AR)={A=z+iyeC;z®+ (x — r)y> >0, = > 0}
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5.6. Asymptotic Stability (Toward Synchronization) (cont)

-l -

Theorem (O. and J. Rodriguez (2013))
Let L be the Laplacian of a digraph G. Assume

—cL 1
—sL O

@ Re A\ > 0 for all non-zero eigenvalue A\ of L;
@ the algebraic and geometric multiplicities of zero-eigenvalue coincide.

Then, choosing s > 0 and ¢ > 0 with s/c? is sufficient small, every eigenvalue p of M
satisfies Re p < O.

Hence the solution to our system satisfies

. o(t)| _ .. v |6(0) |
tliglo |:w(t)] = tligloe [w(O)] = (constant vector).

Open Problem: lim;_ ;oo wi(t) = @ (independent of k).

Digraphs satisfying the condition in the above theorem: Com#C2n, Pan# P2 (for
small n)
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Some Open Questions

@ Determine the spectra of (the adjacency matrix) of the Manhattan street digraphs
P, #P,, (standard) and P,,#’P,, (non-standard) for general m, n.

@ Work in progress for P, # P5 (standard) and P, #’Ps (non-standard).

@ Determine the spectra of (the Laplacian) of the Manhattan street digraphs
P, #P,, (standard) and P,,#’P,, (non-standard) for general m, n.

@ Work in progress for P2y, # P> (standard) .

© Prove synchronization for a large class of Manhattan products of digraphs.
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