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Overview

We will study the probability models for time evolution of random phenomena. Measuring a certain quantity
of the random phenomenon at each time stepn =0, 1,2,..., we obtain a sequence of values:

X0y X153 X2s e e ey Xy v vt

Because of randomness, we consider x, as a realized value of a random variable X,,. Here a random variable
is a variable taking several different values with certain probabilities. Thus, the time evolution of a random
phenomenon is modeled by a sequence of random variables

{Xn;n=0’1’27'-'}={XO’XI’X29"'7X}1""}7

which is called a discrete-time stochastic process. If the measurement is performed along with continuous time,
we need a continuous-time stochastic process:

{X;5 120}

It is our purpose to construct stochastic processes modeling typical random phenomena and to demonstrate their
properties within the framework of modern probability theory.
‘We hope that you will obtain basic concepts and methods through the following three subjects:

(1) One-dimensional random walk and gambler’s ruin problem

Let us consider coin tossing. We get +1 if the heads appears, while we get —1 (i.e., lose +1) if the tails
appears. Let Z, be the value to get at the n-th coin toss.

To be precise, we must say that {Z,} is a sequence of independent, identically distributed (iid) random vari-
ables with the common distribution

P(Z,=+1)=P(Z,=-1)==.

In short, {Z,} is called the Bernoulli trials with success probability 1/2. Define
Xo=0, X, =sz n=1,2,....
k=1

X, means the net income at the time #n. Or it stands for the coordinate of a drunker after n steps. The discrete
time stochastic process X, is called one-dimensional random walk.
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(1) law of large numbers

(ii) diffusion speed (central limit theorem)
(iii) recurrence
(iv) long leads (law of happy time)

(v) gambler’s ruin (random walk with barriers)

(2) Markov chains
Consider the time evolution of a random phenomenon, where several different states are observed at each
time step n = 0,1,2,.... For example, for the ever-changing weather, after simplification we observe three

states: fine, cloudy, rainy. Collected data look like a sequence of F, C, R:
FFCRFCCFR...

from which we may find the conditional probability P(X|Y) of having a weather X just after Y. Then we come to
the transition diagram, where each arrow Y — X is asigned the conditional probability P(X|Y).

The above diagram describes a general Markov chain over the three states because the transitions occur
between every possible pair of states. According to our purpose, we may consider variations. For example, we
may consider the following diagram for analysis of life span.

A Markov chain {X,} is a discrete-time stochastic process over a state space S = {i, j, ...} (always assumed
to be finite or countably infinite), which is governed by the one-step transition probability:

Pij = P(Xps1 = j|Xn =1

where the right hand side is independent of n (time homogeneous). A random walk is an example of a Markov
chain. The theory of Markov chains is one of the best successful theories in probability theory for its simple
description and unexpectedly rich structure. We are interested in the following topics:

(i) stationary distribution

(ii) recurrence



(iii) average life span

(iv) survival of family names (Galton-Watson tree)

=
<\:

(3) Poisson process

This is one of the most fundamental continuous-time stochastic processes, while the other is the Brownian
motion (Wiener process). Both belong to Markov processes. Let us imagine that an event E occurs repeatedly
at random as time goes on. For example, alert of receiving an e-mail, passengers making a queue at a bus stop,
customers visiting a shop, occurrence of defect of a machine, radiation from an atom, etc. The situation is

illustrated as | i ll l H l l -

0 2 t t, t

where 1,1, ... are the time when E occurs.

Such random phenomena are well modeled by a Poisson process. We count the number of occurrence of
the event E during the time interval [0, f] and construct a stochastic process {X;; t > 0} of which sample path is
observed in the real world.

Xy

Some interesting subjects are listed below:
(i) statistics between two consecutive occurrence of events (waiting time);
(i1) waiting lines (models of queues);

(iii) birth-and-death processes.
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1 Random Variables and Probability Distributions

1.1 Random variables

random phenomenon = possible results = measurement = quantitative data
Example 1.1.1 (coin toss) Let’s flip a coin. Heads or tails or others?
Example 1.1.2 (random cut) Cut a stick and divide into two segments.

Example 1.1.3 (life span of a person) Estimate the life span of a randomly chosen Japanese people.

A naive account: “variable” x vs “random variable” X
vari s 2 vari varvi v . u el . .
A random variable X is a variable varying over a certain range of real numbers and the probability is assigned
to each possible value.

1.1.1 Discrete random variables

A random variable X is called discrete if the number of values that X takes is finite or countably infinite.
To be more precise, for a discrete random variable X there exist a (finite or infinite) sequence of real numbers
ai,a, ... and corresponding nonnegative numbers py, p2, ... such that

PX=a)=pi  pi20, Zp,:l.

In this case

px(dx) = )" pida(dx) = " pio(x - aj)dx

is called the (probability) distribution of X.

Obviously,
Pla<X<b)= Z pi
i:a<a;<b
Py
pi
a) a as a;
Example 1.1.4 (coin toss) We set
1, heads,
X = ]
0, tails.

Then
PX=1)=p, PX=0)=qg=1-p.

For a fair coin we set p = 1/2.

Example 1.1.5 (waiting time) Flip a fair coin repeatedly until we get the heads. Let 7' be the number of coin
tosses to get the first heads. (If the heads occurs at the first trial, we have T = 1; If the tails occurs at the first trial
and the heads at the second trial, we have 7' = 2, and so on.)

P(T =k)=(1-p)'p, k=1,2,....



1.1.2 Continuous random variables

A random variable X is called continuous if P(X = a) = 0 for all @ € R. We understand intuitively that X
varies continuously.
If there exists a function f(x) such that

b
Pla<X<b)= f f(x)dx, a<b,
we say that X admits a probability density function. Note that
+00
f f(x)dx =1, f(x) >0.
In this case,

ux(dx) = f(x)dx
is called the (probability) distribution of X.

S )

It is useful to consider the distribution function:

Fx(x) = P(X < x) = f ) fx(dt,  xeR.

Then we have J
Sx(x) = p Fx(x).
x

Remark 1.1.6 (1) A continuous random variable does not necessarily admit a probability density function.
But many continuous random variables in practical applications admit probability density functions.

(2) There is a random variable which is neither discrete nor continuous. But most random variables in practical
applications are either discrete or continuous.

Example 1.1.7 (random cut) Divide the interval [0, L] (L > 0) into two segments.

(1) Let X be the coordinate of the cutting point (the length of the segment containing 0).

0, x < 0;
Fx(x)=4x/L, 0<x<L;
1, x> L.
(2) Let M be the length of the longer segment.
0, x < L/2;
Fy(x)=<4Qx-L)/L, L/2<x<L;
1, x> L.



Figure 1.1: Random choice of a point

Example 1.1.8 Let A be a randomly chosen point from the disc with radius R > 0. Let X be the distance between
the center O and A.
We have
a(b* — d?) 1

b
P(aSXSb)szﬁfbcdx, O<a<b<R,
7 a

so the probability density function is given by

0, x <0,
) 2x
JO=1=, 0<x<R,
0, x> R.

1.2 Probability distributions

1.2.1 Mean and variance

Definition 1.2.1 The mean or expectation value of a random variable X is defined by

m = E[X] = f ) xpx(dx)

o

e If X is discrete, we have

E[X]= ) ap:.

o If X admits a probability density function f(x), we have

E[X] = f+m xf(x)dx.

00

Remark 1.2.2 For a function ¢(x) we have
+00
E[p(X)] = f e(p(dx).

For example,

+00
E[Xm] — f xm/l(dX) (m-th moment),

o

+00
E[¢™] = f €™ u(dx) (characteristic function).

00



Definition 1.2.3 The variance of a random variable X is defined by
o? = VIX] = E[(X - E[X])’] = E[X*] - E[X]*,

or equivalently,

oo —00 00

+00 +00 +00 2
o = VIX] = f (x — EIX]Yu(dx) = f xzmdx)—( f xy(dx)).

1.2.2 A list of discrete distributions
1. Bernoulli distribution with success probability 0 < p < 1.
(1 = p)oo + pd,

This is the distribution of coin toss.
m=p, o =pl-p)

Quiz 1.2.4 Let a, b be distinct real numbers. A general two-point distribution is defined by
péu + 6151; P
where 0 < p < 1 and p + g = 1. Determine the two-point distribution having mean 0, variance 1.

2. Binomial distribution B(n,p) O < p <1,n>1).

n

D (Z)p"(l -6

k=0

0.10

0.08

0.06

0.04

0.02

0 10 20 30 10 50 60 70 80
B(100,0.4)

The quantity
n k n—k
1-—
( k)P I-p)

is the probability that n coin tosses with probabilities p for heads and ¢ = 1 — p for tails result in k heads and
n — k tails.

Quiz 1.2.5 Verify that m = np and o> = np(1 — p) for B(n, p).

3. Geometric distribution with parameter 0 < p < 1.

D p=p)e
k=1

This is the distribution of waiting time for the first heads (Example 1.1.5).



1 1
Quiz 1.2.6 Verify thatm = — and 0> = —
p

P2

Remark 1.2.7 In some literatures, the geometric distribution with parameter p is defined by

> p(1 = p)s
k=0

4. Poisson distribution with parameter A4 > 0.

Quiz 1.2.8 Verify that m = A and o> = A for the Poisson distribution with parameter A.

Quiz 1.2.9 (Challenge) Look up the method of generating functions in textbooks:

G(z) = Zpkzk, where p; >0, Zpk =1.
k=0 k=0

1.2.3 A list of continuous distributions (density functions)

1. Uniform distribution on [a, b].

1
, a<x<b,
f(x)=34b-a
0, otherwise
1
b—a
a b x

b— 2
Quiz 1.2.10 Verify that m = # and 0 = ( 120) .

2. Exponential distribution with parameter 4 > 0.

—Ax
f(x):{/le , x>0,

0, otherwise.

This is a model for waiting time (continuous time).

1 1
Quiz 1.2.11 Verify that m = 1 and 0% = FeR



3. Normal (Gaussian) distribution N(m, o) (o > 0, m € R)

1 exp ] — (x —m)?
20?2 P 20

In particular, N(0, 1) is called the standard normal distribution.

Jx) =

0.5

Quiz 1.2.12 Prove that the above f(x) is a probability density function. Then prove by integration that the mean
is m and the variance is o

m= ! f+ooxex _(x—m)2 dx
= o Je P 202 B

1 oo (x —m)?
2 _ 2
o= s j:oo (x —m)” exp {— 752 } dx

Quiz 1.2.13 Let S be the length of the shorter segment obtained by randomly cutting the interval [0, L]. Calculate
the mean and variance of S.

Problem 1 Choose randomly a point A from the disc with radius one and let X be the radius of the inscribed
circle with center A.

(1) Find the probability density function of X.
(2) Calculate the mean and variance of X.

(2) Calculate the mean and variance of the area of inscribed circle § = 7X>.

Problem 2 (1) Differentiating both sides of the known formula:

+00
f e dx = ﬁ , t>0,
0 24t

find the values .
f xz”e_xzdx, n=0,1,2,....
0

(2) Determine a constant a in order that

axze"‘z, x>0,
flo) =

0, otherwise,

is a probability density function on R, and find its mean and variance.

10



2 Bernoulli Trials

Repeated independent coin tosses are called the Bernoulli trials, where the tossed coins are identical in the
sense that the probabilities of heads and tails remain the same throughout the trials. The Bernoulli trials form the
most fundamental stochastic process.

2.1 Independence
2.1.1 Independent events

Definition 2.1.1 (Pairwise independence) A (finite or infinite) sequence of events Ay, A», ... is called pairwise
independent if any pair of events A; , A;, (i1 # ip) verifies

P(Ai, N Apy) = P(A;))P(A,).

Definition 2.1.2 (Independence) A (finite or infinite) sequence of events Aj, A,, ... is called independent if any
choice of finitely many events A;,,...,A;, (i < i < --- < i) satisfies

PA;, NA,N---NA;) = P(A;,)P(A;) - - P(A;).

Example 2.1.3 Consider the trial to randomly draw a card from a deck of 52 cards. Let A be the event that the
result is an ace and B the event that the result is spades. Then A, B are independent.

Example 2.1.4 An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random and let X;
be the first digit, X, the second digit, and X3 the last digit. For i = 1,2,3 we define an event A; by A; = {X; = 1}.
Then {A;, Ay, A3} is pairwise independent but is not independent.

Remark 2.1.5 It is allowed to consider whether the sequence of events {A, A} is independent or not. If they are
independent, by definition we have
P(AN A) = P(A)P(A).

Then P(A) = 0 or P(A) = 1. Notice that P(A) = 0 does not imply A = 0. Similarly, P(A) = 1 does not imply
A = Q (whole event).

uiz 2.1.6 For A we write A" for itself A or its complementary event A¢. Prove the following assertions.
Quiz 2.1.6 For A we write A* for itself A or its compl y event A°. Prove the following asserti
(1) If A and B are independent, so are A* and B*.
(2) If A1, Ay, ... are independent, so are A‘T,Ag, e

Definition 2.1.7 (Conditional probability) For two events A, B the conditional probability of A relative to B (or
on the hypothesis B, or for given B) is defined by

P(AN B)

P(A|B) = 5B

whenever P(B) > 0.

Theorem 2.1.8 Let A, B be events with P(A) > 0 and P(B) > 0. Then, the following assertions are equivalent:
(i) A, B are independent;
(i) P(A|B) = P(A);
(iii) P(B|A) = P(B);

11



2.1.2 Independent random variables

Definition 2.1.9 A (finite or infinite) sequence of random variables X, X5, ... is independent (resp. pairwise
independent) if so is the sequence of events {X| < a,},{X; < ap},... forany a;,az,--- € R.

In other words, a (finite or infinite) sequence of random variables X, X5, ... is independent if for any finite
Xi,, ..., X, (ii <iy <---<1,)and constant numbers aj, ..., a,
PX;, <a1,X;, <az,.... X, <a,) = P(X;, <ap)PX;, < ap)--- P(X;, < ay) 2.1

holds. Similar assertion holds for the pairwise independence.
If random variables X, X5, ... are discrete, (2.1) may be replaced with

PX;, =a1, X, =az,....X;, = a,) = PX;, = a)P(X;, = ax) - P(X;, = a,).

Example 2.1.10 Choose at random a point from the rectangle Q = {(x,y); a < x < b, ¢ <y < d}. Let X denote
the x-coordinates of the chosen point and Y the y-coordinates. Then X, Y are independent.

2.2 Covariance and correlation coefficient

Recall that the mean of a random variable X is defined by

mx=E(X)=f Xpx (dx).

Theorem 2.2.1 (Linearity) For two random variables X, Y and two constant numbers a, b it holds that

E(aX + bY) = aE(X) + bE(Y).

Theorem 2.2.2 (Multiplicativity) If random variables Xi, X», ..., X, are independent, we have

E[Xi X, - X,] = E[Xi]--- E[X,]. (2.2)
Proof We first prove the assertion for Xj = 14, (indicator random variable). By definition Xj, ..., X, are
independent if and only if so are Ay, ..., A,. Therefore,

E[X;---X,] = E[lAlﬂ-uﬂA,,] =PA;N---NA)
= P(Ay)--- P(Ay) = E[Xi]--- E[X,].

Thus (2.2)is verified. Then, by linearity the assertion is valid for X; taking finitely many values (finite linear
combination of indicator random variables). Finally, for general X;, coming back to the definition of Lebesgue
integration, we can prove the assertion by approximation argument. |

The variance of X is defined by
0% = V(X) = E[(X - my)’] = E[X’] - E[X]".

By means of the distribution u(dx) of X we may write

+00 +00 +00 2
V(X) = f (x — my)*pu(dx) = f x%(dx)—( f xu(dx)).

Definition 2.2.3 The covariance of two random variables X, Y is defined by
oxy = E[(X - EQ))(Y - E(Y))] = E[XY] - E[X]E[Y].
In particular, oxx = o-f( becomes the variance of X.

Definition 2.2.4 X, Y are called uncorrelated if oxy = 0. They are called positively (resp. negatively) correlated
if oxy > 0 (resp. oxy < 0).

12



Theorem 2.2.5 If two random variables X, Y are independent, they are uncorrelated.

Remark 2.2.6 The converse of Theorem 2.2.5 is not true in general. Let X be a random variable satisfying

P(X:—l):P(X:l):%, P(X:O):%

and set Y = X2. Then, X, Y are not independent, but oxy = 0.

Problem 3 Let X and Y be random variables such that
PX=a)=p1, PX=b)=qi=1-p1, P¥=c)=py, P =d)=q2=1-py,

where a, b, ¢, d are constant numbers and 0 < p; < 1,0 < p, < 1. Show that X, Y are independent if oxy = 0. [In
general, uncorrelated random variables are not necessarily independent. Hence, this falls into a very particular
situation.]

Theorem 2.2.7 (Additivity of variance) Let X, X;, ..., X, be random variables, any pair of which is uncorre-

lated. Then . )
% [Z Xk} = Z V[X].
k=1 k=1

Definition 2.2.8 The correlation coefficient of two random variables X, Y is defined by

whenever oy > 0 and oy > 0.
Theorem 2.2.9 —1 < pxy < 1 for two random variables X, Y with ox > 0, oy > 0.

Problem 4 Throw two dice and let L be the larger spot and S the smaller. (If double spots, set L = §.)

(1) Calculate the covariance o ;s and the correlation coefficient r;g .
(2) Are L, S independent?

2.3 Bernoulli trials

Definition 2.3.1 A sequence of random variables (or a discrete-time stochastic process) {Z;,Z;,...,Z,,...} 18
called the Bernoulli trials with success probability p (0 < p < 1) if they are independent and have the same
distribution as

PZ,=1)=p, P(Z,=0)=q=1-p.

By definition we have

PZi =6l =br,.. Zy=&) = [P =8)  forallé,é,....& € 0,1).
k=1

In general, statistical quantity in the left-hand side is called the finite dimensional distribution of the stochastic
process {Z,}. The total set of finite dimensional distributions characterizes a stochastic process.
Let {Z,} be Bernoulli trials with success probability p. Define

ankZ:;Zk.

The stochastic process {X,,} is called the binomial process. Since X,, counts the number of success during the first
n trials,
X, ~ B(n, p).

The asymptotic properties of the binomial process will be studied in the following chapters.

13



Quiz 2.3.2 The waiting time for the first heads is given by 7 = inf{n > 1; X,, = 1}. Find the distribution of T'.

Problem 5 Let {X),} be a binomial process with success probability p.
(1) Find the conditional probability P(X,+1 = jIX, = i).

(2) Calculate the covariance oy, x,,, and the correlation coefficient px, x

m+n msXm+n *

2.4 Random walks

Consider slightly modified Bernoulli trials {Z,} as follows:
1) PZ,=1)=pand P(Z,=-1)=qgq=1-pwith0< p<1;
(i) Zi,Z,,... are independent.

Set

X, = sz. (2.3)
k=1

The stochastic process {X,} is called the one-dimensional random walk with right-move probability p and the
left-move probability g = 1 — p

X 30

20

"y
A )
| NEEAE W“N

n -20 u

-30

Figure 2.1: Random walk

Problem 6 Let {X,} be the random walk as above.

(1) Show that
P(X, =2k —n) = ( )pkq" k k=0,1,2,...,n. (2.4)

(2) Find E[X,] and V[X,,].
(3) Find the conditional probability P(X,+1 = jlX, = i).

(4) Calculate the covariance oy x

ms>Am+n

and the correlation coefficient px, x

m+n

[Cf. Problem 5]

14



3 Law of Large Numbers and Central Limit Theorem

3.1 Observation

Let X,, be the result of the n-th trial of coin-toss:

{1, heads,
X, =

3.1
0, tails. -1

Obviously,

n

S,,=2Xk

k=1
counts the number of heads during the first n trials. Therefore,

S, 1+
PP

gives the relative frequency of heads during the first n trials.
Computer simulation is easy. The following is just one example showing that the relative frequency of heads
S ./n tends to 1/2. It is our aim to show this mathematically.

1 0.6

0.9

0.8

0.55

0.7

0.6

0.5 0.5

0.4

0.3

0.45

0.2

0.1

0 L L L L 0'4
0 100 200 300 400 500 0 1000 2000 3000 4000 5000

Figure 3.1: Relative frequency of heads S ,,/n

However, we cannot accept a naive formula:
.S

lim — = = (3.2)

n—-oo n

because

15



1. Notice that S,,/n is a random variable taking values in {0, 1/n,2/n, ..., 1}.
2. From one series of trials w = (w1, w», . ..) we obtain a sequence of relative frequencies:

S 1(w), 52;‘”), S3§‘“), ...,S"i‘“),

3. For example, for w = (1,1,1,...), S,/n converges to 1; For w = (0,0,0,...), S,/n converges to 0.
Moreover, for any 0 < ¢t < 1 there exists w such that §,/n converges to ¢; there exists w such that S, /n
does not converge (oscillating).

4. Namely, it is impossible to show the limit formula (3.2) for all samples w.

Therefore, to show the empirical fact (3.2) we need some probabilistic formulation.

3.2 Weak Law of Large Numbers

Theorem 3.2.1 (Weak Law of Large Numbers) Let X;, X», ... be identically distributed random variables with
mean m and variance o2. (This means that X; has a finite variance.) If X, X, ... are uncorrelated, for any € > 0

we have
n
> e) =0.

%ZXk—m

k=1

1 n
We say that — Z X} converges to m in probability.
n
k=1

Remark 3.2.2 In many literatures the weak law of large numbers is stated under the assumption that X, X, ...
are independent. It is noticeable that the same result holds under the weaker assumption of being uncorrelated.

Theorem 3.2.3 (Chebyshev inequality) Let X be a random variable with mean m and variance o->. Then, for

any € > 0 we have
2

PIX-mlz e <%

€
Proof By definition we have

m =E[X] = f X(w) P(dw),

Q
o? =E[(X -m)?] = f (X(w) — m)> P(dw).
Q
The above integral for the variance is divided into two parts as follows:
o’ = f (X(w) — m)*P(dw)
Q
= f (X(w) — m)*P(dw) + f (X(w) — m)*P(dw)
|X—m|>e

| X—m|<e

Then we have
o’ > f (X(w) — m)>P(dw) > f €?P(dw) = €*P(X —m| > ¢€),
| X—m|>€

| X—m|>e

as desired. |

Proof of Weak Law of Large Numbers For simplicity we set

1 n
Y:Ynzngk.

16



The mean value is given by
l n
=— Y ElXd=m
=

Let us compute the variance. Since E[X; X;] = E[X]E[X;] (k # ) by assumption of being uncorrelated, we have

l n
= HZI E[X,.X/]

iz {Z E[X;]+ ) E[ka,]}

k#l

E[Y?]

.l n
E { (V[Xk] + E[ Xk] Z E[Xk]E[Xl]}

k=1 k#l
1 2 2 2 2
—2{110' +nm” + (n” —n)m }

n
o2

+m?.

Therefore,
2
VY] = E[Y’] - E[Y} = —
n
On the other hand, applying Chebyshev inequality, we have
2
PUY —miz < Y0 = T
ne
Consequently,
lim P(|Y, —m|>¢€)=0
as desired. |

Example 3.2.4 (Coin-toss)

3.3 Strong Law of Large Numbers

Theorem 3.3.1 (Strong law of large numbers) Let X, X;, ... be identically distributed random variables with

mean m. (This means that X; has a mean but is not assumed to have a finite variance.) If X;, X5, ... are mutually
independent, we have
1 n
P(nm -3 X = m] =1.
n—oo
k=1
In other words,
n
lim Xr=m as
n—eo j L=
Remark 3.3.2 Kolmogorov proved the strong law of large numbers under the assumption that X;, X5, ... are

independent. In many literatures, the strong law of large numbers is stated as Kolmogorov proved. Its proof
being based on the so-called “Kolmogorov’s almost sure convergence theorem,” we cannot relax the assumption
of independence. Theorem 3.3.1 is due to N. Etemadi (1981), where the assumption is relaxed to being mutually
independent and the proof is more elementary, see also books by Sato, by Durrett, etc.

17



3.4 De Moivre-Laplace Theorem

From numerical computation we see that the binomial distribution B(n, p) is close to the normal distribution
having the same mean m = np and the variance o> = np(1 — p):

B(n, p) =~ N(np,np(l - p)) (3-3)

We see that the matching becomes better for larger n.

0.08
0.06
0.04

0.02

10 20 30 40 50 60 70 80 90 100

Figure 3.2: The normal distribution whose mean and variance are the same as B(100, 0.4)

The approximation (3.3) means that distribution functions are almost the same: For a random variable S
obeying the binomial distribution B(n, p) we have

1
V2no?

Changing the variables, we come to

P(S <x)=

X
f T g m=np, o =np(l - p).

1 (x—m)/o _en
P(S < X) ~ \/T e dt.
T J—oo

Noting the obvious identity:

<

P(S Sx):P(S_m x_m)

o
and replacing (x — m)/o with x, we obtain

S —np 1 f" Y
Pl ————<x|~ — e 'edt. (3.4)
(«/np(l -p) ] V271 J-eo

The right-hand side is an integral with respect to the normal law N(0, 1) and is independent of n. The identity
(3.4) provides the best formulation of the fact that (3.3) becomes better approximation for larger n.

Theorem 3.4.1 (de Moivre-Laplace theorem) Let 0 < p < 1. Let S, be a random variable obeying the bino-
mial distribution B(n, p). Then,

S, - 1 *
lim P[—”p < x] = _f ey, (3.5)
moe ynp(l - p) V271 J-eo
In short, the binomial distribution B(n, p) is close to the normal distribution N(np, np(1 — p)) as n tends to infinity.

The proof is omitted, see the relevant books.
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3.5 Central Limit Theorem

We start with an alternative form of Theorem 3.4.1. Let Z;,Z,,... be the Bernoulli trials with success
probability p. Define the normalization by

_ 7, —
7, —k—p_
p(l-p)

Then Z;, Z,, ... become iid random variables with mean 0 and variance 1.
Since we have

S,—np Zr—p
\np(1 = p) \/_Z\/ (1-p \/_Z

1 & - 1 L,
lim P| — Zka]z—f e 2.
n—e0 («/ﬁ; V27 J-oo

Indeed, the above limit formula holds for general iid random variables.

(3.5) becomes

Theorem 3.5.1 (Central Limit Theorem) Let X, X,,... be iid random variables with mean 0 and variance 1.
Then, for any x € R it holds that

1 < 1 T
lim P|— ) Xi<x =—f e .
n—oo [ \/ﬁ Z ] ,/271. o

1
In short, the distribution of — Z X; converges weakly to the standard normal distribution N(0, 1) as n — co.
Ly

For the proof we need the characteristic function of a distribution.

Definition 3.5.2 The characteristic function of a random variable X is defined by

+00

¢(2) = E[¢™] = f Fudn),  zeR,

where u(dx) is the distribution of X. We also say that ¢(z) is the characteristic function of u(dx).
Theorem 3.5.3 (Glivenko) Let p,us,...,u be a sequence of probability distributions and ¢y, ¢, ..., ¢ their

characteristic functions. If lim,— ¢,(z) = ¢(2) holds for all z € C, then u, converges weakly to u. In other
words, letting Fy, F», ..., F be distribution functions of u;, us, . .., i, we have

lim F,(x) = F(x)

for all continuous point x of F.

1 n
Proof of Central Limit Theorem (outline) 1) Let ¢,(z) be the characteristic function of — Z X, i.e.,
n

on(2) = E {eXp {l—jﬁ Z Xk}} : (3.6)
k=0

On the other hand, it is known that the characteristic function of N(0, 1) is given by e 72 (Problem 7). By virtue
of Glivenko’s theorem it is sufficient to show that

lim go(z) =<2, zeR. (3.7)
n—oo
2) The characteristic functions of Xi, X,, ... are identical, since they have the same distribution. We set

¢(z) = E[e“].
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Since X, X5, ... are independent, we have

n

$n (@) = l_[

k=1

3) By Taylor expansion we write

E [p{\_; x| - A=),

FEN i X _Z2 X2+ R,(2)
- N
and take the expectation
2
Ve i X Ve
— ) =E[e "] =1-—+E[R,(2)],
(p(\/ﬁ) le | 2n [R(2)]

where E[X;] = 0 and V[X;] = 1 are taken into account. Hence (3.8) becomes

@ = (1= 5 +EIR,))

2

n

4) We note a general limit theorem for the exponential function (Problem 10).

5) We need to prove that

lim nE[R,(z)] = O.

In fact, by 4) we obtain

2

lim ¢,(z) = lim (1 - 5— + E[Rn(z)]) s
n—oo n—oco n

6) By means of the useful inequality:

. N2 3
¢ - (1 +ix+ (’;!) ) < min{%,mz}, XeR,

we obtain ; )

R, () <mind - | x| |- x

n _ 6 \/;l l 9 \/7‘ | .
Then
. Z
ME[R,(2)]| < EnR.()]] < |2PE [mm {L X, 1, F}] .
6+Vn

Note that

|z]

mln{@ |X] |3, |X1 |2} < |X1 |2

and E[|X;|?] < co by assumption. Then, applying the Lebesgue convergence theorem we come to

n—oo

6 Vn
which shows (3.10).

lim E [min {ﬂ X, |X1|2H =E [nm min {ﬂ X1, |X1|2H =0,

6 vn

(3.8)

(3.9)

(3.10)

@3.11)

(3.12)

Remark 3.5.4 In the above proof we did not require E[|X 1P1 < oo. If E[|X;]?] < oo is satisfied, (3.10) follows
more easily without appealing to the Lebesgue convergence theorem.

Problem 7 Calculate the characteristic function of the standard normal distribution:

1 +00
p— e
V27T Ioo

2 2
izx x/2dx:e 2/2’

20
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Problem 8 Let Z;,Z,,... be the Bernoulli trials with success probability p and 71,25, ... their normalization.

Calculate explicitly the characteristic function of

and find its limit as n — oo directly.
Problem 9 Prove (3.11).

Problem 10 Let a € C and let {¢,} be a sequence of complex numbers converging to 0. Prove that

. a €\
hm(l+—+—") = ¢
n—oo n n

Problem 11 (Monte Carlo simulation) Let x;, x5,... is a sequence taken randomly from [0, 1].

continuous function f(x) on the interval [0, 1], the mean

1 n
= Zf(xk)
S

is considered as a good approximation of the integral

1
f f()dx.
0

Explain the above statement by means of law of large numbers and central limit theorem.

21
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4 Random Walks

4.1 One-dimensional Random Walks

Let us model a drunken man (random walker) walking along a straight road. Suppose that the random walker
chooses the direction (left or right) randomly at each step. Let the probability of choosing the right-move be p
and the left-move g (p > 0, g > 0, p + g = 1). These are assumed to be independent of the position and time.

-3 -2 -1 0 1 2 3

Let X, denote the position of the random walker at time n. We assume that the random walker sits at the
origin O at time n = 0, namely, X, = 0. Then {X,,} becomes a discrete time stochastic process, which is called the
one-dimensional random walk.

Let {Z,} be iid random variables such that

P(anl)zp’ P(an_l)=CI'
This is also referred to as the Bernoulli trials (the usual Bernoulli trials take values in {0, 1}). Then we have

X,=Z1+Zp+---+2,, Xo=0.

Theorem 4.1.1 X, is a random variable taking values in {—n, —n+2,...,n—2,n}. The distribution of X,, is given
by

P(X, =n-2k) = (Z)p"_qu, k=0,1,2,...,n.

Proof Letk=0,1,2,...,n. We observe that
X, =Z1+Z+---+Z,=n-2k=mn-k)—k

if and only if the number of i’s such that Z; = —1 is k, and the one such that Z; = 1 is n — k. Therefore,
n\ ok k
P(X, =n—2k)=(k)p q,
as desired. |

Theorem 4.1.2 It holds that
E[X,] = (- gn, VI[X,] = 4pgn.

Proof Note first that
ElZJ=p-q.  VIZ4l=4pq.
Then, by linearity of the expectation we have
E[X,] = > EIZ] = (p - gn.
k=1

Since {Z,} is independent, by the additivity of variance we have

VIX,] = > VIZ] = 4pgn.
k=1
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The distribution of X, tells us where the random walker at time » is found. It has fluctuation around the men
value (p — g)n. The range of X, grows as n — oo and so does the variance. It is noticeable that the growth of
variance is promotional to n. Finally, we note that the distribution is approximated by the normal distribution
N((p — g)n,4pgn) for a large n (de Moivre-Laplace theorem).

X

(p—q)n

0 Al

N

Problem 12 Let {X,} be the random walk as above. Calculate the covariance oy, x,,, and the correlation coeffi-
cient px x

msBm+n

4.2 Recurrence

Will a random walker return to the origin in finite time? More precisely, we are interested in the probability
that a random walker will return to the origin in finite time.

As in the previous section, let X, be the position of a random walker starting from the origin (i.e., Xo = 0)
with right-move probability p and left-move probability g. Since the random walker returns to the origin only

after even steps, we need to calculate
R= P(U{XZn - 0}]. .1

n=1

It is important to note that

{X2n = 0}
n=1
is not the sum of disjoint events.
Let p,, be the probability that the random walker is found at the origin at time 2n, that is,

2 2n)!
Mg = GO e mna 42)
n n'n!

p2n=P(X2n=O)=(

For convenience set pp = 1. Note that the right hand side of (4.1) is not the sum of p,,. Instead, we need to
consider the probability that the random walker returns to the origin after 2n steps but not before:

G =PXp #0, Xa #0, ..., X0, #0, Xp, =0) n=12,....
Remind that the difference between p», and ¢,,. Equivalently, letting
T=inf{n>1;X, =0} 4.3)
be the first hitting time to the origin, we have
qon = P(T = 2n). 4.4

Remark 4.2.1 The symbol inf in the right-hand side of (4.3) covers the case of {n > 1; X, = 0} = 0. In that
case the value is understand to be +oco. So, according to our definition in Chapter 1, T is not a random variable.
It is, however, commonly accepted that a random variable takes values in (—oo, +00) U {+o00}.

23



The return probability is given by
R=>"gn 4.5)
n=1

A direct calculation of ¢, will be given in the next section. Here we apply the method of generating functions.
The key relation between {p,,} and {g»,} is given by

Don = Z G2k P2n-2k> n=12,..., (4.6
=1

which is easily verified by observing when the random walker returning to the origin after 2n steps hits first the
origin. Define the generating functions of {p,,} and {g,,} by

8@ = pud, @)= ) gu @.7)
n=1

n=0

These are convergent in |z| < 1. Multiplying z*" to both sides of (4.6) and summing up over n, we obtain

gl)—-1= Z Z g pon-a

n=1 k=1

= Z Z g pon ™"
k=1 n=0

= h(2)g(2).

Hence,
1
hz)=1- — 4.8)

8@
On the other hand, by the formula of the binomial coefficients we can compute g(z) explicitly (Problem 13).
In fact, we have

= = (2n 1
g@) =) pu"= ( )p"q”zz" =
;ﬁ ; n V1 —4pqz?
1
hz)=1-—=1- /1 -4pgz’. 4.9)
g(2)

so that (4.8) becomes

Letting z — 1 — 0, we see that
R=h(1)=> g =1-T-4pg=1-Ip-gl
n=1

Here we used a general property stated in Problem 14.
Summing up,

Theorem 4.2.2 Let R be the probability that a random walker starting from the origin returns to the origin in
finite time. Then we have

R=1-|p—gql.

A random walk is called recurrent if R = 1, otherwise it is called transient.

Theorem 4.2.3 The one-dimensional random walk is recurrent if and only if p = ¢ = 1/2 (isotropic). It is
transient if and only if p # g.

When a random walk is recurrent, it is meaningful to consider the mean recurrent time.

Theorem 4.2.4 The mean recurrent time of the isotropic, one-dimensional random walk is infinity.

24



Proof Let T be the first hitting time to the origin. The mean recurrent time is given by
ET) = i 2nqoy,. (4.10)
n=1
On the other hand, in view of (4.7) and (4.9) we see that the generating function for p = g = 1/2 is given by
h(Z)=i6]2nZ2"= 1- I—Zz.
n=1

Differentiating with respect to z, we have

= z
h/(Z) — 271(]2”22”71 = .
; Vi-z2?
Letting z — 1 — 0, we have
- . b Z _
E(T) = Z_;zn% = lim K@) = lim =" +00
This completes the proof. |

Remark 4.2.5 We will study the recurrence of a random walk within the framework of a general Markov chain.

Problem 13 Let « be a real constant. Using the binomial expansion:

(1+ %) = i (Z)x

prove that

> (Zn)zn - == H<g
n=0 n 1 - 4Z ’ 4

Problem 14 Leta, > 0forn=0,1,2,... and set

00

fx) = Z a,x".

n=0

Show that

00

1= 350

n=0
holds including the case of co = co whenever the radius of convergence of f(x)is > 1.

4.3 The Catalan Number

The Catalan number is a famous number known in combinatorics (Eugéne Charles Catalan, 1814—1894).
Richard P. Stanley (MIT) collected many appearances of the Catalan numbers (http://www-math.mit.edu/ rstan/ec/).

We start with the definition. Let n > 1 and consider a sequence (€;, €, ..., €,) of =1, that is, an element of
{—1, 1}". This sequence is called a Catalan path if

e =0

6+e=>0

e+e+--+6-1=20

eg+e+--+6_1+¢ =0.

It is apparent that there is no Catalan path of odd length.

25



Definition 4.3.1 The n-th Catalan number is defined to be the number of Catalan paths of length 2n and is
denoted by C,,. For convenience we set Cy = 1.

The first Catalan numbers forn =0, 1,2, 3, ... are
1,1,2,5,14,42,132,429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, ...

We will derive a concise expression for the Catalan numbers by using a graphical representation. Consider n X n
grid with the bottom-left corner being given the coordinate (0, 0). With each sequence (€, €, .. ., €,) consisting
of +1 we associate vectors

& =+1 o u, =(1,0) &=-1eu=(0,1)

and consider a polygonal line connecting
0,0), uy, uy +up, ..., uy +up+ - F oy, U Uy + Uy + Uy
inorder. If ¢, + & + - - - + €,_1 + €, = 0, the final vertex becomes
up+uy+ -+ Uy +u, = (n,n0)
so that the obtained polygonal line is a shortest path connecting (0, 0) and (n, n) in the grid.

Lemma 4.3.2 There is a one-to-one correspondence between the Catalan paths of length 2n and the shortest
paths connecting (0, 0) and (n, n) which do not pass the upper region of the diagonal y = x.

Theorem 4.3.3 (Catalan number)

2n)!

nzm, I’l=0,1,2,...,

Proof For n = 0 it is apparent by the definition 0! = 1. Suppose n > 1. We see from Fig. 4.3 that
C = 2n 2n\ _ (2n)!
"\n n+1] nln+ D!’

as desired. |

(m,m)

Lemma 4.3.4 The generating function of the Catalan numbers C, is given by

= 1-+V1I-4
f@)=>C" = 2—ZZ 4.11)
n=0
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Proof Problem 15. |

An alternative representation of the Catalan paths: Consider in the xy-plane a polygonal line connecting the
vertices:

0,0), (1,e1), 2,e1+€),...,(n—leg+e+---+6_1), ne+e&+ -+ €1 +6€)

in order. Then, there is a one-to-one correspondence between the Catalan paths of length 2n and the sample
paths of a random walk starting O at time O and returning O at time 2n staying always in the half line [0, +c0).
Therefore,

Lemma 4.3.5 Let n > 1. The number of sample paths of a random walk starting O at time 0 and returning O at
time 2n staying always in the half line [0, +c0) is the Catalan number C,.

Theorem 4.3.6 Let {X,} be the random walk starting from 0 with right-move probability p and left-move prob-
ability g. Then

Gn=PX>#0, X4 #0, ..., X002 # 0, X0, =0) =2C,1(pg)’, n=12,....

Proof Obviously, we have

4o = P(X2 * 0, X4 * 0, ...,Xgn_z * 0, in = 0)
:P(X1 > 0, X5 >0, X3 > 0, s Xonn >0, Xon1 > 0, Xon =O)
+P(X1 <0, X5 < 0, X3 < 0, X < 0, Xono1 < 0, X0, = 0)

In view of Fig. 4.3 we see that
PX; >0, X,>0, X3>0,...,X2,02>0, X5,,_1 >0, Xp,=0) = p X Cn_l(pq)rkl X q.

Then the result is immediate. |

2n-2

Figure 4.1: Calculating P(X; >0, X >0, ..., X2,-1 >0, X, = 0)

We now come into an alternative proof of Theorem 4.2.2.
Proof [Theorem 4.2.2] We know by Theorem 4.3.6 that

R = i‘hn = i 2Cn—1(["])"~
n=1 n=1

Using the generating function of the Catalan numbers, we obtain

1 - +/1-4pgq
R =2pqf(pq) =2pg ————=1- 1 -4pg=1-|p—gql

2pq

as desired. |

Problem 15 Find the Catalan numbers C,, in the following steps.

27



(1) Prove that C,, = Z Ci-1Cp—x by using graphical expressions.
k=1

(2) Using (1), prove that the generating function of the Catalan numbers f(z) = Z C, 7" verifies
n=0

f@) -1 =z{f@@))*

(3) Find f(2).
(4) Using Taylor expansion of f(z) obtained in (3), find C,,.

Problem 16 In the m X (m + n) grid consider a shortest path connecting (0, 0) and (m + n, m) which do not pass
the region upper than the line connecting (0, 0) and (m, ). Show that the number of such paths is given by

Cm+n)ln+1)
mlm+n+1)!

Problem 17 Let {X,} be a random walk starting from 0 with right-move p and left-move . Show that

PX,20,X20,...,X2,-1 20)
n—1

=PX120.X,20,....X,20)=1-¢ ) Cupg)

k=0
forn=1,2,..., where Cy is the Catalan number. Using this result, show next that
] - g ’ p > Q3
P(X,>0foralln>1) = p
0, p<q.

4.4 The Arcsine Law

Let us consider an isotropic random walk {X,,}, namely, letting {Z,} be the Bernoulli trials such that

1
P(Zn:‘{'l):P(Zn:_l):E»

we set

n
Xo=0, X,= sz.
k=1

Fig. 4.2 shows sample paths of X, X, X, ..., X10000. We notice that these are just two examples among many
different patterns.

150 150

100 ﬁﬂwwﬂﬁwﬂww 100

50 50 i &

0 W 0 i
5000 10000 5000 10000

50 50 V

-150 -150

Figure 4.2: Sample paths of a random walk up to time 10000
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By the law of large numbers we know that +1 occur almost 5000 times. In fact, we see from the value of
Xi0000 that £1 occur 5000 + 50 times. In other words, along the polygonal line the up-move and down-move
occur almost the same times, however, the polygonal line stays more often in the upper or lower half region.

We say that a random walk stays in the positive region in the time interval [i,i + 1] if X; > 0 and X;; > O.
Similarly, we say that a random walk stays in the negative region in the time interval [i,i + 1] if X; < 0 and
Xit1 <0. Let

Wk2n), n=1,2,..., k=0,1,...,n,

be the probability that the total time of the random walk staying in the positive region during [0, 2n] is 2k.
Remind that in this section we only consider an isotropic random walk (p = g = 1/2). For n = 1 we have

11 12 1
W@%=ZXG)=§, W@DZZXG):E_

w(2[2)

Similarly, we have

4

W4|4—6><14 W2|4—4><14 W0|4—6><l
(414) = 5 (2l4) = 5] O14) = 7]

W(4/4) en)
AN
> \
N
. “ . N

For general W(2k|2n) we start with some simple calculations.

Lemma 4.4.1 Forn=1,2,... we have

(1) pau = P(Xp, = 0) = (znn)(%)2

1 2n 1
@) fon = PXy > 0,X2 > 0,.... Xp0y > 0, X, = 0) = C,H(z) =+ P
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Proof Known fact. |

Lemma 4.4.2 Forn=1,2,... we have

PX1 #0,X #0,..., X001 #0,X5, #0) = py,.
Proof We see from Lemma 4.4.1 (1) that
_(2n-2 (1)2"*2 2n (1)2"
P2 — Pon = 1 \3 2 N\2

(2n —2)12? (Zn)!
) {(n - Din-1)! nln! }

Tl

2 (2n - 2)!
) ( n'n') X 2n
3 2n -2)! (1)2"‘2

" n-=D!n-D1\2

1
" 2n
=2fon.

(z
(%)2 G2 4 - @npn - 1)
(l
3

Pan-2

Namely, we have
DP2n-2 = P2n = 2fon n=12,.... 4.12)

Now consider the complement of {X; # 0,X, #0,..., X5, # 0, X5, # 0}.

vy

X1 #0, X, #0,...,X5,1 #0, X, 0} = | |{Xx =0}

k=1

s |l

{Xor =0}
|

>~
I

=

=| (X1 #0,X, #0,..., X1 # 0, Xy =0},

bl
1l
—_

where the last is the disjoint union. Hence, by Lemma 4.4.1 (2) we have

PX; #0,X, #0,...,X5,.1 #0, X5, #0)

=1 —ZP(XI £0,X, #0,...,Xop_1 £0,Xo; = 0)
k=1

=1-> 2fu.

k=1

Using (4.12), we obtain

PX; #0,X, #0,...,X0,-1 #0,X5, #0)
=1- Z(sz—z = Pu)
k=1

=1-(po— p2n) = Pon>

which completes the proof. |
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Lemma 4.4.3 Forn =1,2,... we have

PX120,X20,...,X0,1 20,X3, 20) = py,.

Proof Taking the complement into account, we only need to use the relation:

1

D=2 — Pan = 2fon = 2 P2
n

Theorem 4.4.4 Forn = 1,2, ... it holds that

2k\(2n — 2k\/1\2"
W(Q2KI2n) = potpani = (—) . k=0.1....n
k n—k J\2

Proof [outline] We first show that

n—k
W(2k|2n) = Z FW @k =2r2n=2r) + 3 fo,W(2kI20 = 2r).

r=1 r=1

Then the assertion is proved by induction on k, n (Problem19).

We find a good approximation when n — oo. For 0 < a < b < 1 we have

P(a < ratio of time staying in the positive region < b)

bn
= Z W(2k[2n)

k=an

= > Xtansm (YW (2k{2n)
k=0

SOy vy

where y(x) is the indicator function of an interval I, that is, takes 1 for x € I and O otherwise.
Using the Stirling formula:

n! ~ 27rn(ﬁ) n— oo,
e
we obtain
(2k)( 1 )2’< 1
kJ\2 ik '
Therefore,

P(a < ratio of time staying in the positive region < b)

WZ){[ab]( )ﬂ\//ﬁ

k 1 1
S NG
- r kK"
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Definition 4.4.5 The probability distribution defined by the density function:
dx
xVx(1 - x) ’

is called the arcsine law. The distribution function is given by

O<x<l1,

2 1 1
= Z arcsin Vx = = + — arcsin(2x — 1).
T 2 n

N dt
Flo = fo IO

For example,

2
F(0.9) = — arcsin V0.9 = 0.795.
Vs

Namely, during the long game, the probability that the ratio of winning time exceeds 90% is 1 — F'(0.9) = 0.205,
which sounds larger than one expects.

Problem 18 Prove Lemmas 4.4.2 and 4.4.3.

Problem 19 Prove Theorem 4.4.4 in detail.

4.5 Gambler’s Ruin

Let us consider a random walker starting from the origin O at time n = 0. Now there are barriers at the
positions —A and B (A > 1, B > 1). If the random walker touches the barrier, it remains there afterward. In this
sense the positions —A and B are called absorbing barriers.

LetZ,,Z,, ... be Bernoulli trials with success probability O < p < 1. Define a discrete time stochastic process
X(),Xl,Xz,... by

X1+72,, -A<X,_1<B,
Xo =0, X, ={-A, Xu-1 = —A, (4.13)
B, X,-1 = B.

This {X,,} is called a random walk with absorbing barriers.

B
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We are interested in the absorbing probability, i.e.,

R=P(X, = -Aforsomen=12,..)= P[U{Xn = —A}],
=1

S = P(X, = B for some n = 1,2,...):P(U{X,, =B}].

n=1

Note that the events in the right-hand sides are not the unions of disjoint events.

A key idea is to introduce a similar random walk starting at k, —A < k < B, which is denoted by X% Then
the original one is X, = X,(lo). Let Ry and S, be the probabilities that the random walk X,(,k) is absorbed at —A and
B, respectively. We wish to find R = Ry and S = §S.

Lemma 4.5.1 {R;;, —A < k < B} fulfills the following difference equation:

Ry = pRiy1 + qRi—1, R4 =1, Rp =0. (4.14)
Similarly, {Sk;, —A < k < B} fulfills the following difference equation:

Sk=pSke1 +¢Sk-1, S_4=0, Sp=1 (4.15)

Theorem 4.5.2 Let A > 1 and B > 1. Let {X,,} be the random walk with absorbing barriers at —A and B, which
is defined by (4.13). Then the probabilities that {X,,} is absorbed at the barriers are given by

(q/p)* - (q/p)**B

, D#q,
P(X, = —A for some n) = é —(q/p**® |
A+B’ pP=4=3
L-(q/p) bt
P(Xn = B for some l’l) = 1 B(Q/p)A-FB |
A+B’ P=4=3:

In particular, the random walk is absorbed at the barriers at probability 1.

An interpretation of Theorem 4.5.2 gives the solution to the gambler’s ruin problem. Two players A and B
toss a fair coin by turns. Let A and B be their allotted points when the game starts. They exchange 1 point after
each trial. This game is over when one of the players loses all the allotted points and the other gets A + B points.
We are interested in the probability of each player’s win. For each n > 0 define X,, in such a way that the allotted
point of A at time # is given by A + X,,. Then {X,,} becomes a random walk with absorbing barrier at —A and B.
It then follows from Theorem 4.5.2 that the winning probability of A and B are given by

B
A+B’ PB =378 (4.16)
respectively. As a result, they are proportional to the initial allotted points. For example, if A = 1 and B = 100,
we have P(A) = 1/101 and P(B) = 100/101, which sounds that almost no chance of A’s win.
In a fair bet the recurrence is guaranteed by Theorem 4.2.2. Even if one has much more losses than wins,
continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited money.
(4.16) tells the effect of the barrier.

P(A) =

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 4.5.3 Let {X,} be the same as in Theorem 4.5.2. The expected life time of this random walk until
absorption is given by
A A+B 1-(qg/p*

g-p q-p l-(g/p**E°
\ p=4q=3
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Proof Let Y; be the life time of a random walk starting from the position k (—A < k < B) at time n = 0 until
absorption. In other words,
Ye=min{j>0; X" =-A £7213 X" = B},

We wish to compute E(Y)). We see by definition that
E(Y_,) = E(Yp) = 0. 4.17)

For —A < k < B we have

E(Y) = ) jP(Yi = ). (4.18)
j=1

In a similar manner as in the proof of Theorem 4.5.2 we note that
P(Yy = j) = pP(Nis1 = j= D +gPYp1 = j = 1). (4.19)

Inserting (4.19) into (4.18), we obtain
E(Y)=p Y jP(Yici = j=1)+q ) jPTr=j-1)
j=1 j=1
= PE(Yeer) + E(Yi 1) + 1. (4.20)

Thus, E(Y;) is the solution to the difference equation (4.20) with boundary condition (4.17). This difference
equation is solved in a standard manner and we find

A+k A+B1-(q/p***
EY)=19-r 4a-p 1-@/p*®’ |

(A +k)(B - k), P=q=3.

P#4q,

Setting k = 0, we obtain the result. |

Ifp=g=1/2and A = 1, B = 100, the expected life time is AB = 100. The gambler A is much inferior to B
in the amount of funds (as we have seen already, the probability of A’s win is just 1/101), however, the expected
life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps this is because
the gambler cannot quit gambling.

Remark 4.5.4 There is another type of barrier called a reflecting barrier. A random walk touches the reflecting
barrier, it changes the direction in the next step and continue to move. Let Z;,Z,,... be Bernoulli trials with
success probability 0 < p < 1. Consider barriers at positions —A and B, A > 1, B > 1. Define Xy, X, X5,... by

Xp1+72,, -A<X,_1 <B,
XO = 05 XV! ={-A+ 19 Xn—l = _As (4'21)
B-1, X,-1 = B.

Then {X,} is called a random walk with reflecting barriers.
Problem 20 Solve the difference equation (4.20) with boundary condition (4.17).

Problem 21 Let{X,; n=0,1,2,...} be an isotropic random walk on the half line {0, 1,2, ...} starting from the
origin O at time n = 0, where the origin is a reflecting barrier. Find P(X», = 0).
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5 Markov Chains

Let us recall a typical property of a random walk: the next position is determined probabilistically only by
the present position. Namely, the next-step movement is independent of the past trajectories. As the position of
the one-dimensional random walk is described in terms of the usual coordinate system Z = {--- ,—1,0,1,2,...},
the random walk is formulated as a discrete time stochastic process {X,,} taking values in Z. In this sense we call
Z a state space. For wider applications a state space is not necessarily a set of numbers, but may be an arbitrary
set. Keeping the typical property of the random walk and generalizing the state space, we come to the concept of
Markov chain.

5.1 Conditional Probability

For two events A, B we define
paB) = 240D 5.1)
~ P(B) '

whenever P(B) > 0. We call P(A|B) the conditional probability of A relative to B It is interpreted as the proba-
bility of the event A assuming the event B occurs, see Section 2.1.1.

Theorem 5.1.1 For two events A, B the following five properties are equivalent:

(i) A and B are independent;
(i) P(BIA) = P(B);

(ii") P(A|B) = P(A);

(iii) P(B|A) = P(BIA®);

(iii") P(A|B) = P(A|B°).

Here it is assumed that the conditional probabilities are well defined.

Formula (5.1) is often used in the following form:
P(A N B) = P(B)P(A|B) 5.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in compu-
tation of probability. For example, for two events A, B see Fig. 5.1.

P(BIA) ANB
P(4) A

P(B|A) ANBE

P(B|A°) AN B
P(AY) e

P(B|A9) ACN B

Figure 5.1: Tree diagram

(5.2) is generalized as follows.
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Theorem 5.1.2 (Compound probabilities) For events A;, A,,...,A, we have
PA NAN---NA,) = P(A)P(AJA)DP(A3]AL NAy)--- PAAJAL NA N - - N A, 5.3)

Proof Straightforward by induction on n. |

Problem 22 Prove Theorem 5.1.1.

5.2 Markov Chains

Let S be an at most countable set. Consider a discrete time stochastic process {X,,; n = 0,1,2,...} taking
values in §'. This § is called a state space and is not necessarily a subset of R in general. In the following we
often meet the cases of § ={0,1}, S ={1,2,...,N}and S ={0,1,2,...}.

Definition 5.2.1 Let {X,,; n = 0,1,2,...} be a discrete time stochastic process over S. It is called a Markov
process over S if
PX, = alX;, = a1, Xi, = az, ..., Xy, = ar) = P(X,, = alX;, = ay)

holds forany 0 < iy <ip <---< iy <mandaj,a,...,a,a€S.
Definition 5.2.2 For a Markov chain {X,,} over S,
P(Xn+l = J|Xn = l)

is called the transition probability at time n from a state i to j. If this is independent of n, the Markov chain is
called time homogeneous. In this case we write

pij = p(, )) = P(Xpa1 = jIXy = 1)
and simply called the transition probability. Moreover, the matrix
P =[pijl
is called the transition matrix.

Obviously, we have for eachi € §,

DUpli )= PXur = jiXy = i) = 1.

jes jes
Taking this into account, we give the following
Definition 5.2.3 A matrix P = [p;;] with index set S is called a stochastic matrix if
(i) pij 0.
(i) Xjes pij=1.

Theorem 5.2.4 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochastic
matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic matrix.

It is convenient to use the transition diagram to illustrate a Markov chain. With each state we associate a
point and we draw an arrow from i to j when p(i, j) > 0.

Example 5.2.5 (2-state Markov chain) A Markov chain over the state space {0, 1} is determined by the transi-
tion probabilities:
pO,)=p, p0,0=1-p, p(1,00=¢q, pl,1)=1-gq.

The transition matrix is defined by

The transition diagram is as follows:
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n=1r { (0] (09 Y pm1g

Example 5.2.6 (3-state Markov chain) An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain on {H, S, D} described by the following transition diagram:

b q
280 O ® )
p r
The transition matrix is defined by
a b 0
p r qi, a+b=1, p+qg+r=1.
0 0 1

Example 5.2.7 (Random walk on Z') The transition probabilities are given by

D, if j=i+1,
pi,)=3q=1-p, ifj=i-1,
0, otherwise.

The transition matrix is a two-sided infinite matrix given by

o
o Q o
e o ©

Example 5.2.8 (Random walk with absorbing barriers) Let A > 0 and B > 0. The state space of a random
walk with absorbing barriers at —A and Bis § = {—-A,—A + 1,..., B— 1, B}. Then the transition probabilities are
given as follows. For —A <i < B @ & X|J,

p, if j=i+1,
P, )=4q9=1-p, ifj=i-1,
0, otherwise.
Fori=—-Aori=B,
p(—A,j)={1’ =4 p(B,j>:{1’ Hr=5
0, otherwise, 0, otherwise.

38



In a matrix form we have

1 0 0 0 O 0
qg 0 p 0 O 0
0 g 0 p O 0
o0 - g 0 p O
o0 -~ 0 g 0 p
o o --- 0 0 0 1

Example 5.2.9 (Random walk with reflecting barriers) Let A > 0 and B > 0. The state space of a random
walk with absorbing barriers at —A and Bis S = {-A,-A+1,..., B—1, B}. The transition probabilities are given
as follows. For —A <i < B,

D, if j=i+1,
pli,))=4q=1-p, ifj=i-1,
0, otherwise.
Fori=—-Aori= B,
(A ) = 1, ifj=-A+1, (B.j) = 1, ifj=B-1,
Pt = 0, otherwise, PA= D= 0, otherwise.
In a matrix form we have
01 0 0 O 0
qg 0 p 0 O 0
0g 0 p O 0
o0 - g 0 p O
o0 - 0 g 0 p
o 0 --- 0 O 1 0]

For a Markov chain {X,} with a transition matrix P = [p;;] the n-step transition probability is defined by
Pn(t, J) = PXnin = J1Xin = D), i,jES.

The right-hand side is independent of n because of the assumption of being time homogeneous.

Theorem 5.2.10 (Chapman—-Kolmogorov equation) For 0 < r < n we have

palis ) = " prli Opa-r(k, j). (54)
keS

Proof First we note the obvious identity:
pn(L ./) = P(Xm+n = .]|Xm = l) = Z P(Xm+n = ja Xm+r = kIXm = l)
keS
Moreover,

P(Xpin = j; Xopsr =k, Xpp =10) % PXpner =k, X, = 1)
P(Xerr = k’Xm = l) P(Xm = l)
= P(Xp4n = j|Xm+r =k X, = DPXp4r = kX = ).

P(Xpin = ja Xoper = kX, = 1) =

Using the Markov property, we have
P(Xpin = j|Xm+r =k, Xy =1) = PXonin = lem+r =k)
so that

PXinsn = Jo Xinar = kX = 1) = PXinsn = jlXnsr = OPXinsr = kX = ).
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Finally, by the property of being time homogeneous, we come to

P(Xm+n = j7 Xm+r = klxm = l) = pn—r(ka J)pr(l’ k)

Thus we have obtained (5.4). |
Applying (5.4) repeatedly and noting that p,(i, j) = p(i, j), we obtain
(i, J) = Z pU, k)pki, k) - - - plkn-1, ) (5.5)
k[ ,,,,, kn,1€S

The right-hand side is nothing else but the multiplication of matrices, i.e., the n-step transition probability p,(i, j)
is the (i, j)-entry of the n-power of the transition matrix P. Summing up, we obtain the following important
result.

Theorem 5.2.11 For m,n > 0 and i, j € S we have
P(Xyin = ]|Xm =i)= pn(l, J) = (Pn)ij .

Remark 5.2.12 The Chapman-Kolmogorov equation is nothing else but an entrywise expression of the obvious
relation for the transition matrix:
Pl‘l — PrPn—r

(Asusual, P = E (identity matrix).)

5.3 Stationary Distributions

For a Markov chain {X,,} we set
mi(n) = P(X, =), i€esS.

Then the row vector defined by
m(n) = [+ i) -]
is called the distribution of X,,. In particular, 7(0), the distribution of Xy, is called the initial distribution.
Theorem 5.3.1 We have
n(n) = n(0)P" .
In other words,

mi(n) = Z 7, O)p(j1, J2)P(2s J3) - - - PUn=15 Ju)P(ns D)
J1sJ25ewes]n

Proof We first note that

mi(n) = PX, =) = D P(X, = ilXo = OPXo = ) = ) m(0)puth i),
keS keS

where p,(k,i) = (P");; and the right-hand side is a multiplication of a vector and matrix. Hence,
mi(n) = (m(0)P");,

that is,
n(n) = n(0)P",

as desired. |

Definition 5.3.2 In general, a row vector 7 = [-- - 7; - - - ] satisfying

>0, Zﬂizl

ieS
is called a distribution on S. A distribution 7 on § is called stationary (or invariant) if

n=nP. (5.6)
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Note that a stationary distribution may not exist. If a stationary distribution exists, it is not necessarily unique.

Example 5.3.3 (2-state Markov chain) Let {X,} be the Markov chain introduced in Example 5.2.5. The transi-
tion matrix is given by
P= [1 —pop ] .

g 1-gq
The eigenvalues of P are 1,1 — p — g. Suppose that p + g > 0. We have

1 ! -
P q+pfn P pr:’ r=l-p-gq
P + q q—qgr P + qr
Consequently, if |r| < 1, or equivalently O < p + ¢ < 2, we have
1
lim P" = —— |4 p],
Hence
~ ; L {a »p 9 _»p
lim 7(n) = lim 7(0)P" = [7p(0) 71 (0)] X —— } == £].

Consequently, when 0 < p + g < 2, the distribution of the Markov chain converges to the stationary distribution
independently of the initial distribution.

Example 5.3.4 (3-state Markov chain) We discuss the Markov chain {X,} introduced in Example 5.2.6. The
stationary distribution is unique and given by 7 = [0 0 1].

In order to describe the uniqueness of a stationary distribution we need the following
Definition 5.3.5 We say that a state j can be reached from a state i if there exists some n > 0 such that p,(i, j) > 0.
By definition every state i can be reached from itself. We say that two states i and j intercommunicate if i can

be reached form j and j can be reached from i, i.e., there exist m > 0 and n > O such that p,(i, j) > 0 and
pl‘ﬂ(j’ l) > 0'

Lemma 5.3.6 For two states i, j € S we define a binomial relation i ~ j when they intercommunicate. Then ~
becomes an equivalence relation on S, namely,

1) i~
(ii) i ~ jimplies j ~ i;

(iii) Ifi ~ jand j ~ k, theni ~ k.

Proof (i), (ii) are obvious by definition. (iii) is verified by the Chapman-Kolmogorov equation. |

Thereby the state space S is classified into a disjoint set of equivalence classes determined by the above ~.
Namely, each equivalence class consists of states which intercommunicate each other.

Definition 5.3.7 A state i is called absorbing if

Qi) 1, forj=1,
l’ = .
P J 0, otherwise.

In particular, an absorbing state is a state which constitutes an equivalence class by itself.

Definition 5.3.8 A Markov chain is called irreducible if every state can be reached from every other state, i.e.,
if there is only one equivalence class of intercommunicating states.

Example 5.3.9 Examine the equivalence relation among the states of a Markov chain described by the following
transition diagram:
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Example 5.3.10 (2-state Markov chain) Consider the transition matrix:

1)
g 1-g¢g

Let m = [y ] and suppose 7P = n. Then we have

[mndr;p 1{4=[a—pwo+mqmm+ﬂ—qhﬂ=bmmL

which is equivalent to the following

pro —gqmy = 0.
Together with
mo+m =1,
we obtain
q P

Ty = 5 ™= 5
p+q p+q

whenever p + g > 0. If p = ¢ = 0, then any 7 = [7y, 7] is a stationary distribution.
The following result is fundamental, however, we omit the proof, see ElIR [#ERin L Z DILH] , Y
(<o 7N O FERET V) 3 THERET VIR etc.

Theorem 5.3.11 For an irreducible Markov chain the following assertions are equivalent:

(i) it admits a stationary distribution;

(ii) every state is positive recurrent.
In this case the stationary distribution 7 is unique and given by

1

= — € S.
ET\Xo=i)

T

Recall that every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem
5.4.9). Therefore,

Theorem 5.3.12 An irreducible Markov chain on a finite state space S admits a unique stationary distribution
7 = [m;]. Moreover, 7 > Oforalli € S.
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Example 5.3.13 (One-dimensional RW) When S is infinite, Theorem 5.3.12 does not hold in general. In fact,
one-dimensional random walk is an example. Let [- - - w(k) - - - ] be a distribution on Z. If it is stationary, we have

n(k) = pnk — 1) + gn(k + 1), keZ. 6.7
The characteristic equation is
0=g2-A+p=(ga-p)a-1

so that the eigenvalues are 1, p/gq.
(Case 1) p # g. Then a general solution to (5.7) is given by

k k
ﬂ(k):C11k+C2(§) =C1+C2(§), kel

This never becomes a probability distribution for any choice of C; and C,. Namely, there is no stationary
distribution.
(Case 2) p = g. In this case a general solution to (5.7) is given by

n(k) = (Ci + Gl = Cy + Cok, ke
This never becomes a probability distribution for any choice of C; and C,. Namely, there is no stationary

distribution.

Example 5.3.14 (One-dimensional RW with reflection barrier) There is a unique stationary distribution when
p < q. In fact,

k
(0) = Cp, n(k)=C(§) . k>,

where C is determined in such a way that )7, w(k) = 1. Namely,
q9-p

C =
24>

Example 5.3.15 (2-state Markov chain) Let
-1
g l-gq

be a transition matrix with p+¢g > 0. The eigenvalues are 1, 1 — p — ¢, which are distinct by assumption p+¢g > 0.
Using the eigenvectors we set

1

= [1 —pq}

Then,
1 0
PT:T[O l—p—q]’
in other words,
P = T[l 0 ]T‘l.
0 d-p-9q"

Letting n — oo, we obtain
lim P" = [1 O] oL |4 p].
n—oo 0 0 p + q q p

On the other hand, for an initial distribution 7(0) = [m¢(0) 7;(0)] the distribution of the Markov chain at time n
is given by Theorem 5.3.1 as follows:

m(n) = n(0)P".

Letting n — oo, we have

: ! q p ! 9 _»p
lim 7(n) = —— [7(0) ”1(0)][ ] =——Igpl= [— —
n—eo ptq 9 p ptq pt+tq ptgq
This coincides with the stationary distribution 7, see Example 5.3.10. Namely, for a two-state Markov chain
with p + g > 0, the distribution of X, tends to the stationary distribution as n — oo independent of an initial
distribution.
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It is important to know under which condition the distribution of a Markov chain tends to a stationary distribu-
tion after long time. Unfortunately, the situation is not simple. It is noted that the unique existence of a stationary
distribution (see e.g., Theorem 5.3.12) is not sufficient to claim the convergence to the stationary distribution, as
is seen by the following simple example.

Example 5.3.16 Consider a Markov chain determined by the transition matrix:
0 1
P= .
We first note that there exists a unique stationary distribution. But for a given initial distribution 7(0) it is not
necessarily true that lim m(n) converges to the stationary distribution.
n—oo

Roughly speaking we need to avoid the periodic transition. We only mention the following result, of which
the proof is found in [FiR THEHGmE ZDIGH] , > T=Aa 7 BN LB FHERTT L~ , elc.

Theorem 5.3.17 Let 7 be a stationary distribution of an irreducible Markov chain on a finite state space (It is
unique, see Theorem 5.3.12). If {X,,} is aperiodic, for any j € S we have

lim P(X, = j) =n;.
n—oo

Problem 23 Consider a Markov chain determined by the transition diagram below.

(1) Is the Markov chain irreducible?

(2) Study the stationary distributions.

Problem 24 Let {X,} be a Markov chain on {0, 1} given by the transition matrix P = ! :Ip 1 f q} with the
initial distribution o = [q/(p + q) p/(p + q)]. Calculate the following statistical quantities:

Cov (Xinin» Xn)

VV[Xnin]VIX5]

Problem 25 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every
election. Suppose that after an election, 30% of the supporters of A change to support B and 20% of the supporters
of B change to support A. At the beginning, 85% of the voters support A and 15% support B. When will the party
B command a majority? Moreover, find the final ratio of supporters after many elections if the same situation
continues.

E[XnL V[Xn]7 Cov (Xm+m Xn) = E[Xm+an] - E[Xm+11]E[Xn]7 p(Xm+n, Xn) =

Problem 26 Find a stationary distribution of the Markov chain defined by the following transition diagram,
where p >0andg=1-p>0.

QL0
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Problem 27 Let {X,} be the Markov chain introduced in Example 5.2.6:
b q
280 e‘ ® )
4 r
Forn = 1,2,... let H, denote the probability of starting from H and terminating at D at n-step. Similarly, for

n=1,2,... let S, denote the probability of starting from S and terminating at D at n-step.

(1) Show that {H,} and {S ,} satisfies the following linear system:

n>2; H =0, S1=gq.

Hn = aH,H + bSnfl,
Sn = pHn—l + rSn—ls

(2) Solving the above linear system, prove the identities for the mean life times:

- _b+ptgq =

E[H] = " nH, by E[S]= ) nS, =

n=1 n=1

b+p
bq ’

5.4 Recurrence

Definition 5.4.1 Let i € S be a state. Define the first hitting time or first passage time to i by
T,=inf{n>1; X, =1i}.

If there exists no n > 1 such that X, = i, we define T; = oo. A state i is called recurrent if P(T; < o0|Xy =1i) = 1.
It is called transient if P(T; = co|Xy = i) > 0.

Theorem 5.4.2 A state i € S is recurrent if and only if

i pn(i, i) = oo,
n=0

Proof (basically the same as the proof of recurrence of one-dimensional random walk) We first put

(i, j) = P(Xy = jlXo =1, n=0,1,2,...,
Jalis ) = P(Tj = nlXo = i)
=PX1#j....Xp1 #FhXn=jXo=10, n=12,....
pn(i, j) is nothing else but the n step transition probability. On the other hand, f,(i, j) is the probability that the

Markov chain starts from i and reach j first time after n step. Dividing the set of sample paths from i to j in n
steps according to the number of steps after which the path reaches j for the first time, we obtain

pali, )) = Zfr(i, DPn-r(js ), LjeS, n=12,... (5.8)
r=1

We next introduce the generating functions:

Gij(d) = ) pali D",
n=0
Fif@ = ) fulis 2"

n=1
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In view of (5.8) we see easily that
Gij(z) = po(i, J) + Fij(2)G jj(2). (5.9)

Setting i = jin (5.9), we obtain
Gi(2) = 1 + Fi(2)Gii(2).

Hence,

Gii(2) = T-Fo)

On the other hand, since
Gi(D) = D pais), Fu(D) = ) full,i) = P(T; < oolXg = i)
n=0 n=1

we see that two conditions F;(1) = 1 and G;(1) = oo are equivalent. |

During the above proof we have already established the following

Theorem 5.4.3 If a state i is transient, we have

D pali ) < o0
n=0

and

S . 1
;p”(”l) T1-PT <oolXo= 1)

Example 5.4.4 (random walk on Z) Obviously, the random walk starting from the origin O returns to it only
after even steps. Therefore, for recurrence we only need to compute the sum of p,,(0,0). On the other hand, we

know that (2n)!
n)!
pn(0,0) = ——= p"q", p+q=1,

n!n!
see Chapter (4.1.1). Using the Stirling formula:

nl ~ 27m('—’) (5.10)

e
we have |
2(0,0) ~ —— (4pg)".
p2:(0,0) \/ﬁ( Pq)

Hence, if p # g we have
> paul0,0) < oo,
n=0

1
Ifp=gq= E,wehave
D p2n(0,0) = .
n=0

1
Consequently, one-dimensional random walk is transient if p # ¢, and it is recurrent if p = g = R

Remark 54.5 Let {a,} and {b,} be sequences of positive numbers. We write a, ~ b, if

lim & =1,

n—oo n
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Problem 28 (1) Let {a,} and {b,} be sequences of positive numbers such that a,, ~ b,. Prove that there exist
two constant numbers ¢; > 0 and ¢, > 0 such that

cia, < b, < ca,.

(2) Notations and assumptions being as in (1), prove that Z a, and Z b, converge or diverge at the same
n=1 n=1
time.

(3) Explain the details of Example 5.4.4 filling the gaps of arguments therein.

Example 5.4.6 (random walk on Z?) Obviously, the random walk starting from the origin O returns to it only
after even steps. Therefore, for recurrence we only need to compute the sum of p,,(0, 0). For two-dimensional
random walk we need to consider two directions along with x-axis and y-axis. We see easily that

) (1)
P2(0.0) = f%%%ﬂ
=, !
_(n)! (1)2” n'n!
ninl \4) £ ilitjij!

I 0

Employing the formula for the binomial coeflicients:
n 2
2
1))
izo \! n

which is a good exercise for the readers, we obtain

Mm 2 1 2n
2(0,0) = - .
P2:(0,0) (n) ( 4)
Then, by using the Stirling formula, we see that
1
p2(0,0) ~ —
m

n

so that .
> poul0,0) = oo,

n=1

Consequently, two-dimensional random walk is recurrent.

Example 5.4.7 (random walk on Z*) Let us consider the isotropic random walk in 3-dimension. As there are
three directions, say, x, y, z-axis, we have

2n
B el (1
Pu(0.0)= ), iKY (6)

i+j+k=n

JM!N"Z nln!
~nn \6 WG, 1L kK

G 2

i+ j+k=n
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We note the following two facts. First,

n!
Z =3 (5.12)
i+j+k=n 1K
Second, the maximum value
n!
M, =

max ——
i+jk=n i! jlk!
is attained when 3 1 <i,jk< 3 +1so

JYRREALRY
2nn

by the Stirling formula. Then we have
2n) (1) 33
4(0,0) < —| 3"m, ~ —=n>"
part )(J&) 27\
Therefore.

3 p20,0) < o,

n=1

which implies that the random walk is not recurrent (i.e., transient).

A state i is called recurrent if P(T; < o|Xy = i) = 1. In this case we are interested in the mean value
E(T;|Xo = i) (mean recurrent time). As we have already shown (Theorem 4.2.4), the mean recurrent time of the
one-dimensional isotropic random walk is infinity although it is recurrent. In this case the state is called null
recurrent. On the other hand, if E(T;|X, = i) < oo the state i is called positive recurrent.

Theorem 5.4.8 The states in an equivalence class are all positive recurrent, or all null recurrent, or all transient.
In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null recurrent, or all
transient.

Theorem 5.4.9 For an irreducible Markov chain on a finite state space S, every state is positive recurrent.

Problem 29 Let {X,} be a Markov chain described by the following transition diagram.

(1) Calculate
P(Ty =1|Xo=0), P(To=2|Xo=0), P(To=3Xo=0), P(To=4Xo=0).

(2) Find P(Ty = n|X, = 0) and calculate

00

Z P(To = X, = 0), Z nP(Ty = n|X, = 0).
n=1

n=1

Problem 30 A butterfly flies over the hexagon with a trap T'. It starts at the origin O at time ¢ = 0 and chooses
one direction at probability 1/2. But when it arrives at T, it is killed.

(1) Find the transition matrix.
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(2) Is this Markov chain irreducible?
(3) Find the probability that the butterfly is alive at time ¢ = 12.

(4) Observe the situation as t — oo.

L
2
—

0 r S

LR— MRHESR
I EHZPICHE L LA — FilED S b

1 FEPS 16 FDSH 28
17 BN DEAFED 5 B 24
DEDET4BEEER L TREE X (125 RTHRA). 28— LR— I 0 A,
2. fRHE  FEHEFEIIZER | FEBENOA— /LRy 7 ZCEET 5 LR— MEHEHAOAR v 7 2
3. 4RI - 20144E2 A3 A () 2A7H (&)
Examination
1. Choose and answer 2 problems among No. 1-16 and 2 problems among No. 17— the last. Each is allotted
25 points. Plagiarizing is excluded from evaluation.
2. Submit to: the mailbox prepared for report submission at 1F in front of the administrative office of GSIS.
3. Submission period: February 3 (Mon)- 7 (Fri), 2014.
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6 Poisson Processes

Let T c R be an interval. A family of random variables {X(7); t € T} is called a continuous time stochastic
process. We often consider T = [0, 1] and T = [0, c0). As X(¢) is a random variable for each 7 € T, it has another
variable w € Q. When we need to explicitly refer to w, we write X(z, w) or X;(w). For fixed w € Q, the function

t— X(t,w)

is called a sample path of the stochastic process {X(#)}. It is the central idea of stochastic processes that a random
evolution in the real world is expressed by a single sample path selected randomly from all the possible sample
paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian motion
(Wiener process). In the recent study of mathematical physics and mathematical finance, a kind of composition
of these two processes, called the Lévy process (or additive process), has received much attention.

6.1 Heuristic Introduction

Let us imagine that the number of objects changes as time goes on. The number at time ¢ is modelled by a
random variable X, and we wish to construct a stochastic process {X,}. In this case X, takes values in {0, 1,2,...}.
In general, such a stochastic process is called a counting process.

There are many different variations of randomness and so wide variations of counting processes. We below
consider the simple situation as follows: We focus an event E which occurs repeatedly at random as time goes
on. For example,

(i) alert of receiving an e-mail;
(ii) telephone call received a call center;
(iii) passengers making a queue at a bus stop;
(iv) customers visiting a shop;
(v) occurrence of defect of a machine;
(vi) traffic accident at a corner;
(vii) radiation from an atom.

Let fix a time origin as r = 0. We count the number of occurrence of the event £ during the time interval [0, 7]
and denote it by X;. Let #1, 1, ... be the time when E occurs, see Fig. 6.1.

Figure 6.1: Recording when the event E occurs

There are two quantities which should be measured.

(i) The number of occurrence of E up to time ¢, say, X;. Then {X,, # > 0} becomes a counting process.

(i) The waiting time of the n-th occurrence after the (n — 1)-th occurrence, say, T, . Here T is defined to be
the waiting time of the first occurrence of E after starting the observation. Then {T,,; n = 1,2,...}is a
sequence of random variables taking values in [0, co).

We will introduce heuristically a stochastic process {X;} from the viewpoint of (i). It is convenient to start
with discrete time approximation. Fix ¢ > 0 and divide the time interval [0, 7] into n small intervals. Let
t
At = —
n

be the length of the small intervals and number from the time origin in order.
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We assume the following conditions on the occurrence of the event E:

(1) There exists a constant A > 0 such that

P(E occurs just once in a small time interval of length Af) = AAt + o(At),
P(E does not occur in a mall time interval of length Af) = 1 — AAf + o(Af),

P(E occurs more than once in a small time interval of length A¢) = o(Ar).

(2) Occurrence of E in disjoint time intervals is independent.

Some more accounts. Let us imagine the alert of receiving an e-mail. That

P(E occurs more than once in a small time interval of length Ar) = o(Ar)
means that two occurrences of the event E is always separated. That

P(E occurs just once in a small time interval of length Af) = AAf + o(Af)

means that when At is small the probability of occurrence of E in a time interval is proportional to the length of
the time interval. We understand from (2) that occurrence of E is independent of the past occurrence.

Let Z; denote the number of occurrence of the event E in the i-th time interval. Then Z,, Z,, ..., Z, become a
sequence of independent random variables with an identical distribution such that

P(Z; =0) =1 - 1At + o(Ap), P(Z; = 1) = AAt + o(AY), P(Z; = 2) = o(Ab).

The number of occurrence of E during the time interval [0, 7] is given by

n
ZZ,-.
i=1
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The length At is introduced for a technical reason and is not essential in the probability model so letting At — 0

or equivalently n — oo, we define X, by

X, =lm Y Z. 6.1)

At—0 £
i=1

Thus {X;} is a continuous time stochastic process which gives the number of occurrence of the event E up to time
t. This is called the Poisson process with parameter A > 0.
We note that

P [Z Zi= k] = (Z)(ﬂAt)k(l — QA" + o(A).
i=1

In view of At = t/n we let n tend to the infinity and obtain

k _ _ n—k k
A nn-1)...(n k+1)(]_/l_t) =&e_/”

P(X, = k) = lim .

A0 k! nk n

In other words, X; obeys the Poisson distribution with parameter At.

Remark 6.1.1 The essence of the above argument is the Poisson’s law of small numbers which says that the
binomial distribution B(n, p) is approximated by Poisson distribution when 7 is large and p is small.

Problem 31 Let X be a random variable obeying the binomial distribution B(n, p) and A = np = E[X] the mean
value. Prove that the distribution of X is approximated by the Poisson distribution with parameter A when 7 is
very big. Moreover, show by numerical calculation that B(100, 0.05) is approximated by the Poisson distribution
with parameter A = 5.

Theorem 6.1.2 A Poisson process {X; ; t > 0} satisfies the following properties:

(1) (counting process) X, takes vales in {0, 1,2,...};
2) Xo=0
(3) (monotone increasing) X; < X, for0 < s <t

(4) (independent increment) if 0 < #; <, < --- < f;, then
th - th 5 Xt3 - th s ey th - th,l >

are independent;
(5) (stationarity) for O < s <t and h > 0, the distributions of X,., — X, and X; — X, are identical;

(6) there exists a constant A > 0 such that

P(Xy =1)=Ah+o(h), P(X), = 2) = o(h).

Proof (1) Since X, obeys the Poisson distribution with parameter At, it takes values in non-negative integers
almost surely.

(2) Obvious by definition.

(3) Let s = mAt, t = nAt, m < n. Then we have obviously

m

X, = lim Z < hm Z X;.

At—>0
(4) Suppose t; = n1At, ...t = At with n; < --- < ng. Then we have
ny
X;, — X;, = lim Z — lim Z = lim Z;.
l~>0 Ata() Ar—0

[:I‘l]+1

In other words, X,, — X, is the sum of Z;’s corresponding to the small time intervals contained in [#,, #;). Hence,
X, — Xt ..., Xs, — X;,_, are the sums of Z;’s and there is no common Z; appearing in the summands. Since {Z;}
are independent, so are X;, — X;, ,..., X, — X;,_,.
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(5) Since X, — X, and X, — X are defined from the sums of Z;’s and the numbers of the terms coincide.
Therefore the distributions are the same.
(6) Recall that X, obeys the Poisson distribution with parameter Ah. Hence,
PX,=0)=e " =1-Ah+---=1-2h+o(h),
P(X; = 1) = Ahe™ = Ah(1 = Ah +...) = Ah + o(h).

Therefore we have
PX,>2)=1-P(X;,=0)— PX;, = 1) = o(h).

Example 6.1.3 The average number of customers visiting a certain service gate is two per minute. Using the
Poisson model, calculate the following probabilities.

(1) The probability that no customer visits during the first two minutes after the gate opens.

(2) The probability that no customer visits during a time interval of two minutes.

(3) The probability that no customer visits during the first two minutes after the gate opens and that two

customers visit during the next one minute.
Let X; be the number of visitors up to time #. By assumption {X;} is a Poisson process with parameter A = 2.
(1) We need to calculate P(X, = 0). Since X, obeys the Poisson distribution with parameter 24 = 4, we have
40

PO, =0) = e ~ 0,018,

(2) Suppose that the time interval starts at fy. Then the probability under discussion is given by P(X; 2 — Xy, =
0). By stationarity we have

P(X;y42 — X;y = 0) = P(X; — Xo = 0) = P(X; = 0),

which coincides with (1).
(3) We need calculate the probability P(X; = 0, X3 — X, = 2). Since X, and X3 — X, are independent,

P(X>=0,X3 - X> =2) = P(X> = 0)P(X5 — X» = 2).

By stationarity we have
40 22
=P(X, =0)P(X, =2) = o e x 5 e~ ~ 0.00496.

Problem 32 The average number of customers visiting a certain service gate is 20 per hour. Using the Poisson
model, calculate the following probabilities.

(1) The probability that one customer visits during the first two minutes after the gate opens.

(2) The probability that one customer visits during the first two minutes and that two customers visit during
the next three minutes.

(3) The probability that the server waits for more than ten minutes until the first customer visits.

Problem 33 Let {X,} be a Poisson process. Show that

k n—k
P(Xs=k|x,=n>=(2)(§) (1—;) C k=0.1....n

for 0 < s < r. Next give an intuitive explanation of the above formula.
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6.2 Waiting Time

Let {X;; t > 0} be a Poisson process with parameter A. By definition X, = 0 and X, increases by one as time
passes. It is convenient to remind that the Poisson process counts the number of events occurring up to time .
First we set

T, =inf{t > 0; X, > 1}. 6.2)

This is the waiting time for the first occurrence of the event E. Let T, be the waiting time for the second
occurrence of the event E after the first occurrence, i.e.,

T, =inf{r>0; X, >2}-T;.
In a similar fashion, we set
T,=inf{t >0; X, >n}—T,_4, n=2,3,.... (6.3)

Theorem 6.2.1 Let {X,} be a Poisson process with parameter A. Define the waiting time 7, by (6.2) and (6.3).
Then, {T,,; n = 1,2,...} becomes a sequence of iid random variables, of which distribution is the exponential
distribution with parameter A.

Proof Sett = nAt and consider the approximation by refinement of the time interval. Recall that to each
small time interval of length At a random variable Z; is associated. Then we know that

P(Ty > 1)= lim P(Zy = -+ = Z, = 0)
—
= lim (1 — AAD"
At—0
Ar\*
= lim (1 - —)
At—0 n
=,

Therefore,

3
PTi<t)=1-et= f Ae~ds,
0
which shows that 7 obeys the exponential distribution with parameter A.
The distributions of T5, T3, ... are similar. |

Remark 6.2.2 Let {X;} be a Poisson process with parameter 4. We know that E(X;) = A, which means the
average number of occurrence of the event during the unit time interval. Hence, it is expected that the average
waiting time between two occurrences is 1/4. Theorem 6.2.1 says that the waiting time obeys the exponential
distribution with parameter A so its mean value is 1/4. Thus, our rough consideration gives the correct answer.

Problem 34 Let {X;} be a Poisson process with parameter A. The waiting time for n occurrence of the events
is defined by S, = T} + T» + --- + T,,, where T, is given in Theorem 6.2.1. Calculate P(S, < ) and find the
probability density function of S,. [In general, S, obeys a gamma distribution.]

6.3 The Rigorous Definition of Poisson Processes

The “definition” of a Poisson process in (6.1) is intuitive and instructive for modeling random phenomena.
However, strictly speaking, the argument is not sufficient to define a stochastic process {X;}. For example, the
probability space (2, ¥, P) on which {X;} is defined is not at all clear.

We need to start with the waiting time {7},}. First we prepare a sequence of iid random variables {T,,; n =
1,2,...}, of which the distribution is the exponential distribution with parameter 4 > 0. Here the probability
space (Q, ¥, P) is clearly defined. Next we set

So=0, S,=T1+---+T,, n=1,2,...,
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and for ¢ > 0,
X, =max{n>0; S, <t}.

It is obvious that for each ¢ > 0, X, is a random variable defined on the probability space (€2, 7, P). In other
words, {X;; t > 0} becomes a continuous time stochastic process. This is called Poisson process with parameter
A by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 6.1.2.

6.4 M/M/1 Queue

Waiting lines or queues have been extensively studied under the name of queuing theory. A queue in the
real world is modeled in terms of a system of servers and visiting customers. A customer arrives at a system
containing servers. If the server is free, the customer may get the service at once. Otherwise, the customer waits
for a vacant server by making a waiting queue. A customer arrives at random and the service time is also random.
The main purpose is to construct a stochastic process {X(#)} on {0, 1,2,...}, where the value corresponds to the
number of customers in the system at time ¢ (including any currently in service), and then to obtain statistical
quantities and characteristic features from {X(¢)}.

VAT A

F—e R RH1T41

® — 000

A quite a few models have been proposed and studied extensively. Kendall’s notation A/B/c/K/m/Z, intro-
duced first by David G. Kendall in 1953, is commonly used for describing the characteristics of a queuing model,
where

A: arrival process,

B: service time distribution,

c: number of servers,

K: number of places in the system (the buffer size),
m: calling population,

Z: queue’s discipline (priority order)

The most fundamental model is an M/M/1 queue (the letter “M” stands for “Markov™). In fact, an M/M/1
queue is a continuous time Markov chain on {0, 1, 2, 3, ...}, which reflects the following situation:

(i) Arrivals occur according to a Poisson process with parameter 4;
(i1) Service times obey an exponential distribution with parameter y;
(iii) Arrivals of customers and service times are independent;
(iii) The system contains a single server;
(iv) The buffer size is infinite;

(v) (Firstin first out) A single server serves customers one at a time from the front of the queue, according to a
first-come, first-served discipline. Customers are served one at a time and that the customer that has been
waiting the longest is served first

Thus there are two parameters characterizing an M/M/1 queue, that is, the parameter 4 > 0 for the Poisson
arrival and the one u > 0 for the exponential service. In other words, a customer arrives at the system with
average time interval 1/4 and the average service time is 1/u. In the queuing theory A is called the mean arrival
rate and u the mean service rate.
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Let us consider the change of the system during the small time interval  — ¢ + Ar. It is assumed that during
the small time interval Az only one event happens, namely, a new customer arrives, a customer under service
leaves the system, or nothing changes. The probabilities of these events are given by AAt, uAt, 1 — AAt — pAt.

o ntl
AAL

n e—— e 11

HAL

t t+ At

Therefore, P(X(f) = n) fulfills the following equation:
PX(t+At)=n)=PXt+At)=nX@t)=n—-1DPX(t)=n-1)
+ P(X(t + Ar) = n|X(r) = n)P(X(t) = n)
+PXt+A)=nX@®)=n+1DHPX(@)=n+1)
= AAtPX(t) =n—-1)
+ (1 — AAt — uAHP(X(t) = n)
+ uAtP(X(t) = n+ 1),
PX(t+ Ar) =0) = (1 — AAD)P(X(t) = 0) + uAtP(X(t) = 1).
Setting p,(t) = P(X(f) = n), we have
Pu(®) = App1 () = (A + pa(t) + ppusi (), n=12,..., 6.4)
o) = =Apo(t) + up1(2). '

Important properties of the queue are derived from the above linear system. We are interested in the equilibrium
solution (limit transition probability), i.e., p,(?) in the limit  — co. We set

DPn = thm pn(t)
under the assumption that the limit exists. In the limit the derivative of the left hand side of (6.4) is 0. Hence,

/lpn—l _(A+ﬂ)pn +/~lpn+l = O n= 1,2,...,
= Apo + pup1 = 0.

The above linear system is easily solved. If A # u, then the general solution is given by

/l n
pn=A (—) (A is a constant).
u

If A = u, we see that p, = A (constant). Since p, should be a probability distribution, we have Z pn = 1. This
n=0
occurs only when A < ¢ and we have

/1 n
p,,:(l__)(%), n=0.12,....
p)\p

This is the geometric distribution parameter A/u.
In queuing theory, the ratio of the mean arrival rate A and the mean service rate u is called the utilization:

p=-.
u
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Utilization stands for how busy the system is. It was shown above that the number of customers in the system
after long time obeys the geometric distribution with parameter p. If p < 1, the system functions well. Otherwise,
the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium the number of customers
in the system obeys the geometric distribution:

1 -p)p", n=0,1,2,....

In particular, the probability that the server is free is 1 — p and the probability that the server is busy and the
customer need to wait is p. This is the origin of the term utilization. Note also that the mean number of the
customers in the system is given by

Sonerts -
n = = .

n=0 ! P H= A

Example 6.4.1 There is an ATM, where each customer arrives with average time interval 5 minutes and spends

3 minutes in average for the service. Using an M/M/1 queue, we know some statistical characteristics. We set

1 1 3
/l:—, = -, = —.
57 HT3 P73

2
Then the probability that the ATM is free is 1 —p = 3 The probability that the ATM is busy but there is no

waiting customer is

2 y 3 6
575 25°
Hence the probability that the ATM is busy and there is some waiting customers is
2 6 9
l--—-—==—=0.36.
5 25 25

So, roughly speaking, a customer needs to make a queue once per three visits.

Remark 6.4.2 The Markov process X(#) appearing in the M/M/1 queuing model is studied more generally
within the frame works of birth-and-death process.
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7 Galton-Watson Branching Processes

Consider a simplified family tree where each individual gives birth to a certain number of offspring (children)
along a probabilistic rule and dies. Our first interest lies in whether the family survives or not. A fundamental
model was proposed by F. Galton in 1873 and basic properties were derived by Galton and Watson in their joint
paper in the next year. The name “Galton-Watson branching process” is quite common in literatures after their
paper, but it would be more fair to refer to it as “BGW process.” In fact, [rénée-Jules Bienaymé studied the same
model independently already in 1845.

—

1. R.B. ¥ (AERHE - AR —FR): = /b =2 7EEN O FHERET L, 27 T —HUR, 2001.
2. K. B. Athreya and P. E. Ney: Branching Processes, Dover 2004 (original version, Springer 1972)
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7.1 Definition

We will construct a Markov chain {X,,; n = 0,1,2,...}, where X,, models the number of individuals of the
n-th generation. Modeling the situation that each individual in any generation gives birth to a certain number
of children and dies, we assume that the number of children obeys a probability distribution common for all
individuals and is independent of individuals and of generation.

Now let Y be the number of children born from an individual and set

PY=k=pi, k=0,1,2,....

The sequence {py, p1, P2, - . - } describes the distribution of the number of children born from an individual. Let
Y1, Y,,... be independent identically distributed random variables, of which the distribution is the same as Y.
Then, we define the transition probability by

i
Pli, ) = P(yir = jiX, = ) = P[Z Y, = j], i1, j20,
k=1

and
0, j=>1,

p(O’J):{l, j=0.

Clearly, the state 0 is an absorbing one. The above Markov chain {X,} over the state space {0, 1,2, ...} is called
the Galton-Watson branching process with offspring distribution {p;; k =0,1,2,...}.
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For simplicity we assume that X, = 1. Moreover, we are interested in the case of

p0+p1<1, p2<1, ey pk<1,

In the next section on we will always assume the above conditions.

Problem 35 (One-child policy) Consider the Galton-Watson branching process with offspring distribution sat-

isfying pg + p; = 1. Calculate the probabilities
g1 =PX;=0), ¢=PX1#0,X,=0), ...,¢.=PX;#0,...,X,-1#0,X,=0),

and find the extinction probability

P= (U{Xn = 0}) = P(X,, = 0 occurs for some n > 1).

n=1

7.2 Generating Functions

Let {X,} be the Galton-Watson branching process with offspring distribution {p;; k = 0,1,2,...}.

p(, j) = P(X,+1 = jlIX,, = i) be the transition probability. We assume that X, = 1.
Define the generating function of the offspring distribution by

fr =) s
k=0
The series in the right-hand side converges for |s| < 1. We set
Jo(s) = s, Si(s) = f(s), Jn(8) = f(fam1(5)).

Lemma 7.2.1 .
Zp(i,j)sj =[f),  i=1,2,....
Jj=0

Proof By definition,

Pa =P+ +Yi=j= > PYi=ki... Y=k
ki+tki=j
k1>0,....k;>0

Since Y1, ..., Y; are independent, we have
pi= > PXi=k)-PYi=k)= > pycepe
ki+etki=j ki++ki=j

k120,....k; =0 k1 20,....k;=0

Hence,

00

ip(i, D=0 b
=0

720 kitetki=j

k1 >0,....k;>0
(o) o0
k ki
=D pust ) pus®
k=0 ki=0
= [f(s)],

which proves the assertion.
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Lemma 7.2.2 Let p,(i, j) be the n-step transition probability of the Galton-Watson branching process. We have
D s’ = LG, =12, (7.3)
j=0

Proof We prove the assertion by induction on n. First note that p;(i, j) = p(i,j) and fi(s) = f(s) by
definition. For n = 1 we need to show that

DG s =), =12, (7.4)
j=0

Which was shown in Lemma 7.2.1. Suppose that n > 1 and the claim (7.3) is valid up to n. Using the Chapman-
Kolmogorov identity, we see that

D Pt )sT = 30 plikypath, )’
J=0 Jj=0 k=0

Since

D palk, s’ = (o))

J=0

by assumption of induction, we obtain
D Pl s = ) pli LA
j=0 k=0
The right-hand side coincides with (7.4) where s is replaced by f,(s). Consequently, we come to
D st )5 = LGN = an 9T,
j=0

which proves the claim for n + 1. |
Since Xy =1,
P(Xn = ]) = P(Xn = JlXO = 1) = pn(l’])
In particular,
PX, = j)=PX; = jlXo=1) =pi(1,)) = p(1,)) = p;.

Theorem 7.2.3 Assume that the mean value of the offspring distribution is finite:

m= Z kpy < co.
k=0

Then we have

E[X,] = m".
Proof Differentiating (7.1), we obtain
F) =) ko™ sl <L (7.5)
k=0

Letting s — 1 — 0, we have
li{n0 f(s)=m.

On the other hand, setting i = 1 in (7.3), we have

D Pl )5 = Fu(9) = Fra(F(5)). (7.6)
j=0
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Differentiating both sides, we come to
£ = D" pa1, ST = £ (FD(5). (7.7)
=0
Letting s — 1 — 0, we have

Jim fi(s) = g jpu(l )= Bm £ (f(9) i f'()=m lim £,

Therefore,
lim f/(s) =m",
s—1-0

which means that

00

E(X,) = ) jPXy = )= jpa(l )= m".
j=0

=0
|

In conclusion, the mean value of the number of individuals in the n-th generation, E(X,), decreases and
converges to 0 if m < 1 and diverges to the infinity if m > 1, as n — oo. It stays at a constant if m = 1. We are
thus suggested that extinction of the family occurs when m < 1.

Problem 36 Assume that the variance of the offspring distribution is finite: V[Y] = o?
argument as in Theorem 7.2.3, prove that

< oo. By similar

O_Zmn—l(mn _ 1)

1
VIX,] = m-1__ "m*h
n

o2, m=1.

7.3 Extinction Probability

The event {X,, = 0} means that the family died out until the n-th generation. So

q= P[O{Xn = 0}]

n=1

is the probability of extinction of the family. Note that the events in the right-hand side is not mutually exclusive
but
{X,=0c{X, =0}c---c{X,=0}c....

Therefore, it holds that
q = lim P(X,, = 0). (7.8)

n—oo

If g = 1, this family almost surely dies out in some generation. If ¢ < 1, the survival probability is positive
1 — g > 0. We are interested in whether ¢ = 1 or not.

Lemma 7.3.1 Let f(s) be the generating function of the offspring distribution, and set f,(s) = f(f,-1(s)) as
before. Then we have

g = lim f,(0).

Therefore, g satisfies the equation:

q=f(@. (7.9)
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Proof It follows from Lemma 7.2.2 that
Fuls) =" pal, )s’.
=0
Hence,
Jn(0) = py(1,0) = P(X,, = 01Xo = 1) = P(X;,, = 0),
where the last identity is by the assumption of Xy = 1. The assertion is now straightforward by combining (7.8).

The second assertion follows since f(s) is a continuous function on [0, 1]. |

Lemma 7.3.2 Assume that the offspring distribution satisfies the conditions:

p0+p1<1, p2<1, ey Pk<17
Then the generating function f() verifies the following properties.

(1) f(s)is increasing, i.e., f(s;) < f(sy)for0 < s; <55 < 1.

(2) f(s)1is strictly convex, i.e.,if 0 < 51 < s, < 1and 0 < 8 < 1 we have

J@s1+ (1 =6)s3) <Of(s1) + (1 = 0)f(s2).

Proof (1) is apparent since the coefficient of the power series f(s) is non-negative. (2) follows by f”'(s) > 0.

Lemma 7.3.3 (1) If m <1, wehave f(s) > sfor0<s < 1.

(2) If m > 1, there exists a unique s such that 0 < s < 1 and f(s) = s.
Lemma 7.3.4 f1(0) < 2(0)<--- > gq.

Theorem 7.3.5 The extinction probability g of the Galton-Watson branching process as above coincides with
the smallest s such that
s = f(s), 0<s<l.

Moreover, if m < 1 we have ¢ = 1, and if m > 1 we have g < 1.

The Galton-Watson branching process is called subcritical, critical and supercritical if m < 1, m = 1 and
m > 1, respectively. The survival is determined only by the mean value m of the offspring distribution. The
situation changes dramatically at m = 1 and, following the terminology of statistical physics, we call it phase
transition.

Problem 37 Let b, p be constant numbers such that b > 0,0 < p < 1 and b+ p < 1. For the offspring distribution
given by

pe = bp*t, k=1,2,...,
po=1 —Zpk,
k=1

find the generating function f(s). Moreover, setting m = 1, find f,(s).

62



