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Preface

The so-called network science has grown to be a vast research area, creating a new
paradigm to understand various complex networks appearing in physics, chemistry, biology,
epidemiology, ecology, sociology, engneering, etc. For example, proteomics, one of the current
big issues in system biology, needs a new mathematical approach to exploring the structure
of protein-protein interaction. To describe and understand the nature of complex networks is
a present issue, however, our goal is to establish a methodology of controlling its dynamics.
These lectures, keeping our ambitious goal in mind, aims at mathematical foundation of
complex networks with special emphasis of their spectral properties. Moreover, we will see
how the quantum probabilistic ideas are useful in spectral analysis.

In the real world one finds networks in their basic form as interrelations among objects.
Such networks are described in terms of graph theory, namely, objects under consderation
being set as points in a plane and two objects in interrelation being connected by an arc
therein, we obtain a geometric description of the network called a graph (in fact, the math-
ematical definition of a graph makes us to abandon even such a geometric image).

The graph theory, tracing back to Euler’s famous problem on seven bridges in Königsberg,
has become one of the main subjects in discrete mathematics. From mathematical point of
view most attention has been paid to “beautiful” graphs, e.g., reasonable size for handling
and/or possessing nice symmetry, but little to very large graphs in the real world because
of being “dirty” or “complex.” Examples of such dirty graphs are telephone networks, the
internet (physical connections among PC’s), the WWW (hyperlinks of webpages), Hollywood
costars, coauthors of articles, human or social relations, biological networks, etc.

Figure 1: The internet

During the last decade as the development of computer technology, some characteristics
became computable for very large networks in the real world. As a few physical quantities are
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Figure 2: Paul Erdös’ coauthors

used efficiently for description of gas in stead of the set of huge number of Newton equations,
we believe reasonably that such large networks can be captured in terms of a small number of
statistical characteristics carefully chosen. Up to now the prevailing characteristics of large
complex networks in the real worlds are:

1. Small world phenomenon dating back to Stanley Milgram’s small world experiment
(1967), saying that the mean distance of two vertices is small O(log n) relative to the
large number n of vertices.

2. Large cluster coefficient (C ≥ 0.7), i.e., locally most vertices are connected each other.

3. Existence of hubs, as indicated by the long tail of the power law degree distribution
p(k) ∝ k−γ (γ > 1).

Mathematical models for complex networks were proposed in the following epoch-making
papers:

[1] D. J. Watts and S. H. Strogatz: Collective dynamics of ‘small-world’ networks, Nature
393 (1998), 440–442.

[2] A.-L. Barabási and R. Albert: Emergence of scaling in random networks, Science 286
(1999), 509–512.
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Figure 3: High school dating

Since then up to now many papers have been published with only few mathematical rigorous
results. Our intention is to develop mathematical study of those models as well as to propose
new models. For a mathematical model of a large complex network, a single graph seems to
be not suitable. In order to capture characteristics of their large size we reasobnably take a
growing graph and study its asymptotic behavior. And for characteristics of its complexity it
is natural to consider statistical quantities of a random ensemble of graphs. In these lectures,
therefore, one should keep in mind that a graph is intended to grow and/or to be random.

0.1 Quantum Probability = Noncommutative Probability

Quantum probability theory provides a framework of extending the measure-theoretical
(Kolmogorovian) probability theory. The idea traces back to von Neumann (1932), who,
aiming at the mathematical foundation for the statistical questions in quantum mechanics,
initiated a parallel theory by making a selfadjoint operator and a trace play the roles of a
random variable and a probability measure, respectively.

One of the main purposes of these lectures is to test the quantum probabilistic techniques
in the study of large complex networks, in particular, their spectral properties.
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0.2 From Coin-toss to Graph Spectrum

0.2.1 Classical probabilistic model

The toss of a fair coin is modelled by a random variableX on a probability space (Ω,F , P )
satisfying the property:

P (X = +1) = P (X = −1) =
1

2

Rather than the random variable itself more essential is the probability distribution of X
defined by

µ =
1

2
δ−1 +

1

2
δ+1 (0.1)

The moment sequence is one of the most fundamental characteristics of a probability
measure. For µ in (0.1) the moment sequence is calculated with no difficulty as

Mm(µ) =

∫ +∞

−∞
xmµ(dx) =

{
1, if m is even,

0, otherwise.
(0.2)

When we wish to recover a probability measure from the moment sequence, we meet in
general a delicate problem called determinate moment problem. For the coin-toss there is no
such an obstacle and we can recover the Bernoulli distribution from the moment sequence.

0.2.2 Quantum probabilistic (matrix) model

We set

A =

[
0 1
1 0

]
, e0 =

[
0
1

]
, e1 =

[
1
0

]
. (0.3)

Then {e0, e1} is an orthonormal basis of the two-dimensional Hilbert space C2 and A is a
selfadjoint operator acting on it. It is straightforward to see that

⟨e0, Ame0⟩ =

{
1, if m is even,

0, otherwise,
(0.4)

which coincides with (0.2). In other words, the coin-toss is modeled also by using the
two-dimensional Hilbert space C2 and the matrix A. In our terminology, letting A be the
∗-algebra generated by A, the coin-toss is modeled by an algebraic random variable A in an
algebraic probability space (A, e0). We call A an algebraic realization of the random variable
X.

0.2.3 Noncommutative Structure

Once we come to an algebraic realization of a classical random variable, we are naturally
led to the non-commutative paradigm. Let us consider the decomposition

A = A+ + A− =

[
0 1
0 0

]
+

[
0 0
1 0

]
, (0.5)
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which yields a simple proof of (0.4). In fact, note first that

⟨e0, Ame0⟩ = ⟨e0, (A+ + A−)me0⟩ =
∑

ϵ1,...,ϵm∈{±}

⟨e0, Aϵm · · ·Aϵ1e0⟩. (0.6)

Let G be a connected graph consisting of two vertices e0, e1. Observing the obvious fact that
(0.6) coincides with the number of m-step walks starting at and terminating at e0 (see the
figure below), we obtain (0.4).

se0

se1

G
�
�
��@

@
@R�

�
��@@R

@@R�
�
��@

@
@R

0 1 2 3 · · · m

Thus, computation of the mth moment of A is reduced to counting the number of certain
walks in a graph through (0.5). This decomposition is in some sense canonical and is called
the quantum decomposition of A.

0.2.4 Relation to Graph

We now note that A in (0.3) is the adjacency matrix of the graph G. Having established
the identity

⟨e0, Ame0⟩ =
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . , (0.7)

we say that µ is the spectral distribution of A in the state e0. In other words, we obtain an
integral expression for the number of returning walks in the graph by means of such a spectral
distribution. A key role in deriving (0.7) is again played by the quantum decomposition.

0.3 Quantum Probabilistic Approach

For (in particular, asymptotic) spectral analysis some techniques peculiar to quantum
probability seem to be useful. They are

(a) quantum decomposition (using noncommutative structure behind)

(b) various concepts of independence and corresponding quantum central limit theorems

(c) partition statistics for computing the moments of spectral distributions

A basic reference throughout these lectures is:

[3] A. Hora and N. Obata: Quantum Probability and Spectral Analysis of Graphs, Springer,
2007.
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1 Graphs and Matrices

1.1 Graphs

Definition 1.1.1 Let V be a non-empty set and E a subset of {{x, y} ; x, y ∈ V, x ̸= y}.
Then the pair G = (V,E) is called a graph with vertes set V and the edge set E. An element
of V is called a vertex and an element of E an edge. We say that two vertices x, y ∈ V are
adjacent, denoted by x ∼ y, if {x, y} ∈ E.

A geometric representation of a graph G = (V,E) is a figure obtained by assigning each
x ∈ V to a point in a plane and drawing a line (or an arc) between two planer points if they
are adjacent in G. Appearance of the geometric representation of a graph varies widely. For
example, the following two figures represent the same graph.

Figure 1.1: Two geometric representation of the Petersen graph

Definition 1.1.2 A graph G = (V,E) is called finite if V is a finite set, i.e., |V | <∞.

Definition 1.1.3 For a vertex x ∈ V of a graph G we set

deg(x) = degG(x) = |{y ∈ V ; y ∼ x}|,

which is called the degree of x.

Definition 1.1.4 A graph G = (V,E) is called localy finite if deg(x) <∞ for all x ∈ V .

Definition 1.1.5 A graph G = (V,E) is called regular if every vertex has a constant finite
degree, i.e., if there exists a constant number κ such that deg(x) = κ for all x ∈ V . To be
more precise, such a graph is called κ-regular.

Definition 1.1.6 A finite sequence of vertices x0, x1, . . . , xn ∈ V is called a walk of length
n if

x0 ∼ x1 ∼ · · · ∼ xn , (1.1)

where some of x0, x1, . . . , xn may coincide. A walk (1.1) is called a path of length n if
x0, x1, . . . , xn are distinct from each other. A walk (1.1) is called a cycle of length n ≥ 3 if
x0, x1, . . . , xn−1 are distinct from each other and xn = x0.
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In usual we do not consider an orientation of a path. Namely, if (1.1) is a path,

xn ∼ xn−1 ∼ · · · ∼ x0

is the same path. For a cycle, we do not consider the initial vertex either. Namely, if
x0 ∼ x1 ∼ · · · ∼ xn−1 ∼ x0 is a cycle, then x1 ∼ x2 ∼ · · · ∼ xn−1 ∼ x0 ∼ x1 stands for the
same cycle.

s��
�
s
Q

Q
Qs��

�
s
Q
Q

Qs ss�
�
�
s
Q
Q

Qss
Figure 1.2: P5: path of length 4 (left). C5: cycle of length 5 (right)

Definition 1.1.7 A graph G = (V,E) is connected if every pair of distinct vertices x, y ∈ V
(x ̸= y) are connected by a walk (or equivalently by a path).

Definition 1.1.8 Two graphs G = (V,E) and G′ = (V ′, E ′) are called isomorphic if there
exists a bijection f : V → V ′ satisfying

x ∼ y ⇐⇒ f(x) ∼ f(y).

In that case we write G ∼= G′.

Definition 1.1.9 Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We say that G′ is a
subgraph of G if V ′ ⊂ V and E ′ ⊂ E.

In fact, a path and a cycle defined in Definition 1.1.6 are subgraphs. We denote by Pn

and Cn a path and a cycle with n vertices, respectively.

1.2 Adjacency Matrices

1.2.1 Definition

Let V and V ′ be arbitrary non-empty set. A function a : V × V ′ → R is regarded
as a matrix A indexed by V × V ′ in the sense that the matrix element of A is defined by
(A)xy = a(x, y). In this case we write A = (axy) too.

Definition 1.2.1 Let G = (V,E) be a graph. A matrix A = (axy) indexed by V × V is
called the adjacency matrix of G if

axy =

{
1, if x ∼ y,

0, otherwise.

Lemma 1.2.2 Let G = (V,E) be a graph and A its adjacency matrix. Then, A is a matrix
indexed by V × V satisfying the following conditions:
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(i) (A)xy ∈ {0, 1};

(ii) (A)xy = (A)yx;

(iii) (A)xx = 0.

Conversely, if a matrix A = (axy) indexed by V × V , V being a non-empty set, satisfies the
above three conditions, then A is the adjacency matrix of a graph G with V being the vertex
set.

Proof. Obvious.

A matrix S indexed by V × V ′ is called a permutation matrix if

(i) (S)xy′ ∈ {0, 1};

(ii)
∑

y′∈V ′(S)xy′ = 1 for all x ∈ V ;

(iii)
∑

x∈V (S)xy′ = 1 for all y′ ∈ V ′.

If S is a permutation matrix, it is necessary that |V | = |V ′|.
The transposed matrix ST is defined in a usual manner: (ST )y′x = Sxy′ for x ∈ V and

y′ ∈ V ′. Then ST = S−1 in the sense that SST is the identity matrix indexed by V × V and
STS is the identity matrix indexed by V ′ × V ′.

Lemma 1.2.3 Let A and A′ be the adjacency matrices of graphs G = (V,E) and G′ =
(V ′, E ′), respectively. Then G ∼= G′ if and only if there exists a permutation matrix S
indexed by V × V ′ such that A′ = S−1AS

Proof. Suppose that G ∼= G′. We choose an isomorphism f : V → V ′ and define a
matrix S indexed by V × V ′ by

(S)xy′ =

{
1, if y′ = f(x),

0, otherwise.

We see easily that S is a permutation matrix satisfying SA′ = AS.

Conversely, suppose that a permutation matrix S indexed by V ×V ′ verifies A′ = S−1AS.
Then a bijection f : V → V ′ is defined by the condition that

(A)xy =

{
1, if y = f(x),

0, otherwise.

It is then easy to see that f becomes an isomorphism betwen G and G′.



10 CHAPTER 1. GRAPHS AND MATRICES

1.2.2 Representing the Adjacency Matrix in a Usual Form

In order to represent the adjacency matrix A of a graph G = (V,E) in a usual form of
n× n square matrix, where n = |V |, we need numbering the vertices. This is performed by
taking a bijection f : V → {1, 2, . . . , n} = V ′. Then we obtain a graph G′ = (V ′, E ′) in such
a way that {i, j} ∈ E ′ if and only if {f−1(i), f−1(j)} ∈ E. By definition we have G ∼= G′.
The adjacency matrix A′ of G′ is indexed by V ′ × V ′ and admits a usual expression of a
square matrix. It follows from Lemma 1.2.3 that A and A′ are related as A = SA′S−1.

Consider another numbering, that is, another bijection f1 : V → {1, 2, . . . , n} = V ′.
Then we obtain another square matrix A′

1 as the adjacency matrix of G′
1, which is related

to A as A = S1A
′
1S

−1
1 . Then we have

S1A
′
1S

−1
1 = SA′S−1

so that
A′

1 = S1SA
′(S1S)

−1.

Note that S1S is a usual permutation matrix on {1, 2, . . . , n}. Consequently,

Lemma 1.2.4 Let A,A′ be the adjacency matrices of a graph G obtained from two ways of
numbering the vertices. Then there exists a permutation matrix on {1, 2, . . . , n}, n = |V |,
such that A′ = S−1AS.

Example 1.2.5 We obtain “different” adjacency matrices by different numbering the ver-
tices of the same graph.

s1

s
2

s
3

s 4
�
�

�
�


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0


s3

s
4

s
1

s 2
�

�
�
�


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0



1.2.3 Some Properties in Terms of Adjacency Matrices

All the information of a graph (up to isomorphism) are obtained from its adjacency
matrix.

(1) A graph G = (V,E) is not connected if and only if there exists a numbering the
vertices such that the adjacency matrix admits a block diagonal expression of the form:

A =

[
A1 O
O A2

]
(A1, A2 are square matrices)

In this case A1 and A2 are the adjacency matrices of subgraphs of G which are not connected.
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(2) A graph is called complete if every pair of vertices are connected by an edge. A
comlete graph with n vertices is denoted by Kn. A graph is complete if and only if the
adjacency matrix is of the form:

A =


0 1 1 · · · 1
1 0 1 · · · 1
...

. . .
...

1 · · · 0 1
1 · · · 1 0


(3) A graph G = (V,E) is called bipartite if V admits a partition V = V1∪V2, V1∩V2 = ∅,

V1 ̸= ∅, V2 ̸= ∅, such that any pair of vertices in a common Vi does not constitute an edge.
A graph is bipartite if and only if the adjacency matrix admits a block diagonal expression
of the form:

A =

[
O B
BT O

]
(two zero matrices are square matrices).

(4) A graph G = (V,E) is called complete bipartite if it is bipartite and every pair of
vertices x ∈ V1, y ∈ V 2 constitute an edge. In that case we write G = Km,n with m = |V1|
and n = |V2|. In particular, K1,n is called a star.

A graph is complete bipartite if and only if the adjacency matrix is of the form:

A =

[
O B
BT O

]
(all elements of B are 1).

Figure 1.3: Bipartite graph, complete bipartite graph K4,5, star K1,6

1.3 Characteristic Polynomials

Let G = (V,E) be a finite graph with |V | = n. Numbering the vertices, we write down its
adjacency matrix in the usual form of an n×n matrix, say A. The characteristic polynomial
of A is defined by

φA(x) = |xE − A| (= det(xE − A)).
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It is noted that φA(x) is determined independently of the numbering. In fact, let A′ be
the adjacenct matrix obtained by a different numbering. From Lemma 1.2.4 we know that
A′ = S−1AS with a permutation matrix S. Then,

φA′(x) = |xE − A′| = |xE − S−1AS| = |S−1(xE − A)S| = |S−1||xE − A||S| = φA(x).

We call φA(x) the characteristic polynomial of G and denote it by φG(x). Obviously, φG(x)
is a polynomial of degree n of the form:

φG(x) = xn + c1x
n−1 + c2x

n−2 + c3x
n−3 + · · · . (1.2)

Example 1.3.1 Simple examples are:

s
x

s s
x2 − 1

s s s
x3 − 2x �

�
��

T
T

TTs
s

s
x3 − 3x− 2

Example 1.3.2 One more example. The characteristic polynomial of the following graph
is φ(x) = x4 − 4x2 − 2x+ 1.

�
�
��

T
T

TTs
s

s s
Theorem 1.3.3 Let the characteristic polynomial of a finite graph G be given as in (1.2).
Then,

(1) c1 = 0.

(2) −c2 = |E|.
(3) −c3 = 2△, where △ is the number of triangles in G.

Proof. Let A = [aij] be the adjacency matrix of G written down in the usual form of
n × n matrix after numbering the vertices. Noting that the diagonal elements of A vanish,
we see that the characteristic polynomial of G is given by

φG(x) = |xE − A| =

∣∣∣∣∣∣∣∣∣
x −a12 · · · −a1n

−a21 x · · · −a2n
...

. . .
...

−an1 · · · · · · x

∣∣∣∣∣∣∣∣∣ .
For simplicity, the matrix in the right-hand side is denoted by B = [bij]. We then have

φG(x) = |B| =
∑

σ∈S(n)

sgn (σ)b1σ(1)b2σ(2) · · · bnσ(n). (1.3)
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For σ ∈ Sn we set
suppσ = {i | σ(i) ̸= i}.

Then (1.3) becomes

φG(x) =
n∑

k=0

∑
σ∈S(n)

|suppσ|=k

sgn (σ)b1σ(1)b2σ(2) · · · bnσ(n) ≡
n∑

k=0

fn(x) (1.4)

Since the indeterminat x appears only in the diagonal of B, we see that fn(x) = ckx
n−k.

(1) k = 1. Since there is no permutation σ such that |suppσ| = 1, we have c1 = 0.
(2) k = 2. The permutations σ satisfying |suppσ| = 2 are parametrized as σ = (i j)

(1 ≤ i < j ≤ n). For such a permutation we have sgn (σ) = −1. Hence we have

f2(x) =
∑

1≤i<j≤n

(−1)(−aij)(−aji)xn−2 = −
∑

1≤i<j≤n

aijx
n−2

where we used aijaji = a2ij = aij. Therefore, c2 = −|E|.
(3) k = 3. The permutations σ satisfying |suppσ| = 3 are parametrized as

σ = (i j k), σ = (i k j), 1 ≤ i < j < k ≤ n.

Noting that sgn (σ) = 1 for such cyclic permutations, we have

f3(x) = −
∑

1≤i<j<k≤n

(aijajkaki + aikakjaji)x
n−3.

We see that aijajkaki takes values 1 or 0 according as three vertices i, j, k forms a triangle or
not. The same situation occuring for the second term, we conclude that −c3 = 2△.

1.4 The Path Graph Pn and Chebyshev Polynomials

Let V = {1, 2, . . . , n} and E = {{i, i+1} ; i = 1, 2, . . . , n−1}. The graph (V,E) is called
a path with n vertices and is denoted by Pn.

s
1

s
2

s
3

p p p p p p p p p p s
n− 1

s
n

Figure 1.4: Path Pn

Lemma 1.4.1 Let φn(x) = φPn(x) be the characteristic polynomial of the path Pn. The it
holds that

φ1(x) = x,

φ2(x) = x2 − 1,

φn(x) = xφn−1(x)− φn−2(x), n ≥ 3 (1.5)
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Proof. We have already seen in Example 1.3.1 that

φ1(x) = x, φ2(x) = x2 − 1.

Let us compute φn(x) for n ≥ 3. By definition we have

φn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1
−1 x −1

−1 x −1
. . . . . . . . .

−1 x −1
−1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By cofactor expansion with respect to the first column, we get

φn(x) = λφn−1(x) +

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1
x −1
−1 x −1

. . . . . . . . .

−1 x −1
−1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= xφn−1(x)− φn−2(x),

as desired.

Setting φ0(x) = 1, we may understand that the reccurence relation in (1.5) holds for
n ≥ 2.

Lemma 1.4.2 For n = 0, 1, 2, . . . there exists a polynomial Un(x) such that

Un(cos θ) =
sin(n+ 1)θ

sin θ
. (1.6)

Moreover, Un(x) satisfies the following reccurence relation:

U0(x) = 1, U1(x) = 2x, Un+1(x)− 2xUn(x) + Un−1(x) = 0. (1.7)

Proof. By elementary knowledge of trigonometric functions.

Definition 1.4.3 The series of polynomials Un(x) is called the Chebyshev polynomial of the
second kind.

Theorem 1.4.4 The characteristic polynomial of the path Pn is given by Un(x/2).

Proof. Let φn(x) be the characteristic polynomial of Pn. We see easily from (1.5) and
(1.7) that the reccurence relations of φn(x) and Un(x/2) coincide together with the initial
conditions.
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1.5 Laplacians, Transition Matrices, Q-matrices

With a given graph G = (V,E) we associate various matrices in addition to the adjacency
matrices.

Definition 1.5.1 The Laplacian of a locally finite graph G = (V,E) is a matrix L defined
by

(L)xy = (A)xy − δxydeg (x), x, y ∈ V.

Or equivalently,

L = A−D

where D is the diagonal matrix defined by

(D)xy =

{
deg (x), x = y,

0, otherwise.

In some literatures, the Laplacian is defined to be −L = D − A.

Definition 1.5.2 A function f : V → C is called harmonic if Lf = 0.

Theorem 1.5.3 Lf = 0 if and only if

f(x) =
1

deg (x)

∑
y∼x

f(y), x ∈ V, , deg (x) ≥ 1.

Proof. By definition Lf = 0 if and only if Df = Af . On the other hand, we know
that

Df(x) = deg (x) f(x),

Af(x) =
∑
y∈V

(A)xyf(y) =
∑
y∼x

f(y).

Hence the assertion follows.

Remark 1.5.4 Let G = (V,E) be a graph. We may give an orientation to each edges. In
other words, we may define a pair of maps i, t : E → V such that e = {i(e), t(e)}. We call
i(e) and t(e) the initial vertex of e and the terminal vertex of e, respectively. Fix such an
orientation. Now define the coboundary operator d : C(V ) → C(E) by

df(e) = f(t(e))− f(o(e)).

Then we have

⟨df, dg⟩ = −⟨f, Lg⟩, f, g ∈ C(V ).

In other words, −L = d∗d holds.
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Definition 1.5.5 The transition matrix of a locally finite graph G = (V,E) is a matrix T
defined by

(T )xy =


1

deg (x)
, y ∼ x,

0, otherwise.

The transition matrix T is nothing else the transition matrix of the isotropic random
walk on the graph G, namely, the (time homogeneous) Markov chain {Xn} on the state
space V with transition probability

(T )xy = P (Xn = y|Xn−1 = x).

In this context, I − T is called the Laplacian of the random walk.

Definition 1.5.6 The Q-matrix of a connected graph G = (V,E) is defined by

(Q)xy = q∂(x,y), x, y ∈ V,

where q is a parameter and ∂(x, y) the graph distance.

1.6 Generalization of Graphs

(1) Directed graph. One may consider naturally the case where every edge of a graph is
given a direction. Such an object is called a directed graph. In terms of the adjacency matrix
A, a directed graph is characterized by the following properties:

(i) (A)xy ∈ {0, 1};
(ii) (A)xy = 1 implies (A)yx = 0;

(iii) (A)xx = 0.

(2) Multigraph. In its geometric representation one may allow to draw two or more edges
connecting two vertices (multi-edge) and one or more arcs connecting a vertex with itself
(loop). In terms of the adjacency matrix A, a directed graph is characterized by the following
properties:

(i) (A)xy ∈ {0, 1, 2, . . . };
(ii) (A)xy = (A)yx.

Moreover, each edge may be given a direction to obtain a directed multigraph.

(3) Network. An arbitrary matrix gives rise to a graph where each directed edge −→xy is
associated with the value Axy. Such an object is called generally a network. A transition
diagram of a Markov chain is an example.

In regard to (1) and (2), a graph in these lectures is sometimes called a undirected simple
graph.
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Figure 1.5: Directed graph, multigraph, directed multigraph.

Exercises 1

1.1. Find the adjacency matrices and the characteristic polynomials of the following
graphs.

1.2. Examine the numbers of vertices, edges, and triangles of the above graphs in terms
of characteristic polynomals.

1.3. Compute the characteristic polynomial of the complete graph Kn. Ans.
φ(x) = (x− (n− 1))(x+ 1)n−1.

1.4∗. Let G = (V,E) be a graph with a vertex a of degree one. Let b ∈ V be a unique
vertex adjacent to a. Let G′ = G[V \{a}], G′′ = G[V \{a, b}] be induced subgraphs obtained
by deleting {a} and {a, b}, respectively. Prove that

φG(x) = xφG′(x)− φG′′(x).

Examine this formula by examples.

References

[4] N. Biggs: Algebraic Graph Theory (2nd Edition), Cambridge University Press, Cam-
bridge, 1993.

[5] B. Bollobás: Modern Graph Theory, Graduate Texts in Mathematics Vol. 184, Springer-
Verlag, New York, 1998.
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2 Spectra of Graphs

2.1 Spectra

Let G = (V,E) be a finite graph with |V | = n and let A be the adjacency matrix
represented in a usual form of n× n matrix after numbering the vertices. Since A becomes
a real symmetric matrix, its eigenvalues are all real, say, λ1 < λ2 < · · · < λs. Then, the
characteristic polynomial of G is factorized as

φG(x) = (x− λ1)
m1 · · · (x− λs)

ms , (2.1)

where mi ≥ 1 (called the multiplicity of λi) and
∑

imi = n.

Definition 2.1.1 Let G = (V,E) be a finite graph and let φG(x) its characteristic polyno-
mial in the form (2.1). The the array

Spec (G) =

(
λ1 λ2 · · · λs
m1 m2 · · · ms

)
(2.2)

is called the spectrum of G. Each λi is called an eigenvalue of G and mi its multiplicity.

In fact, (2.2) is nothing else the spectrum of the adjacency matrix A. Obviously, (2.2)
does not depend on the choice of numbering vertices. Moreover,

Lemma 2.1.2 If G ∼= G′, then Spec (G) = Spec (G′).

Remark 2.1.3 The converse assertion of Lemma 2.1.2 is not valid, however, it is known that
the converse is true for graphs with four or less vertices. In Section 2.6 we show examples
of two non-isomorphic graphs whose spectra coincide.

Example 2.1.4 Here are some simple examples.

Spec ( s) = (0
1

)
, Spec ( s s) = (−1 1

1 1

)
,

Spec ( s s s) = (−√
2 0

√
2

1 1 1

)
, Spec

(
s ss
�
�
A
A
)

=

(
−1 2
2 1

)
.

Theorem 2.1.5 The spectrum of the path Pn is given by

Spec (Pn) =

2 cos
π

n+ 1
· · · 2 cos

kπ

n+ 1
· · · 2 cos

nπ

n+ 1

1 · · · 1 · · · 1
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Proof. First we find the zeroes of the Chebyshev polynomial of the second kind. By
definition,

Un(x) =
sin(n+ 1)θ

sin θ
, x = cos θ.

In view of the right-hand side we see easily that Un(x) = 0 if

θ =
kπ

n+ 1
, k = 1, 2, . . . , n.

For these θ, cos θ are mutually distinct. Thus

xk = cos
kπ

n+ 1
, k = 1, 2, . . . , n, (2.3)

form n different zeroes of Un(x). Since Un(x) is a polynomial of degree n, (2.3) exhaust the
zeroes of Un(x) and each xk has multiplicity one.

By Theorem 1.4.4 the characteristic polynomial of Pn is given by Un(x/2). For the
spectrum of Pn it is sufficient to find its zeroes. From the above argument we see that the
zeroes of Un(x/2) are

λk = 2 cos
kπ

n+ 1
, k = 1, 2, . . . , n,

each of which is of multiplicity one. This shows the assertion.

2.2 Number of Walks

Let A be the adjacency matrix of a locally finite graph G = (V,E). Then for any
m = 1, 2, . . . and x, y ∈ V the matrix element (Am)xy is defined as usual by

(Am)xy =
∑

z1,...,zm−1∈V

(A)xz1(A)z1z2 · · · (A)zm−1y .

Note that

(A)xz1(A)z1z2 · · · (A)zm−1y =

{
1, if x ∼ z1 ∼ · · · ∼ zm−1 ∼ y,

0, otherwise.

Hence (Am)xy is the number of walks of length m connecting x and y. If the graph G is
locally finite, (Am)xy <∞. Therefore, the powers of A is well-defined.

We record the above result in the following

Lemma 2.2.1 Let G = (V,E) be a locally finite graph and A its adjacency matrix. Then,
for any m = 1, 2, . . . and x, y ∈ V , the matrix element (Am)xy coincides with the number of
walks of length m connecting x and y.

Theorem 2.2.2 Let G = (V,E) be a finite graph and λ1 < λ2 < · · · < λs exhaust its
eigenvalues. For x, y ∈ V there exist constant numbers ci = ci(x, y) (i = 1, 2, . . . , s) such
that

(Am)xy =
s∑

i=1

ci(x, y)λ
m
i .

Here we tacitly understand that 00 = 1 when λi = 0.
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Proof. The first equality is due to Lemma 2.2.1. For the second equality we consider
the diagonalization of A. In fact, since A is real symmetric, taking a suitable orthogonal
matrix U we have

A = U

λ1Em1

. . .

λsEms

U−1.

It is then obvious that evey element of (Am) is a linear combination of λm1 , . . . , λ
m
s .

Example 2.2.3 Let us compute the number of m-step walks connecting a and b:

s s sa b

We know the spectrum of the graph:(
−
√
2 0

√
2

1 1 1

)
.

Hence
Nm(a, b) = c1(−

√
2)m + c20

m + c3(
√
2)m

with some constants c1, c2, c3. For small m’s we see easily that

N0(a, b) = 0, N1(a, b) = 1, N2(a, b) = 0.

Hence
c1 + c2 + c3 = 0

−
√
2 c1 +

√
2 c3 = 1

2c1 + 2c3 = 0

Solving these equations we obtain

Nm(a, b) =

{
0, m ≥ 0 is even,

2(m−1)/2, m ≥ 1 is odd.

2.3 Maximal Eigenvalue

It is important to know a bound of Spec (G). Let λmax(G) and λmin(G) denote the
maximal and minimal eigenvalues of G, respectively. We shall show a simple estimate of
λmax(G).

Some statistics concerning the degrees of vertices play an interesting role. We set

dmax(G) = max{deg(x) | x ∈ V },
dmin(G) = min{deg(x) |x ∈ V },

d̄(G) =
1

|V |
∑
x∈V

deg(x).

Obviously,
dmin(G) ≤ d̄(G) ≤ dmax(G).
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Theorem 2.3.1 For a finite graph G = (V,E) it holds that

dmin(G) ≤ d̄(G) ≤ λmax(G) ≤ dmax(G).

Proof. We regard the adjacency matrix A as a linear transformation on Cn.

1◦ We prove d̄(G) ≤ λmax(G). Let v = [vi] ∈ Cn be the vector whose elements are all
one. Then,

⟨v, Av⟩ =
n∑

i=1

vi (Av)i =
n∑

i,j=1

vi (A)ijvj =
n∑

i,j=1

(A)ij =
∑
i∈V

d(i).

Since ⟨v,v⟩ = n = |V |, we have

⟨v, Av⟩
⟨v,v⟩

=
1

|V |
∑
i∈V

d(i) = d̄(G). (2.4)

On the other hand, it is known from knowledge of linear algebra that

λmin(A) ≤
⟨u, Au⟩
⟨u,u⟩

≤ λmax(A) for all u ̸= 0. (2.5)

Combining (2.4) and (2.5), we come to

d̄(G) ≤ λmax(A) = λmax(G).

2◦ We show λmax(G) ≤ dmax(G). Since λmax(G) is real, we may choose its eigenvector
u = [ui] whose elements are all real. Then, for any i we have (Au)i = λmaxui. Multiplying
a constant, we may assume that

α ≡ max{ui ; i = 1, 2, . . . , n} > 0

and choose i0 such that ui0 = α. Then,

λmax(G)α = λmax(G)ui0 = (Au)i0 =
∑
i∼i0

ui

≤ α|{i ∈ V | i ∼ i0}| = αd(i0) ≤ αdmax(G),

which implies that λmax(G) ≤ dmax(G).

Corollary 2.3.2 If G is a regular graph with degree κ, we have λmax(G) = κ.

Proof. For a regular graph we have d̄(G) = dmax(G) = κ.
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2.4 Spectral Distribution of a Graph

Definition 2.4.1 Let G be a finite graph with

Spec (G) =

(
λ1 λ2 . . . λs
m1 m2 . . . ms

)
.

The spectral (eigenvalue) distribution of G is a probability measure on R defined by

µ =
1

|V |

s∑
i=1

miδλi
,

where δλ stands for the delta-measure.

It is sometimes convenient to use the list of eigenvalues of A with multiplicities, say,
λ1, λ2, . . . , λn, n = |V |. Then the spectral distribution is

µ =
1

n

n∑
k=1

δλk
.

Example 2.4.2 The spectral distribution of the path Pn is given by

µ =
1

n

n∑
k=1

δ2 cos kπ
n+1

Remark 2.4.3 The delta measure δλ is a Borel probability measure on R. For a Borel set
E ⊂ R we have

δλ(E) =

{
1, if λ ∈ E,

0, otherwise

Hence for a continuous function f(x) on R we have∫ +∞

−∞
f(x)δλ(dx) = f(λ).

Definition 2.4.4 Let µ be a probability measure on R. The integral, if exists,

Mm(µ) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . (2.6)

is called the m-th moment of µ.

Theorem 2.4.5 Let µ be the spectral distribution of a finite graph G = (V,E). Then,

Mm(µ) =
1

|V |
TrAm, m = 1, 2, . . . . (2.7)
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Proof. Let λ1, . . . , λn be the eigenvalues of A, listed with multiplicities. Then by
definition,

Mm(µ) =

∫ +∞

−∞
xmµ(dx) =

1

n

n∑
k=1

λmk .

Since λm1 , . . . , λ
m
n is the eigenvalues of Am with multiplicities, their sum coincides with the

trace of Am. Hence, (2.7) follows.

Lemma 2.4.6 Let A be the adjacency matrix of a finite graph G = (V,E).

(1) TrA = 0.

(2) Tr (A2) = 2|E|.
(3) Tr (A3) = 6△.

Proof. We show only (3). By definition

Tr (A3) =
∑

x,y,z∈V

(A)xy(A)yz(A)zx = |{(x, y, z) ∈ V 3 ; x ∼ y ∼ z ∼ x}| = 6△.

The most basic characteristics of a spectral distribution are the mean and the variance,
which are defined by

mean (µ) =M1(µ) =

∫ +∞

−∞
xµ(dx),

var (µ) =M2(µ)−M1(µ)
2 =

∫ +∞

−∞
(x−mean (µ))2µ(dx).

Proposition 2.4.7 Let µ be the spectral distribution of a finite graph G = (V,E). Then,

mean (µ) = 0, var (µ) = 2
|E|
|V |

.

Proposition 2.4.8 Let λ1, . . . , λn be the eugenvalues of a graph G = (V,E), |V | = n. Then

d̄ =
1

n

n∑
i=1

λ2i

2.5 Asymptotic Spectral Distributions of Pn and Kn

2.5.1 Pn as n→ ∞

The spectral distribution of Pn is

µn =
1

n

n∑
k=1

δ2 cos kπ
n+1

,
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see Example 2.4.2. Let f(x) be a bounded continuous function. The we have∫ +∞

−∞
f(x)µn(dx) =

1

n

n∑
k=1

f

(
2 cos

kπ

n+ 1

)
→
∫ 1

0

f(2 cos πt)dt, as n→ ∞,

which follows by the definition of Riemann integral. By change of variable, one gets∫ 1

0

f(2 cos πt)dt =

∫ 2

−2

f(x)
dx

π
√
4− x2

.

Consequently,

lim
n→∞

∫ +∞

−∞
f(x)µn(dx) =

∫ 2

−2

f(x)
dx

π
√
4− x2

, f ∈ Cb(R), (2.8)

where Cb(R) denotes the space of bounded continuous function on R.
It is easy to see that

dx

π
√
4− x2

χ(−2,2)(x)dx

is a probability measure on R. We call it the arcsine law with variance 2. Then from the
limit formula (2.8) we state the following

Proposition 2.5.1 The spectral distribution of Pn converges weakly to the arcsine law with
variance 2.

2.5.2 Kn as n→ ∞

The spectral distribution of Kn is

µn =
1

n
δn−1 +

n− 1

n
δ−1 .

In a similar manner as in Section 2.5.1 we have∫ +∞

−∞
f(x)µn(dx) =

1

n
f(n− 1) +

n− 1

n
f(−1) → f(−1), as n→ ∞.

Since

f(−1) =

∫ +∞

−∞
f(x)δ−1(dx)

and δ−1 is a probability measure, we may state that the spectral distribution of Kn converges
weakly to δ−1. However, notice that

mean (µn) = 0, var (µn) = 2
|E|
|V |

= n− 1,

and
mean (δ−1) = −1, var (δ−1) = 0.
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Thus, it is hardly to say that the limit measure δ−1 reflects basic statistical properties of µn

for a large n.
The above unconfort was caused by var (µn) → ∞ as n → ∞. In order to capture a

reasonable limit measure it is necessary to handle a normalized measure. In general, for a
probability measure µ with mean mean (µ) = m and variance var (µ) = σ2, the normalization
is defined by ∫ +∞

−∞
f(x)µ̄(dx) =

∫ +∞

−∞
f

(
x−m

σ

)
µ(dx).

Then mean (µ̄) = 0 and var (µ̄) = 1.

Proposition 2.5.2 The normalized spectral distribution of Kn converges weakly to δ0.

Proof. Let f(x) be a bounded continuous function on R. We have∫ +∞

−∞
f(x)µ̄n(dx) =

∫ +∞

−∞
f

(
x√
n− 1

)
µn(dx)

=
1

n
f

(
n− 1√
n− 1

)
+
n− 1

n
f

(
−1√
n− 1

)
→ f(0), as n→ ∞.

This completes the proof.

In Section 2.5.1, for the asymptotic spectral distribution of Pn we did not take the
normalization. The normalization yields essentially nothing new thanks to the fact that

mean (µn) = 0, var (µn) = 2
|E|
|V |

=
2(n− 1)

n
.

Namely, the variance of µn stays bounded by 2 as n→ ∞.

2.6 Isospectral (Cospectral) Graphs

We show a pair of non-isomorphic graphs that have the same spectra.

Example 2.6.1 φ(x) = x5 − 4x3 = x3(x− 2)(x+ 2).
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Example 2.6.2 (Baker)

φ(x) = x6 − 7x4 − 4x3 + 7x2 + 4x− 1

= (x− 1)(x+ 1)2(x3 − x2 − 5x+ 1)
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Example 2.6.3 (Collatz–Sinogowitz) φ(x) = x8 − 7x6 + 9x4
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For more information see e.g.,

[6] D. M. Cvetković, M. Doob and H. Sachs: Spectra of Graphs: Theory and Applications
(3rd rev. enl. ed.), New York, Wiley, 1998.

[7] L. Collatz and U. Sinogowitz: Spektren endlicher Grafen, Abh. Math. Sem. Univ.
Hamburg 21 (1957), 63–77.

[8] C. D. Godsil and B. D. McKay: Constructing cospectral graphs, Aeq. Math. 25 (1982),
257–268.

Exercises 2

2.1. Find the spectra and spectral distributions of the following graphs.

2.2. Find the number of m-step walks connecting a and b.

@
@

@
@s s
ss
a

b

2.3. Examine Example 2.6.1.

2.4∗. Let Cn be a cycle of n vertices. Find Spec (Cn).

2.5∗. Let µn be the spectral distribution of Cn. Study the asymptotics of µn as n→ ∞.
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2.6∗ Prove the formula:
m∏
k=1

2 cos
kπ

2m+ 1
= 1.

[Hint: Use Spec (Pn)]
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3 Adjacency Algebras

3.1 Adjacency Algebras

Let A be the adjacency matrix of a locally finite graph G = (V,E). In Section 2.2 we
showed that every matrix element of Am (m = 1, 2, . . . ) is defined and finite, so we may form
their linear conbination. Let A(G) denote the set of linear combinations of E,A,A2, . . . with
complex coefficients.

Equipped with the usual operations, A(G) becomes a commutative algebra over C with
the multiplication identity E. Moreover, we define the involution by

(c0E + c1A+ c2A
2 + · · ·+ cmA

m)∗ = c̄0E + c̄1A+ c̄2A
2 + · · ·+ c̄mA

m

so that A(G) becomes a ∗-algebra.

Definition 3.1.1 The above A(G) is called the adjacency algebra of G.

Proposition 3.1.2 If G is a finite graph, dimA(G) coincides with the number of different
eigenvalues of A.

Proof. Let λ1 < · · · < λs be the different eigenvalues of A. Then, by a suitable
orthogonal matrix U we have

U−1AU =

λ1Em1

. . .

λsEms

 ≡ D.

We see that {E,D,D2, . . . , Ds−1} is linearly independent, but {E,D,D2, . . . , Ds−1, Ds} is
not. In fact,

(D − λ1E) · · · (D − λsE) = O.

Therefore, the algebra U−1AU is of dimension s, so is A(G).

Proposition 3.1.3 For a connected finite graph G = (V,E) we have

dimA(G) ≥ diam (G) + 1.

Proof. For simplicity put diam (G) = d. If d = 0, we have |V | = 1 and dimA(G) = 1
so the assertion is clear. Assume that d ≥ 1. By definition of the diameter there exists a
pair of verices x, y ∈ V such that ∂(x, y) = d. Choose one path of length d connecting x, y,
say,

x = x0 ∼ x1 ∼ · · · ∼ xk ∼ xk+1 ∼ · · · ∼ xd = y.

In this case, x0, x1, . . . , xd are all distinct and ∂(x, xk) = k (0 ≤ k ≤ d). In particular, there
is no walk of length ≤ k − 1 connecting x and xk. Hence

(Am)xxk
= 0, 0 ≤ m ≤ k − 1; (Ak)xxk

≥ 1.
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Now suppose that
α0E + α1A+ · · ·+ αdA

d = 0, αi ∈ C. (3.1)

Taking the xxd-element of (3.1), since

(Am)xxd
= 0, 0 ≤ m ≤ d− 1; (Ad)xxd

≥ 1,

we have αd(A
d)xxd

= 0 so αd = 0. Next taking the xxd−1-element of (3.1), we have αd−1 = 0.
We can continue this argument to have α0 = · · · = αd−1 = αd = 0. Namely, {E,A, . . . , Ad}
is linearly independent. So dimA(G) ≥ d+ 1.

Corollary 3.1.4 A connected finite graph G = (V,E) has at least diam (G) + 1 different
eigenvalues.

Proof. By combining Propositions 3.1.2 and 3.1.3.

Example 3.1.5 (1) Kn (n ≥ 2).

(number of different eigenvalues) = 2, diam (Kn) = 1.

(2) Pn (n ≥ 1).

(number of different eigenvalues) = n, diam (Pn) = n− 1.

(3) G as below. φG(x) = x2(x+ 2)(x2 − 2x− 4)

s
s

s
ss
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@
@
@ (number of different eigenvalues) = 4, diam (G) = 2.

3.2 Distance-Regular Graphs (DRGs)

Let G = (V,E) be a connected graph and fix a vertex o ∈ V as an origin (root). We set

Vn = {x ∈ V ; ∂(x, o) = n}, n = 0, 1, 2, . . . .

Obviously,
V0 = {o}, V1 = {x ∈ V ; x ∼ o}.

If G is a finite graph, there exists m0 ≥ 1 such that Vm0−1 ̸= ∅ and Vm0 = ∅. If G is an
infinite, locally finite graph, Vn ̸= ∅ for all n ≥ 0. In any case we have a partition of the
vertices:

V =
∞∪
n=0

Vn (3.2)

which is called the stratification of the graph G with respect to the origin o ∈ V .
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ω (x)

+ω (x)

ω (x)

}

}
}

Figure 3.1: Stratification and ωϵ(x)

Lemma 3.2.1 Let G be a connected, locally finite graph and let (3.2) be a stratification. If
x ∈ Vn and y ∼ x, we have y ∈ Vn+1 ∪ Vn ∪ Vn−1.

Proof. Obvious.

Given a stratification, for x ∈ Vn we define

ω+(x) = {y ∈ Vn+1 ; y ∼ x},
ω◦(x) = {y ∈ Vn ; y ∼ x},
ω−(x) = {y ∈ Vn−1 ; y ∼ x}

It is convenient to write

ωϵ(x) = {y ∈ Vn+ϵ ; y ∼ x}, ϵ ∈ {+,−, ◦},

where ϵ takes the values +1,−1, 0 according to ϵ = +,−, ◦. Note also that

deg(x) = ω+(x) + ω◦(x) + ω−(x), x ∈ V.

Definition 3.2.2 A connected graph G = (V,E) is called distance-regular if, for any strat-
ification of G, the functions ωϵ : V → {0, 1, 2, . . . } (ϵ ∈ {+,−, ◦}) are constant on Vn, and
the constants are independent of the choice of stratification. In that case we put

bn = ω+(x), cn = ω−(x), an = ω◦(x),

by taking x ∈ Vn.

It is obvious that
a0 = c0 = 0, b0 = deg(x), x ∈ V0 .

Since any vertex x may be chosen as an origin for stratification, deg(x) = b0 for all x ∈ V .
That is, a distace-regular graph is regular with degree b0. Therefore,

an + bn + cn = b0, n = 1, 2, . . . .
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Lemma 3.2.3 If G is a finite DRG, letting d = diam (G), we have

V =
d∪

n=0

Vn , V0, V1, . . . , Vd ̸= ∅. (3.3)

If G is an infinite DRG, Vn ̸= ∅ for all n = 0, 1, 2, . . . .

Proof. By definition, there is a path of length d. Taking one of the end vertex as an
origin, the associated stratification satisfies conditions in (3.3). Then, we have

b0 > 0, . . . , bd−1 > 0, bd = 0. (3.4)

Let o ∈ V be an aritrary vertex and take v ∈ V such that

∂(o, v) = max{∂(o, x) ; x ∈ V } ≡ p.

Then p ≤ d and the associated stratification is

V =

p∪
k=0

V ′
k , V ′

0 , V
′
1 , . . . , V

′
p ̸= ∅.

Then,
b0 > 0, . . . , bp−1 > 0, bp = 0. (3.5)

In order that (3.4) and (3.5) are consistent, we have p = d.

Corollary 3.2.4 In a finite distance-regular graph, every vertex is an end vertex of a diam-
eter.

Definition 3.2.5 For a finite distance-regular graph G, the table of associated constant
numbers c0 c1 c2 · · · cd

a0 a1 a2 · · · ad
b0 b1 b2 · · · bd


is called the intersection array of G. If G is infinite, the array becomes infinite.

Since an + bn + cn = b0 is constant, the row of a0, a1, . . . may be omitted. Note that

c0 = 0, c1 > 0, · · · , cd−1 > 0, cd > 0,

b0 > 0, b1 > 0, · · · , bd−1 > 0, bd = 0.

Example 3.2.6 (1) The cheapest examples are Cn (n ≥ 3) and Kn (n ≥ 1).
(2) Let Kn,m be the complete bipartite graph. It is distance-regular if and only if n = m.
(3) The Petersen graph is distance-regular.
(4) A homogeneous tree of degree κ, Tκ, is distance-regular.
(5) Pn (n ≥ 3) is not distance-regular (since it is not regular).
(6) Z2 is not distance-regular.

Definition 3.2.7 A connected graph is called distance-transitive if, for any x, x′, y, y′ ∈ V
with ∂(x, y) = ∂(x′, y′) there exists α ∈ Aut (G) such that α(x) = x′ and α(y) = y′.

Proposition 3.2.8 A distance-transitive graph is distance-regular.

In fact, (1)–(4) in Example 3.2.6 are all distance-transitive. The converse of Proposition
3.2.8 is not valid, for examples see Godsil–Royle [9: p.69], Brouwer et al. [10: p.136].
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Figure 3.2: Petersen graph

3.3 Adjacency Algebras of Distance-Regular Graphs

Definition 3.3.1 Let G = (V,E) be a connected graph. For k = 0, 1, 2, . . . we define a
matrix A(k) indexed by V × V by

(A(k))xy =

{
1, if ∂(x, y) = k,

0, otherwise

This matrix is called the k-th distance matrix.

Obviously,

A(0) = E (identity), A(1) = A (adjacency matrix)

and we have

∞∑
k=0

A(k) = J, J is the matrix whose elements are all one.

Lemma 3.3.2 Let G be a distance-regular graph with the intersection arrayc0 c1 c2 · · ·
a0 a1 a2 · · ·
b0 b1 b2 · · ·

 .

Then,
AA(k) = ck+1A

(k+1) + akA
(k) + bk−1A

(k−1), k = 0, 1, 2, . . . . (3.6)

Here we understand that A(−1) = O and A(d+1) = O for d = diam (G) <∞.

Proof. For k = 0 the equality (3.6) is obvious. Let k ≥ 1. Let x, y ∈ V and set
n = ∂(x, y). Then, by definition

(AA(k))xy =
∑
z∈V

(A)xz(A
(k))zy = |{z ∈ V ; ∂(z, x) = 1, ∂(z, y) = k}|.

It is obvious by the triangle inequality,

{z ∈ V ; ∂(z, x) = 1, ∂(z, y) = k} = ∅
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unless k − 1 ≤ n ≤ k + 1. Namely,

(AA(k))xy = 0 unless k − 1 ≤ n ≤ k + 1.

Asuume that k − 1 ≤ n ≤ k + 1. Then, by definition of the intersection array, we have

|{z ∈ V ; ∂(z, x) = 1, ∂(z, y) = k}| =


cn, k = n− 1,

an, k = n,

bn, k = n+ 1.

Thus,

(AA(k))xy =


ck+1, ∂(x, y) = k + 1,

ak, ∂(x, y) = k,

bk−1, ∂(x, y) = k − 1.

This completes the proof.

Lemma 3.3.3 For k = 0, 1, 2, . . . , d, A(k) is a polynomial in A with degree k.

Proof. For k = 0, 1 the assertion is apparently true. In fact,

A(0) = f0(A), f0(x) = 1,

A(1) = f1(A), f1(x) = x.

It follows from Lemma 3.3.2 that

A(k) = fk(A), fk(x) =
1

ck
(x− ak−1)fk−1(x)−

bk−2

ck
fk−2(x).

for k = 2, 3, . . . , d. Note that c1 > 0, · · · , cd > 0.

Theorem 3.3.4 Let G be a distance-regular graph. Then the adjacency algebra A(G) coin-
cides with the linear span of {A(0), A(1), . . . }. Moreover, {A(0), A(1), . . . } are linearly inde-
pendent so they form a linear basis of A(G).

Proof. It follows from Lemma 3.3.3 that the adjacency algebra A(G) contains the
linear span of {A(0), A(1), . . . }. On the other hand, since

A(k) = fk(A) = βkA
k + . . . , βk > 0,

we see that Ak is a linear combination of A(0), A(1), . . . , A(k). Therefore, A(G) is contained
in the linear span of {A(0), A(1), . . . }.

Theorem 3.3.5 If G is a finite distance-regular graph, dimA(G) = diam (G)+1 and A has
diam (G) + 1 distinct eigenvalues.
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Proof. Immediate from Theorem 3.3.4.

Theorem 3.3.6 (Linearization formula) For i, j, k ∈ {0, 1, 2, . . . , d} there exists a unique
constant pkij such that

A(i)A(j) =
d∑

k=0

pkijA
(k) i, j ∈ {0, 1, 2, . . . , d}. (3.7)

Moreover, for x, y ∈ V with ∂(x, y) = k,

|{z ∈ V ; ∂(z, x) = i, ∂(z, y) = j}|

does not depend on the choice of x, y but depends on k, and coincides with pkij.

Proof. The first half is obvious by Theorem 3.3.4. Let x, y ∈ V with ∂(x, y) = l. Let
us observe the matrix element of (3.7). From the left-hand side we get

(A(i)A(j))xy =
∑
z∈V

(A(i))xz(A
(j))zy = |{z ∈ V ; ∂(z, x) = i, ∂(y, z) = j}|

On the other hand, (
d∑

k=0

pkijA
(k)

)
xy

= plij ,

which is constant for all x, y ∈ V with ∂(x, y) = l. Therefore, for such a pair x, y we have

|{z ∈ V ; ∂(z, x) = i, ∂(y, z) = j}| = plij

as desired.

Definition 3.3.7 The constant numbers {pkij} are called the intersection numbers of a
distance-regular graph G.

The intersection numbers satisfies:

(1) pn−1
1n = bn−1, pn1n = an, pn+1

1n = cn+1.

(2) pkij = 0 unless |i− j| ≤ k ≤ i+ j.

(3) pkij = pkji.

(4) p000 = 1, p00i = p0i0 = 0 for i ≥ 1.

Remark 3.3.8 In some of the literature, a distance-regular graph is defined to be a con-
nected graph for which the set of conatants {pkij}, where i, j, k ∈ {0, 1, 2, . . . },

pkij = |{z ∈ V ; ∂(z, x) = i, ∂(y, z) = j}|

is independent of the choice of x, y ∈ V with ∂(x, y) = k. This condition is seemingly
stronger than that of our definition (Definition 3.2.2) as is seen in (1) above; however, they
are equivalent.
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Exercises 3

3.1 For each of the following graphs find the adjacency matrix A and distance matrix
A(k). Then find the relations between the powers of A and A(0), A(1), A(2), . . . . Finally
compare the dimensions of the adjacency algebras and the diameters of the graphs.
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3.2 Is the 2-dimensional integer lattice Z2 distance-regular?

3.3 Is the cube distance-regular?
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3.4∗ Verify that the Petersen graph is distance-regular and find its intersection array.

3.5∗ Let n, d be natural numbers. Set F = {1, 2, . . . , n} and V = {x = (ξ1, ξ2, . . . , ξd) ; ξi ∈
F}. For x = (ξi), y = (ηi) ∈ V define

∂(x, y) = |{1 ≤ i ≤ d ; ξi ̸= ηi}|,

and draw an edge between x, y if ∂(x, y) = 1. Thus we obtain a graph G = (V,E), called a
Hamming graph. Show that the Hamming graph is distance-regular and find the intersection
array.

3.6∗ Define a polynomial Tn(x) by Tn(cos θ) = cosnθ and set

T̃0(x) = T0(x) = 1, T̃n(x) = 2Tn

(x
2

)
, n ≥ 1.

Let A and A(k) be the adjacency matrix and the k-th distance matrix of Z, respectively.
Show that A(k) = T̃k(A). ({Tn(x)} are calle the Chebyshev polynomial of the first kind.)
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4 Quantum Probability

4.1 Algebraic Probability Spaces

Definition 4.1.1 Let A be a ∗-algebra over C with multiplication unit 1A. A function
φ : A → C is called a state on A is

(i) φ is linear;

(ii) φ(a∗a) ≥ 0;

(iii) φ(1A) = 1.

Then, the pair (A, φ) is called an algebraic probability space.

Example 4.1.2 Let M(n,C) be the set of n × n complex matrices. Equipped with the
usual operations, M(n,C) becomes a ∗-algebra. Typical states are listed below:

(i) (trace)

φtr(a) =
1

n
tr a.

(ii) (vector state) Let ξ ∈ Cn with ∥ξ∥ = 1.

φξ(a) = ⟨ξ, aξ⟩.

(iii) (density matrix) Let ρ ∈M(n,C) satisfying ρ = ρ∗ ≥ 0 and Tr ρ = 1. Then

φρ(a) = Tr (ρa).

Every state on M(n,C) is of this form and the density matrix is determined uniquely.

Example 4.1.3 (Classical probability space) Let (Ω,F , P ) be a probability space. Let

L∞− =
∩

1≤p<∞

Lp(Ω,F , P )

be the set of all random variables having finite moments of all orders. Equipped with the
pointwise operations, L∞− is a commutative ∗-algebra.

φ(a) = E[a] =

∫
Ω

a(ω)P (dω), a ∈ L∞−

is a state on L∞−.

Example 4.1.4 Let C[X] be the set of polynomials in the indeterminant X with complex
coefficients. Equipped with the usual addition, scalar multiplication and product, C[X]
becomes a commutative algebra. Moreover, we define the involution (∗-operation) by

(c0 + c1X + · · ·+ cnX
n)∗ = c0 + c1X + · · ·+ cnX

n .
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Thus, C[X] becomes a ∗-algebra. Let Pfm(R) be the set of probability measures on R that
admit finite moments of all orders, i.e.,∫ +∞

−∞
|x|mµ(dx) <∞.

Let µ ∈ Pfm(R). Then

φ(a) = µ(a) =

∫ +∞

−∞
a(x)µ(dx), a ∈ C[X],

is a state on C[X]. Thus, (C[X], µ) is an algebraic probability space. For m = 1, 2, . . .

Mm(µ) =

∫ +∞

−∞
xmµ(dx)

is called the m-th moment of µ, and {M0(µ) = 1,M1(µ),M2(µ), . . . } the moment sequence
of µ.

Definition 4.1.5 Let (A, φ) be an algebraic probability space. An element a ∈ A is called
an algebraic random variable or a random variable for short. If a = a∗, we call it real.

Theorem 4.1.6 Let (A, φ) be an algebraic probability space and let a = a∗ ∈ A be a real
random variable. Then, there exists a probability measure µ ∈ Pfm(R) such that

φ(am) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . . (4.1)

Definition 4.1.7 A probability measure µ satisfying (4.1) is called the distribution of a in
φ. As discussed later, µ is not uniquely determined in general.

Proof. Set Mm = φ(am) and consider the Hanckel determinant:

∆m = |Hm|, Hm =


M0 M1 · · · Mm

M1 M2 · · · Mm+1
...

...
. . .

...
Mm Mm+1 · · · M2m

 . (4.2)

It follows from Hamburger’s theorem (1920) that there exists a probability measure µ ∈
Pfm(R) such that

Mm =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . ,

if and only if

(M1) ∆m > 0 for all m; or

(M2) there exists m0 ≥ 1 such that ∆1 > 0, . . . ,∆m0−1 > 0 and ∆m0 = · · · = 0.
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We shall check this condition for our ∆m defined in (4.2). For

u =

u0...
um

 ∈ Cm+1

we have

⟨u, Hmu⟩ =
m∑

i,j=0

uiMijuj =
m∑

i,j=0

ui ujφ(a
i+j)

= φ

(
m∑

i,j=0

ui uja
i+j

)
= φ

(( m∑
i=0

uiai

)∗( m∑
j=0

uja
j

))
≥ 0,

which shows that Hm is positive definite. Hence its eigenvalues are all non-negative real
numbers and ∆m ≥ 0.

We next show that ∆m = 0 implies ∆m+1 = 0. Suppose that ∆m = 0. Then there exists
u ̸= 0 such that Hmu = 0. Set

v =

[
u
0

]
∈ Cm+2.

Apparently, v ̸= 0. Since

Hm+1v =

[
Hm ∗
∗ M2m

] [
u
0

]
=

[
Hmu
∗

]
=

[
0
∗

]
,

we have

⟨v, Hm+1v⟩ = 0.

Having shown that Hm+1 is positive definite, we see that ∆m+1 = 0.

Remark 4.1.8 In Theorem 4.1.6 the probability distribution µ is not uniquely determined
in general (determinate moment problem).

Towards application to graphs we mention two basic states on the adjacency algebra
A(G) of a graph G.

(1) Assume that |V | <∞. We define φtr : A → C by

φtr(a) =
1

|V |
Tr (a) =

1

|V |
∑
x∈V

(a)xx , a ∈ A(G).

One can check easily that φtr is a state on A(G). We call it the normalized trace. The
distribution of A in φtr coincides with the spectral distribution of G. Namely,

φtr(A
m) =

∫ +∞

−∞
xmµ(dx),
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where

µ =
1

|V |

s∑
i=1

miδλi
.

(2) We put

C0(V ) = {f : V → C ; f(x) = 0 except finitely many x ∈ V }.

Equipped with the usual operation, C0(V ) becomes a complex vector space. We define the
inner product by

⟨f, g⟩ =
∑
x∈V

f(x) g(x).

With each x ∈ V we associate a function ex ∈ C(V ) defined by

ex(y) =

{
1, if y = x,

0, otherwise.

Then {ex} becomes a basis of C0(V ) sastisfying ⟨ex, ey⟩ = δxy.
The adjacency algebra acts on C0(V ) from the left as usual:

bf(x) =
∑
y∈V

(b)xyf(y), b ∈ A(G), f ∈ C0(V ).

Let us choose and fix an origin (root) of the graph, say, o ∈ V . Then,

φo(a) = (a)oo = ⟨eo, aeo⟩, a ∈ A(G),

is a state on A(G). Thus, (A(G), φo) = (A(G), eo) is an algebraic probability space. We
sometimes call φo the vacuum state at o ∈ V .

Let µ be the distribution of A in φo. Then we have

φo(A
m) = |{m-step walks from o to itself}| =

∫ +∞

−∞
xmµ(dx).

Theorem 4.1.9 If G is a finite distance-regular graph, we have

φtr = φo (as a state on the adjacency algebra A(G)).

Proof. Let a ∈ A(G). We see from Theorem 3.3.4 that a is a linear combination of
distance matrices:

a =
d∑

k=0

ckA
(k).

Then, (a)xx = c0 for all x ∈ V , and (a)xx = (a)oo Therefore,

φtr(a) =
1

|V |
∑
x∈V

(a)xx = (a)oo = φo(a).

This proves the assertion.
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4.2 Interacting Fock Spaces (IFS’s)

Definition 4.2.1 A real sequence {ωn}∞n=1 is called a Jacobi sequence if

(i) [infinite type] ωn > 0 for all n ≥ 1; or

(ii) [finite type] there exists m0 ≥ 1 such that ω1 > 0, ω2 > 0, . . . , ωm0−1 > 0, ωm0 =
ωm0+1 = · · · = 0.

By definition (0, 0, . . . ) is a Jacobi sequence (m0 = 1).

Given a Jacobi sequence {ωn}, we consider a Hilbert space Γ as follows: If {ωn} is
of infinite type, let Γ be an infinite dimensional Hilbert space with an orthonormal basis
{Φ0,Φ1, . . . }. If {ωn} is of finite type, let Γ be an m0-dimensional Hilbert space with an
orthonormal basis {Φ0,Φ1, . . . ,Φm0−1}. We call Φ0 the vacuum vector.

We next define linear operators B± on Γ by

B+Φn =
√
ωn+1Φn+1, n = 0, 1, . . . , (4.3)

B−Φ0 = 0, B−Φn =
√
ωn Φn−1, n = 1, 2, . . . , (4.4)

where we understand B+Φm0−1 = 0 when {ωn} is of finite type. We call B− the annihilation
operator and B+ the creation operator.

Definition 4.2.2 A pair of sequences ({ωn}, {αn}) is called a Jacobi parameter or Jacobi
coefficients if

(i) {ωn} is a Jacobi sequence of infinite type and {αn} is an infinite real sequence; or

(ii) {ωn} is a Jacobi sequence of finite type with length m0 and {α1, α2, . . . , αm0+1} is a
finite real sequence with m0 + 1 terms.

Given a Jacobi parameter ({ωn}, {αn}) we define the Hilbert space Γ with an orthonormal
basis {Φn}, the annihilation oprtator B− and the creation operator B+ as above. In addition
we define the conservation operator by

B◦Φn = αn+1Φn, n = 0, 1, 2, . . . . (4.5)

Definition 4.2.3 The quintuple (Γ, {ωn}, B+, B−, B◦) obtained as above is called an inter-
action Fock space associated with a Jacobi parameter ({ωn}, {αn}). When {αn = 0} is a
null sequence, we omit B◦ and {αn}.

We note that
(B+)∗ = B−, (B−)∗ = B+, (B◦)∗ = B◦.

Let A be the ∗-algebra generated by B+, B−, B◦, i.e., the set of all (noncommutative) poly-
nomials in B+, B−, B◦. Then the function φ0 defined by

φ0(a) = ⟨Φ0, aΦ0⟩, a ∈ A

is a state on A. We call (A, φ0) = (A,Φ0) an interacting Fock probability space with vacuum
state.
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Figure 4.1: Interaction Fock space

4.3 Orthogonal Polynomials

We denote the inner product of L2(R, µ) by

⟨f, g⟩ =
∫ +∞

−∞
f(x) g(x)µ(dx).

Now we define a sequence of polynomials P0(x), P1(x), . . . by the following reccursive formula:

P0 = 1, P1 = x− ⟨P0, x⟩
⟨P0, P0⟩

P0, P2 = x2 − ⟨P0, x
2⟩

⟨P0, P0⟩
P0 −

⟨P1, x
2⟩

⟨P1, P1⟩
P1, . . . ,

Pn = xn −
n−1∑
k=0

⟨Pk, x
n⟩

⟨Pk, Pk⟩
Pk .

This is the co-called Gram-Schmidt orthogonalization. Then,

Pn(x) = xn + · · · , ⟨Pm, Pn⟩ = 0 for m ̸= n.

We call {Pn} the orthogonal polynomials associated with µ.
The procedure of forming the orthogonal polynomials stops at the m0 step if

⟨P0, P0⟩ > 0, . . . , ⟨Pm0−1, Pm0−1⟩ > 0, ⟨Pm0 , Pm0⟩ = 0

happens. In that case the orthogonal polynomials consists of P0(x), P1(x), . . . , Pm0−1(x).
This happens if and only if supp (µ) consists of exactly m0 points, i.e., µ is a sum of delta
measures at different m0 points with positive coefficients.

Theorem 4.3.1 (The three-term recurrence relation) Let {Pn(x)}∞n=0 be the orthogo-
nal polynomials associated with µ ∈ Pfm(R). Then there exist a pair of sequences {αn}∞n=1
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and {ωn}∞n=1 with αn ∈ R, ωn > 0, such that

P0(x) = 1,

P1(x) = x− α1, (4.6)

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x), n = 1, 2, . . . . (4.7)

Moreover,

∥P0∥ = 1, ∥Pn∥2 = ω1ω2 · · ·ωn, n ≥ 1, (4.8)

α1 =M1(µ) = mean (µ) =

∫ +∞

−∞
xµ(dx), (4.9)

ω1 = var (µ) =

∫ +∞

−∞
(x− α1)

2µ(dx). (4.10)

Proof. Well known and omitted.

Definition 4.3.2 We call the pair of sequences ({αn}∞n=1, {ωn}∞n=1) the Jacobi coefficients
of the orthogonal polynomial associated with µ (or simply of µ).

Remark 4.3.3 Setting P−1 = 0 and understanding ω0P−1 = 0, we regard (4.7) is valid also
for n = 0. Remind that ω0 is not defined.

Remark 4.3.4 If the orthogonal polynomials consists of m0 polynomials, we understand
the Jacobi coefficients are given by ({α1, α2, . . . , αm0}, {ω1, ω2, . . . , ωm0−1}).

Example 4.3.5 Let T̃n(x) be the polynomial defined in Exercise 3.6. They are orthogonal
polynomials associated with the arcsine law

1

π

dx√
4− x2

, −2 < x < 2.

The Jacobi parameters are {ωn} = {2, 1, 1, . . . } and {αn} = {0, 0, 0, . . . }.

Theorem 4.3.6 Let µ ∈ Pfm(R) and ({ωn}, {αn}) its Jacobi coefficients. Let
(Γ, {Φn}, B+, B−, B◦) be the interacting Fock space associated with ({ωn}, {αn}). Then it
holds that

Mm(µ) =

∫ +∞

−∞
xmµ(dx) = ⟨Φ0, (B

+ +B◦ +B−)mΦ0⟩ (4.11)

Proof. Using
∥Pn∥ =

√
ωn · · ·ω1 ,

we obtain from (4.7)

x
Pn(x)√
ωn · · ·ω1

=
√
ωn+1

Pn+1(x)√
ωn+1 · · ·ω1

+ αn+1
Pn(x)√
ωn · · ·ω1

+
√
ωn

Pn−1(x)√
ωn−1 · · ·ω1

. (4.12)
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We define an isometry U : Γ → L2(R, µ) by

UΦn =
Pn(x)√
ωn · · ·ω1

, n = 0, 1, 2, . . . .

Then, we have
xUΦn =

√
ωn+1 UΦn+1 + αn+1 UΦn +

√
ωn UΦn−1 ,

so

U∗xUΦn =
√
ωn+1Φn+1 + αn+1Φn +

√
ωn Φn−1

= (B+ +B◦ +B−)Φn .

Therefore,
U∗xU = B+ +B◦ +B−.

Then we have

⟨Φ0, (B
+ +B◦ +B−)mΦ0⟩ = ⟨UΦ0, U(B

+ +B◦ +B−)mΦ0⟩ = ⟨UΦ0, x
mUΦ0⟩

= ⟨P0, x
mP0⟩ =

∫ +∞

−∞
xmµ(dx) =Mm(µ).

This proves the assertion.

Remark 4.3.7 U is not necessarily unitary, i.e, surjective.

4.4 Applications to Distance-Regular Graphs

Let G = (V,E) be a connected graph. Fix an origin o ∈ V we consider the stratification:

V =
∞∪
n=0

Vn , Vn = {x ∈ V ; ∂(x, o) = n}.

Let A be the adjacency matrix.
We define three matrices Aϵ as follows: Let x ∈ Vn.

(A+)yx =

{
1, if y ∼ x and y ∈ Vn+1,

0, otherwise,

(A◦)yx =

{
1, if y ∼ x and y ∈ Vn,

0, otherwise,

(A−)yx =

{
1, if y ∼ x and y ∈ Vn−1,

0, otherwise,

It is convenient to unify the above in the following form:

(Aϵ)yx =

{
1, if y ∼ x and y ∈ Vn+ϵ,

0, otherwise,
ϵ ∈ {+,−, ◦}.



44 CHAPTER 4. QUANTUM PROBABILITY

Figure 4.2: Quantum decomposition of the adjacency matrix

Lemma 4.4.1 (1) A = A+ + A− + A◦.

(2) (A+)∗ = A− and (A−)∗ = A+.

(3) (A◦)∗ = A.

Proof. Easy.

Definition 4.4.2 We call A = A+ + A− + A◦ the quantum decomposition of the adjacency
matrix with respect to the origin o ∈ V . Each Aϵ is called a quantum component.

We define

Φn =
1√
|Vn|

∑
x∈Vn

ex .

By definition, Φ0 = eo. We note that

⟨Φm,Φn⟩ = δmn.

Let Γ = Γ(G, o) denote the subspace of C(V ) spanned by Φ0,Φ1, . . . .

Lemma 4.4.3 For x ∈ Vn,

Aϵex =
∑

y∈Vn+ϵ, y∼x

ey , ϵ ∈ {+,−, ◦}.

Lemma 4.4.4

AϵΦn =
1√
|Vn|

∑
y∈Vn+ϵ

|ω−ϵ(y)|ey (4.13)

Proof. Let us consider A+. By definition√
|Vn|A+Φn =

∑
x∈Vn

A+ex =
∑

y∈Vn+1

|ω−(y)|ey ,
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which proves the assertion.

We see from (4.13) that AϵΦn is not necesarily a constant multiple of Φn+ϵ, in other words,
Γ is not necessarily closed under the actions of the quantum components. The quqnatum
probabilistic approach is useful in the case where

(i) Γ is closed under the actions of the quantum components;

(ii) Γ is asymptotically closed under the actions of the quantum components.

Here we discuss typical examples for (i).

Theorem 4.4.5 Let G be a distance-regular graph with the intersection array:c0 c1 c2 · · ·
a0 a1 a2 · · ·
b0 b1 b2 · · ·

 .

Fix an origin o ∈ V , we consider the stratification of G, the unit vectors Φ0 = eo,Φ1,Φ2, . . . ,
the linear space Γ = Γ(G, o), and the quantum decomposition of the adjacency matrix A =
A+ + A− + A◦. Then, Γ is invariant under the actions of the quantum components Aϵ.
Moreover,

A+Φn =
√
ωn+1Φn+1, n = 0, 1, . . . , (4.14)

A−Φ0 = 0, A−Φn =
√
ωn Φn−1, n = 1, 2, . . . , (4.15)

A◦Φn = αn+1Φn, n = 0, 1, 2, . . . , (4.16)

where
ωn = bn−1cn , αn = an−1, n = 1, 2, . . . .

Proof. We continue the calculation of (4.13). Since G is distance-regular, we know
that for y ∈ Vn+ϵ,

|ω−ϵ(y)| =


cn+1 , if ϵ = +,

an , if ϵ = ◦,
bn−1 , if ϵ = −.

Then, for ϵ = + we have

A+Φn =
1√
|Vn|

∑
y∈Vn+1

cn+1ey = cn+1

√
|Vn+1|√
|Vn|

Φn+1 . (4.17)

Similarly,

A−Φn =
1√
|Vn|

∑
y∈Vn−1

bn−1ey = bn−1

√
|Vn−1|√
|Vn|

Φn−1 (4.18)

and

A◦Φn =
1√
|Vn|

∑
y∈Vn

aney = anΦn . (4.19)
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Now (4.16) is obvious from (4.18). We note that

bn|Vn| = cn+1|Vn+1|,

wich counts the number of edges betwen two strata Vn and Vn+1. Then, the coefficient on
the right-hand side of (4.17) becomes

cn+1

√
|Vn+1|√
|Vn|

= cn+1

√
bn
cn+1

=
√
bncn+1 =

√
ωn+1 .

Similarly, for (4.18) we have

bn−1

√
|Vn−1|√
|Vn|

= bn−1

√
cn
bn−1

=
√
bn−1cn =

√
ωn .

These show that (4.14) and (4.15).

The main point is that, accroding to the quantum decomposition of the adjacency matrix
A = A+ + A− + A◦, we found an interacting Fock space structure. Thus,

AΦn =
√
ωn+1Φn+1 + αn+1Φn +

√
ωn Φn−1, n = 0, 1, 2, . . . , (4.20)

where
ωn = bn−1cn , αn = an−1, n = 1, 2, . . . .

Theorem 4.4.6 Let G be a distance-regular graph with adjacency matrix A. Let ({ωn}, {αn})
be defined by

ωn = bn−1cn , αn = an−1 , n = 1, 2, . . . ,

where an, bn, cn come from the intersection array of G. A probability measure µ satisfies

φo(A
m) = (Am)oo =Mm(µ) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . ,

if and only if the Jacobi coefficients of µ coincide with ({ωn}, {αn}).

Exercises 4

4.1 Let Tn(x) be a polynomial of degree n determined by

Tn(cos θ) = cosnθ.

Show that
T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x),

and ∫ 1

−1

Tm(x)Tn(x)
dx√
1− x2

=


π, m = n = 0,

π/2, m = n ≥ 1,

0, otherwise.
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4.2 Let G is a finite distance-regular graph. Then two states φtr and φo on the adjacency
algebra A(G) coincide. [Hint: Any a ∈ A(G) is a linear combination of distance matrices:
a =

∑d
k=0 ckA

(k).]

4.3 Let (Γ(C), {Φn}, B+, B−) be an interacting Fock space associated with {ωn}. Ex-
amine the action of the commutator [B−, B+] = B−B+ − B+B−. In particular, the cases
when {ωn = n} (Boson Fock space), {ωn ≡ 1} (free Fock space), and {ω1 = 1, ω2 = · · · = 0}
(Fermion Fock space).

4.4∗ Find the Jacobi coefficients associated with the one-dimensional integer lattice Z.

4.5∗ Find the Jacobi coefficients associated with the homogeneous tree of degree κ. (Z
is the case of κ = 2)

4.6∗ Prove that every state φ on M(n,C) is expressible in terms of a density matrix
ρ ∈M(n,C) in such a way that

φ(a) = Tr (ρa), a ∈M(n,C).

Moreover, ρ is uniquely determined.

4.7∗ Let us study the cube in detail (Exercise 3.3).

(1) Find the spectrum.

(2) Find the Jacobi coefficients.

(3) Find the associated polynomials {Pn(x)} determined by the three-term recurrence
relation.

(4) Examine that {Pn(x)} is orthogonal polynomials associated with the spectral distri-
bution.
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5 Stieltjes Transform and Continued Fraction

5.1 Overview

With each µ ∈ Pfm(R) we associated two sequences, the moment sequence {Mm} and
the Jacobi parameter ({ωn}, {αn}).

Pfm(R)

M J

�
�	

@
@R

-

M J

bij

Here we repeat the definitions of M. For an infinite sequence of real numbers {M0 =
1,M1,M2, . . . } we define the Hankel determinants by

∆m = det


M0 M1 . . . Mm

M1 M2 . . . Mm+1
...

...
...

Mm Mm+1 . . . M2m

 , m = 0, 1, 2, . . . . (5.1)

Let M be the set of infinite sequences of real numbers {M0 = 1,M1,M2, . . . } satisfying one
of the following two conditions:

(i) [infinite type] ∆m > 0 for all m = 0, 1, 2, . . . ;

(ii) [finite type] there exists m0 ≥ 1 such that ∆0 > 0,∆1 > 0, . . . ,∆m0−1 > 0 and
∆m0 = ∆m0+1 = · · · = 0.

Let J be the set of pairs of sequences ({ωn}, {αn}) satisfying one of the following conditions:

(i) [infinite type] {ωn} is a Jacobi sequence of infinite type and {αn} is an infinite sequence
of real numbers;

(ii) [finite type] {ωn} is a Jacobi sequence of finite type and {αn} is a finite real sequence
{α1, . . . , αm0}, where m0 ≥ 1 is the smallest number such that ωm0 = 0.

The map Pfm(R) → M is surjective. In fact, it follows from Hamburger’s theorem that
for any {Mm} satisfying condition (M1) or (M2) the exists µ ∈ Pfm(R) whose moment
sequence coincides with {Mm}. But the map Pfm(R) → M is not injective.

Definition 5.1.1 A probability measure µ ∈ Pfm(R) is called the solution of a determinate
moment problem if M−1(M(µ)) = {µ}.

Theorem 5.1.2 (Carlemen’s moment test) Let {Mm} ∈ M. If

∞∑
m=1

M
− 1

2m
2m = +∞,

then there exists a unique µ ∈ Pfm(R) such that Mm(µ) =Mm for all m = 1, 2, . . . .
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The proof is omitted, see e.g., Shohat–Tamarkin [11].

Example 5.1.3 (1) If supp (µ) is compact, then µ is the solution of a determinate moment
problem.

(2) A classical Gaussian measure N(m,σ2) is the solution of a determinate moment
problem. The density of the standard Gaussian measure N(0, 1) is given by

1√
2π

e−x2/2 .

In fact, by the Stirling formula we have

M2m =
(2m)!

2mm!
∼

√
2

(
2m

e

)m

.

(3) The classical Poisson measure with parameter λ > 0 is defined by

pλ = e−λ

∞∑
k=0

λk

k!
δk .

The Poisson measure is the solution of a determinate moment problem. It is easily verified
that Mm ≤ (λ+m)m.

Recall that, given µ ∈ Pfm(R), we obtain the Jacobi coefficients ({ωn}, {αn}) from the
three-term recurrence relation (Theorem 4.3.1) satisfied by the orthogonal polynomials {Pn}
associated with µ. Since the Gram-Schmidt orthogonalization is performed by using the
moments of µ, the Jacobi coefficients ({ωn}, {αn}) depend only on {Mm(µ)}. Therefore, the
map M → J is well defined.

Theorem 5.1.4 The map F : M → J is bijective.

The proof is omitted, see e.g., Hora–Obata [3].

Remark 5.1.5 F−1 : J → M is expressed explicitly by the Accardi–Bożejko formula [12].

Theorem 5.1.6 (Carleman) Let µ ∈ Pfm(R) and ({ωn}, {αn}) be its Jacobi coefficients.
If

∞∑
n=1

1
√
ωn

= +∞,

then µ is the solution of a determinate moment problem. (If {ωn} contains 0, we understand
the above condition is satisfied.)

The main topic in this chapter is how to recover µ ∈ Pfm(R) from ({ωn}, {αn}) ∈ J when
the uniqueness holds. For that purpose we need the Stieltjes transform.

{Mm} ({ωn}, {αn})

G(z)

µ {Pn(x)}
�

�
�

�
��/ ?

-

?

�

�
�

�=
Z
Z
Z~
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5.2 Stieltjes Transform

For a probability measure µ ∈ P(R) (not necessarily having finite moments) the Stieltjes
transform or the Cauchy transform is defined by

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
. (5.2)

The integral exists for all z ∈ C \ suppµ since the distance between such a z and suppµ is
positive. We list some fundamental properties, the proofs of which are straightforward.

Proposition 5.2.1 Let G(z) = Gµ(z) be the Stieltjes transform of a probability measure
µ ∈ P(R).

(1) G(z) is analytic on C \ suppµ.
(2) ImG(z) < 0 for Im z > 0 and ImG(z) > 0 for Im z < 0.

(3) |G(z)| ≤ |Im z|−1 for Im z ̸= 0.

(4) G(z̄) = G(z). In particular, G(z) is completely determined by its values on the upper
half plane {Im z > 0}.

Example 5.2.2 For µ =
s∑

j=1

pjδλj
we have

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
=

s∑
j=1

pj
z − λj

.

In contrast with the moment sequence, we have the following

Theorem 5.2.3 For two probability measure µ1, µ2 ∈ P(R), Gµ1 = Gµ2 implies µ1 = µ2.

The proof is direct from the inversion formula mentioned below.

Theorem 5.2.4 (Stieltjes inversion formula) Let G(z) be the Stieltjes transform of µ ∈
P(R). Then for any pair of real numbers s < t, we have

− 2

π
lim
y→+0

∫ t

s

ImG(x+ iy)dx = F (t) + F (t− 0)− F (s)− F (s− 0),

where F is the distribution function defined by F (x) = µ((−∞, x]).

Theorem 5.2.5 Let G(z) be the Stieltjes transform of µ ∈ P(R). Then

ρ(x) = − 1

π
lim
y→+0

ImG(x+ iy)

exists x ∈ R a.e. and ρ(x)dx is the absolutely continuous part of µ.



5.3. CONTINUED FRACTION 51

The discrete or singular continuous part of µ is more complicated to obtain from its
Stieltjes transform. For our later application we only need the following

Proposition 5.2.6 Let µ ∈ P(R). Then its Stieltjes transform G(z) has a simple pole at
z = a ∈ R if and only if a is an isolated point of suppµ, i.e., µ is a convex combination of
δa and a probability measure ν ∈ P(R) such that supp ν ∩ {a} = ∅ in such a way that

µ = cδa + (1− c)ν, 0 < c ≤ 1.

In that case, c = Resz=aG(z).

5.3 Continued Fraction

First we recall the notion of a continued fraction. In general, expressions of the forms

a1

b1 +
a2

b2 +
a3

b3 + .. .
+
an
bn

=
a1
b1 +

a2
b2 +

a3
b3 + · · ·+

an
bn

(5.3)

and
a1

b1 +
a2

b2 +
a3

b3 + .. .

=
a1
b1 +

a2
b2 +

a3
b3 + · · ·

(5.4)

are called continued fractions. Since the expressions in the left hand sides are space-
consuming, we hereafter adopt the ones in the right hand sides. We only need to consider
complex numbers {ak} and {bk}. For the infinite continued fraction (5.4), if

τn =
a1
b1 +

a2
b2 +

a3
b3 + · · ·+

an
bn

exists (namely, denominator is not zero) except finitely many n and limn→∞ τn exists, we say
that the infinite fraction converges and define

a1
b1 +

a2
b2 +

a3
b3 + · · ·

= lim
n→∞

τn .

In other words, the value of the infinite continued fraction (5.4) is defined as the limit of the
nth approximant :

a1
b1 +

a2
b2 +

a3
b3 + · · ·

= lim
n→∞

a1
b1 +

a2
b2 +

a3
b3 + · · ·+

an
bn
.
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Example 5.3.1 (Euclidean algorithym) Every rational number q/p, 0 ≤ q ≤ p, p =
1, 2, . . . , admits a continuous fraction expansion of the form:

1

b1 +

1

b2 +

1

b3 + · · ·+
1

bn
.

For example,
5

13
=

1

2 +
3

5

=
1

2 +
1

1 +
2

3

=
1

2 +
1

1 +
1

1 +
1

2

Example 5.3.2 (Golden number) The golden number x is defined in such a way that the
big and small rectangles in the following picture are similar.

?

6

1

� -1

� -x

In fact, x satisfies that x2 − x− 1 = 0 so that

x =
1 +

√
5

2
= 1 +

1

1 +

1

1 +

1

1 + · · ·
This may be derived by successive application of rationalization of numerators. But, formally
the following derivation is much simpler:

x = 1 +
1

x
= 1 +

1

1 +
1

x

= 1 +
1

1 +
1

1 +
1

x

= · · · = 1 +
1

1 +
1

1 +
1

1 +
. . .

5.4 Finite Jacobi Matrices

Let ({ωn}, {αn}) ∈ J and set

T = Tn =



α1

√
ω1√

ω1 α2

√
ω2√

ω2 α3

√
ω3

. . . . . . . . .
. . . . . . . . .√

ωn−2 αn−1

√
ωn−1√

ωn−1 αn


, (5.5)
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whenever ωn−1 > 0. A matrix of the form (5.5) is called a Jacobi matrix (of finite type).
We set

e0 =


1
0
...
0

 .
Proposition 5.4.1

⟨e0, (z − T )−1e0⟩ =
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

. (5.6)

Proof. We set

(z − T )−1e0 = f =


f0
f1
...

fn−1

 .
First note that

⟨e0, (z − T )−1e0⟩ = ⟨e0, f⟩ = f0 .

On the other hand, we see from (z − T )f = e0 that
(z − α1)f0 −

√
ω1 f1 = 1,

−
√
ωi fi−1 + (z − αi+1)fi −

√
ωi+1 fi+1 = 0, i = 1, 2, . . . , n− 2,

−
√
ωn−1 fn−2 + (z − αn)fn−1 = 0.

(5.7)

From the first relation in (5.7) we obtain

f0

{
(z − α1)−

√
ω1

f1
f0

}
= 1,

and hence

f0 =
1

z − α1 −
√
ω1

f1
f0

. (5.8)

Similarly, from (5.7) we obtain

−
√
ωi fi−1 + fi

{
(z − αi+1)−

√
ωi+1

fi+1

fi

}
= 0 ,

and therefore √
ωi

fi
fi−1

=
ωi

z − αi+1 −
√
ωi+1

fi+1

fi

. (5.9)

Finally, from (5.7) we have √
ωn−1

fn−1

fn−2

=
ωn−1

z − αn

. (5.10)
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Combining (5.8)–(5.10), we come to

f0 =
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

,

from which (5.6) follows.

Proposition 5.4.2 For k = 1, 2, . . . , n we define monic polynomials Pk(z) = zk + · · · and
Qk−1(z) = zk−1 + · · · by

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωk−1

z − αk

=
Qk−1(z)

Pk(z)
. (5.11)

Then, the following recurrence relations are satisfied:{
P0(z) = 1, P1(z) = z − α1 ,

Pk(z) = (z − αk)Pk−1(z)− ωk−1Pk−2(z), k = 2, 3, . . . , n,
(5.12){

Q0(z) = 1, Q1(z) = z − α2 ,

Qk(z) = (z − αk+1)Qk−1(z)− ωkQk−2(z), k = 2, 3, . . . , n− 1.
(5.13)

Proof. By induction, see also Exercise 1.

Proposition 5.4.3 (Determinantal formula) For k = 1, 2, . . . , n it holds that

Pk(z) = det



z − α1 −
√
ω1

−
√
ω1 z − α2 −

√
ω2

−
√
ω2 z − α3 −

√
ω3

. . . . . . . . .

−
√
ωk−2 z − αk−1 −

√
ωk−1

−
√
ωk−1 z − αk


= det(z − Tk).

For k = 2, 3, . . . , n it holds that

Qk−1(z) = det



z − α2 −
√
ω2

−
√
ω2 z − α3 −

√
ω3

. . . . . . . . .

−
√
ωk−2 z − αk−1 −

√
ωk−1

−
√
ωk−1 z − αk


.

Proof. By expanding the determinants in the last column one can check easily that
these determinants satisfy the recurrence relations in (5.12) and (5.13).

We now need spectral properties of the Jacobi matrix T .
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Proposition 5.4.4 Every eigenvalue of T = Tn is real and simple. Moreover,

SpecTn = {λ ∈ C ; Pn(λ) = 0}. (5.14)

Proof. Since T is an n× n real symmetric matrix, it has n real eigenvalues. (5.14) is
obvious from det(z − Tn) = Pn(z), see Proposition 5.4.3.

We prove that every eigenspace of T is of one dimension. Let λ be an eigenvalue of T
and f a correswponding eigenvector. We write

f =


f0
f1
...

fn−1

 .
Then (λ− T )f = 0 is equivalent to the following

(λ− α1)f0 −
√
ω1 f1 = 0,

−
√
ωi fi−1 + (λ− αi+1)fi −

√
ωi+1 fi+1 = 0, i = 1, 2, . . . , n− 2,

−
√
ωn−1 fn−2 + (λ− αn)fn−1 = 0.

(5.15)

Now let h, g be two eigenvectors corresponding to λ. Choose (α, β) ∈ R2, (α, β) ̸= (0, 0),
such that αg0 + βh0 = 0. Since f = αg + βh satisfies (λ − T )f = 0, we have (5.15). Note
that f0 = 0. Then, succesive application of (5.15) implies f1 = · · · = fn−1 = 0. Thus we
have f = 0, which means that g and h are linearly dependent. Consequently, the eigenspace
corresponding to λ is of one dimension.

Proposition 5.4.5 For λ ∈ SpecT we put

f(λ) =


P0(λ)

P1(λ)/
√
ω1

...

Pn−1(λ)/
√
ωn−1 · · ·ω1

 . (5.16)

Then f(λ) ̸= 0 and Tf(λ) = λf(λ). Namely, f(λ) is an eigenvector associated with λ.

Proof. f(λ) ̸= 0 is obvious since P0(λ) = 1. In view of (5.12) we obtain

P0(λ) = 1,

P1(λ) = λ− α1 ,

Pk(λ) = (λ− αk)Pk−1(λ)− ωk−1Pk−2(λ), k = 2, 3, . . . , n− 1,

0 = (λ− αn)Pn−1(λ)− ωn−1Pn−2(λ).
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The last identity comes from Pn(λ) = det(λ− T ) = 0. Then a simple computation yields√
ω1

P1(λ)√
ω1

= λ− α1 = (λ− α1)P0(λ),√
ωk

Pk(λ)√
ωk · · ·ω1

= (λ− αk)
Pk−1(λ)√
ωk−1 · · ·ω1

−
√
ωk−1

Pk−2(λ)√
ωk−2 · · ·ω1

,

for k = 2, 3, . . . , n− 1, and

0 = (λ− αn)
Pn−1(λ)√
ωn−1 · · ·ω1

−
√
ωn−1

Pn−2(λ)√
ωn−2 · · ·ω1

.

The above relations are combined into a single identity: (λ− T )f(λ) = 0.

Proposition 5.4.6 Define a measure µ on R by

µ =
∑

λ∈SpecT

∥f(λ)∥−2δλ , (5.17)

where f(λ) ∈ Rn is given by (5.16). Then, µ ∈ Pfm(R) and

⟨e0, (z − T )−1e0⟩ =
∫ +∞

−∞

µ(dx)

z − x
. (5.18)

Proof. Since every eigenvalue of T is simple (Proposition 5.4.4), we see from Propo-
sition 5.4.5 that {∥f(λ)∥−1f(λ) ; λ ∈ SpecT} becomes a complete orthonormal basis of Cn.
Hence

⟨e0, (z − T )−1e0⟩ =
∑

λ∈SpecT

⟨e0, ∥f(λ)∥−1f(λ)⟩⟨∥f(λ)∥−1f(λ), (z − T )−1e0⟩

=
∑

λ∈SpecT

∥f(λ)∥−2⟨e0, f(λ)⟩⟨(z̄ − T )−1f(λ), e0⟩

=
∑

λ∈SpecT

∥f(λ)∥−2(z − λ)−1.

where we used ⟨e0, f(λ)⟩ = P0(λ) = 1 and (z̄ − T )−1f(λ) = (z̄ − λ)−1f(λ). Then, in view of
(5.17) we obtain

⟨e0, (z − T )−1e0⟩ =
∑

λ∈SpecT

∥f(λ)∥−2

z − λ
=

∫ +∞

−∞

µ(dx)

z − x
,

which proves (5.18).
We need to show that µ(R) = 1. This may be proved by observing asymptotics of both

sides of (5.18). In fact, with the help of Propositions 5.4.1 and 5.4.2 we see that

lim
z→∞
Re z=0

z⟨e0, (z − T )−1e0⟩ = lim
z→∞
Re z=0

zQn−1(z)

Pn(z)
= 1, (5.19)
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where we applied the fact that both zQn−1(z) and Pn(z) are monic polynomials of degree n.
On the other hand,

lim
z→∞
Re z=0

z

∫ +∞

−∞

µ(dx)

z − x
=

∫ +∞

−∞
µ(dx) = µ(R) (5.20)

by the dominated convergence theorem. We see from (5.19) and (5.20) that µ(R) = 1.

Definition 5.4.7 For any probability measure µ (not necessarily having moments) the in-
tegral

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
, Im z ̸= 0

converges and Gµ(z) becomes a holomorphic function in {Im z ̸= 0} = C\R. We call Gµ(z)
the (Cauchy-) Stieltjes transform of µ.

Theorem 5.4.8 Let α1, . . . , αn ∈ R and ω1 > 0, . . . , ωn−1 > 0. Then the polynomi-
als P0(z), P1(z), . . . , Pn−1(z) defined by the recurrence relation (5.12) are the orthogonal
polynomials associated with µ defined in (5.17). Therefore, the Jacobi coefficients of µ is
({α1, . . . , αn}, {ω1, . . . , ωn−1}). Moreover, the Stieltjies transform Gµ(z) admits a continued
fraction expansion:

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

.

Proof. By using the recurrence formula (5.12) we may see easily that

P0(T )e0 = e0 , Pk(T )e0 =
√
ωk · · ·ω1 ek , k = 1, 2, . . . , n− 1. (5.21)

On the other hand, for any polynomials p, q with real coefficients we have

⟨p(T )e0, q(T )e0⟩ =
∑

λ∈SpecT

⟨p(T )e0, ∥f(λ)∥−1f(λ)⟩⟨∥f(λ)∥−1f(λ), q(T )e0⟩

=
∑

λ∈SpecT

∥f(λ)∥−2⟨e0, p(T )f(λ)⟩⟨q(T )f(λ), e0⟩

=
∑

λ∈SpecT

∥f(λ)∥−2p(λ)q(λ)⟨e0, f(λ)⟩⟨f(λ), e0⟩

=
∑

λ∈SpecT

∥f(λ)∥−2p(λ)q(λ)

=

∫ +∞

−∞
p(x)q(x)µ(dx).

Hence, in particular,∫ +∞

−∞
Pj(x)Pk(x)µ(dx) = ⟨Pj(T )e0, Pk(T )e0⟩ = ωj · · ·ω1⟨ej, ek⟩

so that P0(z), P1(z), . . . , Pn−1(z) are the orthogonal polynomials associated with µ.
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5.5 General Case

Let ({ωn}, {αn}) ∈ J be of infinite type. Then for any n, defining a Jacobi matrix Tn as in
(5.5), we obtain a probability measure µn and the polynomials {P0(x), P1(x), . . . , Pn(x)} as
in the previous section. Since these polynomials are defined by the recurrence relation with
({ωn}, {αn}), {P0(x), P1(x), . . . , Pn(x)} are common for all µm for m ≥ n. Consequently,
given ({ωn}, {αn}), we have an infinite sequence of probability measuresmun, and an infinite
sequence polynomials

P0(x) = 1, P1(x), . . . , Pn(x) = xn + · · · , , . . . .

Lemma 5.5.1 Let µ ∈ Pfm(R) be a probability measure whose Jacobi coefficients are ({ωn}, {αn}) ∈
J. Then, for any m = 1, 2, . . . we have

lim
n→∞

Mm(µn) =Mm(µ).

Proof. In general, Mm(ν) is described by the first m terms of the Jacobi coefficients
of ν. Suppose that n ≥ m. Then we see that

Mm(µn) =Mm(µn+1) = · · · =Mm(µ),

from which the assertion is clear.

Theorem 5.5.2 Let µ ∈ Pfm(R) be the solution of a determinate moment problem and
({ωn}, {αn}) be the Jacobi coefficients. Then the Stieltjies transform Gµ(z) admits a contin-
ued fraction expansion:

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

,

where the right-hand side converges in {Im z ̸= 0}.

Proof. By Theorem 5.4.8 we have∫ +∞

−∞

µn(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

.

On the other hand, it follows from Lemma 5.5.1 and the assumption that µn converges to µ
weakly. Since x 7→ 1/(z − x) is a bounded continuous function on R, we have

lim
n→∞

∫ +∞

−∞

µn(dx)

z − x
=

∫ +∞

−∞

µ(dx)

z − x
.

This completes the proof.
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Exercises 5

1. Compute the following continued fractions:

(1)
1

2 +

3

5 +

2

3

(2)
1

z − 1−
3

z − 2−
1

z

2. Find the continued fraction expansion.

(1)
7

45

(2)
z + 1

z2 + 2

3. Compute the following continued fractions:

(1) [silver number] 2 +
1

2 +

1

2 +

1

2 + · · ·

(2)
1

z +

a

z +

a

z + · · ·
(a > 0)

4. Let µ =
1

4
δ−2 +

1

2
δ0 +

1

4
δ+1. Compute the Stieltjes transform G(z). Then find its

poles and residues.

5. Let
√
z be defined by taking a branch of

√
1 = 1. Find the following limits:

lim
y→+0

√
z lim

y→−0

√
z

Similarly, define
√
z2 − 4 by taking a branch in such a way that

√
z2 − 4 > 0 for z > 2.

Compurte the following
lim
y→+0

√
z2 − 4 lim

y→−0

√
z2 − 4

where z = x+ iy.
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6 Kesten Distributions

6.1 Homogeneous Trees

Definition 6.1.1 A connected graph is called a tree if it has no cycles. A tree is called
homogeneous if it is regular.

Figure 6.1: Homogeneous tree of degree 4

Let Tκ be the homoeeous tree of deree κ ≥ 2 and A = Aκ the adjacency matrix. We
choose and fix a vertex o ∈ Tκ as an origin (root). Our interests are:

(i) Find the vacuum spectral distribution of A, namely, a probability measure satisfying

⟨eo, Ameo⟩ = |{m-step walks from o to itself}|. =
∫ +∞

−∞
xmµκ(dx), m = 1, 2, . . . ,

(ii) Asymptotic behavior of µκ for a large κ.

6.2 Vacuum Spectral Distribution

Recall that Tκ is a distance-regular graph with intersection array:0 1 1 . . .
0 0 0 . . .
κ κ− 1 κ− 1 . . .


We see from Theorem 4.4.6 that the vacuum spectral distribution µ = µκ has the Jacobi
parameter

ωn = bn−1cn : κ, κ− 1, κ− 1, . . . ; αn = an−1 ≡ 0.

Namely,

Lemma 6.2.1 The vacuum spectral distribution µκ is a probability measure whose Jacobi
coefficients are

ω1 = κ, ω2 = ω3 = · · · = κ− 1, α1 = α2 = · · · = 0.
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Therefore, µκ is determined by∫ +∞

−∞

µκ(dx)

z − x
=

1

z −
κ

z −
κ− 1

z −
κ− 1

z − · · ·
.

We now introduce the following

Definition 6.2.2 Let p > 0, q ≥ 0 be constant numbers. A probabilty distribution on R
whose Jacobi parameters are given by

ω1 = p, ω2 = ω3 = · · · = q, αn ≡ 0,

is called the Kesten distribution with parameters p, q. In other words, the Kesten distribution
with parameters p, q is determined by∫ +∞

−∞

µ(dx)

z − x
=

1

z −
p

z −
q

z −
q

z − · · ·
.

Remark 6.2.3 By the Carleman condition we see that the Kesten distribution is uniquely
determined by the Jacobi parameters.

Theorem 6.2.4 The vacuum spectral distribution µκ of the homogeneous tree of degree κ is
the Kesten distribution with parameter κ, κ− 1.

6.3 Explicit form of the Kesten distribution

We start with the Stieltjes transform:

G(z) ≡ 1

z −
p

z −
q

z −
q

z − · · ·
.

Straitforward computation yields

G(z) = −1

2

(p− 2q)z + p
√
z2 − 4q

p2 − (p− q)z2
.

Applying the Stieltjes inversion formula:

ρ(x) = − 1

π
lim
y→+0

ImG(x+ iy) =


0, |x| > 2

√
q,

p

2π

√
4q − x2

p2 − (p− q)x2
, |x| < 2

√
q.

We now remark the following

Lemma 6.3.1

p

2π

∫ +2
√
q

−2
√
q

√
4q − x2

p2 − (p− q)x2
dx =

1, 0 < p ≤ 2q,

q

p− q
, 0 < 2q ≤ p,
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Proof. Straightforward computation.

Therefore, when 0 < p ≤ 2q, ρ(x)dx is a probability measure so that µκ(dx) = ρ(x)dx.
Therefore,

G(z) =

∫ +2
√
q

−2
√
q

ρ(x)

z − x
dx.

However, when 0 < 2q ≤ p, ρ(x)dx is not a probability measure and µ contains discrete or
singular continuous parts. In fact, G(z) has two poles at ±p/

√
p− q (which are outside of

[−2
√
q, 2

√
q] when p > q.) The residues are easily computed

Res
z=± p√

p−q

G(z) =
p− 2q

2(p− q)
.

Consequently, we come to the explicit form of the Kesten distributions.

Theorem 6.3.2 The Kesten distribution with parameter p > 0, q ≥ 0 is given by

µ(dx) =


ρ(x)dx, 0 < p ≤ 2q,

ρ(x)dx+
p− 2q

2(p− q)

(
δ− p√

p−q
+ δ p√

p−q

)
, 0 < 2q ≤ p,

1

2

(
δ−√

p + δ√p

)
, q = 0,

where

ρ(x) =


0, |x| > 2

√
q,

p

2π

√
4q − x2

p2 − (p− q)x2
, |x| < 2

√
q.

Theorem 6.3.3 The vacuum spectral distribution of Tκ is given by µκ(dx) = ρκ(x)dx with

ρκ(x) =
κ

2π

√
4(κ− 1)− x2

κ2 − x2
.

6.4 Asymptotics of Tκ as κ→ ∞
We are interested in the asymptotic behavior of µκ as κ→ ∞. Note first that

mean(µκ) =

∫ +∞

−∞
xµκ(dx) = (A)oo = 0,

var(µκ) =

∫ +∞

−∞
(x−mean(µκ))

2µκ(dx) = (A2)oo = deg(o) = κ.

Therefore,
A√
κ
=
A+√
κ
+
A−√
κ

is a reasonable scaling for κ→ ∞.
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It follows from the intersection array of Tκ that

A+√
κ
Φ0 = Φ1,

A+√
κ
Φn =

√
κ− 1

κ
Φn+1 (n ≥ 1) (6.1)

A−√
κ
Φ0 = 0,

A−√
κ
Φ1 = Φ0,

A−√
κ
Φn =

√
κ− 1

κ
Φn−1 (n ≥ 2) (6.2)

The actions of
A±

κ√
κ
in the limit as κ→ ∞ are now easily expected. We are now in a position

to introduce the following

Definition 6.4.1 An interacting Fock space associated with the Jacobi sequence ωn ≡ 1 is
called the free Fock space. Namely, the free Fock space (Γfree, {Ψn}, B+, B−) is defined as

B+Φn = Φn+1 (n ≥ 0), B−Φ0 = 0, B−Φn = Φn−1 (n ≥ 1). (6.3)

Theorem 6.4.2 (Quantum Central Limit Theorem) For any ϵ1, . . . , ϵm ∈ {±} and
m = 1, 2, . . . we have

lim
κ→∞

⟨
Φ0,

Aϵm
κ√
κ
· · · A

ϵ1
κ√
κ
Φ0

⟩
= ⟨Ψ0, B

ϵm · · ·Bϵ1Ψ0⟩

In short, we say that

lim
κ→∞

A±
κ√
κ
= B±

in the sense of stochastic convergence.

Proof. More generally, we may prove that

lim
κ→∞

⟨
Φi,

Aϵm
κ√
κ
· · · A

ϵ1
κ√
κ
Φj

⟩
= ⟨Ψi, B

ϵm · · ·Bϵ1Ψj⟩ (6.4)

for any i, j ≥ 0. The proof is by induction on m. For m = 1 we need to prove that

lim
κ→∞

⟨
Φi,

Aϵ1
κ√
κ
Φj

⟩
= ⟨Ψi, B

ϵ1Ψj⟩ (6.5)

for any i, j ≥ 1 and ϵ1 = ±. Suppose that ϵ1 = +. By (6.1),

lim
κ→∞

⟨
Φi,

A+
κ√
κ
Φ0

⟩
= lim

κ→∞
⟨Φi,Φ1⟩ = ⟨Ψi,Ψ1⟩ = ⟨Ψi, B

+Ψ0⟩,

lim
κ→∞

⟨
Φi,

A+
κ√
κ
Φj

⟩
= lim

κ→∞

√
κ− 1

κ
⟨Φi,Φj+1⟩ = ⟨Ψi,Ψj+1⟩ = ⟨Ψi, B

+Ψj⟩,

where j ≥ 1. Thus, (6.5) is shown for ϵ1 = +. The case of ϵ1 = − is similar.
We now come to the induction step, but the idea is similar. The detailed proof is left to

the reader.

As a direct consequence, we have

Theorem 6.4.3 It holds that

lim
κ→∞

⟨
eo,

(
Aκ√
κ

)m

eo

⟩
= ⟨Φ0, (B

+ +B−)mΦ0⟩, m = 1, 2, . . . .
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6.5 Chebyshev Polynomials of Second Kind

Definition 6.5.1 The Chebyshev polynomialof second kind Un(x) is defined by

Un(cos θ) =
sin(n+ 1)θ

sin θ
, n = 0, 1, 2, . . . .

In fact, we obtain

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x).

Moreover, by simple calculation we see that∫ +1

−1

Um(x)Un(x)
√
1− x2 dx =

π

2
δmn .

Definition 6.5.2 The probability distribution

1

2π

√
4− x2 1[−2,2](x)dx

is called the Wigner semicircle law. This is normalized to have mean 0 and variance 1.

The Wigner semicircle law is the Lesten distribution with parameter p = q = 1.

Theorem 6.5.3 Set Ũn(x) = Un

(x
2

)
. Then {Ũn(x)} is the orthogonal polynomial with

respect to the Wigner semicircle law. Moreover, its Jacobi coefficients are

({ωn ≡ 1}, {αn ≡ 0}).

Proof. Direct computation.

Therefore,

Theorem 6.5.4 Let (Γfree, {Ψn}, B+, B−) be the free Fock space. Then,

⟨Φ0, (B
+ +B−)mΦ0⟩ =

1

2π

∫ +2

−2

xm
√
4− x2 dx, m = 1, 2, . . . .

Combining with Theorem 6.4.3, we obtain the following

Theorem 6.5.5 (Asymptotic spectral distribution for Tκ) It holds that

lim
κ→∞

⟨
eo,

(
Aκ√
κ

)m

eo

⟩
=

1

2π

∫ +2

−2

xm
√

4− x2 dx, m = 1, 2, . . . .
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Exercises 6

1. Fix a vertex o ∈ V of the homogeneous tree Tκ . Let Vn = {x ∈ V ; ∂(x, o) = n}.
Show that

|V0| = 1, |V1| = κ, |V2| = κ(κ− 1), . . . , |Vn| = κ(κ− 1)n−1.

Then verify directly the equality:
|Vn+1|
|Vn|

=
bn
cn+1

where bn and cn are constant numbers appearing in the intersection array of Tκ.

2. Compute the following continued fraction:

1

z −
p

z −
q

z −
q

z − · · ·

3. Verify the facts on the Chebyshev polynomial of second kind defined above.

4∗. Verify the integral formula mentioned in Lemma 6.3.1.

5∗. For the density function: ρκ(x) =
κ

2π

√
4(κ− 1)− x2

κ2 − x2
compute the scaling limit:

lim
κ→∞

√
κ ρκ(

√
κx)

6∗. Let µ be a probability distribution and ({ωn}, {αn}) the Jacobi coefficients. Show
the following:

(1) The Jacobi parameters of the translated µ(dx−s) are given by ({ωn}, {αn+s}), s ∈ R.

(2) The Jacobi parameters of the scaled µ(λ−1dx) are given by ({λ2ωn}, {λαn}), λ ∈ R,
λ ̸= 0.
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7 Catalan Paths and Applications

7.1 Moments of the Wigner Semicircle Law

The Wigner semicircle law appears in the last chapter. It is absolutely continuous with
respect to the Lebesgue measure and has the density function:

ρ(x) =


1

2π

√
4− x2 , |x| ≤ 2,

0, otherwise.

This is normalized to have mean 0 and variance 1.

Theorem 7.1.1 For m = 1, 2, . . . the 2m-th moment of the Wigner semicircle law is given
by

1

2π

∫ +2

−2

x2m
√

4− x2 dx =
(2m)!

(m+ 1)!m!
=

1

m+ 1

(
2m

m

)
.

The moments of odd orders vanish.

Proof. By direct calculation.

7.2 Vacuum Distribution of Free Fock Space

Let (Γfree, {Φn}, B+, B−) be a free Fock space. In the last chapter we already showed
(slightly less rigorously) that

⟨Φ0, (B
+ +B−)mΦ0⟩ =

1

2π

∫ +2

−2

xm
√
4− x2 dx, m = 1, 2, . . . . (7.1)

Therefore, it follows from Theorem 7.1.1 that for m = 1, 2, . . . ,

⟨Φ0, (B
+ +B−)2m−1Φ0⟩ = 0, (7.2)

⟨Φ0, (B
+ +B−)2mΦ0⟩ =

(2m)!

m!(m+ 1)!
. (7.3)

Below we will show the above identities from a combinatorial viewpoint. Then, (7.1) follows
from Theorem 7.1.1.

Let us start with

⟨Φ0, (B
+ +B−)kΦ0⟩ =

∑
ϵ1,...,ϵk∈{±}

⟨Φ0, B
ϵk · · ·Bϵ1Φ0⟩,

where

⟨Φ0, B
ϵk · · ·Bϵ1Φ0⟩ =

{
1, if Bϵk · · ·Bϵ1Φ0 = Φ0,

0, otherwise.
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Then (7.2) follows immediately from the actions of B± in (6.3). For k = 2m,

Bϵ2m · · ·Bϵ1Φ0 = Φ0

occurs if and only if

ϵ1 ≥ 0,

ϵ1 + ϵ2 ≥ 0,

· · ·
ϵ1 + ϵ2 + · · ·+ ϵ2m−1 ≥ 0,

ϵ1 + ϵ2 + · · ·+ ϵ2m−1 + ϵ2m = 0.

In general, ϵ = (ϵ1, ϵ2, . . . , ϵm) ∈ {+,−}m is called a Catalan path of length m if

k∑
i=1

ϵk ≥ 0, k = 1, 2, . . . ,m− 1,

m∑
i=1

ϵk = 0.

Let Cm denote the set of Catalan paths of length m. Obviously, Cm = ∅ for an odd m.

Lemma 7.2.1 For m = 1, 2, . . . we have

|C2m| =
(2m)!

m!(m+ 1)!
.

Proof. We set

Dm =
{
ϵ = (ϵ1, ϵ2, . . . , ϵ2m) ∈ {+,−}2m ; ϵ1 + · · ·+ ϵ2m = 0

}
.

Obviously, Cm ⊂ Dm. Each ϵ ∈ Dm corresponds to a path connecting the vertices

(0, 0), (1, ϵ1), (2, ϵ1 + ϵ2), . . . , (2m, ϵ1 + ϵ2 + · · ·+ ϵ2m) = (2m, 0)

in order. Since we have

|Dm| =
(
2m

m

)
=

(2m)!

m!m!
,

for |Cm| it is sufficient to count the number of paths in Dm \ Cm. By definition a path
ϵ = (ϵ1, ϵ2, . . . , ϵ2m) in Dm \ Cm has one or more vertices with negative ordinates. Let k be
the abscissa of the first such vertex. Then 1 ≤ k ≤ 2m − 1. If k = 1 we have ϵ1 = −1.
Otherwise,

ϵ1 ≥ 0, ϵ1 + ϵ2 ≥ 0, . . . , ϵ1 + · · ·+ ϵk−1 = 0,

ϵ1 + · · ·+ ϵk−1 + ϵk = −1.
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Figure 7.1: Counting the Catalan number

Let L be the horizontal line passing through (0,−1). Then ϵ has one or more vertices which
lie on L and (k,−1) is the first one. Define ϵ̄ to be the path obtained from ϵ by reflecting
the first part of ϵ up to (k,−1) with respect to L (see Fig. 7.1). Then ϵ̄ becomes a path
from (0,−2) to (2m, 0) passing through (k,−1) as the first meeting point with L. It is easily
verified that ϵ ↔ ϵ̄ is a one-to-one correspondence between Dm \ Cm and the set of paths
connecting (0,−2) and (2m, 0). Obviously, the number of such paths is(

2m

m+ 1

)
=

(2m)!

(m+ 1)!(m− 1)!
= |Dm \ Cm|.

Hence

|Cm| =
(2m)!

m!m!
− (2m)!

(m+ 1)!(m− 1)!
=

(2m)!

m!(m+ 1)!
,

which completes the proof.

Definition 7.2.2 For m = 1, 2, . . . ,

Cm = |C2m| =
(2m)!

m!(m+ 1)!

is called the mth Catalan number. By definition C0 = 1.

With this notation we come to

⟨Φ0, (B
+ +B−)2mΦ0⟩ = |C2m| = Cm. (7.4)

On the other hand, Theorem 7.1.1 is rephrased as

1

2π

∫ +2

−2

x2m
√
4− x2 dx =

(2m)!

(m+ 1)!m!
= Cm . (7.5)

Consequently, we have

⟨Φ0, (B
+ +B−)mΦ0⟩ =

1

2π

∫ +2

−2

xm
√
4− x2 dx, m = 1, 2, . . . .



7.3. ACCARDI–BOŻEJKO FORMULA 69

7.3 Accardi–Bożejko Formula

Let ({ωn}, {αn}) be Jacobi coefficients and (Γ, {Φn}, B+, B−, B◦) the associated inter-
acting Fock space. We are interested in the moment sequence of the real random variable
B+ +B− +B◦:

Mm = ⟨Φ0, (B
+ +B− +B◦)mΦ0⟩, m = 1, 2, . . . . (7.6)

Expanding the right hand side, we obtain

Mm =
∑
ϵ

⟨Φ0, B
ϵm · · ·Bϵ2Bϵ1Φ0⟩, (7.7)

where ϵ = (ϵ1, . . . , ϵm) runs over {+,−, ◦}m.
In order to observe the action of Bϵm · · ·Bϵ2Bϵ1 to the vacuum vector Φ0 it is convenient

to associate a sequence of points (i.e., a path) in Z2 starting at (0, 0) as follows. Given
ϵ = (ϵ1, . . . , ϵm) ∈ {+,−, ◦}m we associate a sequence of points in Z2 defined by

(0, 0), (1, ϵ1), (2, ϵ1 + ϵ2), . . . , (m, ϵ1 + ϵ2 + · · ·+ ϵm),

where numbers +1,−1, 0 are assigned to ϵi according as ϵi = +,−, ◦. It is more instructive
to draw edges connecting these points in order (see Fig. 7.2).

A sequence ϵ = (ϵ1, . . . , ϵm) ∈ {+,−, ◦}m is called a (generalized) Catalan path if

k∑
i=1

ϵi ≥ 0, k = 1, 2, . . . ,m− 1,

m∑
i=1

ϵi = 0.

Let C̃m denote the set of such Catalan paths.

Figure 7.2: Paths in {+,−, ◦}m and C̃m
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In view of the action of Bϵ we see easily that

⟨Φ0, B
ϵm · · ·Bϵ2Bϵ1Φ0⟩ = 0, (ϵ1, . . . , ϵm) ∈ {+,−, ◦}m \ C̃m .

Hence (7.7) becomes

Mm =
∑
ϵ∈C̃m

⟨Φ0, B
ϵm · · ·Bϵ2Bϵ1Φ0⟩. (7.8)

To each ϵ ∈ C̃m we associate a partition of natural numbers {1, 2, . . . ,m}. We need notation.

Definition 7.3.1 Let m ≥ 1 be an integer. A partition of {1, 2, . . . ,m} is a collection ϑ of
non-empty subsets v ⊂ {1, 2, . . . ,m} such that

{1, 2, . . . .m} =
∪
v∈ϑ

v, v ∩ v′ = ∅, v ̸= v′.

A partition ϑ is called (i) a pair partition if |v| = 2 for all v ∈ ϑ; (ii) a pair partition with
singletons if |v| = 2 or |v| = 1 for all v ∈ ϑ. An element v ∈ ϑ is called a singleton if |v| = 1.

Definition 7.3.2 Let ϑ be a pair partition with singleton of {1, 2, . . . ,m}. For v ∈ ϑ we set

[v] =

{
{i}, if v = {i},
[i, j], if v = {i, j} with i < j.

We say that ϑ is non-crossing if for any pair of u, v ∈ ϑ, one of the following relations occurs:

[u] ⊂ [v], [u] ⊃ [v], [u] ∩ [v] = ∅.

Let PNCP(m) and PNCPS(m) denote the set of non-crossing pair partitions of {1, 2, . . . ,m}
and that of non-crossing pair partitions with singletons, respectively.

We next associate with each ϵ ∈ C̃m a partition ϑ(ϵ) of {1, 2, . . . ,m}. In general, ϵ ∈
{+,−, ◦}m being regarded as a map ϵ : {1, 2, . . . ,m} → {+,−, ◦}, we obtain a partition:

{1, 2, . . . ,m} = ϵ−1(◦) ∪ ϵ−1(+) ∪ ϵ−1(−).

Let ϵ ∈ C̃m. Since |ϵ−1(+)| = |ϵ−1(−)| we may set

ϵ−1(◦) = {s1 < · · · < sj}, ϵ−1({+,−}) = {t1 < · · · < t2k},

where j + 2k = m. We shall divide {t1 < · · · < t2k} into a union of pairs. First we take
1 ≤ α ≤ 2k such that

ϵ(t1) = · · · = ϵ(tα) = +, ϵ(tα+1) = −.

Note that such an α always exists whenever ϵ−1({+,−}) ̸= ∅. Then we make a pair {tα <
tα+1}. Setting

{t′1 < · · · < t′2k−2} = {t1 < · · · < t2k} \ {tα < tα+1},
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Figure 7.3: Path in C̃m and partition in PNCPS(m)

and applying a similar argument, we make the second pair. Repeating this procedure, we
obtain a pair partition

{t1 < · · · < t2k} = {l1 < r1} ∪ · · · ∪ {lk < rk},

where ϵ(l1) = · · · = ϵ(lk) = + and ϵ(r1) = · · · = ϵ(rk) = −. Finally we define a partition
ϑ(ϵ) by

ϑ(ϵ) = {{s1}, . . . , {sj}, {l1 < r1}, . . . , {lk < rk}}, (7.9)

which is a pair partition with singleton (see Fig. 7.3).

Lemma 7.3.3 Let ϵ ∈ C̃m and ϑ(ϵ) the pair partition with singleton of {1, 2, . . . ,m} defined
as in (7.9). Then ϑ(ϵ) is non-crossing. Moreover, the map ϵ 7→ ϑ(ϵ) is a bijection from C̃m
onto PNCPS(m).

Proof. It is obvious from construction that ϑ(ϵ) is non-crossing and that ϵ 7→ ϑ(ϵ) is
injective. Suppose we are given ϑ ∈ PNCPS(m). Set

ϑ = {{s1}, . . . , {sj}, {l1, r1}, . . . , {lk, rk}}

and assume that

s1 < · · · < sj , l1 < · · · < lk , l1 < r1 , . . . , lk < rk . (7.10)

Define ϵ ∈ {+,−, ◦}m by

ϵ(st) = ◦, ϵ(lu) = +, ϵ(ru) = −. (7.11)

It is apparent that ϵ(1) + · · ·+ ϵ(m) = 0. We shall prove that ϵ ∈ C̃m, i.e.,

ϵ(1) + · · ·+ ϵ(i) ≥ 0, i = 1, 2, . . . ,m. (7.12)
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Given i, we choose u such that

l1 < · · · < lu ≤ i < lu+1 < · · · < lk .

Then, by (7.10) we have
{r1, . . . , rk} ∩ [1, i] ⊂ {r1, . . . , ru}.

Hence in the left hand side of (7.12), (+1) appears u times and (−1) at most u times, which
shows that (7.12) holds. Finally, we need to prove that for ϵ defined in (7.11), ϑ(ϵ) = ϑ. Set

{l1, . . . , lk, r1, . . . , rk} = {w1 < · · · < w2k}.

The first step of constructing the partition ϑ(ϵ) is to find 1 ≤ α ≤ 2k such that

ϵ(w1) = · · · = ϵ(wα) = +, ϵ(wα+1) = −.

Obviously,
w1 = l1 , . . . , wα = lα ,

and by non-crossing condition we have

wα+1 = rα .

Thus, ϑ(ϵ) contains a pair {lα, rα}. Repeating this argument, we conclude that ϑ(ϵ) = ϑ.

Definition 7.3.4 Let ϑ ∈ PNCPS(m). The depth of v ∈ ϑ is defined by

dϑ(v) = |{u ∈ ϑ ; [v] ⊂ [u]}|.

Note that dϑ(v) ≥ 1 by definition.

For example, for ϑ in Fig. 7.3 it holds that

dϑ({1, 2}) = 1, dϑ({4, 8}) = 2, dϑ({5}) = 3.

The next result is easy to see.

Lemma 7.3.5 Let ϑ ∈ PNCPS(m) be corresponding to ϵ = (ϵ1, . . . , ϵm) ∈ C̃m. Then

dϑ(v) =



s−1∑
i=1

ϵi + 1, if v = {s},

l−1∑
i=1

ϵi + 1 =
r−1∑
i=1

ϵi , if v = {l < r}.

With these notation we continue calculation of (7.8) and obtain a combinatorial expres-
sion of (7.6).



7.3. ACCARDI–BOŻEJKO FORMULA 73

Theorem 7.3.6 Let (Γ, {Φn}, B+, B−, B◦) be the interacting Fock space associated with
({ωn}, {αn}). Then,

⟨Φ0, (B
+ +B− +B◦)mΦ0⟩ =

∑
ϑ∈PNCPS(m)

∏
v∈ϑ
|v|=1

α(dϑ(v))
∏
v∈ϑ
|v|=2

ω(dϑ(v)), (7.13)

for m = 1, 2, . . . . In particular,
⟨Φ0, (B

+ +B−)2m−1Φ0⟩ = 0,

⟨Φ0, (B
+ +B−)2mΦ0⟩ =

∑
ϑ∈PNCP(2m)

∏
v∈ϑ

ω(dϑ(v)).
(7.14)

Proof. From (7.8) we already know that

⟨Φ0, (B
+ +B− +B◦)mΦ0⟩ =

∑
ϵ∈C̃m

⟨Φ0, B
ϵm · · ·Bϵ2Bϵ1Φ0⟩.

We shall calculate Bϵm · · ·Bϵ2Bϵ1Φ0 for ϵ = (ϵ1, . . . , ϵm) ∈ C̃m. Denote by ϑ = ϑ(ϵ) ∈
PNCPS(m) the corresponding partition and set

ϑ(ϵ) = {{s1}, . . . , {sj}, {l1, r1}, . . . , {lk, rk}}.

First consider a singleton s = si. Since Bϵs−1 · · ·Bϵ1Φ0 ∈ CΦϵ1+···+ϵs−1 and Bϵs = B◦, we
obtain by virtue of Lemma 7.3.5

BϵsBϵs−1 · · ·Bϵ1Φ0 = α(ϵ1 + · · ·+ ϵs−1 + 1)Bϵs−1 · · ·Bϵ1Φ0

= α(dϑ({s}))Bϵs−1 · · ·Bϵ1Φ0 .

Applying the above argument to all the singletons, we come to

Bϵm · · ·Bϵ1Φ0 =

{
j∏

i=1

α(dϑ({si}))

}
[[Bϵm · · ·Bϵ1 ]]Φ0 , (7.15)

where [[Bϵm · · ·Bϵ1 ]] stands for omission of B◦. Then [[Bϵm · · ·Bϵ1 ]] is a product of k creation
operators B+ and k annihilation operators B− which form a non-crossing pair partition.
Hence there exists {l, r} = {li, ri} such that Bϵr and Bϵl are consecutive. In that case

[[Bϵm · · ·BϵrBϵl · · ·Bϵ1 ]]Φ0 = [[Bϵm · · ·B−B+ · · ·Bϵ1 ]]Φ0 .

Since the action of B◦ does not change the level of the number vectors, in the above expression
[[· · ·Bϵ1 ]]Φ0 ∈ CΦϵ1+···+ϵl−1

so that the action of B−B+ on it becomes a scalar ω(ϵ1 + · · · +
ϵl−1 + 1) = ω(dϑ({l, r})), where Lemma 7.3.5 is taken into account. Thus, we have

[[Bϵm · · ·BϵrBϵl · · ·Bϵ1 ]]Φ0 = ω(dϑ({l, r}))[[Bϵm · · · B̌ϵrB̌ϵl · · ·Bϵ1 ]]Φ0 ,
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where B̌ϵrB̌ϵl means that BϵrBϵl is omitted. Repeating this argument, we come to

[[Bϵm · · ·Bϵ1 ]]Φ0 =

{
k∏

i=1

ω(dϑ({li, ri}))

}
Φ0 . (7.16)

Now the formula (7.13) follows immediately from (7.15) and (7.16). The formula (7.14)
follows from (7.13).

Theorem 7.3.7 (Accardi–Bożejko formula) For µ ∈ Pfm(R) let {Mm} be its moment
sequence and ({ωn}, {αn}) its Jacobi coefficient. Then it holds that

Mm =
∑

ϑ∈PNCPS(m)

∏
v∈ϑ
|v|=1

α(dϑ(v))
∏
v∈ϑ
|v|=2

ω(dϑ(v)), m = 1, 2, . . . . (7.17)

Moreover, if µ is symmetric,
M2m−1 = 0,

M2m =
∑

ϑ∈PNCP(2m)

∏
v∈ϑ

ω(dϑ(v)), m = 1, 2, . . . .
(7.18)

Proof. Let (Γ, {Φn}, B+, B−, B◦) be the interacting Fock space associated with ({ωn}, {αn}).
We know that

Mm = ⟨Φ0, (B
+ +B− +B◦)mΦ0⟩, m = 1, 2, . . . .

Then we need only to apply Theorem 7.3.6.

In Remark 5.1.5 we mentioned that there is a bijection F : M → J. In fact, F−1 : J → M
is expressed explicitly by the Accardi–Bożejko formula.

7.4 Quantum Decomposition of a Real Random Variable

Let (A, φ) be an algebraic probability space and a ∈ A a real random variable. Then
there exists a probability distribution µ ∈ Pfm(R) such that

φ(am) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

This µ is not uniquely determined by a but its Jacobi coefficients. Let ({ωn}, {αn}) be the Ja-
cobi coefficients of µ and consider the associated interacting Fock space (Γ, {Φn}, B+, B−, B◦).
Then we know that

⟨Φ0, (B
+ +B− +B◦)mΦ0⟩ =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

Consequently,
φ(am) = ⟨Φ0, (B

+ +B− +B◦)mΦ0⟩, m = 1, 2, . . . .

From the above identity we say that a and B+ +B− +B◦ are stochastically equivalent. For
brevity we write

a = B+ +B− +B◦

and call the quantum decomposition of a.
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Remark 7.4.1 Recall that the map Pfm(R) → M is not injective (determinate moment
problem). Therefore, Pfm(R) → J is not either. A simple sufficient condition for µ to be
the solution of a determinate moment problem is that

∞∑
n=1

1√
ωn

= +∞. (7.19)

This is knwon as Carleman’s condition. If ωn = 0 happens, we understand (7.19) is fulfilled
automatically. In that case, µ is the solution of a determinate moment problem. Indeed, the
Jacobi coefficient is of finite type so that µ is a finite sum of δ-measures.

It may be worthwhile to mention a few words about how to deal with a classical random
variable. Let X be a classical R-valued random variable defined on a probability space
(Ω,F , P ). Let µ be the distribution ofX and assume that µ ∈ Pfm(R), that is, E(|X|m) <∞
for all m = 1, 2, . . . . Then, taking the Jacobi coefficient ({ωn}, {αn}) of µ, we obtain

E(Xm) =

∫ +∞

−∞
xmµ(dx) = ⟨Φ0, (B

+ +B− +B◦)mΦ0⟩, m = 1, 2, . . . .

We thereby write

X = B+ +B− +B◦

and call it the quantum decomposition of a classical random variable X. The quantum
decomposition brings a classical variable X into a non-commutative paradigm where X is
studied by means of its quantum components.

Exercises 7

1. For m = 1, 2, . . . calculate the following integral:

1

2π

∫ +2

−2

x2m
√
4− x2 dx

There are many ways of computation. For example, the Beta-function may be applied.

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt = 2

∫ π/2

0

cos2p−1 θ sin2q−1 θ dθ =
Γ(p)Γ(q)

Γ(p+ q)
.

2. Show that the Catalan number is given by

Cm =
(2m)!

m!(m+ 1)!
, m = 1, 2, . . . .

Hint: Cm =

(
2m

m

)
−
(

2m

m+ 1

)
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3. Find a quantum decomposition of a Bernoulli random variable X defined by P (X =
1) = p and P (X = 0) = 1− p. Hint: Find the Jacobi parameters.

4∗. Let {Xn} be a random walk on Z+ = {0, 1, 2, . . . } determined by the transition
probabilities as below:

nn

q

p p

q q

p

q

p

q

where p + q = 1. Applying the idea of the Accardi–Bożejko formula find a probability
distribution µ ∈ Pfm(R) such that

P (Xm = 0|X0 = 0) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .
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8 Graph Products and Independence

8.1 Motivation

A growing graph models a revolution of networks in the real world.

Figure 8.1: Growing graph

It would be interesting if the growing graph G(ν) is considered as an analogue of an inde-
pendent increment process in classical probability theory. It is our hope that the evolution
is formulated as

G(ν) = G(ν−1) ♯H(ν), (8.1)

where ♯H(ν) is an operation to form a new graph G(ν) and H(ν) is given at each evolution
step. We hope that H(ν) shares a common sprit with independent random variables.

In this chapter we discuss graph products. Given two graphs G1 and G2, we form a new
graph G1 ♯G2 as a “product.” This graph product gives rise to a product of the adjacency
matrices

A = A1 ♯A2 . (8.2)

When the evoluton of graphs is formulated in terms of a graph product, (8.1) yields

A(ν) = A(ν−1) ♯B(ν) = · · · = (· · · ((A(0) ♯B(0)) ♯B(1)) · · · ) ♯B(ν).

We may expect that the spectral properties of A(ν) follow from the study of some interrelation
among B(ν) with respect to the operation ♯. From this aspect various types of independence
in quantum probability would be useful.

8.2 Direct (Cartesian) Products

Definition 8.2.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. For (x, y), (x′, y′) ∈
V1 × V2 we write (x, y) ∼ (x′, y′) if one of the following conditions is satisfied:

(i) x = x′ and y ∼ y′;

(ii) x ∼ x′ and y = y′.

Then V1 × V2 becomes a graph in such a way that (x, y), (x′, y′) ∈ V1 × V2 are adjacent if
(x, y) ∼ (x′, y′). This graph is called the direct product of G1 and G2, and is denoted by
G1 ×G2.
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Example 8.2.2 C4 × C3

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C   C

Lemma 8.2.3 (1) G1 ×G2
∼= G2 ×G1.

(2) (G1 ×G2)×G3
∼= G1 × (G2 ×G3).

Proof. Straightforward.

Example 8.2.4 ZN ∼= Z× · · · × Z (N times)

Example 8.2.5 Let n, d be natural numbers. Set

V = {x = (ξ1, ξ2, . . . , ξd) ; ξi ∈ F}, F = {1, 2, . . . , n}.

For x = (ξi), y = (ηi) ∈ V define

∂(x, y) = |{1 ≤ i ≤ d ; ξi ̸= ηi}|,

and draw an edge between x, y if ∂(x, y) = 1. Thus we obtain a graph G = (V,E), called a
Hamming graph and denoted by H(d, n). The Hamming graph H(d, n) is isomorphic to the
direct product of d copies of the complete graph Kn, i.e.,

H(d, n) = Kn × · · · ×Kn (d times).

The adjacency matrix Ai acts on C0(Vi) by usual matrix multiplication, hence the adja-
cency matrix A of the direct product G1 ×G2 acts on C0(V1 ×V2) ∼= C0(V1)⊗C0(V2), where
the canonical isomorphism is defined by the correspondence of basis δ(x,y) 7→ δx ⊗ δy.

Theorem 8.2.6 As an operator acting on C0(V1) ⊗ C0(V2), the adjacency matrix A of the
direct product G1 ×G2 is of the form:

A = A1 ⊗ E2 + E1 ⊗ A2 , (8.3)

where Ei is the identity matrix on C0(Vi).
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Proof. We see that

(A1 ⊗ E2)(x,y),(x′,y′) = (A1)xx′(E2)y,y′ =

{
1, if x ∼ x′ and y = y′,

0, otherwise.

Similarly,

(E1 ⊗ A2)(x,y),(x′,y′) = (E1)xx′(A2)y,y′ =

{
1, if x = x′ and y ∼ y′,

0, otherwise.

Since the two conditions (i) x ∼ x′ and y = y′; (ii) x = x′ and y ∼ y′ do not occur
simultaneously, we have

(A1 ⊗ E2 + E1 ⊗ A2)(x,y),(x′,y′) =

{
1, if (x, y) ∼ (x′, y′),

0, otherwise.

This means that A1 ⊗ E2 + E1 ⊗ A2 coincides with the adjacency matrix of G1 ×G2.

8.3 Star Products

Definition 8.3.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with distinguished
vertices o1 ∈ V1 and o2 ∈ V2. Define a subset of V1 × V2 by

V1 ⋆ V2 = {(x, o2) ; x ∈ V1} ∪ {(o1, y) ; y ∈ V2}

The induced subgraph of G1 × G2 spanned by V1 ⋆ V2 is called the star product of G1 and
G2 (with contact vertices o1 and o2), and is denoted by G1 ⋆ G2 = G1 o1⋆o2 G2.

In general, H = (W,F ) is called a subgraph of a graph G = (V,E) if W ⊂ V and F ⊂ E.
A subgraph H = (W,F ) is called an induced subgraph of G = (V,E) spanned by W if
F = {{x, y} ∈ E ; x, y ∈ W}.

Lemma 8.3.2 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with distinguished vertices
o1 ∈ V1, o2 ∈ V2. Let G = G1 ⋆ G2 be the star product. Then two vertices (x, y), (x′, y′) ∈
V1 ⋆ V2 are adjacent if and only if one of the following conditions is satisfied:

(i) x = x′ = o1 and y ∼ y′;

(ii) x ∼ x′ and y = y′ = o2.

Proof. Straightforward.

Example 8.3.3 C4 ⋆ C3
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(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C      C

Lemma 8.3.4 (1) G1 ⋆ G2
∼= G1 ⋆ G2.

(2) (G1 ⋆ G2) ⋆ G3
∼= G1 ⋆ (G2 ⋆ G3).

Proof. Exercises.

As usual, we regard the adjacency matrix Ai as an operator acting on C0(Vi). Since
G1 ⋆ G2 is an induced subgraph of G1 ×G2 spanned by V1 ⋆ V2, its adjacency matrix A acts
on C0(V1 ⋆ V2), which is a subspace of C(V1 × V2) = C(V1)⊗ C(V2).

Theorem 8.3.5 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with fixed origins
o1 ∈ V1 and o2 ∈ V2. Let A be the adjacency matrix of the star product G1 ⋆ G2. Then, as
an operator acting on C(V1 ⋆ V2) we have

A = (A1 ⊗ P2 + P1 ⊗ A2) �C(V1⋆V2)

Proof. It follows from the above argument that A = AG1×G2 �C(V1⋆V2). By Theorem
8.2.6 we see that

A = AG1×G2 �C(V1⋆V2)= (A1 ⊗ E2 + E1 ⊗ A2) �C(V1⋆V2)

It is easily verified by definition that

(A1 ⊗ E2 + E1 ⊗ A2) �C(V1⋆V2)= (A1 ⊗ P2 + P1 ⊗ A2) �C(V1⋆V2),

which completes the proof.

8.4 Comb Products

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We fix a vertix o2 ∈ V2. For
(x, y), (x′, y′) ∈ V1×V2 we write (x, y) ∼ (x′, y′) if one of the following conditions is satisfied:

(i) x = x′ and y ∼ y′;

(ii) x ∼ x′ and y = y′ = o2.

Then V1 × V2 becomes a graph in such a way that (x, y), (x′, y′) ∈ V1 × V2 are adjacent if
(x, y) ∼ (x′, y′). This graph is denoted by G1 ◃o2 G2 and is called the comb product.
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Theorem 8.4.1 As an operator on C0(V1) ⊗ C0(V2) the adjacency matrix of G1 ◃o2 G2 is
given by

A = A1 ⊗ P2 + E1 ⊗ A2

where P2 : C0(V2) → C0(V2) is the projection onto the space spanned by δo2 and E1 is the
identity matrix acting on C0(V1).

Proof. Exercise.

Example 8.4.2 C4 ◃ C3

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C      C

The comb product is not commutative, but associative.

Lemma 8.4.3 (G1 ◃ G2) ◃ G3
∼= G1 ◃ (G2 ◃ G3).

8.5 Notions of Independence

Consider two classical random variables X, Y defined on a probability space (Ω,F , P ).
If they are independent, by the product formula we obtain

E(XYXXYXY ) = E(X4Y 3) = E(X4)E(Y 3). (8.4)

In general, such a statistical quantity as above is called a mixed moment or a correlation
coefficient. We understand that the independence gives a rule of calculating mixed mo-
ments. In quantum probability theory many different rules can be introduced because of
non-commutativity of random variables, where, for example, the first equality in (8.4) may
be no longer guaranteed. In this section, we shall mention four different notions of indepen-
dence, which have been up to now considered most fundamental.

Definition 8.5.1 (Commutative independence) Let (A, φ) be an algebraic probability
space. A family {Aλ} of ∗-subalgebras of A is called commutative independent or tensor
independent (with respect to φ) if

φ(a1 · · · am), ai ∈ Aλi
,

is factorized as follows:
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(i) when λ1 ̸∈ {λ2, . . . , λm},

φ(a1 · · · am) = φ(a1)φ(a2 · · · am);

(ii) otherwise, letting r be the smallest number such that λ1 = λr,

φ(a1 · · · am) = φ(a2 · · · ar−1(a1ar)ar+1 · · · am).

Note that neither Aλ nor A is assumed to be commutative.

Definition 8.5.2 (Free independence) Let (A, φ) be an algebraic probability space. A
family {Aλ} of ∗-subalgebras of A is called free independent (with respect to φ) if

φ(a1 · · · am) = 0

holds for any ai ∈ Aλi
with φ(ai) = 0, i = 1, 2, . . . ,m, and λ1 ̸= λ2 ̸= · · · ̸= λm (any two

consecutive indices are different).

Definition 8.5.3 (Boolean independence) Let (A, φ) be an algebraic probability space
and Aλ ⊂ A a subset which is closed under the algebraic operations and involution (i.e., a
∗-subalgebra which does not necessarily contain the identity 1A of A). We say that {Aλ} is
Boolean independent (with respect to φ) if

φ(a1 · · · am) = φ(a1)φ(a2 · · · am)

for any ai ∈ Aλi
with λ1 ̸= λ2 ̸= · · · ̸= λm.

We need notation. Let (Λ, <) be a totally ordered set and consider a finite sequence

λ1 ̸= λ2 ̸= · · · ̸= λp ̸= · · · ̸= λm (8.5)

of elements in Λ, m ≥ 2. Then λp is called a peak in (8.5) if (i) 1 < p < m, λp−1 < λp and
λp > λp+1; or (ii) p = 1 and λ1 > λ2; or (iii) p = m and λm−1 < λm.

Definition 8.5.4 (Monotone independence) Let (A, φ) be an algebraic probability space.
Let (Λ, <) be a totally ordered set and for each λ ∈ Λ, Aλ ⊂ A a subset which is closed
under the algebraic operations and involution. We say that {Aλ} is monotone independent
(with respect to φ) if

φ(a1 · · · am) = φ(ap)φ(a1 · · · ǎp · · · am) (ǎp: omission)

for any ai ∈ Aλi
with λp being a peak in λ1 ̸= λ2 ̸= · · · ̸= λm.

Remark 8.5.5 The Boolean independence yields a rather trivial situation whenAλ contains
the identity. This remains even if the condition in Definition 8.5.3 is weakened in such a way
that ai is taken from Aλi

\ C. Assume that {A1,A2} is Boolean independent and that A1
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contains the identity, i.e., is a ∗-subalgebra. Take ai ∈ Ai\C and consider φ(a∗2(a1 + 1)a2).
Applying the independence and then linearity, we come to

φ(a∗2(a1 + 1)a2) = φ(a∗2)φ(a1 + 1)φ(a2)

= φ(a∗2)φ(a1)φ(a2) + φ(a∗2)φ(a2). (8.6)

On the other hand, applying first linearity and then independence, we obtain

φ(a∗2(a1 + 1)a2) = φ(a∗2a1a2) + φ(a∗2a2)

= φ(a∗2)φ(a1)φ(a2) + φ(a∗2a2). (8.7)

We then see from (8.6) and (8.7) that

φ(a∗2a2) = φ(a∗2)φ(a2) = |φ(a2)|2.

Similarly, from φ(a2(a1 + 1)a∗2) we obtain

φ(a2a
∗
2) = |φ(a2)|2.

Consequently, a2 = φ(a2)1 (the Schwarz equality holds). In other words, A2 is reduced
essentially to the ∗-subalgebra C1. A similar situation occurs in the case of monotone
independence.

The above definitions indicate only the first step of calculating a mixed moment φ(a1 · · · am).
Table 8.1 shows how mixed moments of a ∈ A1 and b ∈ A2 are factorized when {A1,A2} is
commutative, free, Boolean, or monotone independent (for the monotone independence the
natural order 1 < 2 is adopted). In actual computation the following formulae are useful.

Lemma 8.5.6 Let (A, φ) be an algebraic probability space. Let ai ∈ A and set āi = ai −
φ(ai), i = 1, 2, . . . ,m. Then

a1 · · · am = a1 · · · āi · · · am + φ(ai)a1 · · · ǎi · · · am , (8.8)

φ(a1 · · · am) = φ(ā1 · · · ām) +
m∑
i=1

φ(ai)φ(a1 · · · ai−1︸ ︷︷ ︸
i−1

ǎi āi+1 · · · ām︸ ︷︷ ︸
m−i

). (8.9)

Proof. Exercise.

Definition 8.5.7 Let (A, φ) be an algebraic probability space and {an} be a sequence of
random variables. Let A0

n be the linear span of elements of the form

aϵ1n · · · aϵmn , ϵi ∈ {1, ∗}, m = 1, 2, . . . ,

and set An = A0
n + C1, which is the ∗-subalgebra generated by an. We say that {an} is

commutative or free independent if so is {An}. We say that {an} is Boolean or monotone
independent if so is {A0

n}.
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Table 8.1: Illustrating the factorization rules

commutative free Boolean monotone

φ(aba) φ(a2)φ(b) φ(a2)φ(b) φ(a)2φ(b) φ(a2)φ(b)

φ(bab) φ(a)φ(b2) φ(a)φ(b2) φ(a)φ(b)2 φ(a)φ(b)2

φ(a)2φ(b2)

φ(abab) φ(a2)φ(b2) +φ(a2)φ(b)2 φ(a)2φ(b)2 φ(a2)φ(b)2

−φ(a)2φ(b)2

Remark 8.5.8 A0
n is closed under the algebraic operations and involution. But it can not

be decided by definition whether or not the identity 1A is contained in A0
n.

Theorem 8.5.9 Let G = G1 ×G2 be the direct product of two graphs and

A = A1 ⊗ E + E ⊗ A2 (8.10)

be the adjacency matrix expressed as an operator on C0(V1) ⊗ C0(V2), see Theorem 8.2.6.
Then the right hand side of (8.10) is a sum of commutative independent random variables
with respect to the vacuum state eo1 ⊗ eo2, where o1 ∈ V1 and o2 ∈ V2.

Proof. The full proof is omitted. For simplicity we set

φ(a) = ⟨eo1 ⊗ eo2 , a(eo1 ⊗ eo2)⟩.

We will only observe that

φ((A1 ⊗ E2)
α(E1 ⊗ A2)

β) = φ((A1 ⊗ E2)
α)φ((E1 ⊗ A2)

β). (8.11)

First the left hand side becomes

φ((A1 ⊗ E2)
α(E1 ⊗ A2)

β) = ⟨eo1 ⊗ eo2 , (A1 ⊗ E2)
α(E1 ⊗ A2)

β(eo1 ⊗ eo2)⟩
= ⟨eo1 , Aα

1E
β
1 eo1⟩⟨eo2 , Eα

2A
β
2eo2⟩

= ⟨eo1 , Aα
1 eo1⟩⟨eo2 , A

β
2eo2⟩.

On the other hand, for the right hand side we have

φ((A1 ⊗ E2)
α) = ⟨eo1 ⊗ eo2 , (A1 ⊗ E2)

α(eo1 ⊗ eo2)⟩
= ⟨eo1Aα

1 eo1⟩⟨eo2 , Eα
2 eo2⟩

= ⟨eo1Aα
1 eo1⟩.

Similarly,
φ((E1 ⊗ A2)

β) = ⟨eo2A
β
2eo2⟩.

Thus, (8.11) is verified.
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Theorem 8.5.10 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with fixed origins
o1 ∈ V1 and o2 ∈ V2. Let A be the adjacency matrix of the star product G1 ⋆ G2. Then, as
an operator acting on C(V1 ⋆ V2)

A = (A1 ⊗ P2 + P1 ⊗ A2) �C(V1⋆V2)

is a sum of Boolean independent random variables with respect to the vacuum state at (o1, o2),
see also Theorem 8.3.5.

Proof. Detailed argument is left to the reader. We only show that

⟨(A1 ⊗ P2)
α(P1 ⊗ A2)

β(A1 ⊗ P2)
γ⟩ = ⟨(A1 ⊗ P2)

α⟩⟨(P1 ⊗ A2)
β⟩⟨(A1 ⊗ P2)

γ⟩.

In fact, we first observe that

⟨(A1 ⊗ P2)
α(P1 ⊗ A2)

β(A1 ⊗ P2)
γ⟩ = ⟨eo1 , Aα

1P1A
γ
1eo1⟩⟨eo2 , P2A

β
2P2eo2⟩. (8.12)

Here P1A
γ
1δo1 = ⟨δo1 , A

γ
1δo1⟩δo1 so that

⟨eo1 , Aα
1P1A

γ
1eo1⟩ = ⟨eo1 , Aα

1 eo1⟩⟨eo1 , A
γ
1eo1⟩. (8.13)

On the other hand,
⟨eo2 , P2A

β
2P2eo2⟩ = ⟨eo2 , A

β
2eo2⟩. (8.14)

Incerting (8.13) and (8.14) into (8.12), we obtain the desired relation.

Theorem 8.5.11 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with fixed origins
o2 ∈ V2. Let A be the adjacency matrix of the comb product G1 ◃ G2. Then, as an operator
acting on C(V1 × V2)

A = A1 ⊗ P2 + E1 ⊗ A2

is a sum of monotone independent random variables with respect to the vacuum state at
(o1, o2), see also Theorem 8.4.1.

The proof is omitted.
In fact, Theorem 8.5.10 is a consequence from a more general result.

Theorem 8.5.12 For n = 1, 2, . . . , N let Hn be a Hilbert space with a distinguished unit
vector Ωn ∈ Hn and consider an algebraic probability space:

(B(H1 ⊗ · · · ⊗ HN),Ω1 ⊗ · · · ⊗ ΩN).

Let Pn ∈ B(Hn) be the projection onto the one-dimensional subspace spanned by Ωn and An

the set of operators of the form

P1 ⊗ · · · ⊗ Pn−1 ⊗ Sn ⊗ Pn+1 ⊗ · · · ⊗ PN , Sn ∈ B(Hn). (8.15)

Then {An} is Boolean independent.
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Proof. Note that An is closed under the algebraic operations and involution. (An

might contain the identity or might not.) For simplicity we set

H = H1 ⊗ · · · ⊗ HN , Ω = Ω1 ⊗ · · · ⊗ ΩN .

Let m ≥ 2 and take n1 ̸= n2 ̸= · · · ̸= nm from {1, 2, . . . , N}. For ai ∈ Ani
we need to show

that
⟨Ω, a1 · · · amΩ⟩ = ⟨Ω, a1Ω⟩⟨Ω, a2 · · · amΩ⟩. (8.16)

We set

ai = P1 ⊗ · · ·⊗
nith

Si ⊗ · · · ⊗ PN , Si ∈ B(Hni
).

Noting that n1 ̸= n2, we observe that

a∗2a
∗
1Ω = (P1 ⊗ · · ·⊗

n2th

S∗
2 ⊗ · · · ⊗ PN)(P1 ⊗ · · ·⊗

n1th

S∗
1 ⊗ · · · ⊗ PN)Ω

= Ω1 ⊗ · · · ⊗ S∗
2Ωn2 ⊗ · · · ⊗ Pn1S

∗
1Ωn1 ⊗ · · · ⊗ ΩN .

Since Pn1S
∗
1Ωn1 = ⟨Ωn1 , S

∗
1Ωn1⟩Ωn1 = ⟨Ω, a∗1Ω⟩Ωn1 , we have

a∗2a
∗
1Ω = ⟨Ω, a∗1Ω⟩Ω1 ⊗ · · · ⊗ S∗

2Ωn2 ⊗ · · · ⊗ Ωn1 ⊗ · · · ⊗ ΩN

= ⟨Ω, a∗1Ω⟩ a∗2Ω.

Hence

⟨Ω, a1 · · · amΩ⟩ = ⟨a∗2a∗1Ω, a3 · · · amΩ⟩
= ⟨Ω, a∗1Ω⟩ ⟨a∗2Ω, a3 · · · amΩ⟩
= ⟨Ω, a1Ω⟩ ⟨Ω, a2a3 · · · amΩ⟩,

which proves (8.16).

Similarly, Theorem 8.5.11 is generalized as follows:

Theorem 8.5.13 For n = 1, 2, . . . , N let Hn be a Hilbert space. Consider an algebraic
probability space:

(B(H1 ⊗ · · · ⊗ HN), ψ ⊗ Ω2 · · · ⊗ ΩN),

where ψ is a state on B(H1) and Ωn a vector state on B(Hn) corresponding to a unit vector
(denoted by the same symbol) in Hn for n = 2, 3, . . . , N . Let An be the set of operators of
the form

11 ⊗ · · · ⊗ 1n−1 ⊗ Sn ⊗ Pn+1 ⊗ · · · ⊗ PN , Sn ∈ B(Hn),

where 1n is the identity of B(Hn) and Pn ∈ B(Hn) the projection onto the one-dimensional
subspace spanned by Ωn. Then {An} is monotone independent. (Here {1, 2, . . . , N} is
equipped with the usual total order.)

Proof. Similar to Theorem 8.5.12.
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Exercises 8

1. Draw a picture of the Hamming graph H(2, 3). (This is known as rook’s graph.)

2. Let G1 and G2 be two graphs and G = G1 ×G2 the cartesian product. Prove that

degG((x, y)) = degG1
(x) + degG2

(y)

3. Find the degree and diameter of H(d,N).

4∗. Let G1, G2 be two graphs and A1, A2 their adjacency matrices, respectively. Let
G = G1×G2 the cartesian product and A its adjacency matrix. If A1f = λf and A2g = µg,
show that A(f⊗g) = (λ+µ)(f⊗g). Describe Spec (G) in terms of Spec (G1) and Spec (G2).

5. Let G1 and G2 be connected graphs. Show that G = G1 ×G2 is connected and prove

∂G((x, y), (x
′, y′)) = ∂G1(x, x

′) + ∂G2(y, y
′).

6. Let G1 and G2 be connected graphs. Show that G = G1 ×G2 is connected and prove

∂G = ∂G1×G2 �V1⋆V2 .

7∗. Verify Table 8.1.
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9 Quantum Central Limit Theorems

9.1 Singleton Condition

We first recall roughly the central limit theorem in classical probability theory. Let
X1, X2, . . . be independent, identically distributed random variables with mean 0 and vari-
ance 1. Then the sum

N∑
n=1

Xn

obeys approximately the Gaussian distribution N(0, N) for a large N . More precisely,

lim
N→∞

P

(
a ≤ 1√

N

N∑
n=1

Xn ≤ b

)
=

1√
2π

∫ +∞

−∞
e−x2/2dx, a < b.

We should like to discuss a similar question in quantum probability.
Let (A, φ) be an algebraic probability space and a1, a2, · · · ∈ A a sequence of random

variables. We are interested in the asymptotic behaviour of the partial sum defined by

SN =
N∑

n=1

an (9.1)

as N → ∞. In the following we restrict ourselves to the case of real random variables, i.e.,
an = a∗n. The moments of SN are given by

φ(Sm
N ) =

N∑
n1,...,nm=1

φ(an1 · · · anm), m = 1, 2, . . . . (9.2)

We will study φ(Sm
N ) for a large N under the condition that a1, a2, . . . are “independent.”

Definition 9.1.1 For a finite sequence of natural numbers:

n1, . . . , ns, . . . , nm (9.3)

we say that ns is a singleton in (9.3) if ns appears just once, i.e., if ns ̸= ni for all i ̸= s.

Definition 9.1.2 Let (A, φ) be an algebraic probability space. Let a1, a2, · · · ∈ A be a
sequence of random variables satisfying a∗n = an and φ(an) = 0 for all n. We say that the
sequence {an} satisfies the singleton condition if

φ(an1 · · · ans · · · anm) = 0

holds for any choice of finitely many natural numbers n1, . . . , ns, . . . , nm with a singleton ns.

Remark 9.1.3 In some literatures the singleton condition is defined for a sequence of sub-
algebras. Let B1,B2, · · · ⊂ A be ∗-subalgebras without assuming 1A, namely Bn is only
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assumed to be closed under the algebraic operations and the involution. We say that {Bn}
satisfies the singleton condition if

φ(b1 · · · bs · · · bm) = 0

holds for any choice of finitely many natural numbers n1, . . . , ns, . . . , nm with a singleton ns

and for any bi ∈ Bni
with φ(bs) = 0. We mention relation between two definitions. Let

a1, a2, · · · ∈ A be a sequence of random variables satisfying a∗n = an and φ(an) = 0 for all n.
Define A0

n to be the linear space spanned by an, a
2
n, a

3
n, . . . . If {A0

n} satisfies the singleton
condition, so does {an}. However, the converse is not valid.

Theorem 9.1.4 Let (A, φ) an algebraic probability space and a1, a2, · · · ∈ A a sequence of
random variables satisfying a∗n = an and φ(an) = 0 for all n. If {an} is commutative, free,
Boolean or monotone independent, it satisfies the singleton condition.

Proof. The proof is rather simple for the case of commutative, Boolean and monotone
independence. Here we prove only for the free independence.

Let An be the ∗-subalgebra generated by an, that is, the polynomials in an. By definition
{An} is free independent. For any choice of natural numbers n1, . . . , ns, . . . , nm with a
singleton ns we need to show

φ(an1 · · · ans · · · anm) = 0.

Here, in n1, n2, . . . , ns, . . . , nm a pair of successive numbers may coincide. So we rewite

an1 · · · ans · · · anm = ap1i1 · · · ait · · · a
pk
ik

where i1 ̸= i2 ̸= · · · ≠ ik, it = ns is a singleton therein, and pj ≥ 1. Thus, it is sufficient to
show that

φ(b1 · · · bs · · · bm) = 0 (9.4)

holds for any choice of n1 ̸= n2 ̸= · · · ̸= nm with a singleton ns and bi ∈ Ani
with φ(bs) = 0.

We employ the mathematical induction on m. For m = 1 the assertion is obvious.
Assume that the assertion is true up to m− 1, m ≥ 2. Taking i ̸= s, we observe that

φ(b1 · · · bi · · · bs · · · bm)
= φ(b1 · · · (bi − φ(bi)) · · · bs · · · bm) + φ(bi)φ(b1 · · · b̌i · · · bs · · · bm). (9.5)

Here φ(b1 · · · b̌i · · · bs · · · bm) = 0 by the induction hypothesis. For simplicity we write b̄i =
bi − φ(bi). Then (9.5) becomes

φ(b1 · · · bi · · · bs · · · bm) = φ(b1 · · · b̄i · · · bs · · · bm).

Repeating this procedure we come to

φ(b1 · · · bi · · · bs · · · bm) = φ(b̄1 · · · b̄i · · · bs · · · b̄m).

The last expression is 0 by free independence.
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9.2 Singleton CLT

We now go back to (9.2), namely, we study the asymptotic behaviour of the mth moment
of SN

φ(Sm
N ) =

N∑
n1,...,nm=1

φ(an1 · · · anm), m = 1, 2, . . . . (9.6)

We now assume the following conditions:

(i) an is real, i.e., an = a∗n;

(ii) an is normalized in such a way that φ(an) = 0 and φ(a2n) = 1;

(iii) {an} has uniformly bounded mixed moments, i.e., for each m = 1, 2, . . . ,

Km = sup{|φ(an1 · · · anm)| ; n1, . . . , nm = 1, 2, . . . } <∞;

(iv) {an} satisfies the singleton condition.

Our strategy is simple. We eliminate the terms φ(an1 · · · anm) in the right hand side of (9.6)
which do not contribute to the limit.

We prepare some notation. Let M(m,N) denote the set of maps from {1, 2, . . . ,m} into
{1, 2, . . . , N}. Then, (9.6) becomes

φ(Sm
N ) =

∑
n∈M(m,N)

φ(an1 · · · anm). (9.7)

By singleton condition if n1, . . . , nm contains a singleton, the corresponding term vanishes.
Setting

M′(m,N) = {n ∈ M(m,N) ; |n−1(i)| ̸= 1 for all i ∈ {1, 2, . . . , N}},
we have

φ(Sm
N ) =

∑
n∈M′(m,N)

φ(an1 · · · anm). (9.8)

For n ∈ M′(m,N) we have

|Imn| ≤ m

2
for even m; |Imn| ≤ m− 1

2
for odd m.

For p = 1, 2, . . . we set

M′
p(m,N) = {n ∈ M′(m,N) ; |Imn| = p}.

Then we have

φ(S2m
N ) =

m∑
p=1

∑
n∈M′

p(2m,N)

φ(an1 · · · an2m), (9.9)

φ(S2m−1
N ) =

m−1∑
p=1

∑
n∈M′

p(2m−1,N)

φ(an1 · · · an2m−1), (9.10)
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We now examine (9.9). First observe that

|M′
m(2m,N)| =

(
N

m

)
(2m)!

2m
= O(Nm),

m−1∑
p=1

|M′
m(2m,N)| = O(Nm−1).

Hence under the condition (iii) uniformly bounded mixed moments we see that

lim
N→∞

N−m

m−1∑
p=1

∑
n∈M′

p(2m,N)

φ(an1 · · · an2m) = 0.

Therefore, we see from (9.9) that

lim
N→∞

N−mφ(S2m
N ) = lim

N→∞
N−m

∑
n∈M′

m(2m,N)

φ(an1 · · · an2m).

In other words,

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)2m)
= lim

N→∞
N−m

∑
n∈M′

m(2m,N)

φ(an1 · · · an2m). (9.11)

We next consider (9.10). Since

m−1∑
p=1

|M′
p(2m− 1, N)| = O(Nm−1),

we have

lim
N→∞

N−(2m−1)/2

m−1∑
p=1

∑
n∈M′

p(2m−1,N)

φ(an1 · · · an2m−1) = 0.

In other words,

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)2m−1)
= 0. (9.12)

Summing up, we obtain the following

Theorem 9.2.1 Let {an} be a sequence of random variables in an algebraic probability space
(A, φ) satisfying the four conditions (i)–(iv) above. Then for m = 1, 2, . . . we have

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)2m−1)
= 0, (9.13)

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)2m)
= lim

N→∞
N−m

∑
n∈M′

m(2m,N)

φ(an1 · · · an2m), (9.14)

where M′
m(2m,N) is the collection of maps n from {1, 2, . . . , 2m} into {1, 2, . . . , N} such

that |n−1(i)| = 0 or 2 for i ∈ {1, 2, . . . , N}.
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Remark 9.2.2 If {an} is a sequence of bounded operators on a Hilbert space such that
supn ∥an∥ < ∞, then {an} has uniformly bounded mixed moments in a vector state. This
criterion is also valid for a C∗-probability space (A, φ).

Remark 9.2.3 One might consider another scaling such as

lim
N→∞

N−αmφ(Sm
N ), α > 0.

However, as is seen during the above discussion, α = 1/2 is the unique choice for the
reasonable limit under condition (iii).

9.3 Quantum Central Limit Theorems

Throughout this section we keep the assumptions

(i) an is real, i.e., a∗n = an;

(ii) an is normalized, i.e., φ(an) = 0 and φ(a2n) = 1;

(iii) {an} has uniformly bounded mixed moments.

Replacing the condition (iv) of singleton condition with one of the four independence, see
Theorem 9.1.4, we proceed computation of (9.14).

Let PP(2m) denote the set of all pair partitions of {1, 2, . . . , 2m}. With each n ∈
M′

m(2m,N) we associate a pair partition ϑ ∈ PP(2m) by

ϑ = {n−1(i) ; i ∈ {1, 2, . . . , N}, n−1(i) ̸= ∅}.

The blocks in ϑ may be arranged in such a way that

{l1, r1}, {l2, r2}, . . . , {lm, rm},

with

l1 < r1, l2 < r2, . . . , lm < rm, l1 < l2 < · · · < lm .

Moreover, l1, . . . , lm, r1, . . . , rm are uniquely determined. Define a map σ : {1, 2, . . . ,m} →
{1, 2, . . . , N} by

σ(k) = nlk .

Then σ is an injection. LetMi(m,N) denote the set of injective maps from {1, 2, . . . ,m} into
{1, 2, . . . , N}. Thus we obtain a map n 7→ (ϑ, σ) ∈ PP(2m) ×Mi(m,N), n ∈ M′

m(2m,N).
It is easily seen that this map is bijective. With these notation (9.14) becomes

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)2m)
= lim

N→∞
N−m

∑
ϑ∈PP(2m)

∑
σ∈Mi(m,N)

φ(an1 · · · an2m), (9.15)

where n is determined by (ϑ, σ) as above. The alternative expression (9.15) is also useful.
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Theorem 9.3.1 (Commutative CLT) Let {an} satisfy the above three conditions (i)–(iii)
and assume that it is commutative independent. Then

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)m)
=

1√
2π

∫ +∞

−∞
xme−x2/2dx, m = 1, 2, . . . ,

where the probability measure appearing in the right hand side is the standard Gaussian
distribution.

Proof. By elementary calculus, we know that

1√
2π

∫ +∞

−∞
x2m−1e−x2/2dx = 0,

1√
2π

∫ +∞

−∞
x2me−x2/2dx =

(2m)!

2mm!
.

Hence it is sufficient to show that

lim
N→∞

N−m
∑

n∈M′
m(2m,N)

φ(an1 · · · an2m) =
(2m)!

2mm!
.

Since {an} is commutative independent,

φ(an1 · · · an2m) = φ(a2i1) · · ·φ(a
2
im) = 1, n ∈ M′

m(2m,N).

Hence

N−m
∑

n∈M′
m(2m,N)

φ(an1 · · · an2m) = N−m|M′
m(2m,N)|

= N−m

(
N

m

)
(2m)!

2m
→ (2m)!

2mm!
,

as desired.

Theorem 9.3.2 (Free CLT) Notations and assumptions being as in (CC), if {an} is free
independent, we have

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)m)
=

1

2π

∫ +2

−2

xm
√
4− x2 dx, m = 1, 2, . . . ,

where the probability measure appearing in the right hand side is the Wigner semicircle law.

Proof. The proof is similar to that of Theorem 9.3.1. We already know that

1

2π

∫ +2

−2

x2m−1
√

4− x2 dx = 0,
1

2π

∫ +2

−2

x2m
√
4− x2 dx =

(2m)!

(m+ 1)!m!
.

Hence it is sufficient to show that

lim
N→∞

N−m
∑

n∈M′
m(2m,N)

φ(an1 · · · an2m) =
(2m)!

(m+ 1)!m!
. (9.16)
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We observe easily that

φ(an1 · · · an2m) =

{
1, ϑ ∈ PNCP(2m),

0, otherwise,

where ϑ is a pair partition associated with n. Hence,∑
n∈M′

m(2m,N)

φ(an1 · · · an2m) = |Mi(m,N)×PNCP(2m)| =
(
N

m

)
m!

(2m)!

(m+ 1)!m!
,

from which (9.16) follows.

Theorem 9.3.3 (Boolean CLT) Notations and assumptions being as in (CC), if {an} is
Boolean independent, we have

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)m)
=

1

2

∫ +∞

−∞
xm(δ−1 + δ+1)(dx), m = 1, 2, . . . ,

where the probability measure appearing in the right hand side is the Bernoulli distribution.

Proof. The proof is similar to those of Theorems 9.3.1 and 9.3.2. We readily know
that

1

2

∫ +∞

−∞
x2m−1(δ−1 + δ+1)(dx) = 0,

1

2

∫ +∞

−∞
x2m(δ−1 + δ+1)(dx) = 1,

so it is sufficient to show that

lim
N→∞

N−m
∑

n∈M′
m(2m,N)

φ(an1 · · · an2m) = 1. (9.17)

By Boolean independence we see that

φ(an1 · · · an2m) =

{
1, n1 = n2, . . . , n2m−1 = n2m ,

0, otherwise.

The number of such n’s is

(
N

m

)
m!. Hence

lim
N→∞

N−m
∑

n∈M′
m(2m,N)

φ(an1 · · · an2m) = lim
N→∞

N−m

(
N

m

)
m! = 1,

as desired.

Theorem 9.3.4 (Monotone CLT) Notations and assumptions being as in (CC), if {an}
is monotone independent, we have for m = 1, 2, . . . ,

lim
N→∞

φ

((
1√
N

N∑
n=1

an

)m)
=

1

π

∫ +
√
2

−
√
2

xm√
2− x2

dx, (9.18)

where the probability measure appearing in the right hand side is the normalized arcsine law.
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Proof. By elementary calculus we obtain

1

π

∫ +
√
2

−
√
2

x2m−1√
2− x2

dx = 0,
1

π

∫ +
√
2

−
√
2

x2m√
2− x2

dx =
(2m)!

2mm!m!
.

It is then sufficient to show that

lim
N→∞

N−m
∑

n∈M′
m(2m,N)

φ(an1 · · · an2m) =
(2m)!

2mm!m!
. (9.19)

Let n ∈ M′
m(2m,N). Then n1, n2, . . . , n2m is an arrangement of 1 ≤ i1 < i2 < · · · < im ≤ N

with each number appearing twice. By monotone independence φ(an1 · · · an2m) = 0 if im
appears as a peak, i.e., if im does not appear successively. If im appears successively, we take
out φ(a2im). For the rest we repeat a similar consideration, we see that

φ(an1 · · · an2m) = 1

if im appears side by side, im−1 appears side by side in the sequence obtained by eliminating
im, and so forth;

φ(an1 · · · an2m) = 0

otherwise. The number of such arrangements of a fixed i1 < i2 < · · · < im is

(2m− 1)(2m− 3) . . . 3 · 1 =
(2m)!

2mm!
.

Therefore,

lim
N→∞

N−m
∑

n∈M′
m(2m,N)

φ(an1 · · · an2m) = lim
N→∞

N−m

(
N

m

)
(2m)!

2mm!
=

(2m)!

2mm!m!

which completes the proof.
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Exercises 9

1. Let (A, φ) an algebraic probability space and a1, a2, · · · ∈ A a sequence of random
variables satisfying a∗n = an and φ(an) = 0 for all n. Assume that {an} is commutative
independent, i.e., {An} is commutative independent, where An is the ∗-subalgebra spanned
by an (polynomials in an).

(1) Prove that φ(a1a2a1a3a2a1) = 0.

(2) Prove that {an} satisfies the singleton condition.

2. Let p,m,N be natural numbers with m < N . Let M′
p(m,N) denote the set of all

maps from {1, 2, . . . ,m} into {1, 2, . . . , N} such that

(i) |n−1(i)| ̸= 1 for all i ∈ {1, 2, . . . , N}; (ii) |Imn| = p.

Show that

(1) |M′
m(2m,N)| =

(
N

m

)
(2m)!

2m
= O(Nm)

(2) |M′
p(m,N)| = O(Np).

3. Compute the cardinalities |PP(2m)| and |Mi(m,N)|. Then examine directly

|M′
m(2m,N)| = |PP(2m)×Mi(m,N)|.

4. Let (A, φ) an algebraic probability space and a1, a2, · · · ∈ A a sequence of random
variables satisfying a∗n = an, φ(an) = 0 and φ(a2n) = 1 for all n. Assume that {an} is free
independent. Calculate the following

φ(a1a2a1) φ(a1a2a1a2) φ(a1a1a2a2) φ(a1a2a2a1)

5. Keeping the same assumptions as above, prove that

φ(an1 · · · an2m) =

{
1, ϑ ∈ PNCP(2m),

0, otherwise,

where ϑ is a pair partition associated with n.

6. Show that

1√
2π

∫ +∞

−∞
x2me−x2/2dx =

(2m)!

2mm!
,

1

π

∫ +
√
2

−
√
2

x2m√
2− x2

dx =
(2m)!

2mm!m!
.
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10 Deformed Vacuum States and Q-Matrices

10.1 Q-Matrices

Definition 10.1.1 Let G = (V,E) be a connected graph. Given q ∈ C, the matrix Q = Qq

indexed by V × V defined by

(Q)xy = q∂(x,y), x, y ∈ V

is called the Q-matrix of G. For q = 0 we understand that 00 = 1 and Q0 = E (the identity
matrix).

When a Q-matrix is considered, the graph is pressumed to be connected. The Q-matrix

is related to the adjacency matrix:
d

dq
Q
∣∣∣
q=0

= A.

Example 10.1.2 (1) s s [
1 q
q 1

]

(2) s
2

s
1

s3
s4

A
A
A

�
�
�


1 q q q
q 1 q q2

q q 1 q2

q q2 q2 1



The Q-matrix gives rise to a one-parameter deformation of the vacuum state. Let us
define

⟨a⟩q = ⟨Qeo, aeo⟩ =
∑
x∈V

q∂(x,o)⟨ex, aeo⟩, a ∈ A(G). (10.1)

Obviously, A(G) ∋ a 7→ ⟨a⟩q is a normalized linear function on A(G).

Definition 10.1.3 A normalized linear function defined in (10.1) is called a deformed vac-
uum functional on A(G).

A deformed vacuum functional is not necessarily a state. We are interested in when ⟨·⟩q
is positive. We recall the following general notion.

Definition 10.1.4 Let T be a matrix indexed by V × V . We say that T is positive definite
if

⟨f, Tf⟩ ≥ 0 for all f ∈ C0(V ).

A positive definite matrix T is called strictly positive definite if

⟨f, Tf⟩ > 0 for all f ∈ C0(V ), f ̸= 0.

Theorem 10.1.5 The normalized linear function ⟨·⟩q defined by (10.1) is positive, hence a
state on A(G) if the following two conditions are fulfilled:
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(i) Q is a positive definite kernel on V ;

(ii) QA = AQ. (Note that Q is not necessarily locally finite but A is. Therefore the matrix
elements of both sides are well-defined.)

Proof. Let a ∈ A(G). Since a is a polynomial in A, we have Qa = aQ. Then, by the
definition (10.1) we have

⟨a∗a⟩q = ⟨Qeo, a∗aeo⟩ = ⟨aQeo, aeo⟩ = ⟨Qaeo, aeo⟩ ≥ 0,

which proves the assertion.

Lemma 10.1.6 Let G = (V,E) be a graph with |V | ≥ 2. If Q = (q∂(x,y)) is a positive definite
kernel on V , then −1 ≤ q ≤ 1.

Proof. By assumption there is a pair of a, b ∈ V such that ∂(a, b) = 1. Since
Q = (q∂(x,y)) is a positive definite kernel on V , taking f = αea + βeb in C0(V ), we obtain⟨[

α
β

]
,

[
1 q
q 1

] [
α
β

]⟩
≥ 0, α, β ∈ C, (10.2)

where ⟨·, ·⟩ is the usual Hermitian inner product of C2. Therefore, the 2×2 matrix appearing
in (10.2) is positive definite. Hence q ∈ R and 1− q2 ≥ 0.

It is an important question, which is quite open, to determine the range of q ∈ [−1, 1]
for which Q becomes positive definite. For a graph G we set

q[G] = {−1 ≤ q ≤ 1 ; Qq is strictly positive definite},
q̃[G] = {−1 ≤ q ≤ 1 ; Qq is positive definite}.

Lemma 10.1.7 (1) q[G] ⊂ q̃[G].
(2) q[G] ⊂ q̃[G] and q̃[G] is a closed subset of [−1, 1].

Proof. Immediate.

Example 10.1.8 (1) The eigenvalues of the Q-matrix of P2 = K2 are 1± q. Hence

q[P2] = (−1, 1), q̃[P2] = [−1, 1].

(2) The eigenvalues of the Q-matrix of C3 are 1 + 2q and 1− q (multiplicity 2).

q[C3] =

(
−1

2
, 1

)
, q̃[C3] =

[
−1

2
, 1

]
.
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(3) For a complete bipartite graph Km,n with 2 ≤ m ≤ n,

q[Km,n] =

(
− 1√

(m− 1)(n− 1)
,

1√
(m− 1)(n− 1)

)
,

q̃[Km,n] =

[
− 1√

(m− 1)(n− 1)
,

1√
(m− 1)(n− 1)

]
∪ {−1, 1}.

More discussion on q[G] and q̃[G] will be found in the next sections.
In order to derive a sufficient condition for the equality QA = AQ we consider a geometric

property of a graph. A graph G = (V,E) is called quasi-distance-regular if∣∣∣∣{z ∈ V ;
∂(z, x) = n
∂(z, y) = 1

}∣∣∣∣ = ∣∣∣∣{z ∈ V ;
∂(z, x) = 1
∂(z, y) = n

}∣∣∣∣ (10.3)

holds for any choice of x, y ∈ V and n = 0, 1, 2, . . . . Here the number defined by (10.3)
may depend on the choice of x, y ∈ V . By definition, a distance-regular graph is quasi-
distance-regular. On the other hand, if (10.3) depends only on ∂(x, y), the graph G becomes
distance-regular.

Proposition 10.1.9 If a graph is quasi-distance-regular, then QA = AQ for all q ∈ R.
Conversely, if QA = AQ holds for q running over a non-empty open interval, then the graph
is quasi-distance-regular.

Proof. Let x, y ∈ V . Then

(QA)xy =
∑
z∈V

q∂(x,z)Azy =
∑
z∼y

q∂(x,z)

=
∞∑
n=0

qn|{z ∈ V ; ∂(z, x) = n, ∂(z, y) = 1}|, (10.4)

which is in fact a finite sum. Similarly, we have

(AQ)xy =
∞∑
n=0

qn|{z ∈ V ; ∂(z, x) = 1, ∂(z, y) = n}|. (10.5)

Hence, if the graph is quasi-distance-regular, the coefficients of qn in (10.4) and (10.5) coincide
and we obtain (QA)xy = (AQ)xy for all x, y ∈ V . The converse assertion is readily clear.

10.2 Cartesian Product

Lemma 10.2.1 Let G = G1 ×G2. Then,

∂G((x, y), (x
′, y′)) = ∂G1(x, x

′) + ∂G2(y, y
′). (10.6)
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Proof. Set s = ∂G((x, y), (x
′, y′)). Then we may find a sequence of vertices of G1×G2

such that

(x, y) = (x0, y0) ∼ (x1, y1) ∼ (x2, y2) ∼ · · · ∼ (xs−1, ys−1) ∼ (xs, ys) = (x′, y′).

Then, every pair of consecutive vertices in the sequence

x = x0, x1, x2, . . . , xs−1 , xs = x′

are identical or adjacent. Hence, reducing consecutively identical vertices into one vertex,
we obtain a walk connecting x and x′, of which the length is, say, α. Similarly, from

y = y0, y1, y2, . . . , ys−1 , ys = y′

we obtain a walk connecting y and y′, of which the length is, say, β. By the definition of a
direct product graph, xi = xi+1 happens if and only if yi ∼ yi+1. Hence

α + β = s.

Since ∂G1(x, x
′) ≤ α and ∂G2(y, y

′) ≤ β, we have

∂G1(x, x
′) + ∂G2(y, y

′) ≤ α + β = s.

That ∂G1(x, x
′) + ∂G2(y, y

′) ≥ s is shown by constructing a walk.

Lemma 10.2.2 Let Q1, Q2 and Q be the Q-matrices of graphs G1, G2 and G = G1 × G2,
with a common parameter q. Then

Q = Q1 ⊗Q2 .

Proof. First by definition

(Q)(x,y),(x′,y′) = q∂G((x,y),(x′,y′)).

Applying Lemma 10.2.1, we obtain

= q∂G1
(x,x′)q∂G2

(y,y′) = (Q1)xx′(Q2)yy′ = (Q1 ⊗Q2)(x,y),(x′,y′).

Therefore, Q = Q1 ⊗Q2.

Theorem 10.2.3 Let G = G1 ×G2.

(1) q[G] = q[G1] ∩ q[G2].

(2) q̃[G] = q̃[G1] ∩ q̃[G2].
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Proof. We see from Lemma 10.2.2 that the eigenvalues of Q are of the form αβ, where
α and β are eigenvalues of Q1 and Q2, respectively.

(1) Let q ∈ q[G1] ∩ q[G2], namely, Qi = Qi(q) is a strictly positive definite kernel for
Gi. Since the eigenvalues of Qi are all positive, every eigenvalues of Q are also positive.
Therefore, q[G1] ∩ q[G2] ⊂ q[G].

We show that Q contains Q1 as a principal submatrix. Take a vetex o2 ∈ V2 and set

W = {(x, o2) ; x ∈ V1}.

Let H1 be the induced subgraph of G1 × G2 spanned by W . Then, H1 is isomorphic to G1

and ∂H = ∂G1 coincides with the restriction of ∂G to H. Hence Q1 is regarded as a principal
submatrix of Q. The situation is similar for Q2. Now let q ∈ q[G]. Then Q is strictly positive
definite so are all the principal submatrices. In particular, so are Q1 and Q2. Consequently,
q[G] ⊂ q[G1] ∩ q[G2].

(2) The proof is similar. Let q ∈ q̃[G1] ∩ q̃[G2], namely, Qi = Qi(q) is a positive definite
kernel for Gi. Since the eigenvalues of Qi are all non-negative, every eigenvalues of Q are
also non-negative. Therefore, q̃[G1] ∩ q̃[G2] ⊂ q̃[G].

The second half is also similar to the argument in (1).

10.3 Star Product and Comb Product

We now consider the graph distance of the star product.

Lemma 10.3.1 Let G = G1 ⋆ G2. Then,

∂G = ∂G1×G2 �V1⋆V2 .

Proof. Take a pair of vertices of G1 ⋆ G2. For (x, o2), (x
′, o2) we have

∂G((x, o2), (x
′, o2)) = ∂G1(x, x

′)

= ∂G1(x, x
′) + ∂G2(o2, o2)

= ∂G1×G2((x, o2), (x
′, o2)).

For (x, o2), (o1, y) we have

∂G((x, o2), (o1, y)) = ∂G((x, o2), (o1, o2)) + ∂G((o1, o2), (o1, y))

= ∂G1(x, o1) + ∂G2(o2, y)

= ∂G1×G2((x, o2), (o1, y)).

As an immediate consequence from Lemma 10.3.1 we obtain

Lemma 10.3.2 The Q-matrix of the star product G = G1 ⋆ G2 is a principal submatrix of
the Q-matrix of G1 ×G2 as follows:

QG1⋆G2 = QG1×G2 �C(V1⋆V2)
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Theorem 10.3.3 Let G = G1 ⋆ G2.

(1) q[G] = q[G1] ∩ q[G2].

(2) q̃[G] = q̃[G1] ∩ q̃[G2].

Proof. (1) Supose q ∈ q[G1] ∩ q[G2]. We see from Theorem 10.2.3 that QG1×G2(q) is
strictly positive definite. Since QG1⋆G2 is a principal submatrix by Lemma 10.3.2, it is also
strictly positive definite. Namely, q[G1] ∩ q[G2] ⊂ q[G].

Conversely, let q ∈ q[G]. Then QG1⋆G2(q) is strictly positive definite. Since Gi is isomet-
rically imbedded in G1 ⋆ G2, its Q-matrix is a principal submatrix of QG1⋆G2(q). Therefore,
QGi

(q) is also a strictly positive definite. Thus, q[G] ⊂ q[G1] ∩ q[G2].
(2) is proved similarly.

Remark 10.3.4 Theorem 10.3.3 was first obtained as a corollary to Bożejko’s theorem on
Markov sum. The above argument provides an alternative proof.

Theorem 10.3.5 Let G = G1 ◃ G2.

(1) q[G] = q[G1] ∩ q[G2].

(2) q̃[G] = q̃[G1] ∩ q̃[G2].

Proof. Since

G1 ◃ G2
∼= (· · · ((G1 ⋆

|V1| times︷ ︸︸ ︷
G2) ⋆ G2 ⋆ · · · ) ⋆ G2,

the assertion follows from Theorem 10.3.3.

10.4 Haagerup States

Let Tκ denote the homogeneous tree of degree κ. We start with the following fundamental
fact.

Theorem 10.4.1 The deformed vacuum functional ⟨·⟩q on the homogeneous tree Tκ is a
state for all −1 ≤ q ≤ 1.

Proof. We check the conditions (i) and (ii) in Theorem 10.1.5. First, (i) is clear
because Tκ is distance-regular. For (ii) it is sufficient to show that the Q-matrix of a finite
tree is positive definite for all −1 ≤ q ≤ 1. But a tree is formed by repeated application
of star product with P2 = K2. Since q̃[P2] = [−1, 1] we see from Theorem 10.3.3 that
q̃[Tκ] = [−1, 1].

Definition 10.4.2 The deformed vacuum state ⟨·⟩q on the adjacency algebra A(Tκ) is called
the Haagerup state.
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Remark 10.4.3 In fact, Theorem 10.4.1 is originally due to Haagerup. His proof uses some
specific structure of free group. Later Bożejko, introducing a concept of Markov sum of
positive definite kernels, drastically simplified the proof. Our proof is based on our argument.

We are interested in the asymptotics of the spectral distribution µκ,q determined by

⟨Am⟩q =
∫ +∞

−∞
xmµκ,q(dx), m = 1, 2, . . . .

It is reasonable to call µκ,q a deformed Kesten distribution. We first note the following

Lemma 10.4.4 (1) mean (µκ,q) = ⟨A⟩q = κq.

(2) var (µκ,q) = Σ2
q(A) = κ(1− q2).

Proof. (1) By definition

⟨A⟩q = ⟨Qδo, Aδo⟩ = ⟨δo, QAδo⟩ = (QA)oo

=
∑
x∈V

(Q)ox(A)xo =
∑
x∼o

(Q)ox =
∑
x∼o

q∂(o,x)

= q|{x ∈ V ; x ∼ o}| = qκ.

(2) Since
Σ2

q(A) = ⟨A2⟩q − ⟨A⟩2q
by definition, we need to compute ⟨A2⟩q. In a similar manner as in (1) we see that

⟨A2⟩q = κ(κ− 1)q2 + κ,

from which the assertion follows.

Lemma 10.4.4 suggests that a reasonable object to study is not A itself but the normalized
adacency matrix defined by

A− ⟨A⟩q
Σq(A)

=
A− κq√
κ(1− q2)

.

We will study the moments:⟨(
A− κq√
κ(1− q2)

)m⟩
q

, m = 1, 2, . . . .

Having already chosen an origin o of Tκ, we have the natural stratification and the
quantum decomposition of A = A+ + A− (A◦ = 0 for a tree). Accordingly, the normalized
adjacency matrix is decomposed into three parts:

A− κq√
κ(1− q2)

=
A+√

κ(1− q2)
+

A−√
κ(1− q2)

+
−κq√
κ(1− q2)

.
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For simplicity we introduce Cϵ = Cϵ(κ, q) by

C+ =
A+√

κ(1− q2)
, C− =

A−√
κ(1− q2)

C◦ =
−κq√
κ(1− q2)

. (10.7)

Using the actions of A± on Γ(Tκ), see Section 6.4, we obtain easily

C+Φ0 =
1√

1− q2
Φ1, C+Φn =

√
κ− 1

κ(1− q2)
Φn+1 (n ≥ 1)

C−Φ0 = 0, C−Φ1 =
1√

1− q2
Φ1, C−Φn =

√
κ− 1

κ(1− q2)
Φn−1 (n ≥ 2)

C◦Φn = −

√
q2κ

1− q2
Φn (n ≥ 0)

We are interested in the asymptotics as κ → ∞ (the growing trees) so we need to take a
suitable balance with q. The reasonable scaling is as follows:

κ→ ∞, q
√
κ→ γ, q → 0, (10.8)

where γ ∈ R is a constant. Under this scaling limit the limit actions of Cϵ are rather
apparent. In particular, in view of the actions of C±, we expect that the limit is described
in terms of the free Fock space.

We need to discuss the mixed moments:

⟨Cϵm · · ·Cϵ1⟩q = ⟨QΦ0, C
ϵm · · ·Cϵ1Φ0⟩,

where the limit actions of Cϵm , . . . , Cϵ1 are readily observed. Consider the vector QΦ0. By
definition

QΦ0 =
∑
x∈V

⟨δx, QΦ0⟩δx =
∑
x∈V

(Q)xoδx

=
∑
x∈V

q∂(x,o)δx =
∞∑
n=0

∑
x∈Vn

qnδx

=
∞∑
n=0

qn|Vn|1/2Φn

Since |Vn| = κ(κ − 1)n−1 for n ≥ 1, under the scaling limit as in (10.8) the coefficient
converges:

qn|Vn|1/2 → γn.

Definition 10.4.5 Let (Γfree, {Ψn}, B+, B−) be a free Fock space. For z ∈ C,

Ωz =
∞∑
n=0

znΨn . (10.9)

is called a coherent vector.
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(10.9) is a formal sum but makes sense as a linear functional on the ∗-algebra Afree

generated by B+, B− and diagonal operators. Namely, for a ∈ Afree,

⟨Ωz, aΨ0⟩ =
∞∑
n=0

z̄n⟨Ψn, aΦ0⟩

is a finite sum and

a 7→ ⟨Ωz, aΨ0⟩

is a linear functional on Afree.

Remark 10.4.6 (1) The infinite series (10.9) converges in norm for |z| < 1.

(2) Ωz is an eigenvector of B−, i.e., B−Ωz = zΩz. More precisely, ⟨Ωz, B
+Ψn⟩ = ⟨zΩz,Ψn⟩

for n. This motivated us to call Ωz a coherent vector.

Theorem 10.4.7 (Quantum Central Limit Theorem) Let A = Aκ be the adjacency
matrix of Tκ and define Cϵ = Cϵ(κ, q) as in (10.7). Let (Γfree, {Ψn}, B+, B−) be the free Fock
space and set B◦ = −γI (scalar operator). Then

lim ⟨Cϵm · · ·Cϵ1⟩q = ⟨Ωγ, B
ϵm · · ·Bϵ1Ψ0⟩free,

where the limit is taken as κ→ ∞, q → 0 with q
√
κ→ γ ∈ R (constant).

Proof. The proof is already clear from the above argument.

Theorem 10.4.8 For the normalized adjacency matrix of Tκ we have

lim

⟨(
A− κq√
κ(1− q2)

)m⟩
q

= ⟨Ωγ, (B
+ +B− − γI)mΨ0⟩free, m = 1, 2, . . . .

10.5 Free Poisson Distributions

In this section we meet one of the most basic result on the free Fock space. Let P be the
vacuum projection, i.e.,

PΨ0 = Ψ0, PΨn = 0 (n ≥ 1).

Note that B+B− = I − P .

Lemma 10.5.1 For z ∈ C and m = 1, 2, . . . we have:

⟨Ωz̄, (B
+ +B−)mΨ0⟩ = ⟨Ψ0, (B

+ +B− + zP )mΨ0⟩, (10.10)

⟨Ωz̄, (B
+ +B− − z)mΨ0⟩ = ⟨Φ0, (B

+ +B− − zB+B−)mΨ0⟩, (10.11)

where Ωz̄ is the coherent vector with parameter z̄.
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Proof. (10.11) follows from (10.10). In fact,

⟨Ωz̄, (B
+ +B− − z)mΨ0⟩

=
m∑

n=0

(
m

n

)
(−z)m−n⟨Ωz̄, (B

+ +B−)nΨ0⟩

=
m∑

n=0

(
m

n

)
(−z)m−n⟨Ψ0, (B

+ +B− + zP )nΨ0⟩

= ⟨Ψ0, (B
+ +B− + zP − z)mΨ0⟩.

Since B+B− = 1− P , the last expression becomes

= ⟨Ψ0, (B
+ +B− − zB+B−)mΨ0⟩,

which proves (10.11). The proof of (10.10) is left to the reader.

In particular, for any γ ∈ R there exists a probability measure µγ such that

⟨Ωγ, (B
+ +B− − γ)mΨ0⟩ = ⟨Ψ0, (B

+ +B− − γB+B−)mΨ0⟩ =
∫ +∞

−∞
xmµγ(dx)

for m = 1, 2, . . . . In fact, the Jacobi coefficients of µγ is given by

ω1 = ω2 = · · · = 1, α1 = 0, α2 = α3 = · · · = −γ. (10.12)

Then, Corollary 10.4.8 yields the following

Theorem 10.5.2 (CLT) For the normalized adjacency matrix of Tκ we have

lim

⟨(
A− κq√
κ(1− q2)

)m⟩
q

=

∫ +∞

−∞
xmµγ(dx), m = 1, 2, . . . ,

where µγ is uniquely determined by the Jacobi coefficients given by (10.12).

We are now in a good position to give the following

Definition 10.5.3 Let (Γfree, {Ψn}, B+, B−) be the free Fock space and λ > 0 a constant.
The vacuum spectral distribution of (B+ +

√
λ)(B− +

√
λ) is called the free Poisson distri-

bution or Marchenko–Pastur distribution with parameter λ. In other words, the free Poisson
distribution with parameter λ is a probability measure νλ uniquely specified by

⟨Ψ0, ((B
+ +

√
λ)(B− +

√
λ))mΨ0⟩ =

∫ +∞

−∞
xmνλ(dx), m = 1, 2, . . . . (10.13)

Lemma 10.5.4 (1) mean (νλ) = var (νλ) = λ.

(2) The Jacobi coefficients of νλ are given by

ω1 = ω2 = · · · = λ, α1 = λ, α2 = α3 = · · · = λ+ 1. (10.14)
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Proof. (1) follows from (2) since mean (νλ) = α1 and var (νλ) = ω1.
(2) Note that

(B+ +
√
λ)(B− +

√
λ) =

√
λB+ +

√
λB− + (λ+B+B−).

Since √
λB+Φn =

√
λΦn+1 , n ≥ 0,

we obtain ω1 = ω2 = · · · = λ. Similarly, from

(λ+B+B−)Φ0 = λΦ0, (λ+B+B−)Φn = (λ+ 1)Φn (n ≥ 1)

we see that α1 = λ and α2 = α3 = · · · = λ+ 1.

Comparing (10.12) and (10.14), we claim the following

Theorem 10.5.5 For γ ̸= 0, µγ is obtained from the free Poisson distribution ν1/γ2 with
parameter 1/γ2 by reflection and normalization. For γ = 0, µγ is the Wigner semicircle law.

Remark 10.5.6 The density function of the free Poisson distribution is given explicitly.
For λ > 0 we set

ρλ(x) =


√

4λ− (x− 1− λ)2

2πx
, (1−

√
λ)2 ≤ x ≤ (1 +

√
λ)2,

0, otherwise.

The free Poisson distribution with parameter λ is given by{
(1− λ)δ0 + ρλ(x)dx, 0 < λ < 1,

ρλ(x)dx, λ ≥ 1.
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Exercises 10

1. Prove that

q[K3] =

(
−1

2
, 1

)
, q̃[K3] =

[
−1

2
, 1

]
.

Then for a general complete graph Kn prove that

q[Kn] =

(
− 1

n− 1
, 1

)
, q̃[Kn] =

[
− 1

n− 1
, 1

]
2. Let G be a cube. Find q[G] and q̃[G].

3∗. Let G be an octahedron. Find q[G] and q̃[G].

s s
s s

s s
s s

�
�

�
�

�
�

�
�

s2 s3
s5 s 4

s
1

s6

�
�
�

�
�

�

@
@

@
@

�
�
�
�

E
E
E
E
E
EE































E
E
E
E
E
EE

�
�
�
�

@
@
@

@

4. Let Tκ = (V,E) be a homogeneous tree with a distinguished vertex o ∈ V . Let

V =
∞∪
n=0

Vn , Vn = {x ∈ V ; ∂(x, o) = n},

be the stratification.

(1) Find the cardinality |Vn|.

(2) Set

Φn =
1√
|Vn|

∑
x∈Vn

ex .

Then compute ⟨Φn, QΦ0⟩.

5. Let ⟨·⟩q be the Haagerup state on A(Tκ). Show that the mean and the variance of the
adjacency matrix A are given by

⟨A⟩q = κq, ⟨(A− ⟨A⟩q)2⟩q = κ(1− q2).

6∗. Let (Γ, {Ψn}, B+, B−) be a free Fock space. Let Ωz be a coherent vector, z ∈ C and
P the vacuum projection. Show that

⟨Ωz̄, (B
+ +B−)mΨ0⟩ = ⟨Ψ0, (B

+ +B− + zP )mΨ0⟩,
⟨Ωz̄, (B

+ +B− − z)mΨ0⟩ = ⟨Ψ0, (B
+ +B− − zB+B−)mΨ0⟩.
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Addendum: An Experimental Mathematics

1. The following pair of graphs have the same spectra. Find the positivity regions q[G]
and q̃[G].
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2. (1) It is desirable to find the positivity regions q[G] and q̃[G].
(2) If (1) is difficult, it would be interesting, as an easier question, to determine the region

of q such that detQ > 0 or detQ ≥ 0.

(a) sequence of triangles

(b) polygons with center, as a blocks of triangles

(c) block of triangles

(d) block of squares


