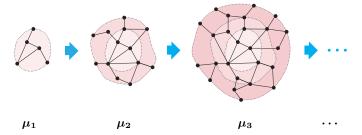
Spectral Analysis of Growing Graphs A Quantum Probability Point of View by Nobuaki Obata (Tohoku University)

5. Asymptotic Spectral Analysis of Growing Regular Graphs

5.1. Main Theme

Growing graphs and spectral distributions



Our Main Theme

The asymptotic behavior of μ_n as $n \to \infty$. In fact, we will investigate the limit:

 $\lim_{n\to\infty}\mu_n$

5.2. Simple Example (I) P_n as $n \to \infty$

$$\frac{P_n \text{ as } n \to \infty}{\text{Spec}(P_n)} = \left\{ 2 \cos \frac{k\pi}{n+1} ; 1 \le k \le n \right\}$$

$$\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{2 \cos \frac{k\pi}{n+1}}$$
For $f \in C_b(\mathbb{R})$ we have
$$\int_{-\infty}^{+\infty} f(x) \mu_n(dx)$$

$$= \frac{1}{n} \sum_{k=1}^n f\left(2 \cos \frac{k\pi}{n+1}\right)$$

$$\rightarrow \int_0^1 f(2 \cos \pi t) dt$$

$$= \int_{-2}^{+2} f(x) \frac{dx}{\pi\sqrt{4-x^2}}.$$

5.2. Simple Example (II) K_n as $n \to \infty$

 \blacktriangleright Let us see what happens in the limit μ_n as $n o \infty$

For
$$f \in C_b(\mathbb{R})$$
 we have

$$\int_{-\infty}^{+\infty} f(x)\mu_n(dx) = \frac{1}{n}f(n-1) + \frac{n-1}{n}f(-1)$$

$$\rightarrow f(-1) = \int_{-\infty}^{+\infty} f(x)\delta_{-1}(dx) \text{ as } n \rightarrow \infty$$

This means that $\mu_n o \delta_{-1}$

Can we accept it? What about the mean values?

5.2. Simple Example (II) K_n as $n \to \infty$

▶ Normalization is a basic idea in probability theory to grasp the limit distribution.

E.g., central limit theorem (CLT) and its variants.

Definition (normalization)

For a probability distribution μ its *normalization* is a probability distribution $\tilde{\mu}$ defined by

$$\int f(x)\, ilde{\mu}(dx) = \int f\Big(rac{x-m}{\sigma}\Big)\, \mu(dx),$$

where

$$m = \mathrm{mean}(\mu), \quad \sigma^2 = \mathrm{var}(\mu).$$

Then we have

$$ext{mean}(ilde{\mu}) = 0, \qquad ext{var}(ilde{\mu}) = 1$$

5.2. Simple Example (II) K_n as $n \to \infty$

K_n as $n o \infty$

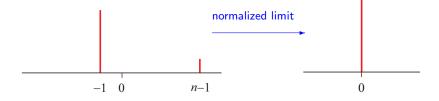
Spectral distribution (eigenvalue distribution): $\mu_n = rac{1}{n}\,\delta_{n-1} + rac{n-1}{n}\,\delta_{-1}$

Since $\mathrm{mean}(\mu_n)=0$ and $\mathrm{var}(\mu_n)=n-1$, after normalization we have

$$\int_{-\infty}^{+\infty} f(x)\tilde{\mu}_n(dx) = \frac{1}{n}f\Big(\frac{n-1}{\sqrt{n-1}}\Big) + \frac{n-1}{n}f\Big(\frac{-1}{\sqrt{n-1}}\Big)$$

$$o f(0) = \int_{-\infty}^{+\infty} f(x) \delta_0(dx) \ \ ext{as } n o \infty.$$

This means that $\tilde{\mu}_n \to \delta_0$.



5.3. Formulation of Question in General

A difference between K_n and P_n as $n \to \infty$

$$\mu_{P_n} = \frac{1}{n} \sum_{k=1}^n \delta_{2\cos\frac{k\pi}{n+1}}, \qquad \mu_{K_n} = \frac{1}{n} \,\delta_{n-1} + \frac{n-1}{n} \,\delta_{-1}$$

mean value

$$\operatorname{mean}(\mu_{P_n}) = \operatorname{mean}(\mu_{K_n}) = 0$$

variance

$$ext{var}(\mu_{P_n}) = rac{2(n-1)}{n} o 2, \qquad ext{var}(\mu_{K_n}) = n-1 o \infty$$

In general, it is not reasonable to consider lim μ_n when var(μ_n) → ∞.
We should take normalized limit lim μ̃_n.

5.3. Formulation of Question in General

 $G_
u = (V_
u, E_
u)$: growing graphs

 $(\mathcal{A}(G_{\nu}), \langle \cdot \rangle_{\nu})$: adjacency algebra with a state (algebraic probability space) μ_{ν} : spectral distribution of the adjacency matrix A_{ν} of G_{ν} , i.e.,

$$\langle A^m_{
u}
angle = \int_{-\infty}^{+\infty} x^m \mu_
u(dx), \qquad m=0,1,2,\ldots.$$

Note: $\operatorname{mean}(A_{\nu}) = \langle A_{\nu} \rangle$ and $\operatorname{var}(A_{\nu}) = \langle (A_{\nu} - \operatorname{mean}(A_{\nu}))^2 \rangle$.

Main question in genaral

For the normalization $\tilde{\mu}_{\nu}$ of μ_{ν} find the limit spectral distribution:

$$\mu = \lim_{\nu} \tilde{\mu}_{\nu} \,.$$

In other words,

$$\lim_{
u}\left\langle \left(rac{A_
u-\mathrm{mean}(A_
u)}{\sqrt{\mathrm{var}(A_
u)}}
ight)^m
ight
angle_
u = \int_{-\infty}^{+\infty} x^m \mu(dx), \qquad m=0,1,2,\ldots$$

5.4. Growing Distance-Regular Graphs (DRGs)

Definition

A graph G = (V, E) is called *distance regular* if the intersection numbers:

$$p_{i,j}^k = |\{z \in V\,;\, d(x,z) = i,\, d(y,z) = j\}|,$$

is constant for all pairs x, y such that d(x, y) = k.

Examples: Hamming graphs, Johnson graphs, odd graphs, homogeneous trees, ...

▶ We are interested in growing distance-regular graphs, e.g.,

. . .

$$egin{aligned} H(d,N) & ext{as } d o \infty ext{ and } N o \infty \ J(v,d) & ext{as } v o \infty ext{ and } d o \infty \ O_k & ext{as } k o \infty \ T_k & ext{as } k o \infty \end{aligned}$$

5.4. Growing Distance-Regular Graphs (DRGs)

Some general facts on a distance-regular graph G (exercise)

● Let A = A⁺ + A⁻ + A^o be the quantum decomposition (with respect to a fixed origin o ∈ V). Then

$$A^+\Phi_n=\sqrt{\omega_{n+1}}\,\Phi_{n+1}, \quad A^-\Phi_n=\sqrt{\omega_n}\,\Phi_{n-1}, \quad A^\circ\Phi_n=lpha_{n+1}\Phi_n,$$

where

$$\omega_n = p_{1,n-1}^n p_{1,n}^{n-1}\,, \qquad lpha_n = p_{1,n-1}^{n-1}\,.$$

• In particular, $(\Gamma(G), \{\Phi_n\}, A^+, A^\circ, A^-)$ is an IFS associated to $(\{\omega_n\}, \{\alpha_n\})$.

3 mean value and variance:

$$ext{mean}(A) = \langle A
angle = 0, \quad ext{ var}(A) = \langle A^2
angle = ext{deg}(o) = p_{11}^0$$

(4) If G is a finite distance-regular graph, the tracial and vacuum states coincide:

$$\langle A^m
angle_{
m tr} = \langle A^m
angle_o = \langle e_o, A^m e_o
angle, \quad m = 1, 2, \ldots.$$

 $H(d, N) = K_N \times \cdots \times K_N$ (d times): Hamming graph

$$p_{1,1}^0 = \deg H(d,N) = d(N-1),$$

$$p_{1,n-1}^n = n, \quad p_{1,n}^{n-1} = (d-n)(N-1), \quad p_{1,n-1}^{n-1} = (n-1)(N-2).$$

Theorem

Let $\mu_{d,N}$ be the vacuum spectral distribution of H(d,N) (in coincidence with the eigenvalue distribution). Then the Jacobi parameters of $\mu_{d,N}$ are given by

$$\omega_n = p_{1,n-1}^n p_{1,n}^{n-1} = n(d-n+1)(N-1), \quad 1 \le n \le d,$$

 $\alpha_n = p_{1,n-1}^{n-1} = (n-1)(N-2), \quad 1 \le n \le d+1.$

In fact, the vacuum spectral distribution of A is the binomial distribution.

The IFS structure:

$$\begin{split} A^{+}\Phi_{n} &= \sqrt{\omega_{n+1}} \, \Phi_{n+1} = \sqrt{(n+1)(d-n)(N-1)} \, \Phi_{n+1}, \\ A^{-}\Phi_{n} &= \sqrt{\omega_{n}} \, \Phi_{n-1} = \sqrt{n(d-n+1)(N-1)} \, \Phi_{n-1}, \\ A^{\circ}\Phi_{n} &= \alpha_{n+1} \, \Phi_{n} = n(N-2) \Phi_{n}, \end{split}$$

$$egin{aligned} &A^+ \Phi_n = \sqrt{\omega_{n+1}} \, \Phi_{n+1} = \sqrt{(n+1)(d-n)(N-1)} \, \Phi_{n+1}, \ &A^- \Phi_n = \sqrt{\omega_n} \, \Phi_{n-1} = \sqrt{n(d-n+1)(N-1)} \, \Phi_{n-1}, \ &A^\circ \Phi_n = lpha_{n+1} \, \Phi_n = n(N-2) \Phi_n, \end{aligned}$$

▶ What happens when $N \to \infty$ and $d \to \infty$?

▶ Normalization: $mean(A) = \langle A \rangle = 0$ and $var(A) = \langle A^2 \rangle = d(N-1)$.

$$rac{A^+}{\sqrt{d(N-1)}} \Phi_n = \sqrt{(n+1)\Big(1-rac{n}{d}\Big)} \Phi_{n+1},
onumber \ rac{A^-}{\sqrt{d(N-1)}} \Phi_n = \sqrt{n\Big(1-rac{n-1}{d}\Big)} \Phi_{n-1},
onumber \ rac{A^\circ}{\sqrt{d(N-1)}} \Phi_n = n \sqrt{rac{N-2}{d}} \sqrt{rac{N-2}{N-1}} \Phi_n,$$

▶ We thus find the proper scaling:

$$N o \infty, \ \ d o \infty, \ \ rac{N}{d} o au \geq 0.$$

▶ Taking the limit as $N o \infty$, $d o \infty$ and $rac{N}{d} o au \geq 0$, we have

$$\begin{split} \frac{A^+}{\sqrt{d(N-1)}} \, \Phi_n &= \sqrt{(n+1)\left(1-\frac{n}{d}\right)} \, \Phi_{n+1} \to \sqrt{n+1} \, \text{``} \Phi_{n+1} \text{''} \,, \\ \frac{A^-}{\sqrt{d(N-1)}} \, \Phi_n &= \sqrt{n\left(1-\frac{n-1}{d}\right)} \, \Phi_{n-1} \to \sqrt{n} \, \text{``} \Phi_{n-1} \text{''} \,, \\ \frac{A^\circ}{\sqrt{d(N-1)}} \, \Phi_n &= n\sqrt{\frac{N-2}{d}} \sqrt{\frac{N-2}{N-1}} \, \Phi_n \to n\sqrt{\tau} \, \text{``} \Phi_n \text{''}. \end{split}$$

▶ Recall the Boson Fock space $(\Gamma, \{\Psi_n\}, B^+, B^-)$ is defined by

$$B^+\Psi_n = \sqrt{n+1}\,\Psi_{n+1}, \quad B^-\Psi_n = \sqrt{n}\,\Psi_{n-1}.$$

▶ Note also that

$$B^+B^-\Psi_n=n\Psi_n\,.$$

Theorem (Quantum central limit theorem (QCLT) for H(d,N))

Let $A = A^+ + A^- + A^\circ$ be the quantum decomposition of the adjacency matrix of H(d, N). Let $(\Gamma, \{\Psi_n\}, B^+, B^-)$ be the Boson Fock space. Then we have

$$\left(\frac{A^+}{\sqrt{d(N-1)}}, \frac{A^-}{\sqrt{d(N-1)}}, \frac{A^\circ}{\sqrt{d(N-1)}}\right) \xrightarrow{\mathrm{m}} (B^+, B^-, \sqrt{\tau} B^+ B^-),$$

as $N \to \infty$, $d \to \infty$ and $\frac{N}{d} \to \tau \ge 0$.

where \xrightarrow{m} means the convergence of all mixed moments.

Deteiled proof is omitted (exercise).

Finding the asymptotic spectral distribution for H(d, N)

$$\left(rac{A^+}{\sqrt{d(N-1)}},rac{A^-}{\sqrt{d(N-1)}},rac{A^\circ}{\sqrt{d(N-1)}}
ight) \stackrel{
m m}{\longrightarrow} (B^+,B^-,\sqrt{ au}\,B^+B^-)$$

implies that

$$\left\langle e_o igg(rac{A}{\sqrt{d(N-1)}} igg)^m e_o
ight
angle o \left\langle \Psi_0, (B^+ + B^- + \sqrt{ au} \, B^+ B^-)^m \Psi_0
ight
angle.$$

On the other hand, by observing moments or generating functions, we see that

$$ig\langle \Psi_0, (B^++B^-+\sqrt{ au}\,B^+B^-)^m\Psi_0ig
angle = \int_{-\infty}^{+\infty} x^m\mu(dx),$$

where

$$\mu = egin{cases} N(0,1), & au = 0, \ ext{affine transformed Po}(au^{-1}), & au > 0. \end{cases}$$

This μ is the asymptotic spectral (= eigenvalue) distribution of H(d, N).

5.6. Growing DRGs: General Results

 $\{G_{
u}\}$: growing DRGs with adjacency matrices $A_{
u}$

• Using mean $(A_{\nu}) = \langle A_{\nu} \rangle = 0$ and var $(A_{\nu}) = \langle A_{\nu}^2 \rangle = \deg(G_{\nu}) = p_{11}^0(\nu)$, the normalization of A_{ν} is given by

$$rac{A_
u - \mathrm{mean}(A_
u)}{\sqrt{\mathrm{var}(A_
u)}} = rac{A_
u^+}{\sqrt{\mathrm{deg}(G_
u)}} + rac{A_
u^\circ}{\sqrt{\mathrm{deg}(G_
u)}} + rac{A_
u^-}{\sqrt{\mathrm{deg}(G_
u)}} \,.$$

Theorem (Quantum CLT for growing DRGs)

Assume that for all $n=1,2,\ldots$ the limits

$$\omega_n = \lim_{\nu} rac{p_{1,n-1}^n(
u)p_{1,n}^{n-1}(
u)}{p_{1,1}^0(
u)}, \qquad lpha_n = \lim_{
u} rac{p_{1,n-1}^{n-1}(
u)}{\sqrt{p_{1,1}^0(
u)}},$$

exist. Let $(\Gamma, \{\Phi_n\}, B^+, B^-, B^\circ)$ be the interacting Fock space associated with $(\{\omega_n\}, \{\alpha_n\})$. Then we have

$$\Big(rac{A^+_
u}{\sqrt{\deg(G_
u)}},rac{A^-_
u}{\sqrt{\deg(G_
u)}},rac{A^\circ_
u}{\sqrt{\deg(G_
u)}}\Big) \stackrel{\mathrm{m}}{\longrightarrow} (B^+,B^-,B^\circ).$$

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

 \mathbf{Z}^N as $N o \infty$ **(1)** $\Gamma(\mathbf{Z}^N)$ is asymptotically invariant under A^{ϵ} : $A^+\Phi_n = \sqrt{2N}\sqrt{n+1} \Phi_{n+1} + O(1),$ $A^{-}\Phi_{n} = \sqrt{2N} \sqrt{n} \Phi_{n-1} + O(N^{-1/2}).$ Ormalized adjacency matrices: $\frac{A_N^{\check{}}}{\sqrt{\deg(A_N)}} = \frac{A_N^{\check{}}}{\sqrt{2N}} \to B^{\epsilon}$ The interacting Fock space in the limit: $B^+ \Psi_n = \sqrt{n+1} \Psi_{n+1}$ $B^{-}\Phi_{n} = \sqrt{n} \Psi_{n-1}, \quad B^{\circ} = 0.$ This is Boson Fock space! 4 The asymptotic spectral distribution is the standard Gaussian distribution: $\lim_{N \to \infty} \left\langle e_o, \left(\frac{A_N}{\sqrt{2N}}\right)^m e_o \right\rangle = \langle \Psi_0, (B^+ + B^-)^m \Psi_0 \rangle$ $=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}x^m e^{-x^2/2}dx.$

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

$$\frac{\text{Statistics of }\omega_{\epsilon}(x)}{M(\omega_{\epsilon}|V_{n}) = \frac{1}{|V_{n}|} \sum_{x \in V_{n}} |\omega_{\epsilon}(x)|} V_{n+1} \int_{W_{n+1}} |V_{n+1}| \int_{W_{n}} |V_{n}| \int_{W_{n}} |V_{n+1}| \int_{W_{n}}$$

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

Theorem (QCLT for growing regular graphs)
Let {
$$G_{\nu} = (V^{(\nu)}, E^{(\nu)})$$
} be a growing regular graph satisfying
(A1) $\lim_{\nu} \kappa(\nu) = \infty$, where $\kappa(\nu) = \deg(G_{\nu})$.
(A2) for each $n = 1, 2, ...,$
 $\exists \lim_{\nu} M(\omega_{-}|V_{n}^{(\nu)}) = \omega_{n} < \infty$, $\lim_{\nu} \Sigma^{2}(\omega_{-}|V_{n}^{(\nu)}) = 0$, $\sup_{\nu} L(\omega_{-}|V_{n}^{(\nu)}) < \infty$.
(A3) for each $n = 0, 1, 2, ...,$
 $\exists \lim_{\nu} \frac{M(\omega_{0}|V_{n}^{(\nu)})}{\sqrt{\kappa(\nu)}} = \alpha_{n+1} < \infty$, $\lim_{\nu} \frac{\Sigma^{2}(\omega_{0}|V_{n}^{(\nu)})}{\kappa(\nu)} = 0$, $\sup_{\nu} \frac{L(\omega_{0}|V_{n}^{(\nu)})}{\sqrt{\kappa(\nu)}} < \infty$.
Let $(\Gamma, {\Psi_{n}}, B^{+}, B^{-}, B^{\circ})$ be the interacting Fock space associated with the Jacobi parameters ($\{\omega_{n}\}, \{\alpha_{n}\}$). Then
 $\left(\frac{A_{\nu}^{+}}{\sqrt{\kappa(\nu)}}, \frac{A_{\nu}^{-}}{\sqrt{\kappa(\nu)}}, \frac{A_{\nu}^{\circ}}{\sqrt{\kappa(\nu)}}\right) \xrightarrow{m} (B^{+}, B^{-}, B^{\circ})$
In particular, the asymptotic spectral distribution of the normalized A_{ν} in the vacuum

In particular, the asymptotic spectral distribution of the normalized A_{ν} in the vacuum state is a probability distribution determined by $(\{\omega_n\}, \{\alpha_n\})$.

Nobuaki Obata (Tohoku University)

Outline of Proof

$$(1) \frac{A^{\epsilon}}{\sqrt{\kappa}} \Phi_{n} = \gamma_{n+\epsilon}^{\epsilon} \Phi_{n+\epsilon} + S_{n+\epsilon}^{\epsilon}, \quad \epsilon \in \{+, -, \circ\}, \quad n = 0, 1, 2, \dots,$$

$$\gamma_{n}^{+} = M(\omega_{-}|V_{n}) \left(\frac{|V_{n}|}{\kappa|V_{n-1}|}\right)^{1/2}, \quad \gamma_{n}^{-} = M(\omega_{+}|V_{n}) \left(\frac{|V_{n}|}{\kappa|V_{n+1}|}\right)^{1/2}, \quad \gamma_{n}^{\circ} = \frac{M(\omega_{\circ}|V_{n})}{\sqrt{\kappa}}.$$

$$(2) |V_{n}| = \left\{\prod_{k=1}^{n} M(\omega_{-}|V_{k})\right\}^{-1} \kappa^{n} + O(\kappa^{n-1}).$$

$$(3) \lim_{\nu} \gamma_{n}^{+} = \sqrt{\omega_{n}}, \quad \lim_{\nu} \gamma_{n}^{-} = \sqrt{\omega_{n+1}}, \quad \lim_{\nu} \gamma_{n}^{\circ} = \alpha_{n+1}.$$

$$(4) \qquad \qquad \frac{A^{\epsilon_{m}}}{\sqrt{\kappa}} \cdots \frac{A^{\epsilon_{1}}}{\sqrt{\kappa}} \Phi_{n} = \gamma_{n+\epsilon_{1}}^{\epsilon_{1}} \gamma_{n+\epsilon_{1}+\epsilon_{2}}^{\epsilon_{2}} \cdots \gamma_{n+\epsilon_{1}+\dots+\epsilon_{m}}^{\epsilon_{m}} \Phi_{n+\epsilon_{1}+\dots+\epsilon_{m}} + \sum_{k=1}^{m} \underbrace{\gamma_{n+\epsilon_{1}}^{\epsilon_{1}} \cdots \gamma_{n+\epsilon_{1}+\dots+\epsilon_{k-1}}^{\epsilon_{k-1}}}_{(k-1) \text{ times}} \underbrace{\frac{A^{\epsilon_{m}}}{\sqrt{\kappa}} \cdots \frac{A^{\epsilon_{k+1}}}{\sqrt{\kappa}}}_{(m-k) \text{ times}} S_{n+\epsilon_{1}+\dots+\epsilon_{k}}^{\epsilon_{k}}.$$

(5) Estimate the error terms and show that

$$\lim_{\nu}\left\langle \Phi_{j}^{(\nu)},\frac{A^{\epsilon_{m}}}{\sqrt{\kappa(\nu)}}\cdots\frac{A^{\epsilon_{k+1}}}{\sqrt{\kappa(\nu)}}\,S_{n+\epsilon_{1}+\cdots+\epsilon_{k}}^{\epsilon_{k}}\right\rangle =0.$$

Nobuaki Obata (Tohoku University)

Definition (Q-matrix and deformed vacuum functional)

The Q-matrix of a graph G = (V, E) is defined by

 $Q = Q_q = [q^{d(x,y)}]_{x,y \in V}, \qquad d(x,y) = ext{graph distance},$

where q is a parameter (in fact, we are interested only in the case of $-1 \le q \le 1$). The *deformed vacuum functional* is defined by

 $\langle a
angle_q = \langle Q_q e_o, a e_o
angle, \qquad a \in \mathcal{A}(G).$

- **()** For q=0 we have $Q_0=I$ so that $\langle \cdot
 angle_q$ coincides with the vacuum state.
- 2 Qe_o does not necessarily belong to $\ell^2(V)$ but $\langle a \rangle_q$ is well-defined for $a \in \mathcal{A}(G)$.
- $\ \, {\mathfrak A}(G) \ni a \mapsto \langle a \rangle_q \text{ is a merely a normalized linear function.}$
- **4** Positivity of $\langle \cdot \rangle_q$ is an interesting question from several aspects.

▶ Let G be a κ -regular graph and consider the deformed vacuum functional on $\mathcal{A}(G)$:

 $\langle a
angle_q = \langle Q_q e_o, a e_o
angle, \qquad a \in \mathcal{A}(G).$

We have

$$egin{aligned} &\langle A
angle_q = \kappa q, \ &\Sigma_q^2(A) = \langle (A - \langle A
angle_q)^2
angle_q = \kappa (1-q) \{1 + q + q M(\omega_\circ | V_1)\} \end{aligned}$$

so that the quantum decomposition of the normalized adjacency matrix is given by

$$rac{A-\langle A
angle_q}{\Sigma_q(A)}=rac{A^+}{\Sigma_q(A)}+rac{A^-}{\Sigma_q(A)}+rac{A^\circ-\langle A
angle_q}{\Sigma_q(A)}$$

▶ Let $\{G_{\nu}\}$ be growing regular graphs. We need to find a proper scaling balance between $\kappa(\nu)$ and $q(\nu)$.

<u>The balance condition</u> found from the actions of A^{ϵ} and explicit form of $Q_q e_0$:

 $\lim_{
u}\kappa(
u)=\infty, \qquad \lim_{
u}q(
u)=0, \qquad \lim_{
u}q(
u)\sqrt{\kappa(
u)}=\gamma \,\in \mathbb{R}.$

(A1)
$$\lim_{\nu} \kappa(\nu) = \infty$$
, where $\kappa(\nu) = \deg(G_{\nu})$.
(A2) for each $n = 1, 2, ...,$
 $\exists \lim_{\nu} M(\omega_{-}|V_{n}^{(\nu)}) = \omega_{n} < \infty, \quad \lim_{\nu} \Sigma^{2}(\omega_{-}|V_{n}^{(\nu)}) = 0, \quad \sup_{\nu} L(\omega_{-}|V_{n}^{(\nu)}) < \infty.$
(A3) for each $n = 0, 1, 2, ...,$
 $\exists \lim_{\nu} \frac{M(\omega_{\circ}|V_{n}^{(\nu)})}{\sqrt{\kappa(\nu)}} = \alpha_{n+1} < \infty, \quad \lim_{\nu} \frac{\Sigma^{2}(\omega_{\circ}|V_{n}^{(\nu)})}{\kappa(\nu)} = 0, \quad \sup_{\nu} \frac{L(\omega_{\circ}|V_{n}^{(\nu)})}{\sqrt{\kappa(\nu)}} < \infty.$
(A4) (scaling balance) $\lim_{\nu} q(\nu) = 0$ and $\lim_{\nu} q(\nu) \sqrt{\kappa(\nu)} = \gamma \in \mathbb{R}$ (constant).

Lemma

Under (A1)–(A4) we have

$$Qe_o = \sum_{n=0}^{\infty} q^n \sqrt{|V_n|} \Phi_n \longrightarrow \sum_{n=0}^{\infty} rac{\gamma^n}{\sqrt{\omega_n \cdots \omega_1}} \Psi_n = \Omega_\gamma$$

The above Ω_γ is reasonably called a *coherent vector* of the interacting Fock space since

$$B^-\Omega_\gamma=\gamma\Omega_\gamma$$
 .

See e.g., P. K. Das: IJTP 41 (2002), 1099-1106.

Theorem (Deformed QCLT for growing regular graphs)

Let $\{G_{\nu} = (V^{(\nu)}, E^{(\nu)})\}$ be a growing regular graph satisying conditions (A1)–(A3) and A_{ν} its adjacency matrix. Let $(\Gamma, \{\Psi_n\}, B^+, B^-, B^\circ)$ be the IFS associated to $(\{\omega_n\}, \{\alpha_n\})$. Under (A4) we have

$$\lim_{\substack{\kappa \to \infty, q \to 0 \\ q \sqrt{\kappa} \to \gamma}} \left\langle Q e_o, \frac{\tilde{A}^{\epsilon_m}}{\Sigma_q(A)} \cdots \frac{\tilde{A}^{\epsilon_1}}{\Sigma_q(A)} e_o \right\rangle = \langle \Omega_\gamma, \tilde{B}^{\epsilon_m} \cdots \tilde{B}^{\epsilon_1} \Psi_0 \rangle,$$

where

$$ilde{A}^{\pm}=A^{\pm}_{
u}, \hspace{1em} ilde{A}^{\circ}=A^{\circ}_{
u}-\langle A_{
u}
angle_q, \hspace{1em} ilde{B}^{\pm}=rac{B^{\pm}}{\sqrt{1+\gammalpha_2}}, \hspace{1em} ilde{B}^{\circ}=rac{B^{\circ}-\gamma}{\sqrt{1+\gammalpha_2}}.$$

In particular,

$$\lim_{\substack{\iota \to \infty, q \to 0 \\ q \sqrt{\kappa} \to \gamma}} \left\langle \left(\frac{A_{\nu} - \langle A \rangle_q}{\Sigma_q(A_{\nu})} \right)^m \right\rangle_q = \left\langle \Omega_{\gamma}, \left(\frac{B^+ + B^- + B^\circ - \gamma}{\sqrt{1 + \gamma \alpha_2}} \right)^m \Psi_0 \right\rangle.$$

▶ Challenging Exercise: Examine the above argument for T_{κ} as $\kappa \to \infty$ and find the limit distribution (free Poisson distribution = Marchenko–Pastur distribution).

Nobuaki Obata (Tohoku University)

Asymptotic Spectral Analysis

Some concrete examples: Asymptotic spectral distributions

graphs	IFS	vacuum state	deformed vacuum state
Hamming graphs	$\omega_n = n$	Gaussian $(N/d \rightarrow 0)$	Gaussian
H(d,N)	(Boson)	Poisson $(N/d o \lambda^{-1} > 0)$	or Poisson
Johnson graphs	$\omega_n=n^2$	exponential $(2d/v ightarrow 1)$	'Poissonization' of
J(v,d)		geometric $(2d/v o p \in (0,1))$	exponential distribution
odd graphs	$\omega_{2n-1}=n$	two-sided Rayleigh	?
O_k	$\omega_{2n}=n$		
homogeneous	$\omega_n=1$	Wigner semicircle	free Poisson
trees T_{κ}	(free)		
integer lattices	$\omega_n = n$	Gaussian	Gaussian
\mathbb{Z}^N	(Boson)		
symmetric groups	$\omega_n = n$	Gaussian	Gaussian
\mathfrak{S}_n (Coxeter)	(Boson)		
Coxeter groups	$\omega_n=1$	Wigner semicircle	free Poisson
(Fendler)	(free)		
Spidernets	$\omega_1=1$	free Meixner law	(free Mei×ner law)
S(a,b,c)	$\omega_2=\cdots=q$		

Nobuaki Obata (Tohoku University)

6. Concepts of Independence and Graph Products

 X,Y,\ldots : random variables on a classical probability space (Ω,\mathcal{F},P)

Definition

Two random variables X and Y are called *independent* if

$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b), \qquad a, b \in \mathbb{R}.$$

Theorem (multiplicativity of mean values)

If two random variables X, Y are independent, then

 $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y].$

Moreover,

$$\operatorname{E}[X^mY^n] = \operatorname{E}[X^m]\operatorname{E}[Y^n]$$

whenever the mean values exist.

 X_1, X_2, \ldots : sequence of random variables such that

(i) independent

(ii) identically distributed

(iii) normalized, i.e., $\mathrm{E}[X_n]=0,\,\mathrm{V}[X_n]=\mathrm{E}[X_n^2]=1$

► Law of Large Numbers (LLN) says that

$$\lim_{N o \infty} rac{1}{N} \sum_{n=1}^N X_n = 0 \hspace{1.5cm} ext{almost surely.}$$

▶ Central Limit Theorem (CLT) describes the fluctuation of

$$\lim_{N\to\infty}\frac{1}{\sqrt{N}}\sum_{n=1}^N X_n$$

Theorem (Central limit theorem (CLT))

Let X_1, X_2, \ldots be a sequence of random variables such that (i) independent, (ii) identically distributed, and (iii) normalized. Then

$$rac{1}{\sqrt{N}}\sum_{n=1}^N X_n$$

obeys the standard normal distribution N(0,1) in the limit.

$$\lim_{N o\infty} P\left(rac{1}{\sqrt{N}}\sum_{n=1}^N X_n\leq a
ight)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^a e^{-x^2/2}dx,$$

or equivalently, for any $f \in C_b(\mathbb{R})$,

$$\lim_{N\to\infty} \mathrm{E}\left[f\left(\frac{1}{\sqrt{N}}\sum_{n=1}^N X_n\right)\right] = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} f(x)e^{-x^2/2}dx.$$

Theorem (Algebraic Version of CLT)

Let X_1, X_2, \ldots be a sequence of random variables such that (i) independent, (ii) identically distributed, and (iii) normalized. If X_n has finite moments of all orders, we have

$$\lim_{N\to\infty} \mathbf{E}\left[\left(\frac{1}{\sqrt{N}}\sum_{n=1}^N X_n\right)^m\right] = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} x^m e^{-x^2/2} dx.$$

In other words,

$$\lim_{N \to \infty} \mathbf{E} \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^{2m} \right] = \frac{(2m)!}{2^m m!},$$
$$\lim_{N \to \infty} \mathbf{E} \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^{2m-1} \right] = 0.$$

Combinatorial Proof

1

$$\mathbf{E}\left[\left(\frac{1}{\sqrt{N}}\sum_{n=1}^{N}X_{n}\right)^{m}\right] = \frac{1}{N^{m/2}}\sum_{n_{1},\dots,n_{m}=1}^{N}\mathbf{E}[X_{n_{1}}X_{n_{2}}\cdots X_{n_{m}}]$$

 \blacktriangleright We pick up the essential terms $\mathrm{E}[X_{n_1}X_{n_2}\cdots X_{n_m}]$ that contributes to the limit.

$$\mathbf{E}[\underbrace{X_{n_1}X_{n_2}\cdots X_{n_m}}_{\exists X_i \text{ appears only once}}] = \mathbf{E}[X_i]\mathbf{E}[\cdots\cdots] = 0.$$

e Hence we only need to count the terms

$$\mathbf{E}[\underbrace{X_{n_1}X_{n_2}\cdots X_{n_m}}_{\# \text{ of distinct } X_i\text{'s} \leq [\frac{m}{2}]}]$$

$$\mathbf{E}\left[\left(\frac{1}{\sqrt{N}}\sum_{n=1}^{N}X_{n}\right)^{m}\right] = \frac{1}{N^{m/2}}\sum_{n_{1},\dots,n_{m}=1}^{N}\mathbf{E}[X_{n_{1}}X_{n_{2}}\cdots X_{n_{m}}]$$

e Hence we only need to count the terms

$$\mathbf{E}[\underbrace{X_{n_1}X_{n_2}\cdots X_{n_m}}_{\# \text{ of distinct } X_i\text{'s} \leq [\frac{m}{2}]}]$$

3 Let s be the number of distinct X_i 's. The number of such terms is

$$egin{pmatrix} N \ s \end{pmatrix} imes \#\{ ext{arrangements of } X_1,\ldots,X_s\} \sim N^s C(s). \end{cases}$$

(4) Thus the terms of s < m/2 have no contribution in the limit.

(9) Namely, only the terms of s = m/2 have contribution in the limit.

$$\mathbf{E}\left[\left(\frac{1}{\sqrt{N}}\sum_{n=1}^{N}X_{n}\right)^{m}\right] = \frac{1}{N^{m/2}}\sum_{n_{1},\dots,n_{m}=1}^{N}\mathbf{E}[X_{n_{1}}X_{n_{2}}\cdots X_{n_{m}}]$$

9 Namely, only the terms of s=m/2 have contribution in the limit.

 \bigcirc If m is odd,

1

$$\lim_{N\to\infty} \mathbf{E}\left[\left(\frac{1}{\sqrt{N}}\sum_{n=1}^N X_n\right)^m\right] = 0.$$

Suppose that
$$m = 2s$$
 is even.

$$\mathbf{E}[\underbrace{X_{n_1}X_{n_2}\cdots X_{n_m}}] = \mathbf{E}[X_{i_1}^2X_{i_2}^2\cdots X_{i_s}^2] = \mathbf{E}[X_{i_1}^2]\mathbf{E}[X_{i_2}^2]\cdots \mathbf{E}[X_{i_s}^2] = 1.$$

s distinct X_i 's each appears twice

Onsequently,

$$\lim_{N\to\infty} \mathrm{E}\bigg[\bigg(\frac{1}{\sqrt{N}}\sum_{n=1}^N X_n\bigg)^{2s}\bigg] = \lim_{N\to\infty} \frac{1}{N^s} \binom{N}{s} \frac{(2s)!}{2^s} = \frac{(2s)!}{2^s s!} \,.$$

6.2. Independence in Quantum Probability and Quantum CLT

- Algebraic version of CLT is proved by
 - **()** using factorization rule of mixed moments $\mathbb{E}[X_{n_1}X_{n_2}\cdots X_{n_m}]$,
 - Picking up the essential terms that contribute to the limit.

Factorization rule

 \blacktriangleright For classical random variables X and Y, obviously we have

 $\mathbf{E}[YXX] = \mathbf{E}[XYX] = \mathbf{E}[XXY] = \mathbf{E}[X^2Y] = \mathbf{E}[X^2]\mathbf{E}[Y], \quad \dots$

 \blacktriangleright But for $a=a^*,b=b^*$ in (\mathcal{A},φ) we wonder

$$\varphi(baa) \stackrel{?}{=} \varphi(aba) \stackrel{?}{=} \varphi(aab) = ??? \quad \dots$$

There are many possibilities arising from non-commutativity.

Our viewpoint

- ▶ Independence is formulated as a "good" factorization rule.
- ▶ There are four basic concepts of independence in quantum probability.

6.2. Independence in Quantum Probability and Quantum CLT

- Suppose we are given a concept of *independence* in (\mathcal{A}, φ) .
- ▶ Then we may consider a sequence $\{a_n\}$ of random variables in (\mathcal{A}, φ) such that
- (0) real, i.e., $a_n = a_n^*$,
- (i) independent,
- (ii) identically distributed,
- (iii) normalized, i.e., $\varphi(a_n) = 0$ and $\varphi(a_n^2) = 1$.
- \blacktriangleright Then we ask for the probability distribution μ such that

$$\lim_{N
ightarrow\infty} arphi igg[igg(rac{1}{\sqrt{N}} \sum_{n=1}^N a_n igg)^m igg] = \int_{-\infty}^{+\infty} x^m \mu(dx), \hspace{1em} m=1,2,\ldots.$$

We call μ the *central limit distribution*.

6.2. Independence in Quantum Probability and Quantum CLT

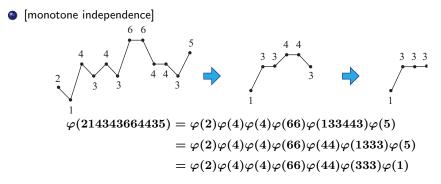
Four Concepts of Independence and Quantum CLTs

► Factorization rules are shown only for three mixed moments of low orders.

	commutative	free	Boolean	monotone
arphi(aba)	$arphi(a^2)arphi(b)$	$arphi(a^2)arphi(b)$	$arphi(a)^2 arphi(b)$	$arphi(a^2)arphi(b)$
arphi(bab)	$arphi(a)arphi(b^2)$	$arphi(a)arphi(b^2)$	$arphi(a)arphi(b)^2$	$arphi(a)arphi(b)^2$
arphi(abab)	$arphi(a^2)arphi(b^2)$	$arphi(a)^2arphi(b^2) \ +arphi(a^2)arphi(b)^2 \ -arphi(a)^2arphi(b)^2$	$arphi(a)^2 arphi(b)^2$	$arphi(a^2)arphi(b)^2$
CLM	Gaussian	Wigner	Bernoulli	arcsine

- One more: $\varphi(a_2a_1a_4a_3a_4a_3a_6a_6a_4a_4a_3a_5) = \varphi(214343664435)$
 - [commutative independence]

 $\varphi(214343664435) = \varphi(1)\varphi(2)\varphi(3^3)\varphi(4^4)\varphi(5)\varphi(6^2)$



Boolean independence

 $\varphi(214343664435) = \varphi(2)\varphi(1)\varphi(4)\varphi(3)\varphi(4)\varphi(3)\varphi(66)\varphi(44)\varphi(3)\varphi(5)$

Central limit distributions

$$\varphi \bigg[\bigg(\frac{1}{\sqrt{n}} \sum_{k=1}^n a_k \bigg)^m \bigg] \to \int_{-\infty}^{+\infty} x^m \mu(dx).$$

Theorem (QCLT)

() [commutative CLT] If a_1, a_2, \ldots are commutative independent, we have

$$\mu(dx) = rac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$
 (normal distribution)

2 [monotone CLT] If a_1, a_2, \ldots are monotone independent, we have

$$\mu(dx) = rac{dx}{\pi\sqrt{2-x^2}}$$
 (normalized arcsine law)

3 [Boolean CLT] If a_1, a_2, \ldots are Boolean independent, we have

 $\mu = rac{1}{2}\,\delta_{+1} + rac{1}{2}\,\delta_{-1}$ (normalized Bernoulli distribution)

Outline of proof

$$\varphi\bigg[\bigg(\frac{1}{\sqrt{n}}\sum_{k=1}^n a_k\bigg)^m\bigg] = \frac{1}{n^{m/2}}\sum_{k_1,\ldots,k_m=1}^n \varphi[a_{k_1}a_{k_2}\cdots a_{k_m}]$$

 \blacktriangleright We pick up the essential terms $arphi[a_{k_1}a_{k_2}\cdots a_{k_m}]$ that contributes to the limit.

$$\ \, { \ 0 } \ \, \varphi(a_{k_1}a_{k_2}\cdots a_{k_m})=0 \ \, \text{if there is a singleton.}$$

- φ(a_{k1}a_{k2}···a_{km}) contributes to the limit only if the number s of distinct a_i's is
 s = [m/2].
- (a) According to the independence evaluate $\varphi(a_{k_1}a_{k_2}\cdots a_{k_m})$, where distinct a_i 's appear exact twice.

Outline of proof

④ Finally we get

$$\lim_{n o \infty} arphi igg[igg(rac{1}{\sqrt{n}} \sum_{k=1}^n a_k igg)^{2m-1} igg] = 0$$

for three cases and

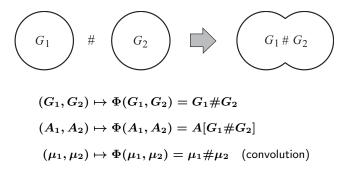
$$\lim_{n \to \infty} \varphi \left[\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_k \right)^{2m} \right] = \begin{cases} \frac{(2m)!}{2^m m!}, & \text{commutative independence,} \\ \frac{(2m)!}{2^m m! m!}, & \text{monotone independence,} \\ 1, & \text{Boolean independence.} \end{cases}$$

Cf. free CLT

$$\lim_{n\to\infty}\varphi\bigg[\bigg(\frac{1}{\sqrt{n}}\sum_{k=1}^na_k\bigg)^{2m}\bigg]=\frac{1}{m+1}\binom{2m}{m}=\int_{-2}^2x^m\frac{1}{2\pi}\,\sqrt{4-x^2}\,dx.$$

6.3. Graph Products

A binary operation of graphs

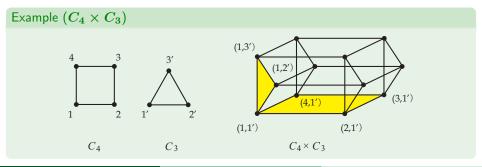


6.3. Graph Products — Cartesian Product

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The *Cartesian product* or *direct product* of G_1 and G_2 , denoted by $G_1 \times G_2$, is a graph on $V = V_1 \times V_2$ with adjacency relation:

$$(x,y)\sim (x',y') \quad \Longleftrightarrow \quad \begin{cases} x=x' & \ y\sim y' & \ \end{pmatrix} \quad \mathrm{or} \quad \begin{cases} x\sim x' \ y=y'. \end{cases}$$



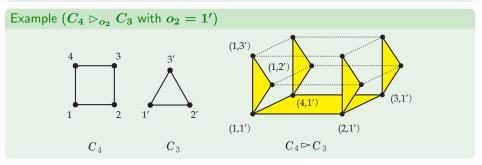
6.3. Graph Products — Comb Product

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. We fix a vertex $o_2 \in V_2$. For $(x, y), (x', y') \in V_1 \times V_2$ we write $(x, y) \sim (x', y')$ if one of the following conditions is satisfied:

(i)
$$x=x'$$
 and $y\sim y'$; (ii) $x\sim x'$ and $y=y'=o_2$.

Then $V_1 \times V_2$ becomes a graph, denoted by $G_1 \triangleright_{o_2} G_2$, and is called the *comb* product or the *hierarchical product*.



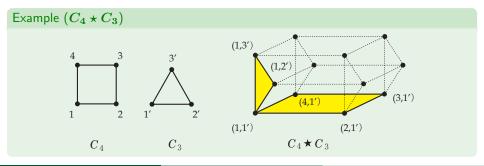
6.3. Graph Products — Star Product

Definition

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs with distinguished vertices $o_1\in V_1$ and $o_2\in V_2$. Define a subset of $V_1\times V_2$ by

$$V_1 \star V_2 = \{(x,o_2)\,;\, x \in V_1\} \cup \{(o_1,y)\,;\, y \in V_2\}$$

The induced subgraph of $G_1 \times G_2$ spanned by $V_1 \star V_2$ is called the *star product* of G_1 and G_2 (with contact vertices o_1 and o_2), and is denoted by $G_1 \star G_2 = G_1 \circ_1 \star \circ_2 G_2$.



6.3. Graph Products — Adjacency Matrices

 $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$: two graphs $G = G_1 \# G_2$: a graph product and assume that $V[G] = V_1 \times V_2$ $A_i = A[G_i]$: adjacency matrix of G_i acting on $\ell^2(V_i), (i = 1, 2)$ $\Longrightarrow A = A[G_1 \# G_2]$ acts on

$$\ell^2(V)=\ell^2(V_1 imes V_2)\cong\ell^2(V_1)\otimes\ell^2(V_2).$$

Theorem

[Cartesian product]

 $A[G_1 \times G_2] = A_1 \otimes I_2 + I_1 \otimes A_2.$

② [comb product]

$$A[G_1 \triangleright G_2] = A_1 \otimes P_2 + I_1 \otimes A_2.$$

Istar product

```
A[G_1 \star G_2] = A_1 \otimes P_2 + P_1 \otimes A_2.
```

Here, P_i is the rank one projection corresponding to o_i .

Nobuaki Obata (Tohoku University)

6.4. Quantum CLT for Graph Products

► Let φ_i be the vacuum state at o_i and consider the *product state* $\varphi = \varphi_1 \otimes \varphi_2$. $\implies A = A[G_1 \# G_2]$ is a random variable in $(\mathcal{A}(G_1 \# G_2), \varphi)$.

Theorem

Let $A_i = A[G_i]$ be the adjacency matrix of G_i .

[Cartesian product]

$$A[G_1 imes G_2] = A_1 \otimes I_2 + I_1 \otimes A_2$$

is a sum of commutative independent random variables.

② [comb product]

$$A[G_1
hdoto G_2] = A_1 \otimes P_2 + I_1 \otimes A_2$$

is a sum of monotone independent random variables.

Istar product

$$A[G_1 \star G_2] = A_1 \otimes P_2 + P_1 \otimes A_2$$

is a sum of Boolean independent random variables.

6.4. Quantum CLT for Graph Products

Associativity of graph operations

[Cartesian product]

$$(G_1 \times G_2) \times G_3 \cong G_1 \times (G_2 \times G_3)$$

② [Comb product]

$$(G_1 artimes G_2) artimes G_3 \cong G_1 artimes (G_2 artimes G_3)$$

To be precise,

$$(G_1 \vartriangleright_{o_2} G_2) \vartriangleright_{o_3} G_3 \cong G_1 \vartriangleright_{(o_2,o_3)} (G_2 \vartriangleright_{o_3} G_3)$$

Star product

$$(G_1 \star G_2) \star G_3 \cong G_1 \star (G_2 \star G_3)$$

 \blacktriangleright Thus, we have naturally *n*-fold powers:

$$G^{\#n} = G \# G \# \cdots \# G$$
 (*n* times)
 $A[G^{\#n}] = B_1 + B_2 + \cdots + B_n$

6.4. Quantum CLT for Graph Products

Theorem (CLT for Cartesian product graphs)

For the *n*-fold Cartesian power $G^{(n)} = G \times \cdots \times G$ (*n*-times),

$$\lim_{n\to\infty}\left\langle \left(\frac{A^{(n)}}{\sqrt{n}\sqrt{\deg(o)}}\right)^m\right\rangle = \int_{-\infty}^{+\infty} x^m \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx.$$

Theorem (CLT for comb product graphs)

For the *n*-fold monotone power $G^{(n)} = G \triangleright_o G \triangleright_o \cdots \triangleright_o G$ (*n*-times),

$$\lim_{n o \infty} \left\langle \left(rac{A^{(n)}}{\sqrt{n}\sqrt{\deg(o)}}
ight)^m
ight
angle = \int_{-\sqrt{2}}^{+\sqrt{2}} x^m rac{dx}{\pi\sqrt{2-x^2}}\,, \hspace{1em} m=1,2,\ldots.$$

Theorem (CLT for star product graphs)

For the *n*-fold star power $G^{(n)} = G \star G \star \cdots \star G$ (*n*-times) we have

$$\lim_{n\to\infty}\left\langle \left(\frac{A^{(n)}}{\sqrt{n}\sqrt{\deg(o)}}\right)^m\right\rangle = \int_{-\infty}^{+\infty} x^m \frac{1}{2} (\delta_{-1}+\delta_{+1})(dx), \quad m=1,2,\ldots.$$

Nobuaki Obata (Tohoku University

More Graph Products

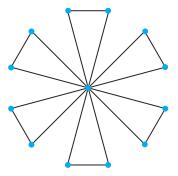
products	$G_1 \# G_2$	$A[G_1 \# G_2]$	spectral distribution
Cartesian	$G_1 imes_C G_2$	$A_1\otimes I_2+I_1\otimes A_2$	$\mu_1 * \mu_2$
monotone	$G_1 \rhd G_2$	$A_1\otimes P_2+I_2\otimes A_2$	$\mu_1 \rhd \mu_2$
star	$G_1 \star G_2$	$A_1\otimes P_2+P_1\otimes A_2$	$\mu_1 \uplus \mu_2$
lexicographic	$G_1 ho_L G_2$	$A_1\otimes J_2+P_1\otimes A_2$	$D(\mu_1) arprop \mu_2$
Kronecker	$G_1 imes_K G_2$	$A_1\otimes A_2$	$\mu_1 *_M \mu_2$
strong	$G_1 imes_S G_2$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$S^{-1}(S\mu_1 *_M S\mu_2)$
free	$G_1 * G_2$	$A_1 * A_2$	$\mu_1 \boxplus \mu_2$

() Every product except the free product is a graph on $V_1 imes V_2$.

There is a classification of graph products realized on V₁ × V₂, see e.g., R. Hammack *et al.*: "Handbook of Product Graphs," CRC Press, 2011.

Exercises

Exercise 12 Let G_n be the graph obtained by joining n triangles ($K_3 \cong C_3$ at the origin o, also called the n-fold star product of K_3 . (The following figure shows G_6 .) Calculate explicitly the spectral distribution of G_n at o and study its asymptotic behavior as $n \to \infty$.



7. Counting Walks

N. Obata: "Spectral Analysis of Growing Graphs," Chapter 7, Springer, 2017.

H. H. Lee and N. Obata: *Kronecker product graphs and counting walks in restricted lattices*, arXiv:1607.06808.

7.1. Counting Walks and Spectral Distributions

G = (V, E): a (finite or infinite) graph

 $o \in V$: a fixed origin

 $W_m(o;G) = |\{o
ightarrow o \ : \ m$ -step walk}|

Theorem

Let A be the adjacency matrix of G and μ the vacuum spectral distribution at $o \in V$. Then we have

$$W_m(o;G)=\langle e_o,A^me_o
angle=\int_{-\infty}^{+\infty}x^m\mu(dx),\qquad m=0,1,2,\ldots.$$

we are interested in the correspondence

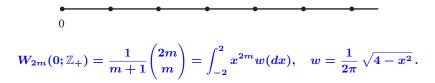
 $G \rightarrow \mu$

from the point of view of counting walks.

7.1. Counting Walks and Spectral Distributions

Basic result (1) \mathbb{Z}

$$0$$
 $W_{2m}(0;\mathbb{Z})=egin{pmatrix} 2m\medskip m\end{pmatrix}=\int_{-2}^2 x^{2m}lpha(dx),\qquad lpha(x)=rac{1}{\pi\sqrt{4-x^2}}\,.$



Catalan number

7.2. Cartesian Product: $W((o_1, o_2); G_1 \times_C G_2)$

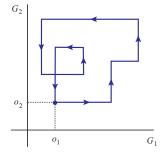
The adjacency matrix of $G_1 imes_C G_2$ is

 $A = A_1 \otimes I + I \otimes A_2,$

where two matrices in RHD are commutative.

We then have

$$egin{aligned} &\langle e_{(o_1,o_2)},A^m e_{(o_1,o_2)}
angle\ &=\langle e_{o_1}\otimes e_{o_2},(A_1\otimes I+I\otimes A_2)^m e_{o_1}\otimes e_{o_2}
angle\ &=\sum_{k=0}^m inom{m}k \langle e_{o_1}\otimes e_{o_2},A_1^k\otimes A_2^{m-k}e_{o_1}\otimes e_{o_2}\ &=\sum_{k=0}^m inom{m}k \langle e_{o_1},A_1^k e_{o_1}
angle \langle e_{o_2}\otimes A_2^{m-k}e_{o_2}
angle \end{aligned}$$



Consequently,

$$W((o_1,o_2);G_1 imes_C G_2) = \sum_{k=0}^m \binom{m}{k} W_k(o_1;G_1) W_{m-k}(o_2;G_2)$$

Counting Walks

7.2. Cartesian Product: $W((o_1, o_2); G_1 \times_C G_2)$

- μ_i : Spectral distribution of G_i at o_i
- μ : Spectral distribution of $G = G_1 imes_C G_2$ at (o_1, o_2)

$$W_m(o_i;G_i) = \int_{-\infty}^{+\infty} x^m \mu_i(dx), \quad W_m((o_1,o_2);G_1 imes_C G_2) = \int_{-\infty}^{+\infty} x^m \mu(dx).$$

Then the identity

$$W((o_1,o_2);G_1 imes_C G_2) = \sum_{k=0}^m \binom{m}{k} W_k(o_1;G_1) W_{m-k}(o_2;G_2)$$

implies that

$$\int_{-\infty}^{+\infty} x^m \mu(dx) = \sum_{k=0}^m \binom{m}{k} \int_{-\infty}^{+\infty} x^k \mu_1(dx) \int_{-\infty}^{+\infty} x^{m-k} \mu_2(dx)$$
$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x_1 + x_2)^m \mu_1(dx_1) \mu_2(dx_2).$$

Thus, $\mu = \mu_1 * \mu_2$ (classical) convolution.

Counting Walks

7.3. Graph Products and Convolution of Distributions

products	$G_1 \# G_2$	$A[G_1 \# G_2]$	spectral distribution
Cartesian	$G_1 imes_C G_2$	$A_1\otimes I_2+I_1\otimes A_2$	$\mu_1 * \mu_2$
comb	$G_1 \rhd G_2$	$A_1\otimes P_2+I_2\otimes A_2$	$\mu_1 \rhd \mu_2$
star	$G_1 \star G_2$	$A_1\otimes P_2+P_1\otimes A_2$	$\mu_1 \uplus \mu_2$
lexicographic	$G_1 \rhd_L G_2$	$A_1\otimes J_2+P_1\otimes A_2$	$D(\mu_1) arpi \mu_2$
Kronecker	$G_1 imes_K G_2$	$A_1\otimes A_2$	$\mu_1 *_M \mu_2$
strong	$G_1 imes_S G_2$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$S^{-1}(S\mu_1st_MS\mu_2)$
free	$G_1 * G_2$	$A_1 * A_2$	$\mu_1 \boxplus \mu_2$

() Every product except the free product is a graph on $V_1 \times V_2$.

There is a classification of graph products realized on V₁ × V₂, see e.g., R. Hammack *et al.*: "Handbook of Product Graphs," CRC Press, 2011.

7.3. Graph Products and Convolution of Distributions

• Monotone convolution $\mu = \mu_1 \triangleright \mu_2$ is characterized by

$$H_{\mu}(z) = H_{\mu_1}(H_{\mu_2}(z)),$$

where

$$H_\mu(z)=rac{1}{G_\mu(z)}\,,\qquad G_\mu(z)=\int_{-\infty}^{+\infty}rac{\mu(dx)}{z-x}\,.$$

▶ Boolean convolution $\mu = \mu_1 \uplus \mu_2$ is characterized by

$$rac{1}{G_{\mu}(z)} = rac{1}{G_{\mu_1}(z)} + rac{1}{G_{\mu_2}(z)} - z$$

7.4. Kronecker Product

Definition (Kronecker product)

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs. The *Kronecker product* $G_1 \times_K G_2$ is a graph on $V = V_1 \times V_2$ with the adjacency relation:

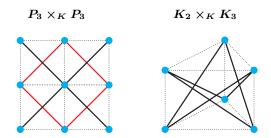
$$(x,y)\sim_K (x',y') \quad \Longleftrightarrow \quad x\sim x', \ y\sim y'.$$

In other words, the adjacency matrix $A = A[G_1 \times_K G_2]$ is given by

 $A = A_1 \otimes A_2$.

- $G_1 \times_K G_2 \cong G_2 \times_K G_1.$
- $(G_1 \times_K G_2) \times_K G_3 \cong G_1 \times_K (G_2 \times_K G_3).$
- (trivial case) For any graph G = (V, E) the Kronecker product $K_1 \times_K G$ is a graph on V with no edges (i.e., an empty graph on V).

7.4. Kronecker Product



Lemma (exercise)

If $|V_1| \geq 2$ and $|V_2| \geq 2$, then $G_1 imes_K G_2$ has at most two connected components.

Lemma (exercise)

 $G_1 \times_K G_2$ is a subgraph of the distance-2 graph of $G_1 \times_C G_2$. (But not necessarily induced subgraph.)

7.5. Counting Walks in Kronecker Product

 $G_i = (V_i, E_i)$: a connected graph with fixed origin $o_i \in V_i$ $G = G_1 \times_K G_2$: Kronecker product with origin (o_1, o_2) $G^o = (G_1 \times_K G_2)^o$: the connected component containing (o_1, o_2)

$$egin{aligned} W_m((o_1, o_2); G) &= W_m((o_1, o_2); G^o) \ &= \langle e_{(o_1, o_2)}, A^m e_{(o_1, o_2)}
angle \ &= \langle e_{o_1} \otimes e_{o_2}, (A_1 \otimes A_2)^m e_{o_1} \otimes e_{o_2}
angle \ &= \langle e_{o_1}, A_1^m e_{o_1}
angle \langle e_{o_2}, A_2^m e_{o_2}
angle \ &= W_m(o_1; G_1) W_m(o_2; G_2) \end{aligned}$$

7.5. Counting Walks in Kronecker Product

 $G_i = (V_i, E_i)$: a connected graph with fixed origin $o_i \in V_i$ $G = G_1 \times_K G_2$: Kronecker product with origin (o_1, o_2) $G^o = (G_1 \times_K G_2)^o$: the connected component containing (o_1, o_2)

Thus,

$$W_m((o_1, o_2); G) = W_m(o_1; G_1) W_m(o_1; G_2).$$

 μ_i : spectral distribution of the adjacency matrix A_i at o_i

 μ : spectral distribution of the adjacency matrix A=A[G] at (o_1,o_2)

$$\int_{-\infty}^{+\infty} x^m \mu(dx) = \int_{-\infty}^{+\infty} x_1^m \mu_1(dx_1) \int_{-\infty}^{+\infty} x_2^m \mu_2(dx_2) \ = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x_1 x_2)^m \mu_1(dx_1) \mu_2(dx_2)$$

This μ is called the <u>Mellin convolution</u> and denoted by $\mu = \mu_1 *_M \mu_2$.

)

7.5. Counting Walks in Kronecker Product

Theorem

For i = 1, 2 let $G_i = (V_i, E_i)$ be a graph with a distinguished vertex o_i . Let μ_i be the spectral distribution of the adjacency matrix $A_i = A[G_i]$ at o_i . Then the spectral distribution of $G = G_1 \times_K G_2$ at (o_1, o_2) is given by the Mellin convolution:

 $\mu(G_1\times_K G_2)=\mu_1*_M\mu_2.$

$$\delta_a *_M \delta_b = \delta_{ab} \text{ for } a, b \in \mathbb{R}.$$

$$[\text{cf. } \delta_a * \delta_b = \delta_{a+b}.]$$

• If $\mu_i(dx) = f_i(x)dx$ and $f_i(-x) = f_i(x)$, then $\mu_1 *_M \mu_2$ admits a symmetric density function $2f_1 \star f_2(x)$, where

$$f_1\star f_2(x)=\int_0^\infty f_1(y)f_2\Bigl(rac{x}{y}\Bigr)rac{dy}{y}=\int_0^\infty f_1\Bigl(rac{x}{y}\Bigr)f_2(y)rac{dy}{y}\,,\quad x>0.$$

In fact, this is the standard convolution of the multiplicative group $\mathbb{R}_{>0}.$

Exercises

Exercise 13 Observe that $(K_2 \times_K K_2)^o \cong K_2$ and examine the identity:

$$\left(rac{1}{2}\,\delta_{-1}+rac{1}{2}\,\delta_{1}
ight)st_{M}\left(rac{1}{2}\,\delta_{-1}+rac{1}{2}\,\delta_{1}
ight)=rac{1}{2}\,\delta_{-1}+rac{1}{2}\,\delta_{1}\,.$$

Exercise 14 Using $K_3 \times_K K_2 \cong C_6$, derive the spectral distribution of C_6 at a fixed origin (which in fact coincides with the eigenvalue distribution):

$$\frac{1}{6}\,\delta_{-2} + \frac{1}{3}\,\delta_{-1} + \frac{1}{3}\,\delta_1 + \frac{1}{6}\,\delta_2.$$

Exercise 15 Using $K_4 \times_K K_2 \cong K_2 \times_C K_2 \times_C K_2 = H(3, 2)$, derive the spectral distribution of H(3, 2) at a fixed origin (which in fact coincides with the eigenvalue distribution):

$$rac{1}{8}\,\delta_{-3}+rac{3}{8}\,\delta_{-1}+rac{3}{8}\,\delta_{1}+rac{1}{8}\,\delta_{3}.$$

Also examine the identity:

$$\left(rac{3}{4}\,\delta_{-1}+rac{1}{4}\,\delta_3
ight)st_M\left(rac{1}{2}\,\delta_{-1}+rac{1}{2}\,\delta_1
ight)=\left(rac{1}{2}\,\delta_{-1}+rac{1}{2}\,\delta_1
ight)^{st 3}.$$

Counting Walks

7.6. Restricted Lattices

▶ $\mathbb{Z} \times_{C} \mathbb{Z}$ (2d interger lattice): a graph on \mathbb{Z}^{2} with adjacency relation:

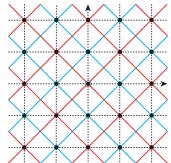
$$(x,y)\sim (x',y') \quad \Longleftrightarrow \quad egin{cases} x'=x\pm 1, \ y'=y, \end{array} ext{ or } egin{array}{c} x'=x, \ y'=y\pm 1. \end{array}$$

▶ $\mathbb{Z} \times_K \mathbb{Z}$: a graph on $\mathbb{Z}^2 = \{(u, v) ; u, v \in \mathbb{Z}\}$ with adjacency relation:

$$(u,v)\sim_K (u',v') \quad \Longleftrightarrow \quad u'=u\pm 1 \quad ext{and} \quad v'=v\pm 1.$$

≥ Let (ℤ ×_K ℤ)^O denote the connected component of ℤ ×_K ℤ containing
 O = (0,0). Then

 $(\mathbb{Z}\times_{K}\mathbb{Z})^{O}\cong\mathbb{Z}\times_{C}\mathbb{Z}.$

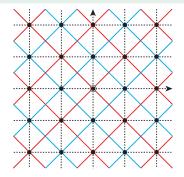


Counting Walks

7.6. Restricted Lattices

- Z ×_K Z has two connected components, each of which is isomorphic to Z ×_C Z.
- Q Let (ℤ ×_K ℤ)^O denote the connected component of ℤ ×_K ℤ containing
 O = (0,0). Then

 $(\mathbb{Z}\times_K\mathbb{Z})^O\cong\mathbb{Z}\times_C\mathbb{Z}.$



Since the spectral distribution of $\mathbb Z$ at 0 is the arcsine law α , we have

Theorem

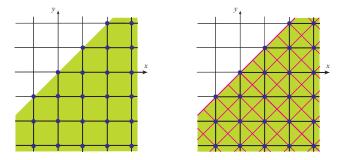
The spectral distribution of 2d lattice \mathbb{Z}^2 at (0,0) is given by

$$\alpha *_M \alpha = \alpha * \alpha$$

7.6. Restricted Lattices

▶ Let $L\{x \ge y\}$ denote the induced subgraph of $\mathbb{Z} \times_C \mathbb{Z}$ spanned by the vertices

 $\{(x,y)\in \mathbb{Z}^2\,;\,x\geq y\}.$



Theorem

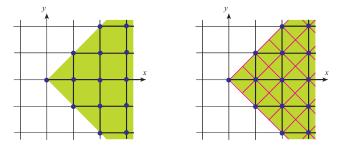
We have $L\{x \ge y\} \cong (\mathbb{Z}_+ \times_K \mathbb{Z})^O$ and its spectral distribution at (0,0) is given by

 $w*_M lpha$

7.6. Restricted Lattices

▶ Let $L\{x \ge y \ge -x\}$ denote the induced subgraph of $\mathbb{Z} imes_C \mathbb{Z}$ spanned by the vertices

 $\{(x,y)\in\mathbb{Z}^2\,;\,x\geq y\geq -x\}.$



Theorem

We have $L\{x \ge y \ge -x\} \cong (\mathbb{Z}_+ \times_K \mathbb{Z})^O$ and its spectral distribution at (0,0) is given by

 $w *_M w$

7.6. Restricted Lattices

Domain <i>D</i>	$W_{2m}(L[D],O)$	spectral distribution
Z	$\binom{2m}{m}$	α
\mathbb{Z}_+	$C_m = rac{1}{m+1} {2m \choose m}$	w
\mathbb{Z}^2	$\binom{2m}{m}^2$	$\alpha \ast \alpha = \alpha \ast_M \alpha$
$\{x\geq y\}$	$C_{m}{2m \choose m}$	$w*_M\alpha$
$\{x\geq y\geq -x\}$	C_m^2	$w*_M w$
$\{x\geq 0,\ y\geq 0\}$	(A)	w * w
$\{x\geq y\geq x-(n-1)\}$	(B)	$\pi_n \ast_M \alpha$
$\left\{egin{array}{l} 0\leq x+y\leq k-1,\ 0\leq x-y\leq l-1\end{array} ight\}$	(C)	$\pi_k \ast_M \pi_l$

$$\begin{split} (\mathbf{A}) &= \sum_{k=0}^{m} \binom{2m}{2k} C_k C_{m-k}, \\ (\mathbf{B}) &= W_{2m}(P_n, 0) \binom{2m}{m}, \quad \ (\mathbf{C}) &= W_{2m}(P_k, 0) W_{2m}(P_l, 0). \end{split}$$

7.6. Restricted Lattices — Density Functions

Elliptic integrals For $k^2 < 1$, the elliptic integrals are defined by

$$\begin{split} K(k) &= \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \int_0^1 \frac{dx}{\sqrt{(1 - x^2)(1 - k^2 x^2)}},\\ E(k) &= \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} \, d\theta = \int_0^1 \sqrt{\frac{1 - k^2 x^2}{1 - x^2}} \, dx. \end{split}$$

() The density function of $w *_M \alpha$ is given by

$$rac{1}{\pi^2} \{K(m{\xi}(x)) - E(m{\xi}(x))\}, \ \ m{\xi}(x) = \sqrt{1 - rac{x^2}{16}}\,, \ \ -4 \leq x \leq 4.$$

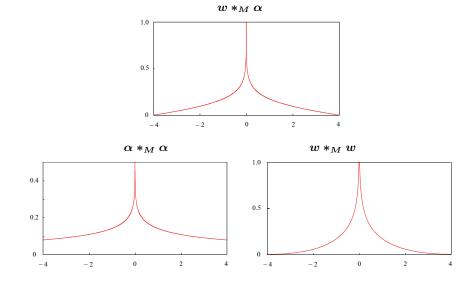
2 The density function of $\alpha *_M \alpha = \alpha * \alpha$ is given by

$$rac{1}{2\pi^2}\,K(m{\xi}(x)), \quad -\,4\leq x\leq 4.$$

3 The density function of $w *_M w$ is given by

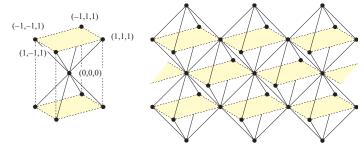
$$rac{2}{\pi^2} \left\{ \left(1 + rac{x^2}{16}
ight) K(\xi(x)) - 2E(\xi(x))
ight\}, \quad -4 \leq x \leq 4.$$

7.6. Restricted Lattices — Density Functions



An Example in 3-Dimension: $\mathbb{Z} \times_K \mathbb{Z} \times_K \mathbb{Z}$

 $\mathbb{Z} \times_{K} \mathbb{Z} \times_{K} \mathbb{Z}$ has 4 connected components, which are mutually isomorphic. The connected component containing O(0, 0, 0) looks like an octahedra honeycomb, built up by gluing octahedra or body-centered cubes.



We have

$$W_{2m}(\mathbb{Z} imes_K\mathbb{Z} imes_K\mathbb{Z},(0,0,0))=inom{2m}{m}^3,\qquad m=0,1,2,\ldots,$$

and the spectral distribution is given by $\mu = \alpha *_M \alpha *_M \alpha$.

8. Bivariate Extension: An Example

J. V. S. Morales, N. Obata and H. Tanaka: Asymptotic joint spectra of Cartesian powers of strongly regular graphs and bivariate Charlier-Hermite polynomials, arXiv:1809.03761, to appear in Colloq. Math.

Motivation

(I) Quantum CLT: $A_{
u} \stackrel{\mathrm{m}}{\longrightarrow} B$

⇒ The limit spectral distribution is a probability distribution on \mathbb{R}^1 ⇒ Multi-variate extension: $(A_{\nu}^{(1)}, \ldots, A_{\nu}^{(p)}) \xrightarrow{\mathrm{m}} (Z_1, \ldots, Z_p)$? See e.g., T. Espinasse and P. Rochet (2019), arXiv:1904.10720 — An extension of Boolean CLT

(II) Method of quantum decomposition $A = A^+ + A^\circ + A^-$

 \Rightarrow Orthogonal polynomials in one variable: $xP_n(x)=P_{n+1}(x)+lpha_{n+1}P_n(x)+\omega_nP_{n-1}(x)$

 \Rightarrow Multi-variate extension?

potentially very interesting in connection to multi-variate orthogonal polynomials

8.1. Hamming Graphs H(n, v)

- $n \geq 1$, $v \geq 1$: natural numbers
- Alphabets $K = \{1, 2, \dots, v\}$
- Words of length n:

$$V=\{x=(\xi_1,\xi_2,\ldots,\xi_n) \mid \xi_i\in K\}=K^n$$

• Hamming distance between two words x and y:

$$\partial(x,y) = |\{1 \leq i \leq n \, | \, \xi_i
eq \eta_i \}|.$$

ullet A graph is defined with vertex set V and adjacency relation

$$x \sim y \quad \Leftrightarrow \quad \partial(x,y) = 1$$

 \Rightarrow This is the Hamming graph H(n, v).

8.1. Hamming Graphs

Product structure

 $H(n,v) = K_v \times \cdots \times K_v$ (*n*-fold Cartesian power)

where K_v is the complete graph on v vertices.

• The adjacency matrix of H(n,v) is given by

$$A_{n,v} = \sum_{i=1}^{n} \overbrace{I \otimes \cdots \otimes I}^{i-1} \otimes A \otimes \overbrace{I \otimes \cdots \otimes I}^{n-i},$$

where $A = A[K_v]$ is the adjacency matrix of K_v .

• The eigenvalue distribution $\mu_{n,v}$ is specified by

$$rac{1}{v^n}\operatorname{Tr}(A^m_{n,v})=\int_{-\infty}^{+\infty}x^m\mu_{n,v}(dx),\qquad m=0,1,2,\ldots.$$

Question [CLT for Hamming graphs]

 $\mu_{n,v} o ??$ as $n o \infty$ and $v o \infty$

8.1. Hamming Graphs

Review of Hora's argument (1998). This is before quantum decomposition

() The adjacency matrix of K_v is given by A = J - I (J: all-one matrix)

② Then
$$C(K_v) = \mathbb{C}^v = U_{v-1} \oplus U_{-1}$$
 and

 $A \upharpoonright U_{v-1} = v - 1$, dim $U_{v-1} = 1$; $A \upharpoonright U_{-1} = -1$, dim $U_{-1} = v - 1$.

•
$$A_{n,v} = \sum I \otimes \cdots \otimes A \otimes \cdots \otimes I$$
 acts on $(\mathbb{C}^v)^{\otimes n} = (U_{v-1} \oplus U_{-1}) \otimes \cdots \otimes (U_{v-1} \oplus U_{-1})$

$${}_{igoplus}$$
 The eigenvalues of $A_{n,v}$ are

$$(v-1)(n-j) + (-1)j = -n + (n-j)v$$

with multiplicity

$$\binom{n}{j}1^{n-j}(v-1)^{n-j},$$

where $0 \leq j \leq n$.

8.1. Hamming Graphs

6 Hence

$$\mu_{n,v} = \frac{1}{v^n} \sum_{j=0}^n \binom{n}{j} 1^{n-j} (v-1)^{n-j} \delta_{-n+(n-j)v}$$
$$= \sum_{j=0}^n \binom{n}{j} \left(\frac{1}{v}\right)^k \left(1 - \frac{1}{v}\right)^{n-k} \delta_{-n+vk}$$

Namely, $\mu_{n,v}$ is essentially the binomial distribution.

By classical theory we know

$$B(n,p) \approx N(np, np(1-p)), \qquad B(n,p) \approx Po(np)$$

- **()** Consider the normalization $ilde{\mu}_{n,v} \Leftarrow ext{mean}(\mu_{n,v}) = 0$, $ext{var}(\mu_{n,v}) = n(v-1)$
- Inder the proper scaling $n \to \infty$, $v \to \infty$ and $\frac{v}{n} \to \tau \ge 0$,

$$ilde{\mu}_{n,v} o egin{cases} {f N(0,1)}, & au=0, \ {
m affine \ transform \ of \ Po(au^{-1})}, & au>0 \end{cases}$$

▶ Actual proof is based on characteristic functions (Laplace transform).

Complementary graphs

In general, \overline{G} denotes the *complementary graph* of G = (V, E), i.e., a graph on V with edge set $\overline{E} = \{\{x, y\}; x, y \in V, x \neq y, \{x, y\} \notin E\}$.

Or equivalently, the adjacency matrix of $ar{G}$ is defined by

$$ar{A} = J - I - A$$
. (*J*: all-one matrix)

Lemma

For a finite graph G with adjacency matrix A we have

$$G$$
 is a regular graph $\,\, \Leftrightarrow \,\,\, Aar{A} = ar{A}A \,\,\,\, \Leftrightarrow \,\,\,\, AJ = JA.$

Definition

For a finite regular graph G the commutative *-algebra generated by I, A, \overline{A} , denoted by $\mathcal{A}(G, \overline{G})$, is called the "extended adjacency algebra."

Definition

- G = (V,E) is a strongly regular graph with papameter (v,k,λ,μ) if
 - **()** |V| = v;
 - \bigcirc G is k-regular;
 - (3) every two adjacent $x,y \in V$ has λ common adjacent vertices;
 - ${}_{igoplus}$ every two non-adjacent $x,y\in V$ has μ common adjacent vertices;
 - (avoiding trivial cases) G is neither complete nor empty, that is, 0 < k < v 1.

Note: A strongly regular graph is a distance-regular graph with diameter 2.

Lemma

If G is a strongly regular graph with papameter (v, k, λ, μ) , so is \overline{G} with parameter $(v, \overline{k} = v - k - 1, \overline{\lambda} = v - 2k + \mu - 2, \overline{\mu} = v - 2k + \lambda)$.

Lemma

Let G be a finite regular graph with degree $0 < \kappa < v - 1$. Then the following conditions are equivalent:

- \bigcirc G is a strongly regular graph;
- **2** $\mathcal{A}(G, \overline{G})$ is the three-dimensional linear space spanned by I, A, \overline{A} .

For the proof we need only to note that

 $A^{2} = kI + \lambda A + \mu \overline{A} = kI + \lambda A + \mu (J - I - A).$

Lemma

Let G be a strongly regular graph with (v, k, λ, μ) . Then the spectrum of G are given by

$$s < r \leq k$$
 with multiplicities $g, f, 1$,

where

$$s,r=rac{(\lambda-\mu)\pm\sqrt{(\lambda-\mu)^2+4(k-\mu)}}{2}\,,$$

and

$$f=\frac{(v-1)s+k}{s-r}\,,\qquad g=\frac{(v-1)r+k}{r-s}$$

The spectrum of $ar{G}$ are given by

 $ar{s} = -r - 1 < ar{r} = -s - 1 \leq ar{k}$ with multiplicities f, g, 1.

There are many relations among these constants. For example,

$$1 + k + \bar{k} = 1 + f + g = v, \qquad k^2 + fr^2 + gs^2 = kv$$

8.3. Cartesian Product of Strongly Regular Graphs

- $\textcircled{ } \textbf{ be a strongly regular graph and } \bar{G} \text{ the complement.} \\$
- **2** Consider the pair (G^n, \overline{G}^n) , where

 $G^n = G \times \cdots \times G$ (*n*-fold Cartesian power), $\bar{G}^n = \bar{G} \times \cdots \times \bar{G}$ (similar).

Adjacency matrices:

$$A_{n,G} = \sum_{k=1}^{n} \overbrace{I \otimes \cdots \otimes I}^{k-1} \otimes A \otimes \overbrace{I \otimes \cdots \otimes I}^{n-k}, \quad \bar{A}_{n,G} = (\text{similar}).$$

(a) Let $u_{n,G}(dxdy)$ be the joint spectral distribution of $(A_{n,G}, \bar{A}_{n,G})$ specified by

$$rac{1}{v^n}\mathrm{Tr}(A^s_{n,G}ar{A}^t_{n,G})=\int_{\mathbb{R}^2}x^sy^t\,oldsymbol{
u}_{n,G}(dxdy),\qquad s,t=0,1,2,\ldots.$$

Question (Asymptotic spectral distribution)

$$u_{n,G}
ightarrow ?? \hspace{0.2cm} ext{as} \hspace{0.2cm} n
ightarrow \infty \hspace{0.2cm} ext{and} \hspace{0.2cm} |G|
ightarrow \infty$$

Nobuaki Obata (Tohoku University)

8.3. Cartesian Product of Strongly Regular Graphs

How we generalized the case of Hamming graphs?

- ► Outline of our procedure:
 - **(**) Consider a strongly regular graph G and its complement \bar{G} .
 - **2** Consider a pair of Cartesian powers (G^n, \bar{G}^n)
 - 3 and their adjacency matrices $(A_{n,G}, \overline{A}_{n,G})$.
 - The joint spectral distribution of $(A_{n,G}, \overline{A}_{n,G})$ is a probability distribution on \mathbb{R}^2 specified by

$$rac{1}{v^n} \mathrm{Tr}(A^s_{n,G}ar{A}^t_{n,G}) = \int_{\mathbb{R}^2} x^s y^t \, oldsymbol{
u}_{n,G}(dxdy), \qquad s,t=0,1,2,\ldots.$$

► Case of Hamming graphs:

Take $G=K_v$. Then $ar{G}$ is an empty graph,

$$G^n = K_v imes \cdots imes K_v = H(n,v)$$
 (Hamming graph),
 $(A_{n,G}, ar{A}_{n,G}) = (A_{n,v}, 0).$

Thus, the spectral distribution is reduced to one-dimension.

8.4. Joint spectral distribution of (G^n, \overline{G}^n)

Theorem

The joint spectral distribution of $(G^n, ar{G}^n)$ is given by

$$\nu_{n,G} = \sum_{0 \leq j+h \leq n} \pi(j,h) \delta(\theta_{j,h},\bar{\theta}_{j,h}), \quad \pi(j,h) = \binom{n}{j,h} \left(\frac{f}{v}\right)^j \left(\frac{g}{v}\right)^h \left(\frac{1}{v}\right)^{n-j-h},$$

$$egin{aligned} heta_{j,h}&=(n-j-h)k+jr+hs, &ar{ heta}_{j,h}&=(n-j-h)ar{k}+jar{s}+har{r}, \ f&=rac{(v-1)s+k}{s-r}\,, &g&=rac{(v-1)r+k}{r-s}\,. \end{aligned}$$

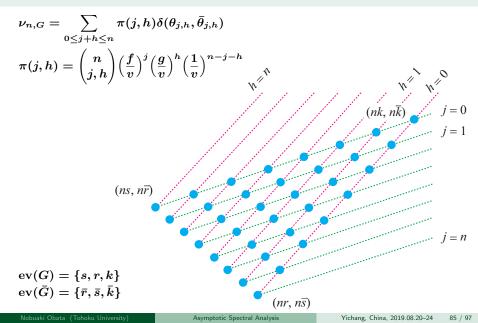
Proof: According to $ev(A_{n,G}) = \{s, r, k\}$ and $ev(\bar{A}_{n,G}) = \{\bar{r}, \bar{s}, \bar{k}\}$ we have $C(G) = \mathbb{C}^v = U_r \oplus U_s \oplus U_k, \quad \dim U_r = f, \quad \dim U_s = g, \quad \dim U_k = 1.$ Then look at

$$A_{n,G} = \sum I \otimes \cdots \otimes A \otimes \cdots \otimes I,$$
 $C(G^n) = (U_r \oplus U_s \oplus U_k) \otimes \cdots \otimes (U_r \oplus U_s \oplus U_k).$

Nobuaki Obata (Tohoku University)

Asymptotic Spectral Analysis

8.4. Joint spectral distribution of (G^n, \overline{G}^n)



 $n
ightarrow \infty, \, v
ightarrow \infty$ and some balance conditions

 \blacktriangleright Hamming graphs: $H(n,v) = K_v imes \cdots imes K_v$ (*n*-fold Cartesian power)

$$rac{v}{n}
ightarrow au$$
 and automatically $rac{-1}{n}
ightarrow 0, \quad rac{v-1}{n}
ightarrow au.$ these are conditions for eigenvalues!

• Growing pair of strongly regular graphs: (G^n, \overline{G}^n)

Recall: $\mathrm{ev}(G) = \{s,r,k\}$, $\mathrm{ev}(ar{G}) = \{ar{r},ar{s},ar{k}\}$

 $1+k+\bar{k}=v, \qquad \bar{s}=-r-1, \qquad \bar{r}=-s-1.$

The proper scaling is given by

$$rac{k}{n} o \kappa, \quad rac{ar{k}}{n} o ar{\kappa}, \quad rac{r}{n} o
ho, \quad rac{s}{n} o \sigma, \quad rac{v}{n} o \kappa + ar{\kappa} \equiv \omega$$

▶ Note: $\rho = 0$ or $\sigma = 0$ follows.

Theorem (Morales-Obata-Tanaka (2019+))

Let ν be the limit of the joint spectral distribution of $\left(\frac{A_{n,G}}{\sqrt{nk}}, \frac{\bar{A}_{n,G}}{\sqrt{n\bar{k}}}\right)$. Then,

1 If $\kappa > 0$, $\bar{\kappa} = -\sigma > 0$, $\rho = 0$, then ν is an affine transformation of the bivariate Poisson distribution:

$$\nu\left(\left(\frac{\kappa j - \bar{\kappa}h}{\sqrt{\kappa}}, \frac{\bar{\kappa}j + \bar{\kappa}h - 1}{\sqrt{\bar{\kappa}}}\right)\right) = e^{-1/\bar{\kappa}} \left(\frac{1}{\omega}\right)^j \left(\frac{\kappa}{\omega\bar{\kappa}}\right)^h \frac{1}{j!h!}$$

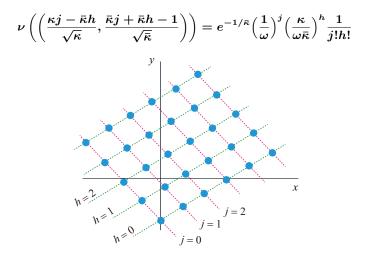
2) If $\kappa = \rho > 0$, $\bar{\kappa} > 0$, $\sigma = 0$, then similar as above.

If κ > 0 or κ̄ > 0, and if ρ = σ = 0, then ν is an affine transformation of the product of Gaussian and Poisson distributions:

$$\int_{\mathbb{R}^2} f(x)\nu(dx) = \sqrt{\frac{\omega}{2\pi}} e^{-1/\omega} \sum_{h=0}^{\infty} \left(\frac{1}{\omega}\right)^h \frac{1}{h!} \int_{-\infty}^{+\infty} f(x_{h,t}) e^{-\omega t^2/2} dt$$
$$x_{h,t} = \left(\sqrt{\kappa} h + \sqrt{\bar{\kappa}} t - \frac{\sqrt{\kappa}}{\omega}, \sqrt{\bar{\kappa}} h - \sqrt{\kappa} t - \frac{\sqrt{\bar{\kappa}}}{\omega}\right)$$

(4) If $\kappa = \bar{\kappa} = \rho = \sigma = 0$, ν is the bivariate Gaussian distribution.

Bivariate Poisson distribution



 ${\rm Gauss}\,\times\,{\rm Poisson}$ distribution

$$\int_{\mathbb{R}^2} f(x)\nu(dx) = \sqrt{\frac{\omega}{2\pi}} e^{-1/\omega} \sum_{h=0}^{\infty} \left(\frac{1}{\omega}\right)^h \frac{1}{h!} \int_{-\infty}^{+\infty} f(x_{h,t}) e^{-\omega t^2/2} dt$$
$$x_{h,t} = \left(\sqrt{\kappa} h + \sqrt{\kappa} t - \frac{\sqrt{\kappa}}{\omega}, \sqrt{\kappa} h - \sqrt{\kappa} t - \frac{\sqrt{\kappa}}{\omega}\right)$$
$$\overset{h=2}{\underset{h=1}{\overset{h=1}{\overset{h=1}{\overset{h=0}{\overset{k$$

8.6. Bivariate Orthogonal Polynomials

Extended Adjacency Algebra $\mathcal{A}(G^n, ar{G}^n)$

For $0 \leq lpha + eta \leq n$ we put

$$A_{\alpha,\beta} = \sum I \otimes \cdots \otimes A \otimes \cdots \otimes \bar{A} \otimes \cdots \otimes I,$$

A appears lpha times and $ar{A}$ appears eta times

In particular, the adjacency matrices of $(G^n, ar{G}^n)$ are

$$A[G^n] = A_{n,G} = A_{1,0}, \qquad A[\bar{G}^n] = \bar{A}_{n,G} = A_{0,1},$$

 $\mathcal{A}(G^n, ar{G}^n)$: unital *-algebra generated by $A_{n,G}$ and $ar{A}_{n,G}$.

Lemma

$$\mathcal{A}(G^n,ar{G}^n)$$
 is a linear span of $\{A_{lpha,eta}\,;\,0\leqlpha+eta\leq n\}$.

Lemma (Orthogonal relation)

$$rac{1}{v^n} ext{Tr}(A_{lpha,eta} A_{lpha',eta'}) = k_{lpha,eta} \delta_{lpha,lpha'} \delta_{eta,eta'}, \quad k_{lpha,eta} = inom{n}{lpha,eta} k^lpha ar{k}^eta.$$

8.6. Bivariate Orthogonal Polynomials

Lemma (Mizukawa–Tanaka (PAMS 2004))

The eigenvalues of $A_{\alpha,\beta}$ are given in the form:

$$k_{lpha,eta}P_{lpha,eta}(j,h)$$
 with multiplicity $inom{n}{j,h}f^jg^h,$

Bivariate Krawtchouk Polynomials

$$P_{\alpha,\beta}(j,h) = \sum_{0 \le \nu_1 + \dots + \nu_4 \le n} \frac{(-\alpha)_{\nu_1 + \nu_3}(-\beta)_{\nu_2 + \nu_4}(-j)_{\nu_1 + \nu_2}(-h)_{\nu_3 + \nu_4}}{(-n)_{\nu_1 + \nu_2 + \nu_3 + \nu_4}} \frac{t_1^{\nu_1} t_2^{\nu_2} t_3^{\nu_3} t_4^{\nu_4}}{\nu_1! \nu_2! \nu_3! \nu_4!},$$

where

$$t_1 = 1 - rac{r}{k}\,, \quad t_2 = 1 - rac{ar{s}}{ar{k}}\,, \quad t_2 = 1 - rac{s}{k}\,, \quad t_4 = 1 - rac{ar{r}}{ar{k}}\,.$$

► This is a particular case of Aomoto-Gelfand hypergeometric function of (3, 6)-type.
► Pochhammer symbol: (a)_n = a(a + 1)(a + 2) ··· (a + n - 1)

8.6. Bivariate Orthogonal Polynomials

Then the orthogonal relation becomes

$$\sum_{0 \leq j+h \leq n} \sqrt{k_{\alpha,\beta}} \, P_{\alpha,\beta}(j,h) \sqrt{k_{\alpha',\beta'}} P_{\alpha',\beta'}(j,h) \pi(j,h) = \delta_{\alpha,\alpha'} \delta_{\beta,\beta'} \, .$$

Using integral form and applying variable change:

we obtain polynomials $\{ ilde{P}_{lpha,eta}(x,y)\}$ such that

$$\int_{\mathbb{R}^2} \tilde{P}_{\alpha,\beta}(x,y) \tilde{P}_{\alpha',\beta'}(x,y) \tilde{\nu}_{G,n}(dxdy) = \delta_{\alpha,\alpha'} \delta_{\beta,\beta'}$$

\blacktriangleright We consider the Gauss \times Poisson case

Let

$$R_{lpha,eta}(x,y) = \lim ilde{P}_{lpha,eta}(x,y)$$

under the scaling

$$rac{k}{n} o \kappa > 0 \quad ext{or} \quad rac{ar{k}}{n} o ar{\kappa} > 0, \quad rac{r}{n} o
ho = 0, \quad rac{s}{n} o \sigma = 0,$$

Then we have

$$\int_{\mathbb{R}^2} R_{lpha,eta}(x,y) R_{lpha',eta'}(x,y)
u(dxdy) = \delta_{lpha,lpha'} \delta_{eta,eta'}$$

Theorem (Morales-Obata-Tanaka (2019+))

 $\{R_{lpha,eta}(x,y)\}$ are the orthogonal polynomials with respect to the Gauss imes Poisson distribution u.

Explicit form

We start with the generating function:

$$\sum_{0 \le lpha + eta \le n} k_{lpha,eta} P_{lpha,eta}(j,h) \xi_1^lpha \xi_2^eta \ = (1 + k \xi_1 + ar k \xi_2)^{n-j-h} (1 + r \xi_1 + ar s \xi_2)^j (1 + s \xi_1 + ar r \xi_2)^h$$

Ochanging variables and taking the limit, we have

$$egin{aligned} &\sum\limits_{lpha,eta=0}^{\infty}rac{R_{lpha,eta}(x,y)}{\sqrt{lpha!eta!}}\,\xi_1^lpha\xi_2^eta \ &=(1+\sqrt{\kappa}\,\xi_1+\sqrt{ar\kappa}\,\xi_2)^{(\sqrt{\kappa}\,x+\sqrt{ar\kappa}\,y+1)/\omega} \ & imes\expigg\{-rac{\sqrt{\kappa}\,\xi_1+\sqrt{ar\kappa}\,\xi_2}{\omega}-rac{(\sqrt{ar\kappa}\,\xi_1-\sqrt{\kappa}\,\xi_2)^2}{2\omega} \ &+rac{(\sqrt{ar\kappa}\,x-\sqrt{\kappa}\,y)(\sqrt{ar\kappa}\,\xi_1-\sqrt{\kappa}\,\xi_2)}{\omega}igg\} \end{aligned}$$

Five-term recurrence relation

We start with

$$\begin{split} AA_{\alpha,\beta} &= (\alpha+1)A_{\alpha+1,\beta} + (\alpha+1)(\bar{k}-\bar{\mu})A_{\alpha+1,\beta-1} \\ &+ (\alpha\lambda+\beta(k-\mu))A_{\alpha,\beta} + (\beta+1)\mu A_{\alpha-1,\beta+1} \\ &+ (n-\alpha-\beta+1)kA_{\alpha-1,\beta}, \end{split}$$

$$ar{A}A_{lpha,eta}=(eta+1)A_{lpha,eta+1}+(lpha+1)ar{\mu}A_{lpha+1,eta-1}\ +(lpha(ar{k}-ar{\mu})+etaar{\lambda})A_{lpha,eta}+(eta+1)(k-\lambda)A_{lpha-1,eta+1}\ +(n-lpha-eta+1)ar{k}A_{lpha,eta-1}.$$

② Use the correspondence:

$$rac{A_{lpha,eta}}{\sqrt{k_{lpha,eta}}} \hspace{0.3cm} \leftrightarrow \sqrt{k_{lpha,eta}} \hspace{0.3cm} P_{lpha,eta}(j,h)$$

we obtain the five-term recurrence relation for $\{P_{lpha,eta}(j,h)\}$.

Ochanging variables and taking the limit, we have

Theorem (Five-term recurrence relation)

$$\begin{split} xR_{\alpha,\beta} &= \sqrt{\alpha+1} \, R_{\alpha+1,\beta} + \sqrt{(\alpha+1)\beta} \, \frac{\kappa\sqrt{\bar{\kappa}}}{\omega} \, R_{\alpha+1,\beta-1} \\ &+ (\alpha\kappa+\beta\bar{\kappa}) \frac{\sqrt{\kappa}}{\omega} \, R_{\alpha,\beta} + \sqrt{\alpha(\beta+1)} \, \frac{\kappa\sqrt{\bar{\kappa}}}{\omega} \, R_{\alpha-1,\beta+1} + \sqrt{\alpha} \, R_{\alpha-1,\beta}, \\ yR_{\alpha,\beta} &= \sqrt{\beta+1} \, R_{\alpha,\beta+1} + \sqrt{(\alpha+1)\beta} \, \frac{\kappa\sqrt{\bar{\kappa}}}{\omega} \, R_{\alpha+1,\beta-1} \\ &+ (\alpha\kappa+\beta\bar{\kappa}) \frac{\sqrt{\bar{\kappa}}}{\omega} \, R_{\alpha,\beta} + \sqrt{\alpha(\beta+1)} \, \frac{\bar{\kappa}\sqrt{\kappa}}{\omega} \, R_{\alpha-1,\beta+1} + \sqrt{\beta} \, R_{\alpha,\beta-1}. \end{split}$$

▶ This would be a good example for a bivariate spectral analysis of growing graphs.

▶ The next step is to derive a bivariate extension of quantum decomposition.

Life is short, but there is always time enough for mathematics!

THANK YOU VERY MUCH!

谢谢你,再见