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1 Random Variables and Probability Distributions

1.1 Random phenomena and probabilistic models
random phenomenon =⇒ possible results

“single trial” vs “many trials”

Example 1.1.1 (coin toss) Let’s flip a coin. Heads or tails or others?

Example 1.1.2 (random cut) Cut a stick and divide into two segments.

Example 1.1.3 (life span of a person) Estimate the life span of a randomly chosen Japanese people.

— A probabilistic model = Calculation rule for “probability” of possible results

• Based only on the statistical data.

• Use information suggested by scientific knowledge, e.g., physics, biology, chemistry, economics, psychol-
ogy, ...

— In these lectures we will discuss as examples:

1. Waiting times

2. Drunken walker’s recurrence

3. Long leads

4. Gambler’s ruin

5. Card shuffling

6. Survival of family names

7. Waiting line, ...

1.2 Random variables
random phenomenon =⇒ possible results =⇒ measurement =⇒ quantitative data

— A variable x

— A random variable X

1.2.1 Discrete random variables
A random variable X is called discrete if the number of values that X takes is finite or countably infinite.

To be more precise, for a discrete random variable X there exist a (finite or infinite) sequence of real numbers
a1, a2, . . . and corresponding nonnegative numbers p1, p2, . . . such that

P(X = ai) = pi, pi ≥ 0,
∑

pi = 1.

In this case
µX(dx) =

∑
i

piδai (dx) =
∑

i

piδ(x − ai)dx

is called the (probability) distribution of X.
Obviously,

P(a ≤ X ≤ b) =
∑

i:a≤ai≤b

pi
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Example 1.2.1 (coin toss) We set

X =

1, heads,
0, tails.

Then
P(X = 1) = P(X = 0) =

Example 1.2.2 (waiting time) Flip a fair coin repeatedly until we get the heads. Let X be the number of coin
tosses to get the first heads. (If the heads occurs at the first trial, we have X = 1; If the tails occurs at the first trial
and the heads at the second trial, we have X = 2, and so on.)

1.2.2 Continuous random variables
A random variable X is called continuous if P(X = a) = 0 for all a ∈ R. We understand intuitively that X

varies continuously.
If there exists a function f (x) such that

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx, a < b,

we say that X admits a probability density function. Note that∫ +∞

−∞
f (x)dx = 1, f (x) ≥ 0.

In this case,
µX(dx) = f (x)dx

is called the (probability) distribution of X.

a b x

f (x)

Remark 1.2.3 (1) A continuous random variable does not necessarily admit a probability density function.
But many continuous random variables in practical applications admit probability density functions.

(2) There is a random variable which is neither discrete nor continuous. But most random variables in practical
applications are either discrete or continuous.

Example 1.2.4 (random cut) Divide the interval [0, L] (L > 0) into two segments.
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(1) Let X be the coordinate of the cutting point (the length of the segment containing 0).

(2) Let M be the length of the longer segment.

Example 1.2.5 Let A be a randomly chosen point from the disc with radius R > 0. Let X be the distance between
the center O and A.

O

a

b

X

Figure 1.1: Random choice of a point

We have

P(a ≤ X ≤ b) =
π(b2 − a2)
πR2 =

1
R2

∫ b

a
2xdx, 0 < a < b < R,

so the probability density function is given by

f (x) =


0, x ≤ 0,
2x
R2 , 0 ≤ x ≤ R,

0, x > R.

1.3 Probability distributions
1.3.1 Mean and variance
Definition 1.3.1 The mean or expectation value of a random variable X is defined by

m = E[X] =
∫ +∞

−∞
xµX(dx)

• If X is discrete, we have
E[X] =

∑
i

ai pi .

• If X admits a probability density function f (x), we have

E[X] =
∫ +∞

−∞
x f (x)dx.

Remark 1.3.2 For a function φ(x) we have

E[φ(X)] =
∫ +∞

−∞
φ(x)µ(dx).

For example,

E[Xm] =
∫ +∞

−∞
xmµ(dx) (m-th moment),

E[eitX] =
∫ +∞

−∞
eitxµ(dx) (characteristic function).
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Definition 1.3.3 The variance of a random variable X is defined by

σ2 = V[X] = E[(X − E[X])2] = E[X2] − E[X]2,

or equivalently,

σ2 = V[X] =
∫ +∞

−∞
(x − E[X])2µ(dx) =

∫ +∞

−∞
x2µ(dx) −

(∫ +∞

−∞
xµ(dx)

)2

.

1.3.2 A list of discrete distributions
1. Bernoulli distribution with success probability 0 ≤ p ≤ 1.

(1 − p)δ0 + pδ1

This is the distribution of coin toss.
m = p, σ2 = p(1 − p)

Quiz 1.3.4 Let a, b be distinct real numbers. A general two-point distribution is defined by

pδa + qδb ,

where 0 ≤ p ≤ 1 and p + q = 1. Determine the two-point distribution having mean 0, variance 1.

2. Binomial distribution B(n, p) (0 ≤ p ≤ 1, n ≥ 1).

n∑
k=0

(
n
k

)
pk(1 − p)n−k δk

B(100, 0.4)

The quantity (
n
k

)
pk(1 − p)n−k

is the probability that n coin tosses with probabilities p for heads and q = 1 − p for tails result in k heads and
n − k tails.

Quiz 1.3.5 Verify that m = np and σ2 = np(1 − p) for B(n, p).

3. Geometric distribution with parameter 0 ≤ p ≤ 1.

∞∑
k=1

p(1 − p)k−1δk

This is the distribution of waiting time for the first heads (Example 1.2.2).
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Quiz 1.3.6 Verify that m =
1
p

and σ2 =
1
p2

Remark 1.3.7 In some literatures, the geometric distribution with parameter p is defined by

∞∑
k=0

p(1 − p)kδk

4. Poisson distribution with parameter λ > 0.

∞∑
k=0

e−λ
λk

k!
δk

Quiz 1.3.8 Verify that m = λ and σ2 = λ for the Poisson distribution with parameter λ.

Quiz 1.3.9 (Challenge) Look up the method of generating functions in textbooks:

G(z) =
∞∑

k=0

pkzk, where pk ≥ 0,
∞∑

k=0

pk = 1.

1.3.3 A list of continuous distributions (density functions)
1. Uniform distribution on [a, b].

f (x) =


1

b − a
, a ≤ x ≤ b,

0, otherwise

a b x

ab

1

Quiz 1.3.10 Verify that

m =
a + b

2
, σ2 =

(b − a)2

12

2. Exponential distribution with parameter λ > 0.

f (x) =

λe−λx , x ≥ 0,
0, otherwise.

This is a model for waiting time (continuous time).

x

λ
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Quiz 1.3.11 Verify that m =
1
λ

and σ2 =
1
λ2 .

3. Normal (Gaussian) distribution N(m, σ2) (σ > 0, m ∈ R)

f (x) =
1

√
2πσ2

exp
{
− (x − m)2

2σ2

}
In particular, N(0, 1) is called the standard normal distribution.

Quiz 1.3.12 Prove that the above f (x) is a probability density function. Then prove by integration that the mean
is m and the variance is σ2:

m =
1

√
2πσ2

∫ +∞

−∞
x exp

{
− (x − m)2

2σ2

}
dx,

σ2 =
1

√
2πσ2

∫ +∞

−∞
(x − m)2 exp

{
− (x − m)2

2σ2

}
dx

Quiz 1.3.13 Let X be the length of the shorter segment obtained by randomly cutting the interval [0, L]. Calculate
the mean and variance of X.

Problem 1 Choose randomly a point A from the disc with radius one and let X be the radius of the inscribed
circle with center A.

(1) Find the probability density function of X.

(2) Calculate the mean and variance of X.

(2) Calculate the mean and variance of the area of inscribed circle S = πX2.

Problem 2 (1) Differentiating both sides of the known formula:∫ +∞

0
e−tx2

dx =
√
π

2
√

t
, t > 0,

find the values ∫ +∞

0
x2ne−x2

dx, n = 0, 1, 2, . . . .

(2) Determine a constant a in order that

f (x) =

ax2e−x2
, x ≥ 0,

0, otherwise,

is a probability density function on R, and find its mean and variance.
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2 Bernoulli Trials

Repeated independent coin tosses are called the Bernoulli trials, where the tossed coins are identical in the
sense that the probabilities of heads and tails remain the same throughout the trials. The Bernoulli trials form the
most fundamental stochastic process.

2.1 Independence
2.1.1 Independent events
Definition 2.1.1 (Pairwise independence) A (finite or infinite) sequence of events A1, A2, . . . is called pairwise
independent if any pair of events Ai1 , Ai2 (i1 , i2) verifies

P(Ai1 ∩ Ai2 ) = P(Ai1 )P(Ai2 ).

Definition 2.1.2 (Independence) A (finite or infinite) sequence of events A1, A2, . . . is called independent if any
choice of finitely many events Ai1 , . . . , Ain (i1 < i2 < · · · < in) satisfies

P(Ai1 ∩ Ai2 ∩ · · · ∩ Ain ) = P(Ai1 )P(Ai2 ) · · · P(Ain ).

Example 2.1.3 Consider the trial to randomly draw a card from a deck of 52 cards. Let A be the event that the
result is an ace and B the event that the result is spades. Then A, B are independent.

Example 2.1.4 An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random and let X1
be the first digit, X2 the second digit, and X3 the last digit. For i = 1, 2, 3 we define an event Ai by Ai = {Xi = 1}.
Then {A1, A2, A3} is pairwise independent but is not independent.

Remark 2.1.5 It is allowed to consider whether the sequence of events {A, A} is independent or not. If they are
independent, by definition we have

P(A ∩ A) = P(A)P(A).

Then P(A) = 0 or P(A) = 1. Notice that P(A) = 0 does not imply A = ∅. Similarly, P(A) = 1 does not imply
A = Ω (whole event).

Quiz 2.1.6 For A we write A# for itself A or its complementary event Ac. Prove the following assertions.

(1) If A and B are independent, so are A# and B#.

(2) If A1, A2, . . . are independent, so are A#
1, A

#
2, . . . .

Definition 2.1.7 (Conditional probability) For two events A, B the conditional probability of A relative to B (or
on the hypothesis B, or for given B) is defined by

P(A|B) =
P(A ∩ B)

P(B)

whenever P(B) > 0.

Theorem 2.1.8 Let A, B be events with P(A) > 0 and P(B) > 0. Then, the following assertions are equivalent:

(i) A, B are independent;

(ii) P(A|B) = P(A);

(iii) P(B|A) = P(B);
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2.1.2 Independent random variables
Definition 2.1.9 A (finite or infinite) sequence of random variables X1, X2, . . . is independent (resp. pairwise
independent) if so is the sequence of events {X1 ≤ a1}, {X1 ≤ a2}, . . . for any a1, a2, · · · ∈ R.

In other words, a (finite or infinite) sequence of random variables X1, X2, . . . is independent if for any finite
Xi1 , . . . , Xin (i1 < i2 < · · · < in) and constant numbers a1, . . . , an

P(Xi1 ≤ a1 , Xi2 ≤ a2 , . . . , Xin ≤ an) = P(Xi1 ≤ a1)P(Xi2 ≤ a2) · · · P(Xin ≤ an) (2.1)

holds. Similar assertion holds for the pairwise independence.
If random variables X1, X2, . . . are discrete, (2.1) may be replaced with

P(Xi1 = a1 , Xi2 = a2 , . . . , Xin = an) = P(Xi1 = a1)P(Xi2 = a2) · · · P(Xin = an).

Example 2.1.10 Choose at random a point from the rectangle Ω = {(x, y) ; a ≤ x ≤ b, c ≤ y ≤ d}. Let X denote
the x-coordinates of the chosen point and Y the y-coordinates. Then X, Y are independent.

2.2 Covariance and Correlation coefficient
Recall that the mean of a random variable X is defined by

mX = E(X) =
∫ +∞

−∞
xµX(dx).

Theorem 2.2.1 (Linearity) For two random variables X,Y and two constant numbers a, b it holds that

E(aX + bY) = aE(X) + bE(Y).

Theorem 2.2.2 (Multiplicativity) If random variables X1, X2, . . . , Xn are independent, we have

E[X1X2 · · · Xn] = E[X1] · · ·E[Xn]. (2.2)

Proof We first prove the assertion for Xk = 1Ak (indicator random variable). By definition X1, . . . , Xn are
independent if and only if so are A1, . . . , An. Therefore,

E[X1 · · · Xn] = E[1A1∩···∩An ] = P(A1 ∩ · · · ∩ An)
= P(A1) · · · P(An) = E[X1] · · ·E[Xn].

Thus (2.2)is verified. Then, by linearity the assertion is valid for Xk taking finitely many values (finite linear
combination of indicator random variables). Finally, for general Xk, coming back to the definition of Lebesgue
integration, we can prove the assertion by approximation argument.

The variance of X is defined by

σ2
X = V(X) = E[(X − mX)2] = E[X2] − E[X]2.

By means of the distribution µ(dx) of X we may write

V(X) =
∫ +∞

−∞
(x − mX)2µ(dx) =

∫ +∞

−∞
x2µ(dx) −

(∫ +∞

−∞
xµ(dx)

)2

.

Definition 2.2.3 The covariance of two random variables X,Y is defined by

σXY = E[(X − E(X))(Y − E(Y))] = E[XY] − E[X]E[Y].

In particular, σXX = σ
2
X becomes the variance of X.

Definition 2.2.4 X,Y are called uncorrelated if σXY = 0. They are called positively (resp. negatively) correlated
if σXY > 0 (resp. σXY < 0).
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Theorem 2.2.5 If two random variables X,Y are independent, they are uncorrelated.

Remark 2.2.6 The converse of Theorem 2.2.5 is not true in general. Let X be a random variable satisfying

P(X = −1) = P(X = 1) =
1
4
, P(X = 0) =

1
2

and set Y = X2. Then, X,Y are not independent, but σXY = 0.

Problem 3 Let X and Y be random variables such that

P(X = a) = p1, P(X = b) = q1 = 1 − p1, P(Y = c) = p2, P(Y = d) = q2 = 1 − p2,

where a, b, c, d are constant numbers and 0 < p1 < 1, 0 < p2 < 1. Show that X,Y are independent if σXY = 0.

Theorem 2.2.7 (Additivity of variance) Let X1, X2, . . . , Xn be random variables, any pair of which is uncorre-
lated. Then

V
 n∑

k=1

Xk

 = n∑
k=1

V[Xk].

Definition 2.2.8 The correlation coefficient of two random variables X,Y is defined by

ρXY =
σXY

σXσY
,

whenever σX > 0 and σY > 0.

Theorem 2.2.9 For two random variables X,Y with σX > 0, σY > 0 we have

−1 ≤ ρXY ≤ 1.

Problem 4 Prove Theorem 2.2.9.

Problem 5 Throw two dice and let L be the larger spot and S the smaller. (If double spots, set L = S .)

(1) Calculate the covariance σLS and the correlation coefficient rLS .

(2) Are L, S independent?

2.3 Bernoulli trials
Definition 2.3.1 A sequence of random variables (or a discrete-time stochastic process) {Z1,Z2, . . . ,Zn, . . . } is
called the Bernoulli trials with success probability p (0 ≤ p ≤ 1) if they are independent and have the same
distribution as

P(Zn = 1) = p, P(Zn = 0) = q = 1 − p.

By definition we have

P(Z1 = ξ1,Z2 = ξ2, . . . ,Zn = ξn) =
n∏

k=1

P(Zk = ξk) for all ξ1, ξ2, . . . , ξn ∈ {0, 1}.

In general, statistical quantity in the left-hand side is called finite dimensional distribution of the stochastic
process {Zn}. The total set of finite dimensional distributions characterizes a stochastic process.

Let {Zn} be Bernoulli trials with success probability p. Define

Xn =

n∑
k=1

Zk .

The stochastic process {Xn} is called the binomial process. Since Xn counts the number of success during the first
n trials,

Xn ∼ B(n, p).

The asymptotic properties of the binomial process will be studied in the following chapters.

9



Quiz 2.3.2 The waiting time for the first heads is defined by

T = inf{n ≥ 1 ; Xn = 1}

Quiz 2.3.3 For the binomial process {Xn} find the conditional probability P(Xn+1 = j|Xn = i).

Problem 6 For the binomial process {Xn} calculate the covarianceσXm,Xm+n and the correlation coefficient ρXm,Xm+n .

2.4 Random walks
Consider slightly modified Bernoulli trials {Zn} as follows:

(i) P(Zn = 1) = p and P(Zn = −1) = q = 1 − p with 0 ≤ p ≤ 1;

(ii) Z1,Z2, . . . are independent.

Set

Xn =

n∑
k=1

Zk . (2.3)

The stochastic process {Xn} is called the one-dimensional random walk with right-move probability p and the
left-move probability q = 1 − p.

0

(p−q )n

n

x

Figure 2.1: Random walk

We have

P(Xn = 2k − n) =
(
n
k

)
pkqn−k, k = 0, 1, 2, . . . , n. (2.4)

Quiz 2.4.1 Let {Xn} be the random walk as above. Calculate the mean and variance of Xn. Calculate the covari-
ance σXm,Xm+n and the correlation coefficient ρXm,Xm+n .
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Figure 2.2: A sample path of the one-dimensional random walk (p = q = 1/2)

3 Law of Large Numbers and Central Limit Theorem

3.1 Observation
Let Xn be the result of the n-th trial of coin-toss:

Xn =

1, heads,
0, tails.

(3.1)

Obviously,

S n =

n∑
k=1

Xk

counts the number of heads during the first n trials. Therefore,

S n

n
=

1
n

n∑
k=1

Xk

gives the relative frequency of heads during the first n trials.
Computer simulation is easy. The following is just one example showing that the relative frequency of heads

S n/n tends to 1/2. It is our aim to show this mathematically.
However, we cannot accept a naive formula:

lim
n→∞

S n

n
=

1
2

(3.2)

because

1. Notice that S n/n is a random variable taking values in {0, 1/n, 2/n, . . . , 1}.

2. From one series of trials ω = (ω1, ω2, . . . ) we obtain a sequence of relative frequencies:

S 1(ω),
S 2(ω)

2
,

S 3(ω)
3
, . . . ,

S n(ω)
n
, . . . .

3. For example, for ω = (1, 1, 1, . . . ), S n/n converges to 1; For ω = (0, 0, 0, . . . ), S n/n converges to 0.
Moreover, for any 0 ≤ t ≤ 1 there exists ω such that S n/n converges to t; there exists ω such that S n/n
does not converge (oscillating).

4. Namely, it is impossible to show the limit formula (3.2) for all samples ω.

Therefore, to show the empirical fact (3.2) we need some probabilistic formulation.
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Figure 3.1: Relative frequency of heads S n/n

3.2 Weak Law of Large Numbers
Theorem 3.2.1 (Weak Law of Large Numbers) Let X1, X2, . . . be identically distributed random variables with
mean m and variance σ2. (This means that Xi has a finite variance.) If X1, X2, . . . are uncorrelated, for any ϵ > 0
we have

lim
n→∞

P


∣∣∣∣∣∣∣1n

n∑
k=1

Xk − m

∣∣∣∣∣∣∣ ≥ ϵ
 = 0.

We say that
1
n

n∑
k=1

Xk converges to m in probability.

Remark 3.2.2 In many literatures the weak law of large numbers is stated under the assumption that X1, X2, . . .
are independent. It is noticeable that the same result holds under the weaker assumption of being uncorrelated.

Theorem 3.2.3 (Chebyshev inequality) Let X be a random variable with mean m and variance σ2. Then, for
any ϵ > 0 we have

P(|X − m| ≥ ϵ) ≤ σ
2

ϵ2
.

Proof By definition we have

m = E[X] =
∫
Ω

X(ω) P(dω),

σ2 = E[(X − m)2] =
∫
Ω

(X(ω) − m)2P(dω).

The above integral for the variance is divided into two parts as follows:

σ2 =

∫
Ω

(X(ω) − m)2P(dω)

=

∫
|X−m|≥ϵ

(X(ω) − m)2P(dω) +
∫
|X−m|<ϵ

(X(ω) − m)2P(dω)

Then we have
σ2 ≥

∫
|X−m|≥ϵ

(X(ω) − m)2P(dω) ≥
∫
|X−m|≥ϵ

ϵ2P(dω) = ϵ2P(|X − m| ≥ ϵ),

as desired.
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Proof of Weak Law of Large Numbers For simplicity we set

Y = Yn =
1
n

n∑
k=1

Xk .

The mean value is given by

E[Y] =
1
n

n∑
k=1

E[Xk] = m.

Let us compute the variance. Since E[XkXl] = E[Xk]E[Xl] (k , l) by assumption of being uncorrelated, we have

E[Y2] =
1
n2

n∑
k,l=1

E[XkXl]

=
1
n2

 n∑
k=1

E[X2
k ] +

∑
k,l

E[XkXl]


=

1
n2

 n∑
k=1

(
V[Xk] + E[Xk]2

)
+

∑
k,l

E[Xk]E[Xl]


=

1
n2

{
nσ2 + nm2 + (n2 − n)m2

}
=
σ2

n
+ m2.

Therefore,

V[Y] = E[Y2] − E[Y]2 =
σ2

n
.

On the other hand, applying Chebyshev inequality, we have

P(|Y − m| ≥ ϵ) ≤ V[Y]
ϵ2
=
σ2

nϵ2
.

Consequently,
lim
n→∞

P(|Yn − m| ≥ ϵ) = 0,

as desired.

Example 3.2.4 (Coin-toss)

3.3 Strong Law of Large Numbers
Theorem 3.3.1 (Strong law of large numbers) Let X1, X2, . . . be identically distributed random variables with
mean m. (This means that Xi has a mean but is not assumed to have a finite variance.) If X1, X2, . . . are mutually
independent, we have

P

 lim
n→∞

1
n

n∑
k=1

Xk = m

 = 1.

In other words,

lim
n→∞

1
n

n∑
k=1

Xk = m a.s.

Remark 3.3.2 Kolmogorov proved the strong law of large numbers under the assumption that X1, X2, . . . are
independent. In many literatures, the strong law of large numbers is stated as Kolmogorov proved. Its proof
being based on the so-called “Kolmogorov’s almost sure convergence theorem,” we cannot relax the assumption
of independence. Theorem 3.3.1 is due to N. Etemadi (1981), where the assumption is relaxed to being mutually
independent and the proof is more elementary, see also books by Sato, by Durrett, etc.
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3.4 De Moivre–Laplace Theorem
From numerical computation we see that the binomial distribution B(n, p) is close to the normal distribution

having the same mean m = np and the variance σ2 = np(1 − p):

B(n, p) ≈ N(np, np(1 − p)) (3.3)

We see that the matching becomes better for larger n.

Figure 3.2: The normal distribution whose mean and variance are the same as B(100, 0.4)

The approximation (3.3) means that distribution functions are almost the same: For a random variable S
obeying the binomial distribution B(n, p) we have

P(S ≤ x) ≈ 1
√

2πσ2

∫ x

−∞
e−(t−m)2/2σ2

dt, m = np, σ2 = np(1 − p).

Changing the variables, we come to

P(S ≤ x) ≈ 1
√

2π

∫ (x−m)/σ

−∞
e−t2/2dt.

Noting the obvious identity:

P(S ≤ x) = P
(S − m
σ
≤ x − m
σ

)
and replacing (x − m)/σ with x, we obtain

P

 S − np√
np(1 − p)

≤ x

 ≈ 1
√

2π

∫ x

−∞
e−t2/2dt. (3.4)

The right-hand side is an integral with respect to the normal law N(0, 1) and is independent of n. The identity
(3.4) provides the best formulation of the fact that (3.3) becomes better approximation for larger n.

Theorem 3.4.1 (de Moivre–Laplace theorem) Let 0 < p < 1. Let S n be a random variable obeying the bino-
mial distribution B(n, p). Then,

lim
n→∞

P

 S n − np√
np(1 − p)

≤ x

 = 1
√

2π

∫ x

−∞
e−t2/2dt. (3.5)

In short, the binomial distribution B(n, p) is close to the normal distribution N(np, np(1− p)) as n tends to infinity.

The proof is omitted, see the relevant books.
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3.5 Central Limit Theorem
We start with an alternative form of Theorem 3.4.1. Let Z1, Z2, . . . be the Bernoulli trials with success

probability p. Define the normalization by

Z̄k =
Zk − p√
p(1 − p)

.

Then Z̄1, Z̄2, . . . become iid random variables with mean 0 and variance 1.
Since we have

S n − np√
np(1 − p)

=
1
√

n

n∑
k=1

Zk − p√
p(1 − p)

=
1
√

n

n∑
k=1

Z̄k

(3.5) becomes

lim
n→∞

P

 1
√

n

n∑
k=1

Z̄k ≤ x

 = 1
√

2π

∫ x

−∞
e−t2/2dt.

Indeed, the above limit formula holds for general iid random variables.

Theorem 3.5.1 (Central Limit Theorem) Let X1, X2, . . . be iid random variables with mean 0 and variance 1.
Then, for any x ∈ R it holds that

lim
n→∞

P

 1
√

n

n∑
k=1

Xk ≤ x

 = 1
√

2π

∫ x

−∞
e−t2/2dt.

In short, the distribution of
1
√

n

n∑
k=1

Xk converges weakly to the standard normal distribution N(0, 1) as n→ ∞.

For the proof we need the characteristic function of a distribution.

Definition 3.5.2 The characteristic function of a random variable X is defined by

φ(z) = E[eizX] =
∫ +∞

−∞
eizxµ(dx), z ∈ R,

where µ(dx) is the distribution of X. We also say that φ(z) is the characteristic function of µ(dx).

Theorem 3.5.3 (Glivenko) Let µ1, µ2, . . . , µ be a sequence of probability distributions and φ1, φ2, . . . , φ their
characteristic functions. If limn→∞ φn(z) = φ(z) holds for all z ∈ C, then µn converges weakly to µ. In other
words, letting F1, F2, . . . , F be distribution functions of µ1, µ2, . . . , µ, we have

lim
n→∞

Fn(x) = F(x)

for all continuous point x of F.

Proof of Central Limit Theorem (outline) 1) Let φn(z) be the characteristic function of
1
√

n

n∑
k=0

Xk, i.e.,

φn(z) = E
exp

{ iz
√

n

n∑
k=0

Xk

} . (3.6)

On the other hand, it is known that the characteristic function of N(0, 1) is given by e−z2/2 (Problem 7). By virtue
of Glivenko’s theorem it is sufficient to show that

lim
n→∞
φn(z) = e−z2/2, z ∈ R. (3.7)

2) The characteristic functions of X1, X2, . . . are identical, since they have the same distribution. We set

φ(z) = E[eizX1 ].
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Since X1, X2, . . . are independent, we have

φn(z) =
n∏

k=1

E
[
exp

{ iz
√

n
Xk

}]
= φ

( z
√

n

)n
. (3.8)

3) By Taylor expansion we write

ei z√
n X1 = 1 + i

z
√

n
X1 −

z2

2n
X2

1 + Rn(z)

and take the expectation

φ
( z
√

n

)
= E

[
ei z√

n X1] = 1 − z2

2n
+ E[Rn(z)],

where E[X1] = 0 and V[X1] = 1 are taken into account. Hence (3.8) becomes

φn(z) =
(
1 − z2

2n
+ E[Rn(z)]

)n
. (3.9)

4) We note a general limit theorem for the exponential function (Problem 10).
5) We need to prove that

lim
n→∞

nE[Rn(z)] = 0. (3.10)

In fact, by 4) we obtain

lim
n→∞
φn(z) = lim

n→∞

(
1 − z2

2n
+ E[Rn(z)]

)n
= e−z2/2.

6) By means of the useful inequality:∣∣∣∣∣∣eix −
(
1 + ix +

(ix)2

2!

)∣∣∣∣∣∣ ≤ min
{
|x|3
6
, |x|2

}
, x ∈ R, (3.11)

we obtain

|Rn(z)| ≤ min

1
6

∣∣∣∣∣∣ z
√

n
X1

∣∣∣∣∣∣3 ,
∣∣∣∣∣∣ z
√

n
X1

∣∣∣∣∣∣2
 .

Then

|nE[Rn(z)]| ≤ E[n|Rn(z)|] ≤ |z|2E
[
min

{
|z|

6
√

n
|X1|3, |X1|2

}]
. (3.12)

Note that

min
{
|z|

6
√

n
|X1|3, |X1|2

}
≤ |X1|2

and E[|X1|2] < ∞ by assumption. Then, applying the Lebesgue convergence theorem we come to

lim
n→∞

E
[
min

{
|z|

6
√

n
|X1|3, |X1|2

}]
= E

[
lim
n→∞

min
{
|z|

6
√

n
|X1|3, |X1|2

}]
= 0,

which shows (3.10).

Remark 3.5.4 In the above proof we did not require E[|X1|3] < ∞. If E[|X1|3] < ∞ is satisfied, (3.10) follows
more easily without appealing to the Lebesgue convergence theorem.

Problem 7 Calculate the characteristic function of the standard normal distribution:

1
√

2π

∫ +∞

−∞
eizxe−x2/2dx = e−z2/2, z ∈ R.
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Problem 8 Let Z1,Z2, . . . be the Bernoulli trials with success probability p and Z̄1, Z̄2, . . . their normalization.
Calculate explicitly the characteristic function of

1
√

n

n∑
k=1

Z̄k

and find its limit as n→ ∞ directly.

Problem 9 Prove (3.11).

Problem 10 Let a ∈ C and let {ϵn} be a sequence of complex numbers converging to 0. Prove that

lim
n→∞

(
1 +

a
n
+
ϵn
n

)n
= ea.

Problem 11 (Monte Carlo simulation) Let x1, x2, . . . is a sequence taken randomly from [0, 1]. Then for a
continuous function f (x) on the interval [0, 1], the mean

1
n

n∑
k=1

f (xk)

is considered as a good approximation of the integral∫ 1

0
f (x)dx.

Explain the above statement by means of law of large numbers and central limit theorem.
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4 Random Walks

4.1 One-dimensional Random Walks
Let us model a drunken man (random walker) walking along a straight road. Suppose that the random walker

chooses the direction (left or right) randomly at each step. Let the probability of choosing the right-move be p
and the left-move q (p > 0, q > 0, p + q = 1). These are assumed to be independent of the position and time.

s s s s s s s
0−1−2−3 1 2 3

�
q

-
p

Let Xn denote the position of the random walker at time n. We assume that the random walker sits at the
origin 0 at time n = 0, namely, X0 = 0. Then {Xn} becomes a discrete time stochastic process, which is called the
one-dimensional random walk.

Let {Zn} be iid random variables such that

P(Zn = 1) = p, P(Zn = −1) = q.

This is also referred to as the Bernoulli trials (the usual Bernoulli trials take values in {0, 1}). Then we have

Xn = Z1 + Z2 + · · · + Zn , X0 = 0.

Theorem 4.1.1 Xn is a random variable taking values in {−n,−n+2, . . . , n−2, n}. The distribution of Xn is given
by

P(Xn = n − 2k) =
(
n
k

)
pn−kqk, k = 0, 1, 2, . . . , n.

Proof Let k = 0, 1, 2, . . . , n. We observe that

Xn = Z1 + Z2 + · · · + Zn = n − 2k = (n − k) − k

if and only if the number of i’s such that Zi = −1 is k, and the one such that Zi = 1 is n − k. Therefore,

P(Xn = n − 2k) =
(
n
k

)
pn−kqk,

as desired.

Theorem 4.1.2 It holds that
E[Xn] = (p − q)n, V[Xn] = 4pqn.

Proof Note first that
E[Zk] = p − q, V[Zk] = 4pq.

Then, by linearity of the expectation we have

E[Xn] =
n∑

k=1

E[Zk] = (p − q)n.

Since {Zn} is independent, by the additivity of variance we have

V[Xn] =
n∑

k=1

V[Zk] = 4pqn.
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The distribution of Xn tells us where the random walker at time n is found. It has fluctuation around the men
value (p − q)n. The range of Xn grows as n → ∞ and so does the variance. It is noticeable that the growth of
variance is promotional to n. Finally, we note that the distribution is approximated by the normal distribution
N((p − q)n, 4pqn) for a large n (de Moivre–Laplace theorem).

0

(p−q )n

n

x

Problem 12 Let {Xn} be the random walk as above. Calculate the covariance σXm,Xm+n and the correlation coeffi-
cient ρXm,Xm+n .

4.2 Recurrence
Will a random walker return to the origin in finite time? More precisely, we are interested in the probability

that a random walker will return to the origin in finite time.
As in the previous section, let Xn be the position of a random walker starting from the origin (i.e., X0 = 0)

with right-move probability p and left-move probability q. Since the random walker returns to the origin only
after even steps, we need to calculate

R = P

 ∞∪
n=1

{X2n = 0}
 . (4.1)

It is important to note that
∞∪

n=1

{X2n = 0}

is not the sum of disjoint events.
Let p2n be the probability that the random walker is found at the origin at time 2n, that is,

p2n = P(X2n = 0) =
(
2n
n

)
pnqn =

(2n)!
n!n!

pnqn, n = 1, 2, . . . . (4.2)

For convenience set p0 = 1. Note that the right hand side of (4.1) is not the sum of p2n. Instead, we need to
consider the probability that the random walker returns to the origin after 2n steps but not before:

q2n = P(X2 , 0, X4 , 0, . . . , X2n−2 , 0, X2n = 0) n = 1, 2, . . . .

Remind that the difference between p2n and q2n. Equivalently, letting

T = inf{n ≥ 1 ; Xn = 0} (4.3)

be the first hitting time to the origin, we have

q2n = P(T = 2n). (4.4)

Remark 4.2.1 The symbol inf in the right-hand side of (4.3) covers the case of {n ≥ 1 ; Xn = 0} = ∅. In that
case the value is understand to be +∞. So, according to our definition in Chapter 1, T is not a random variable.
It is, however, commonly accepted that a random variable takes values in (−∞,+∞) ∪ {±∞}.
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The return probability is given by

R =
∞∑

n=1

q2n. (4.5)

A direct calculation of q2n will be given in the next section. Here we apply the method of generating functions.
The key relation between {p2n} and {q2n} is given by

p2n =

n∑
k=1

q2k p2n−2k, n = 1, 2, . . . , (4.6)

which is easily verified by observing when the random walker returning to the origin after 2n steps hits first the
origin. Define the generating functions of {p2n} and {q2n} by

g(z) =
∞∑

n=0

p2nz2n, h(z) =
∞∑

n=1

q2nz2n. (4.7)

These are convergent in |z| ≤ 1. Multiplying z2n to both sides of (4.6) and summing up over n, we obtain

g(z) − 1 =
∞∑

n=1

n∑
k=1

q2kz2k p2n−2kz2n−2k

=

∞∑
k=1

∞∑
n=0

q2kz2k p2nz2n

= h(z)g(z).

Hence,

h(z) = 1 − 1
g(z)
. (4.8)

On the other hand, by the formula of the binomial coefficients we can compute g(z) explicitly (Problem 13).
In fact, we have

g(z) =
∞∑

n=0

p2nz2n =

∞∑
n=0

(
2n
n

)
pnqnz2n =

1√
1 − 4pqz2

so that (4.8) becomes

h(z) = 1 − 1
g(z)
= 1 −

√
1 − 4pqz2. (4.9)

Letting z→ 1 − 0, we see that

R = h(1) =
∞∑

n=1

q2n = 1 −
√

1 − 4pq = 1 − |p − q|.

Here we used a general property stated in Problem 14.
Summing up,

Theorem 4.2.2 Let R be the probability that a random walker starting from the origin returns to the origin in
finite time. Then we have

R = 1 − |p − q|.

A random walk is called recurrent if R = 1, otherwise it is called transient.

Theorem 4.2.3 The one-dimensional random walk is recurrent if and only if p = q = 1/2 (isotropic). It is
transient if and only if p , q.

When a random walk is recurrent, it is meaningful to consider the mean recurrent time.

Theorem 4.2.4 The mean recurrent time of the isotropic, one-dimensional random walk is infinity.
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Proof Let T be the first hitting time to the origin. The mean recurrent time is given by

E(T ) =
∞∑

n=1

2nq2n. (4.10)

On the other hand, in view of (4.7) and (4.9) we see that the generating function for p = q = 1/2 is given by

h(z) =
∞∑

n=1

q2nz2n = 1 −
√

1 − z2 .

Differentiating with respect to z, we have

h′(z) =
∞∑

n=1

2nq2nz2n−1 =
z

√
1 − z2

.

Letting z→ 1 − 0, we have

E(T ) =
∞∑

n=1

2nq2n = lim
z→1−0

h′(z) = lim
z→1−0

z
√

1 − z2
= +∞.

This completes the proof.

Remark 4.2.5 We will study the recurrence of a random walk within the framework of a general Markov chain.

Problem 13 Let α be a real constant. Using the binomial expansion:

(1 + x)α =
∞∑

n=0

(
α

n

)
xn,

prove that
∞∑

n=0

(
2n
n

)
zn =

1
√

1 − 4z
, |z| < 1

4
.

Problem 14 Let an ≥ 0 for n = 0, 1, 2, . . . and set

f (x) =
∞∑

n=0

anxn.

Show that

lim
x→1−0

f (x) =
∞∑

n=0

an

holds including the case of∞ = ∞ whenever the radius of convergence of f (x) is ≥ 1.

4.3 The Catalan Number
The Catalan number is a famous number known in combinatorics (Eugène Charles Catalan, 1814–1894).

Richard P. Stanley (MIT) collected many appearances of the Catalan numbers (http://www-math.mit.edu/ rstan/ec/).
We start with the definition. Let n ≥ 1 and consider a sequence (ϵ1, ϵ2, . . . , ϵn) of ±1, that is, an element of

{−1, 1}n. This sequence is called a Catalan path if

ϵ1 ≥ 0
ϵ1 + ϵ2 ≥ 0
· · ·

ϵ1 + ϵ2 + · · · + ϵn−1 ≥ 0
ϵ1 + ϵ2 + · · · + ϵn−1 + ϵn = 0.

It is apparent that there is no Catalan path of odd length.
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Definition 4.3.1 The n-th Catalan number is defined to be the number of Catalan paths of length 2n and is
denoted by Cn. For convenience we set C0 = 1.

The first Catalan numbers for n = 0, 1, 2, 3, ... are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, ...

We will derive a concise expression for the Catalan numbers by using a graphical representation. Consider n × n
grid with the bottom-left corner being given the coordinate (0, 0). With each sequence (ϵ1, ϵ2, . . . , ϵn) consisting
of ±1 we associate vectors

ϵk = +1↔ uk = (1, 0) ϵk = −1↔ uk = (0, 1)

and consider a polygonal line connecting

(0, 0), u1, u1 + u2, . . . , u1 + u2 + · · · + un−1, u1 + u2 + · · · + un−1 + un

in order. If ϵ1 + ϵ2 + · · · + ϵn−1 + ϵn = 0, the final vertex becomes

u1 + u2 + · · · + un−1 + un = (n, n)

so that the obtained polygonal line is a shortest path connecting (0, 0) and (n, n) in the grid.

Lemma 4.3.2 There is a one-to-one correspondence between the Catalan paths of length 2n and the shortest
paths connecting (0, 0) and (n, n) which do not pass the upper region of the diagonal y = x.

Theorem 4.3.3 (Catalan number)

Cn =
(2n)!

(n + 1)!n!
, n = 0, 1, 2, . . . ,

Proof For n = 0 it is apparent by the definition 0! = 1. Suppose n ≥ 1. We see from Fig. 4.3 that

Cn =

(
2n
n

)
−

(
2n

n + 1

)
=

(2n)!
n!(n + 1)!

,

as desired.

Lemma 4.3.4 The generating function of the Catalan numbers Cn is given by

f (z) =
∞∑

n=0

Cnzn =
1 −
√

1 − 4z
2z

. (4.11)
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Proof Problem 15.

An alternative representation of the Catalan paths: Consider in the xy-plane a polygonal line connecting the
vertices:

(0, 0), (1, ϵ1), (2, ϵ1 + ϵ2), . . . , (n − 1, ϵ1 + ϵ2 + · · · + ϵn−1), (n, ϵ1 + ϵ2 + · · · + ϵn−1 + ϵn)

in order. Then, there is a one-to-one correspondence between the Catalan paths of length 2n and the sample
paths of a random walk starting 0 at time 0 and returning 0 at time 2n staying always in the half line [0,+∞).
Therefore,

Lemma 4.3.5 Let n ≥ 1. The number of sample paths of a random walk starting 0 at time 0 and returning 0 at
time 2n staying always in the half line [0,+∞) is the Catalan number Cn.

Theorem 4.3.6 Let {Xn} be the random walk starting from 0 with right-move probability p and left-move prob-
ability q. Then

q2n = P(X2 , 0, X4 , 0, . . . , X2n−2 , 0, X2n = 0) = 2Cn−1(pq)n, n = 1, 2, . . . .

Proof Obviously, we have

q2n = P(X2 , 0, X4 , 0, . . . , X2n−2 , 0, X2n = 0)
= P(X1 > 0, X2 > 0, X3 > 0, . . . , X2n−2 > 0, X2n−1 > 0, X2n = 0)
+ P(X1 < 0, X2 < 0, X3 < 0, . . . , X2n−2 < 0, X2n−1 < 0, X2n = 0).

In view of Fig. 4.3 we see that

P(X1 > 0, X2 > 0, X3 > 0, . . . , X2n−2 > 0, X2n−1 > 0, X2n = 0) = p ×Cn−1(pq)n−1 × q.

Then the result is immediate.

p q

0 2n

2n-2

Figure 4.1: Calculating P(X1 > 0, X2 > 0, . . . , X2n−1 > 0, X2n = 0)

We now come into an alternative proof of Theorem 4.2.2.
Proof [Theorem 4.2.2] We know by Theorem 4.3.6 that

R =
∞∑

n=1

q2n =

∞∑
n=1

2Cn−1(pq)n.

Using the generating function of the Catalan numbers, we obtain

R = 2pq f (pq) = 2pq
1 −

√
1 − 4pq

2pq
= 1 −

√
1 − 4pq = 1 − |p − q|,

as desired.

Problem 15 Find the Catalan numbers Cn in the following steps.
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(1) Prove that Cn =

n∑
k=1

Ck−1Cn−k by using graphical expressions.

(2) Using (1), prove that the generating function of the Catalan numbers f (z) =
∞∑

n=0

Cnzn verifies

f (z) − 1 = z{ f (z)}2.

(3) Find f (z).

(4) Using Taylor expansion of f (z) obtained in (3), find Cn.

Problem 16 In the m × (m + n) grid consider a shortest path connecting (0, 0) and (m + n,m) which do not pass
the region upper than the line connecting (0, 0) and (m,m). Show that the number of such paths is given by

(m + n)!
(m + 1)!n!

.

Problem 17 Let {Xn} be a random walk starting from 0 with right-move p and left-move q. Show that

P(X1 ≥ 0, X2 ≥ 0, . . . , X2n−1 ≥ 0)

= P(X1 ≥ 0, X2 ≥ 0, . . . , X2n ≥ 0) = 1 − q
n−1∑
k=0

Ck(pq)k

for n = 1, 2, . . . , where Ck is the Catalan number. Using this result, show next that

P (Xn ≥ 0 for all n ≥ 1) =

1 − q
p
, p > q,

0, p ≤ q.

4.4 The Arcsine Law
Let us consider an isotropic random walk {Xn}, namely, letting {Zn} be the Bernoulli trials such that

P(Zn = +1) = P(Zn = −1) =
1
2
,

we set

X0 = 0, Xn =

n∑
k=1

Zk .

Fig. 4.2 shows sample paths of X0, X1, X2, . . . , X10000. We notice that these are just two examples among many
different patterns.

Figure 4.2: Sample paths of a random walk up to time 10000
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By the law of large numbers we know that ±1 occur almost 5000 times. In fact, we see from the value of
X10000 that ±1 occur 5000 ± 50 times. In other words, along the polygonal line the up-move and down-move
occur almost the same times, however, the polygonal line stays more often in the upper or lower half region.

We say that a random walk stays in the positive region in the time interval [i, i + 1] if Xi ≥ 0 and Xi+1 ≥ 0.
Similarly, we say that a random walk stays in the negative region in the time interval [i, i + 1] if Xi ≤ 0 and
Xi+1 ≤ 0. Let

W(2k|2n), n = 1, 2, . . . , k = 0, 1, . . . , n,

be the probability that the total time of the random walk staying in the positive region during [0, 2n] is 2k.
Remind that in this section we only consider an isotropic random walk (p = q = 1/2). For n = 1 we have

W(2|2) = 2 ×
(

1
2

)2

=
1
2
, W(0|2) = 2 ×

(
1
2

)2

=
1
2
.

W(2|2)

Similarly, we have

W(4|4) = 6 ×
(

1
2

)4

, W(2|4) = 4 ×
(

1
2

)4

, W(0|4) = 6 ×
(

1
2

)4

.

W(4|4) W(2|4)

For general W(2k|2n) we start with some simple calculations.

Lemma 4.4.1 For n = 1, 2, . . . we have

(1) p2n ≡ P(X2n = 0) =
(
2n
n

)(1
2

)2n
.

(2) f2n ≡ P(X1 > 0, X2 > 0, . . . , X2n−1 > 0, X2n = 0) = Cn−1

(1
2

)2n
=

1
4n

p2n−2.
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Proof Known fact.

Lemma 4.4.2 For n = 1, 2, . . . we have

P(X1 , 0, X2 , 0, . . . , X2n−1 , 0, X2n , 0) = p2n .

Proof We see from Lemma 4.4.1 (1) that

p2n−2 − p2n =

(
2n − 2
n − 1

)(1
2

)2n−2
−

(
2n
n

)(1
2

)2n

=

(1
2

)2n {
(2n − 2)!22

(n − 1)!(n − 1)!
− (2n)!

n!n!

}
=

(1
2

)2n (2n − 2)!
n!n!

{4n2 − (2n)(2n − 1)}

=

(1
2

)2n (2n − 2)!
n!n!

× 2n

=
1
2n

(2n − 2)!
(n − 1)!(n − 1)!

(1
2

)2n−2

=
1
2n

p2n−2

= 2 f2n .

Namely, we have
p2n−2 − p2n = 2 f2n , n = 1, 2, . . . . (4.12)

Now consider the complement of {X1 , 0, X2 , 0, . . . , X2n−1 , 0, X2n , 0}.

{X1 , 0, X2 , 0, . . . , X2n−1 , 0, X2n , 0}c =
2n∪

k=1

{Xk = 0}

=

n∪
k=1

{X2k = 0}

=

n∪
k=1

{X1 , 0, X2 , 0, . . . , X2k−1 , 0, X2k = 0},

where the last is the disjoint union. Hence, by Lemma 4.4.1 (2) we have

P(X1 , 0, X2 , 0, . . . , X2n−1 , 0, X2n , 0)

= 1 −
n∑

k=1

P(X1 , 0, X2 , 0, . . . , X2k−1 , 0, X2k = 0)

= 1 −
n∑

k=1

2 f2k .

Using (4.12), we obtain

P(X1 , 0, X2 , 0, . . . , X2n−1 , 0, X2n , 0)

= 1 −
n∑

k=1

(p2k−2 − p2k)

= 1 − (p0 − p2n) = p2n,

which completes the proof.
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Lemma 4.4.3 For n = 1, 2, . . . we have

P(X1 ≥ 0, X2 ≥ 0, . . . , X2n−1 ≥ 0, X2n ≥ 0) = p2n .

Proof Taking the complement into account, we only need to use the relation:

p2n−2 − p2n = 2 f2n =
1

2n
p2n−2 .

Theorem 4.4.4 For n = 1, 2, . . . it holds that

W(2k|2n) = p2k p2n−2k =

(
2k
k

)(
2n − 2k
n − k

)(1
2

)2n
, k = 0, 1, . . . , n.

Proof [outline] We first show that

W(2k|2n) =
k∑

r=1

f2rW(2k − 2r|2n − 2r) +
n−k∑
r=1

f2rW(2k|2n − 2r).

Then the assertion is proved by induction on k, n (Problem19).

We find a good approximation when n→ ∞. For 0 < a < b < 1 we have

P(a < ratio of time staying in the positive region < b)

=

bn∑
k=an

W(2k|2n)

=

n∑
k=0

χ[an,bn](k)W(2k|2n)

=

n∑
k=0

χ[a,b]

( k
n

)(2k
k

)(
2n − 2k
n − k

)(1
2

)2n
,

where χI(x) is the indicator function of an interval I, that is, takes 1 for x ∈ I and 0 otherwise.
Using the Stirling formula:

n! ∼
√

2πn
(n

e

)n
n→ ∞,

we obtain (
2k
k

)(1
2

)2k
∼ 1
√
πk
.

Therefore,

P(a < ratio of time staying in the positive region < b)

∼
n∑

k=0

χ[a,b]

( k
n

) 1
π
√

k(n − k)

=

n∑
k=0

χ[a,b]

( k
n

) 1

π
√

k
n (1 − k

n )

1
n

→
∫ 1

0
χ[a,b](x)

dx
π
√

x(1 − x)
.
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Definition 4.4.5 The probability distribution defined by the density function:

dx
π
√

x(1 − x)
. 0 < x < 1,

is called the arcsine law. The distribution function is given by

F(x) =
∫ x

0

dt
π
√

t(1 − t)
=

2
π

arcsin
√

x =
1
2
+

1
π

arcsin(2x − 1).

For example,

F(0.9) =
2
π

arcsin
√

0.9 ≈ 0.795.

Namely, during the long game, the probability that the ratio of winning time exceeds 90% is 1 − F(0.9) ≈ 0.205,
which sounds larger than one expects.

Problem 18 Prove Lemmas 4.4.2 and 4.4.3.

Problem 19 Prove Theorem 4.4.4 in detail.

4.5 Gambler’s Ruin
Let us consider a random walker starting from the origin 0 at time n = 0. Now there are barriers at the

positions −A and B (A ≥ 1, B ≥ 1). If the random walker touches the barrier, it remains there afterward. In this
sense the positions −A and B are called absorbing barriers.

Let Z1,Z2, . . . be Bernoulli trials with success probability 0 < p < 1. Define a discrete time stochastic process
X0, X1, X2, . . . by

X0 = 0, Xn =


Xn−1 + Zn , −A < Xn−1 < B,
−A, Xn−1 = −A,
B, Xn−1 = B.

(4.13)

This {Xn} is called a random walk with absorbing barriers.

−A

0

B

�
�
��@

@
@
@R�

��@
@
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��@
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@
@R

28



We are interested in the absorbing probability, i.e.,

R = P(Xn = −A for some n = 1, 2, . . . ) = P

 ∞∪
n=1

{Xn = −A}
 ,

S = P(Xn = B for some n = 1, 2, . . . ) = P

 ∞∪
n=1

{Xn = B}
 .

Note that the events in the right-hand sides are not the unions of disjoint events.
A key idea is to introduce a similar random walk starting at k, −A ≤ k ≤ B, which is denoted by X(k)

n . Then
the original one is Xn = X(0)

n . Let Rk and S k be the probabilities that the random walk X(k)
n is absorbed at −A and

B, respectively. We wish to find R = R0 and S = S 0.

Lemma 4.5.1 {Rk ; , −A ≤ k ≤ B} fulfills the following difference equation:

Rk = pRk+1 + qRk−1 , R−A = 1, RB = 0. (4.14)

Similarly, {S k ; , −A ≤ k ≤ B} fulfills the following difference equation:

S k = pS k+1 + qS k−1 , S −A = 0, S B = 1. (4.15)

Theorem 4.5.2 Let A ≥ 1 and B ≥ 1. Let {Xn} be the random walk with absorbing barriers at −A and B, which
is defined by (4.13). Then the probabilities that {Xn} is absorbed at the barriers are given by

P(Xn = −A for some n) =


(q/p)A − (q/p)A+B

1 − (q/p)A+B , p , q,

B
A + B

, p = q =
1
2
,

P(Xn = B for some n) =


1 − (q/p)A

1 − (q/p)A+B , p , q,

A
A + B

, p = q =
1
2
.

In particular, the random walk is absorbed at the barriers at probability 1.

An interpretation of Theorem 4.5.2 gives the solution to the gambler’s ruin problem. Two players A and B
toss a fair coin by turns. Let A and B be their allotted points when the game starts. They exchange 1 point after
each trial. This game is over when one of the players loses all the allotted points and the other gets A + B points.
We are interested in the probability of each player’s win. For each n ≥ 0 define Xn in such a way that the allotted
point of A at time n is given by A + Xn. Then {Xn} becomes a random walk with absorbing barrier at −A and B.
It then follows from Theorem 4.5.2 that the winning probability of A and B are given by

P(A) =
A

A + B
, P(B) =

B
A + B

, (4.16)

respectively. As a result, they are proportional to the initial allotted points. For example, if A = 1 and B = 100,
we have P(A) = 1/101 and P(B) = 100/101, which sounds that almost no chance of A’s win.

In a fair bet the recurrence is guaranteed by Theorem 4.2.2. Even if one has much more losses than wins,
continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited money.
(4.16) tells the effect of the barrier.

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 4.5.3 Let {Xn} be the same as in Theorem 4.5.2. The expected life time of this random walk until
absorption is given by 

A
q − p

− A + B
q − p

1 − (q/p)A

1 − (q/p)A+B , p , q,

AB, p = q =
1
2
.
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Proof Let Yk be the life time of a random walk starting from the position k (−A ≤ k ≤ B) at time n = 0 until
absorption. In other words,

Yk = min{ j ≥ 0 ; X(k)
j = −Aまたは X(k)

j = B }.
We wish to compute E(Y0). We see by definition that

E(Y−A) = E(YB) = 0. (4.17)

For −A < k < B we have

E(Yk) =
∞∑
j=1

jP(Yk = j). (4.18)

In a similar manner as in the proof of Theorem 4.5.2 we note that

P(Yk = j) = pP(Yk+1 = j − 1) + qP(Yk−1 = j − 1). (4.19)

Inserting (4.19) into (4.18), we obtain

E(Yk) = p
∞∑
j=1

jP(Yk+1 = j − 1) + q
∞∑
j=1

jP(Yk−1 = j − 1)

= pE(Yk+1) + qE(Yk−1) + 1. (4.20)

Thus, E(Yk) is the solution to the difference equation (4.20) with boundary condition (4.17). This difference
equation is solved in a standard manner and we find

E(Yk) =


A + k
q − p

− A + B
q − p

1 − (q/p)A+k

1 − (q/p)A+B , p , q,

(A + k)(B − k), p = q =
1
2
.

Setting k = 0, we obtain the result.

If p = q = 1/2 and A = 1, B = 100, the expected life time is AB = 100. The gambler A is much inferior to B
in the amount of funds (as we have seen already, the probability of A’s win is just 1/101), however, the expected
life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps this is because
the gambler cannot quit gambling.

Remark 4.5.4 There is another type of barrier called a reflecting barrier. A random walk touches the reflecting
barrier, it changes the direction in the next step and continue to move. Let Z1,Z2, . . . be Bernoulli trials with
success probability 0 < p < 1. Consider barriers at positions −A and B, A ≥ 1, B ≥ 1. Define X0, X1, X2, . . . by

X0 = 0, Xn =


Xn−1 + Zn , −A < Xn−1 < B,
−A + 1, Xn−1 = −A,
B − 1, Xn−1 = B.

(4.21)

Then {Xn} is called a random walk with reflecting barriers.

Problem 20 Solve the difference equation (4.20) with boundary condition (4.17).

Problem 21 Let {Xn ; n = 0, 1, 2, . . . } be an isotropic random walk on the half line {0, 1, 2, . . . } starting from the
origin 0 at time n = 0, where the origin is a reflecting barrier. Find P(X2n = 0).

確率過程,特にマルコフ連鎖とランダム・ウォークを学ぶために

1. 国沢清典 : 確率論とその応用 (岩波全書), 1982.

すでに紹介したとおり.
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2. W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 1, Vol. 2, Wiley, 1957.

これもすでに紹介したとおり. ランダムウォークに関連する統計量の計算では,事実上,カタラン数
が現れているが,それをカタラン数と呼んではいない. 邦訳もある.

W.フェラー (河田龍夫他訳) : 確率論とその応用 (紀伊国屋). こちらは 4分冊.

3. B. V. Gnedenko: The Theory of Probability and the Elements of Statistics, AMS Chelsea Publishing Co.,
6th ed. 1989.

これもすでに紹介済み. 邦訳もある.

B. V.グネジェンコ (鳥居一雄訳): 確率論教程 I, II,森北出版, 1971, 1972.

4. R. Durrett: Probability: Theory and Examples, Duxbury Press, 1996.

これもすでに紹介済み.

5. 志賀徳造：ルベーグ積分から確率論 (共立), 2000.

最後の章である種の平面グラフ上のランダム・ウォークを議論している.

6. R. B.シナジ（今野紀雄・林俊一訳): マルコフ連鎖から格子確率モデルへ,シュプリンガー東京, 2001.

マルコフ連鎖の基本的性質を速習するのに十分であろう.

7. Z. Brzeźniak and T. Zastawniak: Basic Stochastic Processes, Springer, 1999.

確率過程入門として易しく書かれている.
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5 Markov Chains

A typical property of a random walk is that the next position is determined probabilistically only by the
present position. Namely, the next-step movement is independent of the past trajectories. As the position of the
one-dimensional random walk is described in terms of the usual coordinate system Z = {· · · ,−1, 0, 1, 2, . . . }, to
describe the random walk we associate a discrete time stochastic process {Xn} taking the values in Z. In this sense
we call Z a state space. For wider applications a state space is not necessarily the set of numbers, but is allowed
to take an arbitrary set. Keeping the typical property of the random walk and generalizing the state space, we
come to the concept of Markov chain.

5.1 Conditional Probability
For two events A, B we define

P(A|B) =
P(A ∩ B)

P(B)
(5.1)

whenever P(B) > 0. We call P(A|B) the conditional probability of A relative to B It is interpreted as the proba-
bility of the event A assuming the event B occurs, see Section 2.1.1.

Theorem 5.1.1 For two events A, B the following five properties are equivalent:

(i) A and B are independent;

(ii) P(B|A) = P(B);

(ii′) P(A|B) = P(A);

(iii) P(B|A) = P(B|Ac);

(iii′) P(A|B) = P(A|Bc).

Here it is assumed that the conditional probabilities are well defined.

Formula (5.1) is often used in the following form:

P(A ∩ B) = P(B)P(A|B) (5.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in compu-
tation of probability. For example, for two events A, B see Fig. 5.1.

������*P(A)

HHHHHHjP(Ac)

A

Ac

������1P(B|A)

PPPPPPqP(Bc|A)

������1P(B|Ac)

PPPPPPqP(Bc|Ac)

A ∩ B

A ∩ Bc

Ac ∩ B

Ac ∩ Bc

Figure 5.1: Tree diagram

(5.2) is generalized as follows.
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Theorem 5.1.2 (Compound probabilities) For events A1, A2, . . . , An we have

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · · P(An|A1 ∩ A2 ∩ · · · ∩ An−1). (5.3)

Proof Straightforward by induction on n.

Problem 22 Prove Theorem 5.1.1.

5.2 Markov Chains
Consider a discrete time stochastic process {Xn ; n = 0, 1, 2, . . . } taking values in an at most countable set S .

This S is called a state space. In general, S is not necessarily a subset of R. In the following we often meet the
cases of S = {1, 2, . . . ,N} and S = {0, 1, 2, . . . }.

Definition 5.2.1 Let {Xn ; n = 0, 1, 2, . . . } be a discrete time stochastic process over S . It is called a Markov
process over S if

P(Xn = a|Xi1 = a1, Xi2 = a2, . . . , Xik = ak) = P(Xn = a|Xik = ak)

holds for any 0 ≤ i1 < i2 < · · · < ik < n and a1, a2, . . . , ak, a ∈ S .

Definition 5.2.2 For a Markov chain {Xn} over S ,

P(Xn+1 = j|Xn = i)

is called the transition probability at time n from a state i to j. If this is independent of n, the Markov chain is
called time homogeneous. In this case we write

pi j = p(i, j) = P(Xn+1 = j|Xn = i)

and simply called the transition probability. Moreover, the matrix

P = [pi j]

is called the transition matrix.

Obviously, we have for each i ∈ S ,∑
j∈S

p(i, j) =
∑
j∈S

P(Xn+1 = j|Xn = i) = 1.

Taking this into account, we give the following

Definition 5.2.3 A matrix P = [pi j] with index set S is called a stochastic matrix if

(i) pi j ≥ 0.

(ii)
∑

j∈S pi j = 1.

Theorem 5.2.4 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochastic
matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic matrix.

It is convenient to use the transition diagram to illustrate a Markov chain. With each state we associate a
point and we draw an arrow from i to j when p(i, j) > 0.

Example 5.2.5 (2-state Markov chain) A Markov chain over the state space {0, 1} is determined by the transi-
tion probabilities:

p(0, 1) = p, p(0, 0) = 1 − p, p(1, 0) = q, p(1, 1) = 1 − q.

The transition matrix is defined by [
1 − p p

q 1 − q

]
.

The transition diagram is as follows:
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p

p

pp

 p=

 q=

 1 p=  1 q=

Example 5.2.6 (3-state Markov chain) An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain on {H, S ,D} described by the following transition diagram:

b

p

 a

 q

H S D

 r

The transition matrix is defined bya b 0
p r q
0 0 1

 , qquada + b = 1, p + q + r = 1.

Example 5.2.7 (Random walk on Z1) The transition probabilities are given by

p(i, j) =


p, if j = i + 1,
q = 1 − p, if j = i − 1,
0, otherwise.

The transition matrix is a two-sided infinite matrix given by

. . .
. . .

. . .
. . .

. . . q 0 p 0
0 q 0 p 0

0 q 0 p 0

0 q 0 p
. . .

. . .
. . .

. . .
. . .


Example 5.2.8 (Random walk with absorbing barriers) Let A > 0 and B > 0. The state space of a random
walk with absorbing barriers at −A and B is S = {−A,−A + 1, . . . , B − 1, B}. Then the transition probabilities are
given as follows. For −A < i < Bのときは,

p(i, j) =


p, if j = i + 1,
q = 1 − p, if j = i − 1,
0, otherwise.

For i = −A or i = B,

p(−A, j) =

1, if j = −A,
0, otherwise,

p(B, j) =

1, if j = B,
0, otherwise.
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In a matrix form we have 

1 0 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...
...
. . .

. . .
. . .

...
...

0 0 · · · q 0 p 0
0 0 · · · 0 q 0 p
0 0 · · · 0 0 0 1


Example 5.2.9 (Random walk with reflecting barriers) Let A > 0 and B > 0. The state space of a random
walk with absorbing barriers at −A and B is S = {−A,−A+1, . . . , B−1, B}. The transition probabilities are given
as follows. For −A < i < B,

p(i, j) =


p, if j = i + 1,
q = 1 − p, if j = i − 1,
0, otherwise.

For i = −A or i = B,

p(−A, j) =

1, if j = −A + 1,
0, otherwise,

p(B, j) =

1, if j = B − 1,
0, otherwise.

In a matrix form we have 

0 1 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...
...
. . .

. . .
. . .

...
...

0 0 · · · q 0 p 0
0 0 · · · 0 q 0 p
0 0 · · · 0 0 1 0


For a Markov chain {Xn} with a transition matrix P = [pi j] the n-step transition probability is defined by

pn(i, j) = P(Xm+n = j|Xm = i), i, j ∈ S .

The right-hand side is independent of n because of the assumption of being time homogeneous.

Theorem 5.2.10 (Chapman–Kolmogorov equation) For 0 ≤ r ≤ n we have

pn(i, j) =
∑
k∈S

pr(i, k)pn−r(k, j). (5.4)

Proof First we note the obvious identity:

pn(i, j) = P(Xm+n = j|Xm = i) =
∑
k∈S

P(Xm+n = j, Xm+r = k|Xm = i).

Moreover,

P(Xm+n = j, Xm+r = k|Xm = i) =
P(Xm+n = j, Xm+r = k, Xm = i)

P(Xm+r = k, Xm = i)
× P(Xm+r = k, Xm = i)

P(Xm = i)
= P(Xm+n = j|Xm+r = k, Xm = i)P(Xm+r = k|Xm = i).

Using the Markov property, we have

P(Xm+n = j|Xm+r = k, Xm = i) = P(Xm+n = j|Xm+r = k)

so that
P(Xm+n = j, Xm+r = k|Xm = i) = P(Xm+n = j|Xm+r = k)P(Xm+r = k|Xm = i).

35



Finally, by the property of being time homogeneous, we come to

P(Xm+n = j, Xm+r = k|Xm = i) = pn−r(k, j)pr(i, k).

Thus we have obtained (5.4).

Applying (5.4) repeatedly and noting that p1(i, j) = p(i, j), we obtain

pn(i, j) =
∑

k1,...,kn−1∈S
p(i, k1)p(k1, k2) · · · p(kn−1, j). (5.5)

The right-hand side is nothing else but the multiplication of matrices, i.e., the n-step transition probability pn(i, j)
is the (i, j)-entry of the n-power of the transition matrix P. Summing up, we obtain the following important
result.

Theorem 5.2.11 For m, n ≥ 0 and i, j ∈ S we have

P(Xm+n = j|Xm = i) = pn(i, j) = (Pn)i j .

Remark 5.2.12 The Chapman-Kolmogorov equation is nothing else but an entrywise expression of the obvious
relation for the transition matrix:

Pn = PrPn−r

(As usual, P0 = E (identity matrix).)

5.3 Stationary Distributions
For a Markov chain {Xn} we set

πi(n) = P(Xn = i), i ∈ S .

Then the row vector defined by
π(n) = [· · · πi(n) · · · ]

is called the distribution of Xn. In particular, π(0), the distribution of X0, is called the initial distribution.

Theorem 5.3.1 We have
π(n) = π(0)Pn .

In other words,
πi(n) =

∑
j1, j2,..., jn

π j1 (0)p( j1, j2)p( j2, j3) . . . p( jn−1, jn)p( jn, i).

Proof We first note that

πi(n) = P(Xn = i) =
∑
k∈S

P(Xn = i|X0 = k)P(X0 = k) =
∑
k∈S
πk(0)pn(k, i),

where pn(k, i) = (Pn)ki and the right-hand side is a multiplication of a vector and matrix. Hence,

πi(n) = (π(0)Pn)i ,

that is,
π(n) = π(0)Pn ,

as desired.

Definition 5.3.2 In general, a row vector π = [· · · πi · · · ] satisfying

πi ≥ 0,
∑
i∈S
πi = 1

is called a distribution on S . A distribution π on S is called stationary (or invariant) if

π = πP. (5.6)
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Note that a stationary distribution may not exist. If a stationary distribution exists, it is not necessarily unique.

Example 5.3.3 (2-state Markov chain) Let {Xn} be the Markov chain introduced in Example 5.2.5. The transi-
tion matrix is given by

P =
[
1 − p p

q 1 − q

]
.

The eigenvalues of P are 1, 1 − p − q. Suppose that p + q > 0. We have

Pn =
1

p + q

[
q + prn p − prn

q − qrn p + qrn

]
, r = 1 − p − q.

Consequently, if |r| < 1, or equivalently 0 < p + q < 2, we have

lim
n→∞

Pn =
1

p + q

[
q p
q p

]
.

Hence

lim
n→∞
π(n) = lim

n→∞
π(0)Pn = [π0(0) π1(0)] × 1

p + q

[
q p
q p

]
=

[
q

p + q
p

p + q

]
.

Consequently, when 0 < p + q < 2, the distribution of the Markov chain converges to the stationary distribution
independently of the initial distribution.

Example 5.3.4 (3-state Markov chain) We discuss the Marov chain {Xn} introduced in Example 5.2.6. The
stationary distribution is unique and given by π = [0 0 1].

In order to describe the uniqueness of a stationary distribution we need the following

Definition 5.3.5 We say that a state j can be reached from a state i if there exists some n ≥ 0 such that pn(i, j) > 0.
By definition every state i can be reached from itself. We say that two states i and j intercommunicate if i can
be reached form j and j can be reached from i, i.e., there exist m ≥ 0 and n ≥ 0 such that pn(i, j) > 0 and
pm( j, i) > 0.

Lemma 5.3.6 For two states i, j ∈ S we define a binomial relation i ∼ j when they intercommunicate. Then ∼
becomes an equivalence relation on S , namely,

(i) i ∼ i;

(ii) i ∼ j implies j ∼ i;

(iii) If i ∼ j and j ∼ k, then i ∼ k.

Proof (i), (ii) are obvious by definition. (iii) is verified by the Chapman-Kolmogorov equation.

Thereby the state space S is classified into a disjoint set of equivalence classes determined by the above ∼.
Namely, each equivalence class consists of states which intercommunicate each other.

Definition 5.3.7 A state i is called absorbing if

p(i, j) =

1, for j = i,
0, otherwise.

In particular, an absorbing state is a state which constitutes an equivalence class by itself.

Definition 5.3.8 A Markov chain is called irreducible if every state can be reached from every other state, i.e.,
if there is only one equivalence class of intercommunicating states.

Example 5.3.9 Examine the equivalence relation among the states of a Markov chain described by the following
transition diagram:
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Example 5.3.10 (2-state Markov chain) Consider the transition matrix:

P =
[
1 − p p

q 1 − q

]
.

Let π = [π0 π1] and suppose πP = π. Then we have

[π0 π1]
[
1 − p p

q 1 − q

]
= [(1 − p)π0 + qπ1 pπ0 + (1 − q)π1] = [π0 π1],

which is equivalent to the following
pπ0 − qπ1 = 0.

Together with
π0 + π1 = 1,

we obtain
π0 =

q
p + q

, π1 =
p

p + q
,

whenever p + q > 0. If p = q = 0, then any π = [π0 , π1] is a stationary distribution.

The following result is fundamental, however, we onit the proof, see 国沢「確率論とその応用」, シナジ
「マルコフ連鎖から格子確率モデルへ」etc.

Theorem 5.3.11 For an irreducible Markov chain the following assertions are equivalent:

(i) it admits a stationary distribution;

(ii) every state is positive recurrent.

In this case the stationary distribution π is unique and given by

πi =
1

E(Ti|X0 = i)
, i ∈ S .

Recall that every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem
5.4.9). Therefore,

Theorem 5.3.12 An irreducible Markov chain on a finite state space S admits a unique stationary distribution
π = [πi]. Moreover, π > 0 for all i ∈ S .
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Example 5.3.13 (One-dimensional RW) When S is infinite, Theorem 5.3.12 does not hold in general. In fact,
one-dimensional random walk is an example. Let [· · · π(k) · · · ] be a distribution on Z. If is is stationary, we have

π(k) = pπ(k − 1) + qπ(k + 1), k ∈ Z. (5.7)

The characteristic equation is
0 = qλ2 − λ + p = (qλ − p)(λ − 1)

so that the eigenvalues are 1, p/q.
(Case 1) p , q. Then a general solution to (5.7) is given by

π(k) = C11k +C2

(
p
q

)k

= C1 +C2

(
p
q

)k

, k ∈ Z.

This never becomes a probability distribution for any choice of C1 and C2. Namely, there is no stationary
distribution.

(Case 2) p = q. In this case a general solution to (5.7) is given by

π(k) = (C1 +C2k)1k = C1 +C2k, k ∈ Z.

This never becomes a probability distribution for any choice of C1 and C2. Namely, there is no stationary
distribution.

Example 5.3.14 (One-dimensional RW with reflection barrier) There is a unique stationary distribution when
p < q. In fact,

π(0) = Cp, π(k) = C
(

p
q

)k

, k ≥ 1,

where C is determined in such a way that
∑∞

k=0 π(k) = 1. Namey,

C =
q − p
2q2

Example 5.3.15 (2-state Markov chain) Let

P =
[
1 − p p

q 1 − q

]
be a transition matrix with p+q > 0. The eigenvalues are 1, 1− p−q, which are distinct by assumption p+q > 0.
Using the eigenvectors we set

T =
[
1 p
1 −q

]
.

Then,

PT = T
[
1 0
0 1 − p − q

]
,

in other words,

Pn = T
[
1 0
0 (1 − p − q)n

]
T−1.

Letting n→ ∞, we obtain

lim
n→∞

Pn = T
[
1 0
0 0

]
T−1 =

1
p + q

[
q p
q p

]
.

On the other hand, for a initial distribution π(0) = [π0(0) π1(0)] the distribution of the Markov chain at time n is
given by Theorem 5.3.1 as follows:

π(n) = π(0)Pn.

Letting n→ ∞, we have

lim
n→∞
π(n) =

1
p + q

[π0(0) π1(0)]
[
q p
q p

]
=

1
p + q

[q p] =
[

q
p + q

p
p + q

]
.

This coincides with the stationary distribution π, see Example 5.3.10. Namely, for a two-state Markov chain
with p + q > 0, the distribution of Xn tends to the stationary distribution as n → ∞ independent of an initial
distribution.
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It is important to know under which condition the distribution of a Markov chain tends to a stationary distribu-
tion after long time. Unfortunately, the situation is not simple. It is noted that the unique existence of a stationary
distribution (see e.g., Theorem 5.3.12) is not sufficient to claim the convergence to the stationary distribution, as
is seen by the following simple example.

Example 5.3.16 Consider a Markov chain determined by the transition matrix:

P =
[
0 1
1 0

]
.

We first note that there exists a unique stationary distribution. But for a given initial distribution π(0) it is not
necesarily true that lim

n→∞
π(n) converges to the stationary distribution.

Roughly speaking we need to avoid the periodic transition. We only mention the following result, of which
the proof is found in国沢「確率論とその応用」,シナジ「マルコフ連鎖から格子確率モデルへ」, etc.

Theorem 5.3.17 Let π be a stationary distribution of an irreducible Markov chanin on a finite state space (It is
unique, see Theorem 5.3.12). If {Xn} is aperiodic, for any j ∈ S we have

lim
n→∞

P(Xn = j) = π j .

Problem 23 Consider a Markov chain determined by the transition diagram below.

(1) Is the Markov chain irreducible?

(2) Study the stationary distibutions.

Problem 24 Let {Xn} be a Markov chain on {0, 1} given by the transition matrix P =
[
1 − p p

q 1 − q

]
with the

initial distribution π0 = [q/(p + q) p/(p + q)]. Calculate the following statistical quantities:

E[Xn], V[Xn], Cov (Xm+n, Xn) = E[Xm+nXn] − E[Xm+n]E[Xn], ρ(Xm+n, Xn) =
Cov (Xm+n, Xn)
√

V[Xm+n]V[Xn]

Problem 25 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every
election. Suppose that after an election, 30% of the supporters of A change to support B and 20% of the supporters
of B change to support A. At the beginning, 85% of the voters support A and 15% support B. When will the party
B command a majority? Moreover, find the final ratio of supporters after many elections if the same situation
continues.

Problem 26 Find a stationary distribution of the Markov chain defined by the following transition diagram,
where p > 0 and q = 1 − p > 0.

p

q q

q

pp
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Problem 27 Let {Xn} be the Markov chain introduced in Example 5.2.6:

b

p

 a

 q

H S D

 r

For n = 1, 2, . . . let Hn denote the probability of starting from H and terminating at D at n-step. Similarly, for
n = 1, 2, . . . let S n denote the probability of starting from S and terminating at D at n-step.

(1) Show that {Hn} and {S n} satisfies the following linear system:Hn = aHn−1 + bS n−1,

S n = pHn−1 + rS n−1,
n ≥ 2; H1 = 0, S 1 = q.

(2) Solving the above linear system, prove the identities for the mean life times:

E[H] =
∞∑

n=1

nHn =
b + p + q

bq
, E[S ] =

∞∑
n=1

nS n =
b + p

bq
.

5.4 Recurrence
Definition 5.4.1 Let i ∈ S be a state. Define the first hitting time or first passage time to i by

Ti = inf{n ≥ 1 ; Xn = i}.

If there exists no n ≥ 1 such that Xn = i, we define Ti = ∞. A state i is called recurrent if P(Ti < ∞|X0 = i) = 1.
It is called transient if P(Ti = ∞|X0 = i) > 0.

Theorem 5.4.2 A state i ∈ S is recurrent if and only if

∞∑
n=0

pn(i, i) = ∞.

Proof (basically the same as the proof of recurrence of one-dimensional random walk) We first put

pn(i, j) = P(Xn = j|X0 = i), n = 0, 1, 2, . . . ,
fn(i, j) = P(T j = n|X0 = i)

= P(X1 , j, . . . , Xn−1 , j, Xn = j|X0 = i), n = 1, 2, . . . .

pn(i, j) is nothing else but the n step transition probability. On the other hand, fn(i, j) is the probability that the
Markov chain starts from i and reach j first time after n step. Dividing the set of sample paths from i to j in n
steps according to the number of steps after which the path reaches j for the first time, we obtain

pn(i, j) =
n∑

r=1

fr(i, j)pn−r( j, j), i, j ∈ S , n = 1, 2, . . . . (5.8)

We next introduce the generating functions:

Gi j(z) =
∞∑

n=0

pn(i, j)zn,

Fi j(z) =
∞∑

n=1

fn(i, j)zn.
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In view of (5.8) we see easily that
Gi j(z) = p0(i, j) + Fi j(z)G j j(z). (5.9)

Setting i = j in (5.9), we obtain
Gii(z) = 1 + Fii(z)Gii(z).

Hence,

Gii(z) =
1

1 − Fii(z)
.

On the other hand, since

Gii(1) =
∞∑

n=0

pn(i, i), Fii(1) =
∞∑

n=1

fn(i, i) = P(Ti < ∞|X0 = i)

we see that two conditions Fii(1) = 1 and Gii(1) = ∞ are equivalent.

During the above proof we have already established the following

Theorem 5.4.3 If a state i is transient, we have

∞∑
n=0

pn(i, i) < ∞

and
∞∑

n=0

pn(i, i) =
1

1 − P(Ti < ∞|X0 = i)
.

Example 5.4.4 (random walk on Z) Obviously, the random walk starting from the origin 0 returns to it only
after even steps. Therefore, for recurrence we only need to compute the sum of p2n(0, 0). On the other hand, we
know that

p2n(0, 0) =
(2n)!
n!n!

pnqn, p + q = 1,

see Chapter (4.1.1). Using the Stirling formula:

n! ∼
√

2πn
(n

e

)n
(5.10)

we have
p2n(0, 0) ∼ 1

√
πn

(4pq)n.

Hence, if p , q we have
∞∑

n=0

p2n(0, 0) < ∞.

If p = q =
1
2

, we have
∞∑

n=0

p2n(0, 0) = ∞.

Consequently, one-dimensional random walk is transient if p , q, and it is recurrent if p = q =
1
2

.

Remark 5.4.5 Let {an} and {bn} be sequences of positive numbers. We write an ∼ bn if

lim
n→∞

an

bn
= 1.
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Problem 28 (1) Let {an} and {bn} be sequences of positive numbers such that an ∼ bn. Prove that there exist
two constant numbers c1 > 0 and c2 > 0 such that

c1an ≤ bn ≤ c2an .

(2) Notations and assumptions being as in (1), prove that
∞∑

n=1

an and
∞∑

n=1

bn converge or diverge at the same

time.

(3) Explain the details of Example 5.4.4 filling the gaps of arguments therein.

Example 5.4.6 (random walk on Z2) Obviously, the random walk starting from the origin 0 returns to it only
after even steps. Therefore, for recurrence we only need to compute the sum of p2n(0, 0). For two-dimensional
random walk we need to consider two directions along with x-axis and y-axis. We see easily that

p2n(0, 0) =
∑

i+ j=n

(2n)!
i!i! j! j!

(
1
4

)2n

=
(2n)!
n!n!

(
1
4

)2n ∑
i+ j=n

n!n!
i!i! j! j!

=

(
2n
n

) (
1
4

)2n n∑
i=0

(
n
i

)2

.

Employing the formula for the binomial coefficients:

n∑
i=0

(
n
i

)2

=

(
2n
n

)
, (5.11)

wich is a good exercise for the readers, we obtain

p2n(0, 0) =
(
2n
n

)2 (
1
4

)2n

.

Then, by using the Stirling formula, we see that

p2n(0, 0) ∼ 1
πn

so that
∞∑

n=1

p2n(0, 0) = ∞.

Consequently, two-dimensional random walk is recurrent.

Example 5.4.7 (random walk on Z3) Let us consider the isotropic random walk in 3-dimension. As there are
three directions, say, x, y, z-axis, we have

p2n(0, 0) =
∑

i+ j+k=n

(2n)!
i!i! j! j!k!k!

(
1
6

)2n

=
(2n)!
n!n!

(
1
6

)2n ∑
i+ j+k=n

n!n!
i!i! j! j!k!k!

=

(
2n
n

) (
1
6

)2n ∑
i+ j+k=n

(
n!

i! j!k!

)2

.
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We note the following two facts. First, ∑
i+ j+k=n

n!
i! j!k!

= 3n. (5.12)

Second, the maximum value

Mn = max
i+ j+k=n

n!
i! j!k!

is attained when
n
3
− 1 ≤ i, j, k ≤ n

3
+ 1 so

Mn ∼
3
√

3
2πn

3n

by the Stirling formula. Then we have

p2n(0, 0) ≤
(
2n
n

) (
1
6

)2n

3nMn ∼
3
√

3
2π
√
π

n−3/2.

Therefore.
∞∑

n=1

p2n(0, 0) < ∞,

which implies that the random walk is not recurrent (i.e., transient).

A state i is called recurrent if P(Ti < ∞|X0 = i) = 1. In this case we are interested in the mean value
E(Ti|X0 = i) (mean recurrent time). As we have already shown (Theorem 4.2.4), the mean recurrent time of the
one-dimensional isotropic random walk is infinity although it is recurrent. In this case the state is called null
recurrent. On the other hand, if E(Ti|X0 = i) < ∞ the state i is called positive recurrent.

Theorem 5.4.8 The states in an equivalence class are all positive recurrent, or all null recurrent, or all transient.
In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null recurrent, or all
transient.

Theorem 5.4.9 For an irreducible Markov chain on a finite state space S , every state is positive recurrent.

Problem 29 Let {Xn} be a Markov chain described by the following transition diagram.

p

p

pp

 p=

 q=

 1 p=  1 q=

(1) Calculate

P(T0 = 1|X0 = 0), P(T0 = 2|X0 = 0), P(T0 = 3|X0 = 0), P(T0 = 4|X0 = 0).

(2) Find P(T0 = n|X0 = 0) and calculate

∞∑
n=1

P(T0 = n|X0 = 0),
∞∑

n=1

nP(T0 = n|X0 = 0).

Problem 30 A butterfly flies over the hexagon with a trap T . It starts at the origin O at time t = 0 and chooses
one direction at probability 1/2. But when it arrives at T , it is killed.

(1) Find the transition matrix.
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(2) Is this markov chain irreducible?

(3) Find the probability that the buterfly is alive at time t = 12.

(4) Observe the situation as t → ∞.

1

2

1

2

レポート提出要領

1. 講義中に出題したレポート問題のうち

1番から 16番のうち 2題
17番から最終番のうち 2題

の合わせて 4題を選択して解答せよ (1題 25点で採点). コピーレポートは 0点.

2. 提出先：情報科学研究科１Ｆ事務室前のメールボックスに設置するレポート提出専用のボックス

3. 提出期間：2月 4日（月）–2月 8日（金）

45



6 Poisson Processes

Let T ⊂ R be an interval. A family of random variables {X(t) ; t ∈ T } is called a continuous time stochastic
process. We often consider T = [0, 1] and T = [0,∞). As X(t) is a random variable for each t ∈ T , it has another
variable ω ∈ Ω. When we need to explicitly refer to ω, we write X(t, ω) or Xt(ω). For fixed ω ∈ Ω, the function

t 7→ X(t, ω)

is called a sample path of the stochastic process {X(t)}. It is the central idea of stochastic procees that a random
evolution in the real world is expressed by a single sample path selected randomly from all the possible sample
paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian motion
(Wiener process). In the recent study of mathematical physics and mathematical finance, a kind of composition
of these two processes, called the Lévy process (or additive process), has received much attention.

6.1 Heuristic Introduction
Let us imagine that the number of objects changes as time goes on. The number at time t is modelled by a

random variable Xt and we wish to construct a stochastic process {Xt}. In this case Xt takes values in {0, 1, 2, . . . }.
In general, such a stochastic process is called a counting process.

There are many different variations of randomness and so wide variations of counting processes. We below
consider the simple situation as follows: We focus an event E which occurs repeatedly at random as time goes
on. For example,

(i) alart of receiving an e-mail;

(ii) telephone call received a call center;

(iii) passangers making a queue at a bus stop;

(iv) customers visiting a shop;

(v) occurence of defect of a machine;

(vi) trafic accident at a corner;

(vii) radiation from an atom.

Let fix a time origin as t = 0. We count the number of occurence of the event E during the time interval [0, t] and
denote it by Xt. Let t1, t2, . . . be the time when E occurs, see Fig. 6.1.

0 t
nt t t

Figure 6.1: Recording when the event E occurs

There are two quantities which should be measured.

(i) The number of occurrence of E up to time t, say, Xt. Then {Xt , t ≥ 0} becomes a counting process.

(ii) The waiting time of the n-th occurrence after the (n − 1)-th occurrence, say, Tn . Here T1 is defined to be
the waiting time of the first occurrence of E after starting the observation. Then {Tn ; n = 1, 2, . . . } is a
sequence of random variables taking values in [0,∞).

We will introduce heuristically a stochastic process {Xt} from the viewpoint of (i). It is convenient to start
with discrete time approximation. Fix t > 0 and divide the time interval [0, t] into n small intervals. Let

∆t =
t
n

be the length of the small intervals and number from the time origin in order.
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Tn

t0

X t

Figure 6.2: The counting process and waiting times

-
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We assume the following conditions on the occurence of the event E:

(1) there exists a constant λ > 0 such that

P(E occurs just once in a small time interval of length ∆t) = λ∆t + o(∆t),
P(E does not occur in a mall time interval of length ∆t) = 1 − λ∆t + o(∆t),
P(E occurs more than once in a small time interval of length ∆t) = o(∆t).

(2) Occurence of E in disjoint time intervals is independent.

Some more accounts. let us consider the alart of receiving an e-mail. That

P(E occurs more than once in a small time interval of length ∆t) = o(∆t)

means that two occurences of the event E is always separated. That

P(E occurs just once in a small time interval of length ∆t) = λ∆t + o(∆t)

means that when ∆t is small the probability of occurence of E in a time interval is propotional to the length of
the time interval. We understand from (2) that occurence of E is independent of the past occurence.

Let Zi denote the number of occuirence of the event E in the i-th time interval. Then Z1,Z2, . . . ,Zn become a
sequence of independent random variables with an identical distribution such that

P(Zi = 0) = 1 − λ∆t + o(∆t), P(Zi = 1) = λ∆t + o(∆t), P(Zi ≥ 2) = o(∆t).

The number of occurence of E during the time interval [0, t] is given by

n∑
i=1

Zi .
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The length ∆t is introduced for a technical reason and is not essential in the probability model so letting ∆t → 0
or equivalently n→ ∞, we define Xt by

Xt = lim
∆t→0

n∑
i=1

Zi . (6.1)

Thus {Xt} is a continuous time stochastic process which gives the number of occurence of the event E up to time
t. This is called the Poisson process with parameter λ > 0.

We note that

P

 n∑
i=1

Zi = k

 = (
n
k

)
(λ∆t)k(1 − λ∆t)n−k + o(∆t).

In view of ∆t = t/n we let n tend to the infinity and obtain

P(Xt = k) = lim
∆t→0

(λt)k

k!
n(n − 1) . . . (n − k + 1)

nk

(
1 − λt

n

)n−k

=
(λt)k

k!
e−λt .

In other words, Xt obays the Poisson distribution with parameter λt.

Remark 6.1.1 The essence of the above argument is the Poisson’s law of small numbers (Theorem ??) which
says that the binomial distribution B(n, p) is approximeted by Poisson distribution when n is large and p is small.

Theorem 6.1.2 A Poisson process {Xt ; t ≥ 0} satisfies the following properties:

(1) (counting process) Xt takes vales in {0, 1, 2, . . . };
(2) X0 = 0;

(3) (monotone increasing) Xs ≤ Xt for 0 ≤ s ≤ t;

(4) (independent increment) if 0 ≤ t1 < t2 < · · · < tk, then

Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtk − Xtk−1 ,

are independent;

(5) (stationarity) for 0 ≤ s < t and h ≥ 0, the distibutions of Xt+h − Xs+h and Xt − Xs are identical;

(6) there exists a constant λ > 0 such that

P(Xh = 1) = λh + o(h), P(Xh ≥ 2) = o(h).

Proof (1) Since Xt obeys the Poisson distribution with parameter λt, it takes values in non-negative integers
almost surely.

(2) Obvious by definition.
(3) Let s = m∆t, t = n∆t, m < n. Then we have obviously

Xs = lim
∆t→0

m∑
i=1

Zi ≤ lim
∆t→0

n∑
i=1

Zi = Xt .

(4) Suppose t1 = n1∆t, . . . , tk = nk∆t with n1 < · · · < nk. Then we have

Xt2 − Xt1 = lim
∆t→0

n2∑
i=1

Zi − lim
∆t→0

n1∑
i=1

Zi = lim
∆t→0

n2∑
i=n1+1

Zi .

In other words, Xt2 − Xt1 is the sum of Zi’s corresponding to the small time intervals contained in [t2, t1). Hence,
Xt2 − Xt1 , . . . , Xtk − Xtk−1 are the sums of Zi’s and there is no common Zi appearing in the summands. Since {Zi}
are independent, so are Xt2 − Xt1 , . . . , Xtk − Xtk−1 .

(5) Since Xt+h − Xs+h and Xt − Xs are defined from the sums of Zi’s and the numbers of the terms coincide.
Therefore the distributions are the same.
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(6) Recall that Xh obeys the Poisson distribution with parameter λh. Hence,

P(Xh = 0) = e−λh = 1 − λh + · · · = 1 − λh + o(h),

P(Xh = 1) = λhe−λh = λh(1 − λh + . . . ) = λh + o(h).

Therefore we have
P(Xh ≥ 2) = 1 − P(Xh = 0) − P(Xh = 1) = o(h).

Example 6.1.3 The average number of customers visiting a certain service gate is two per minute. Using the
Poisson model, calculate the following probabilities.

(1) The probability that no customer visits during the first two minutes after the gate opens.

(2) The probability that no customer visits during a time interval of two minutes.

(3) The probability that no customer visits during the first two minutes after the gate opens and that two
customers visit during the next one minute.

Let Xt be the number of visitors up to time t. By assumption {Xt} is a Poisson process with parameter λ = 2.
(1) We need to calculate P(X2 = 0). Since X2 obeys the Poisson distribution with parameter 2λ = 4, we have

P(X2 = 0) =
40

0!
e−4 ≈ 0.018.

(2) Suppose that the time interval starts at t0. Then the probability under discussion is given by P(Xt0+2−Xt0 =

0). By stationarity we have

P(Xt0+2 − Xt0 = 0) = P(X2 − X0 = 0) = P(X2 = 0),

which coincides with (1).
(3) We need calculate the probability P(X2 = 0, X3 − X2 = 2). Since X2 and X3 − X2 are independent,

P(X2 = 0, X3 − X2 = 2) = P(X2 = 0)P(X3 − X2 = 2).

By stationarity we have

= P(X2 = 0)P(X1 = 2) =
40

0!
e−4 × 22

2!
e−2 ≈ 0.00496.

Problem 31 The average number of customers visiting a certain service gate is 20 per hour. Using the Poisson
model, calculate the following probabilities.

(1) The probability that one customer visits during the first two minutes after the gate opens.

(2) The probability that one customer visits during the first two minutes and that two customers visit during
the next three minutes.

(3) The probability that the server waits for more than ten minutes until the first customer visits.

Problem 32 Let {Xt} be a Poisson process. Show that

P(Xs = k|Xt = n) =
(
n
k

) ( s
t

)k (
1 − s

t

)n−k
, k = 0, 1, . . . , n,

for 0 < s < t. Next give an intuitive explanation of the above formula.
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6.2 Waiting Time
Let {Xt ; t ≥ 0} be a Poisson process with parameter λ. By definition X0 = 0 and Xt increases by one as time

passes. It is convenient to remind that the Poisson process counts the number of events occuring up to time t.
First we set

T1 = inf{t ≥ 0 ; Xt ≥ 1}. (6.2)

This is the waiting time for the first occurence of the event E. Let T2 be the waiting time for the second occurence
of the event E after the first occurence, i.e.,

T2 = inf{t ≥ 0 ; Xt ≥ 2} − T1 .

In a similar fashion, we set

Tn = inf{t ≥ 0 ; Xt ≥ n} − Tn−1, n = 2, 3, . . . . (6.3)

Theorem 6.2.1 Let {Xt} be a Poisson process with parameter λ. Define the waiting time Tn by (6.2) and (6.3).
Then, {Tn ; n = 1, 2, . . . } becomes a sequence of iid random variables, of which distribution is the exponential
distribution with parameter λ.

Proof Set t = n∆t and consider the approximation by refinement of the time interval. Recall that to each
small time interval of length ∆t a random variable Zi is associated. Then we know that

P(T1 > t) = lim
∆t→0

P(Z1 = · · · = Zn = 0)

= lim
∆t→0

(1 − λ∆t)n

= lim
∆t→0

(
1 − λt

n

)n

= e−λt.

Therefore,

P(T1 ≤ t) = 1 − e−λt =
∫ t

0
λe−λsds,

which shows that T1 obeys the exponentian distribution with parameter λ.
The distributions of T2,T3, . . . are similar.

Remark 6.2.2 Let {Xt} be a Poisson process with parameter λ. We know that E(X1) = λ, which means the
average number of occurence of the event during the unit time interval. Hence, it is expected that the average
waiting time between two occurences is 1/λ. Theorem 6.2.1 says that the waiting time obeys the exponential
distribution with parameter λ so its mean value is 1/λ. Thus, our rough consideration gives the correct answer.

Problem 33 Let {Xt} be a Poisson process with parameter λ. The waiting time for n occurence of the events
is defined by S n = T1 + T2 + · · · + Tn, where Tn is given in Theorem 6.2.1. Calculate P(S 2 ≤ t) and find the
probability density function of S 2. [In general, S n obeys a gamma distribution.]

6.3 The Rigorous Definition of Poisson Processes
The “definition” of a Poisson process in (6.1) is intuitive and instructive for modeling random phenomena.

However, strictly speaking, the argument is not sufficient to define a stochastic process {Xt}. For example, the
probability space (Ω,F , P) on which {Xt} is defined is not at all clear.

We need to start with the waiting time {Tn}. First we prepare a sequence of iid random variables {Tn ; n =
1, 2, . . . }, of which the distribution is the exponential distribution with parameter λ > 0. Here the probability
space (Ω,F , P) is clearly defined. Next we set

S 0 = 0, S n = T1 + · · · + Tn , n = 1, 2, . . . ,
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and for t ≥ 0,
Xt = max{n ≥ 0 ; S n ≤ t}.

It is obvious that for each t ≥ 0, Xt is a random variable defined on the probability space (Ω,F , P). In other
words, {Xt ; t ≥ 0} becomes a continuous time stochastic process. This is called Poisson process with parameter
λ by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 6.1.2.

6.4 M/M/1 Queue
Waiting lines or queues have been extensively studied under the name of queuing theory. A queue in the

real world is modeled in terms of a system of servers and visiting customers. A customer arrives at a system
containing servers. If the server is free, the customer may get the service at once. Otherwise, the customer waits
for a vacant server by making a waiting queue. A customer arrives at random and the service time is also random.
The main purpose is to construct a stochastic process {X(t)} on {0, 1, 2, . . . }, where the value corresponds to the
number of customers in the system at time t (including any currently in service), and then to obtain statistical
quantities and characteristic features from {X(t)}.

A quite a few models have been proposed and studied extensively. Kendall’s notation A/B/c/K/m/Z, in-
troduced first by David G. Kendall in 1953, is commonly used for describing the characteristics of a queueing
model, where

A: arrival process,
B: service time distribution,
c: number of servers,
K: number of places in the system (the buffer size),
m: calling population,
Z: queue’s discipline (priority order)

The most fundamental model is an M/M/1 queue (the letter “M” stands for “Markov”). In fact, an M/M/1
queue is a continuous time Markov chain on {0, 1, 2, 3, ...}, which reflects the following situation:

(i) Arrivals occur according to a Poisson process with parameter λ;

(ii) Service times obey an exponential distribution with parameter µ;

(iii) Arrivals of customers and service times are independent;

(iii) The system contains a single server;

(iv) The buffer size is infinite;

(v) (First in first out) A single server serves customers one at a time from the front of the queue, according to a
first-come, first-served discipline. Customers are served one at a time and that the customer that has been
waiting the longest is served first

Thus there are two parameters characterizing an M/M/1 queue, that is, the parameter λ > 0 for the Poisson
arrival and the one µ > 0 for the exponential service. In other words, a customer arrives at the system with
average time interval 1/λ and the average service time is 1/µ. In the queuing theory λ is called the mean arrival
rate and µ the mean service rate.
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Let us consider the change of the system during the small time interval t → t + ∆t. It is assumed that during
the small time interval ∆t only one event happens, namely, a new customer arrives, a customer under service
leaves the system, or nothing changes. The probabilities of these events are given by λ∆t, µ∆t, 1 − λ∆t − µ∆t.

t t + ∆t

n n

n

n

λ∆t

µ∆t

Therefore, P(X(t) = n) fulfills the following equation:

P(X(t + ∆t) = n) = P(X(t + ∆t) = n|X(t) = n − 1)P(X(t) = n − 1)
+ P(X(t + ∆t) = n|X(t) = n)P(X(t) = n)
+ P(X(t + ∆t) = n|X(t) = n + 1)P(X(t) = n + 1)

= λ∆tP(X(t) = n − 1)
+ (1 − λ∆t − µ∆t)P(X(t) = n)
+ µ∆tP(X(t) = n + 1),

P(X(t + ∆t) = 0) = (1 − λ∆t)P(X(t) = 0) + µ∆tP(X(t) = 1).

Setting pn(t) = P(X(t) = n), we have

p′n(t) = λpn−1(t) − (λ + µ)pn(t) + µpn+1(t), n = 1, 2, . . . ,
p′0(t) = −λp0(t) + µp1(t). (6.4)

Important properties of the queue are derived from the above linear system. We are interested in the equilibrium
solution (limit transition probability), i.e., pn(t) in the limit t → ∞. We set

pn = lim
t→∞

pn(t)

under the assumption that the limit exists. In the limit the derivative of the left hand side of (6.4) is 0. Hence,

λpn−1 − (λ + µ)pn + µpn+1 = 0 n = 1, 2, . . . ,
− λp0 + µp1 = 0.

The above linear system is easily solved. If λ , µ, then the general solution is given by

pn = A
(
λ

µ

)n

(A is a constant).

If λ = µ, we see that pn = A (constant). Since pn should be a probability distribution, we have
∞∑

n=0

pn = 1. This

occurs only when λ < µ and we have

pn =

(
1 − λ
µ

) (
λ

µ

)n

, n = 0, 1, 2, . . . .

This is the geometric distribution parameter λ/µ.
In queuing theory, the ratio of the mean arrival rate λ and the mean service rate µ is called the utilization:

ρ =
λ

µ
.
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Utilization stands for how busy the system is. It was shown above that the number of customers in the system
after long time obeys the geometric distribution with parameter ρ. If ρ < 1, the system functions well. Otherwise,
the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium the number of customers
in the system obeys the geometric distribution:

(1 − ρ)ρn, n = 0, 1, 2, . . . .

In particular, the probability that the server is free is 1 − ρ and the probability that the server is busy and the
customer need to wait is ρ. This is the origin of the term utilization. Note also that the mean number of the
customers in the system is given by

∞∑
n=0

npn =
ρ

1 − ρ =
λ

µ − λ .

Example 6.4.1 There is an ATM, where each customer arrives with average time interval 5 minutes and spends
3 minutes in average for the service. Using an M/M/1 queue, we know some statistical characteristics. We set

λ =
1
5
, µ =

1
3
, ρ =

3
5
.

Then the probability that the ATM is free is 1 − ρ = 2
5

. The probability that the ATM is busy but there is no
waiting customer is

2
5
× 3

5
=

6
25
.

Hence the probability that the ATM is busy and there is some waiting customers is

1 − 2
5
− 6

25
=

9
25
= 0.36.

So, roughly speaking, a customer needs to make a queue once per three visits.

Remark 6.4.2 The Markov process X(t) appearing in the M/M/1 queueing model is studied more generally
within the frame works of birth-and-death process.
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7 Solutions

Problem 1 Since

P(a ≤ X ≤ b) = −(b2 − a2) + 2(b − a) =
∫ b

a
2(1 − x)dx

we have

ρ(x) =

2(1 − x), 0 ≤ x ≤ 1;
0, otherwise

m =
∫ +∞

−∞
xρ(x) =

1
3
,∫ +∞

−∞
x2ρ(x) =

1
6
,

σ2 =
1
18

(3)

m =
π

6
, σ2 =

7π2

180
Remark that the density function of S is

ρ(x) = 2
√

x
π
− x
π
, 0 < x < π.

Problem 2 ∫ +∞

0
x2ne−x2

dx =
(2n − 1)(2n − 3) . . . 3 · 1

2n

√
π

2
. n = 0, 1, 2, . . . .

(2)

a =
4
√
π
, m =

2
√
π

σ2 =
3
2
− 4
π

Problem 5
E[L] =

161
36

E[S ] =
91
36

E[LS ] =
49
4

σLS =
1225

64 ρ =
35
73

Problem 6

E[XmXm+n] = pm + p2m(m + n − 1), qquadσXm,Xm+n = p(1 − p)m, ρXm,Xm+n =

√
m

m + n

Problem 12

σXm,Xm+n = 4pqm, ρXm,Xm+n =

√
m

m + n

Problem 26 [
q2

1 − pq
pq

1 − pq
p2

1 − pq

]
Note that 1 − pq = p2 + pq + q2 = p2 − p + 1.

Problem 29

P(T0 = 1|X0 = 0) = 1−p, P(T0 = 2|X0 = 0) = pq, P(T0 = 3|X0 = 0) = p(1−q)q, P(T0 = 4|X0 = 0) = p(1−q)2q.

P(T0 = n|X0 = 0) =

1 − p, n = 1,
p(1 − q)n−2q, n ≥ 2.

∞∑
n=1

P(T0 = n|X0 = 0) = 1,
∞∑

n=1

nP(T0 = n|X0 = 0) =
p + q

q
.
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Problem 30 (3) 243
1024

Problem 23 (1) No. (2) [
3
7
α

4
7
α 0

4
13

(1 − α)
9
13

(1 − α)
]

where 0 ≤ α ≤ 1.
Question 24

P =
[
1 − p p

q 1 − q

]

Pn =
1

p + q

[
q + p(1 − p − q)n p − p(1 − p − q)n

q − q(1 − p − q)n p + q(1 − p − q)n

]
Let Xn be the Markov chain with initial distribution π = [π(0) π(1)].

E[Xn] = P(Xn = 1)
= P(Xn = 1|X0 = 0)P(X0 = 0) + P(Xn = 1|X0 = 1)P(X0 = 1)
= (P)01π(0) + (P)11π(1)

=
1

p + q
{p + (1 − p − q)n(−pπ(0) + qπ(1))}

For simplicity we set
r = 1 − p − q

Then

Pn =
1

p + q

[
q + prn p − prn

q − qrn p + qrn

]
and

E[Xn] =
1

p + q
{p + (−pπ(0) + qπ(1))rn}

Moreover, noting that X2
n = Xn, we see that

V[Xn] = E[X2
n] − E[Xn]2

= E[Xn](1 − E[Xn])

=
1

(p + q)2 {p + (−pπ(0) + qπ(1))rn} {q − (−pπ(0) + qπ(1))rn}

For the covariance we note that

E[Xm+nXn] = P(Xm+n = 1, Xn = 1) = P(Xm+n = 1|Xn = 1)P(Xn = 1) = (Pm)11E[Xn].

Then we have

Cov (Xm+n, Xn) = E[Xm+nXn] − E[Xm+n]E[Xn]
= ((Pm)11 − E[Xm+n])E[Xn]

=
1

(p + q)2 {qrm − (−pπ(0) + qπ(1))rm+n}{p + (−pπ(0) + qπ(1))rn}

=
rm

(p + q)2 {q − (−pπ(0) + qπ(1))rn}{p + (−pπ(0) + qπ(1))rn}.

Finally the correlation coefficient is given by

ρ(Xm+n, Xn) =
Cov (Xm+n, Xn)
√

V[Xm+n]V[Xn]

= rm
{

(p + (−pπ(0) + qπ(1))rn)(q − (−pπ(0) + qπ(1))rn)
(p + (−pπ(0) + qπ(1))rm+n)(q − (−pπ(0) + qπ(1))rm+n)

}1/2

.
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In particular, we have

ρ(Xn+1, Xn) = r
{

(p + (−pπ(0) + qπ(1))rn)(q − (−pπ(0) + qπ(1))rn)
(p + (−pπ(0) + qπ(1))rn+1)(q − (−pπ(0) + qπ(1))rn+1)

}1/2

.

Taking π to be the stationary distribution, we obtain

ρ(Xn+1, Xn) = r.

Consequently,

1. 0 < r < 1⇐⇒ 0 < p + q < 1. likely non-flipping.

2. −1 < r < 0⇐⇒ 1 < p + q < 2. likely flipping.

3. r = 0⇐⇒ p + q = 1. coin toss

Question 27

P =

a b 0
p r q
0 0 1


det(λ − P) =

λ − a −b 0
−p λ − r −q
0 0 λ − 1

 = (λ − 1)(λ2 − (a + r)λ + ar − bp)

固有値 λ = 1, λ1, λ2
λ1 + λ2 = a + r, λ1λ2 = ar − bp.

For n = 1, 2, . . . let Hn denote the probability of starting from H and terminating at D at n-step. Similarly, for
n = 1, 2, . . . let S n denote the probability of starting from S and terminating at D at n-step.

Then we have Hn = aHn−1 + bS n−1,

S n = pHn−1 + rS n−1,
n ≥ 2.

with initial condition
H1 = 0, S 1 = q

The characteristic equation is given by

det
[
λ − a −b
−p λ − r

]
= λ2 − (a + r)λ + ar − bp = 0

the roots are λ1, λ2.
Since

(a + r)2 − 4(ar − bp) = (a − r)2 + 4bp = 0

occurs if and only if a = r and bp = 0. From the beginning we assume that b > 0 and p > 0. Hence we see that
λ1 , λ2.

Hence the general solution is given by

Hn = C11λ
n
1 +C12λ

n
2, S n = C21λ

n
1 +C22λ

n
2

Putting n = 1 we have
H1 = C11λ1 +C12λ2 = 0, S 1 = C21λ1 +C22λ2 = q.

Moreover, as is easily seen

H2 = C11λ
2
1 +C12λ

2
2 = bq, S 2 = C21λ

2
1 +C22λ

2
2 = rq.

Then we have
C11 =

bq
λ1(λ1 − λ2)

, C12 =
−bq

λ2(λ1 − λ2)
.
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Similarly,

C21 =
(r − λ2)q
λ1(λ1 − λ2)

, C22 =
(λ1 − r)q
λ2(λ1 − λ2)

.

Consequently,

Hn = C11λ
n
1 +C12λ

n
2 =

bqλn
1

λ1(λ1 − λ2)
+
−bqλn

2

λ2(λ1 − λ2)
=

bq(λn−1
1 − λn−1

2 )
λ1 − λ2

,

S n = C21λ
n
1 +C22λ

n
2 =

(r − λ2)qλn
1

λ1(λ1 − λ2)
+

(λ1 − r)qλn
2

λ2(λ1 − λ2)
=

q((r − λ2)λn−1
1 + (λ1 − r)λn−1

2 )
λ1 − λ2

It is easily seen that
∞∑

n=1

Hn =

∞∑
n=1

S n = 1

We are interested in the average life time.

E[H] =
∞∑

n=1

nHn E[S ] =
∞∑

n=1

nS n .

Recall that
∞∑

n=0

zn =
1

1 − z
,

∞∑
n=0

nzn−1 =
1

(1 − z)2 , |z| < 1.

Then

E[H] =
∞∑

n=1

nHn

=
bq
λ1 − λ2

∞∑
n=1

n(λn−1
1 − λn−1

2 )

=
bq
λ1 − λ2

×
( 1
(1 − λ1)2 −

1
(1 − λ2)2

)
=

bq
λ1 − λ2

×
λ2

2 − λ2
1 − 2λ2 + 2λ1

(1 − λ1)2(1 − λ2)2

=
bq
λ1 − λ2

× (λ1 − λ2)(2 − λ1 − λ2)
(1 − λ1)2(1 − λ2)2

=
bq(2 − λ1 − λ2)

(1 − λ1 − λ2 + λ1λ2)2

Consequently,

E[H] =
bq(2 − a − r)

(1 − a − r + ar − bp)2 =
bq(b + p + q)

((1 − a)(1 − r) − bp)2 =
bq(b + p + q)

(b(1 − r) − bp)2

=
bq(b + p + q)
b2(1 − r − p)2 =

bq(b + p + q)
b2q2 =

b + p + q
bq

In a similar manner we obtain

E[S ] =
∞∑

n=1

nS n

=
q

λ1 − λ2

( r − λ2

(1 − λ1)2 +
λ1 − r

(1 − λ2)2

)
=

b + p
bq

Problem 31 (1) 2
3 e−2/3

(2) 1
3 e−5/3

(3) e−10/3

57


