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Overview

0.1 Stochastic Processes
We will study the probability models for time evolution of random phenomena. Measuring a certain quantity

of the random phenomenon at each time stepn = 0,1,2, . . . , we obtain a sequence of real values:

x0, x1, x2, . . . , xn, . . . .

Because of randomness, we considerxn as a realized value of a random variableXn. Here a random variable
is a variable taking several different values with certain probabilities. Thus, the time evolution of a random
phenomenon is modeled by a sequence of random variables

{Xn ; n = 0,1,2, . . . } = {X0,X1,X2, . . . ,Xn, . . . },

which is called adiscrete-time stochastic process. If the measurement is performed along with continuous time,
we need acontinuous-time stochastic process:

{Xt ; t ≥ 0}

It is our purpose to construct stochastic processes modeling typical random phenomena and to demonstrate their
properties within the framework of modern probability theory.

Figure 1: Solar spots and exchanging rates

We hope that you will obtain basic concepts and methods through the following three subjects:

0.2 One-Dimensional Random Walk and Gambler’s Ruin Problem
Let us consider coin tossing. We get+1 if the heads appears, while we get−1 (i.e., lose+1) if the tails

appears. LetZn be the value of then-th coin toss.
To be precise, we must say that{Zn} is a sequence of independent, identically distributed (iid) random vari-

ables with the common distribution

P(Zn = +1) = P(Zn = −1) =
1
2
.

In short,{Zn} is called theBernoulli trialswith success probability 1/2. Define

X0 = 0, Xn =

n∑
k=1

Zk n = 1,2, . . . .

ThenXn means the net income at the timen, or the coordinate of a drunken walker aftern steps. The discrete
time stochastic process{Xn} is calledone-dimensional random walk.
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(i) law of large numbers

(ii) diffusion speed (central limit theorem)

(iii) recurrence

(iv) long leads (law of happy time)

(v) gambler’s ruin (random walk with barriers)

0.3 Markov Chains
Consider the time evolution of a random phenomenon, where several differentstatesare observed at each

time stepn = 0,1,2, . . . . For example, for the ever-changing weather, after simplification we observe three
states: fine, cloudy, rainy. Collected data look like a sequence ofF,C,R:

F F C R F C C F R. . .

from which we may find the conditional probabilityP(X|Y) of having a weatherX just afterY. Then we come to
the transition diagram, where each arrowY→ X is asigned the conditional probabilityP(X|Y).

F

C R

The above diagram describes a general Markov chain over the three states because the transitions occur
between every possible pair of states. According to our purpose, we may consider variations. For example, we
may consider the following diagram for analysis of life span.

H

S D

b

p

q

r

a
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A Markov chain{Xn} is a discrete-time stochastic process over a state spaceS = {i, j, . . . } (always assumed
to be finite or countably infinite), which is governed by the one-step transition probability:

pi j = P(Xn+1 = j|Xn = i)

where the right hand side is independent ofn (time homogeneous). A random walk is an example of a Markov
chain. The theory of Markov chains is one of the best successful theories in probability theory for its simple
description and unexpectedly rich structure. We are interested in the following topics:

(i) stationary distribution

(ii) recurrence

(iii) average life span

(iv) survival of family names (Galton-Watson tree)

(v) birth-and-death chains

0.4 Poisson Process
Let us imagine that an eventE occurs repeatedly at random as time goes on. For example, alert of receiving

an e-mail, passengers making a queue at a bus stop, customers visiting a shop, occurrence of defect of a machine,
radiation from an atom, etc.

Figure 2: Nerve impulses

To obtain a stochastic process, we count the number of occurrence of the eventE during the time interval
[0, t], which is denoted byXt. Then we obtain a stochastic process{Xt ; t ≥ 0}. The situation is illustrated as
follows, wheret1, t2, . . . are the time whenE occurs.
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A fundamental case is described by a Poisson process, where the event happens independently each other.
The first to check is the statistics between two consecutive occurrence of events (waiting time).

(i) Applications to queuing theory (waiting lines are modeled by a Poisson process).

(ii) A birth-and-death process as generalization.

Poisson process is one of the fundamental examples of (continuous-time)Markov processes. Another is the
Brownian motion (Wiener process).

Figure 3: Two-dimensional Brownian Motion (simulation)
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1 Random Variables and Probability Distributions

1.1 Random variables
A naive account: “variablex” vs “random variableX”

A random variableX is a variable varying over a certain range of real numbers and the probability is assigned
to each possible value.

Example 1.1.1 (1) Let’s flip a coin. Heads or tails?
(2) Cut a stick and measure the length of the longer segments.
(3) Choose one person from a population and measure the weight.

1.1.1 Discrete random variables

A random variableX is calleddiscreteif the number of values thatX takes is finite or countably infinite.
To be more precise, for a discrete random variableX there exist a (finite or infinite) sequence of real numbers
a1,a2, . . . and corresponding nonnegative numbersp1, p2, . . . such that

P(X = ai) = pi , pi ≥ 0,
∑

pi = 1.

In this case
µX(dx) =

∑
i

piδai (dx) =
∑

i

piδ(x− ai)dx

is called the(probability) distributionof X.
Obviously,

P(a ≤ X ≤ b) =
∑

i:a≤ai≤b

pi

a

p
p

p

p

a a a
i

i

1 2 3

1

2

3

...

...

Example 1.1.2 (coin toss)We set

X =

1, heads,

0, tails.

Then
P(X = 1) = p, P(X = 0) = q = 1− p.

For a fair coin we setp = 1/2.

Example 1.1.3 (waiting time) Flip a fair coin repeatedly until we get the heads. LetT be the number of coin
tosses to get the first heads. (If the heads occurs at the first trial, we haveT = 1; If the tails occurs at the first trial
and the heads at the second trial, we haveT = 2, and so on.)

P(T = k) = (1− p)k−1p, k = 1,2, . . . .

1



1.1.2 Continuous random variables

A random variableX is calledcontinuousif P(X = a) = 0 for all a ∈ R. We understand intuitively thatX
varies continuously.

If there exists a functionf (x) such that

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx, a < b,

we say thatX admits aprobability density function. Note that∫ +∞

−∞
f (x)dx= 1, f (x) ≥ 0.

In this case,
µX(dx) = f (x)dx

is called the(probability) distributionof X.

a b x

f (x)

It is useful to consider thedistribution function:

FX(x) = P(X ≤ x) =
∫ x

−∞
fX(t)dt, x ∈ R.

Then we have

fX(x) =
d
dx

FX(x).

Remark 1.1.4 (1) A continuous random variable does not necessarily admit a probability density function.
But many continuous random variables in practical applications admit probability density functions.

(2) There is a random variable which is neither discrete nor continuous. But most random variables in practical
applications are either discrete or continuous.

Example 1.1.5 (random cut) Divide the interval [0, L] (L > 0) into two segments.

(1) Let X be the coordinate of the cutting point (the length of the segment containing 0).

FX(x) =


0, x < 0;

x/L, 0 ≤ x ≤ L;

1, x > L.

(2) Let M be the length of the longer segment.

FM(x) =


0, x < L/2;

(2x− L)/L, L/2 ≤ x ≤ L;

1, x > L.

2



Example 1.1.6 Let A be a randomly chosen point from the disc with radiusR> 0. LetX be the distance between
the centerO andA. We have

P(a ≤ X ≤ b) =
π(b2 − a2)
πR2

=
1
R2

∫ b

a
2xdx, 0 < a < b < R,

so the probability density function is given by

f (x) =


0, x ≤ 0,

2x
R2
, 0 ≤ x ≤ R,

0, x > R.

O

a

b

X

Figure 1.1: Random choice of a point

1.2 Probability distributions

1.2.1 Mean and variance

Definition 1.2.1 Themeanor expectation valueof a random variableX is defined by

m= E[X] =
∫ +∞

−∞
xµX(dx)

• If X is discrete, we have
E[X] =

∑
i

ai pi .

• If X admits a probability density functionf (x), we have

E[X] =
∫ +∞

−∞
x f(x)dx.

Remark 1.2.2 For a functionφ(x) we have

E[φ(X)] =
∫ +∞

−∞
φ(x)µ(dx).

For example,

E[Xm] =
∫ +∞

−∞
xmµ(dx) (m-th moment),

E[eitX] =
∫ +∞

−∞
eitxµ(dx) (characteristic function).

3



Definition 1.2.3 Thevarianceof a random variableX is defined by

σ2 = V[X] = E[(X − E[X])2] = E[X2] − E[X]2,

or equivalently,

σ2 = V[X] =
∫ +∞

−∞
(x− E[X])2µ(dx) =

∫ +∞

−∞
x2µ(dx) −

(∫ +∞

−∞
xµ(dx)

)2

.

Quiz 1.2.4 (see Example 1.1.3)Calculate the mean and variance of the waiting timeT.

Quiz 1.2.5 Let S be the length of the shorter segment obtained by randomly cutting the interval [0, L]. Calculate
the mean and variance ofS.

1.2.2 A list of discrete distributions

1. Bernoulli distribution with success probability 0≤ p ≤ 1.

(1− p)δ0 + pδ1

This is the distribution of coin toss.
m= p, σ2 = p(1− p)

Quiz 1.2.6 Let a,b be distinct real numbers. A general two-point distribution is defined by

pδa + qδb ,

where 0≤ p ≤ 1 andp+ q = 1. Determine the two-point distribution having mean 0, variance 1.

2. Binomial distribution B(n, p) (0 ≤ p ≤ 1, n ≥ 1).

n∑
k=0

(
n
k

)
pk(1− p)n−k δk

B(100,0.4)

The quantity (
n
k

)
pk(1− p)n−k

is the probability thatn coin tosses with probabilitiesp for heads andq = 1 − p for tails result ink heads and
n− k tails.

Quiz 1.2.7 Verify thatm= npandσ2 = np(1− p) for B(n, p).
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3. Geometric distribution with parameter 0≤ p ≤ 1.

∞∑
k=1

p(1− p)k−1δk

This is the distribution of waiting time for the first heads (Example 1.1.3).

Quiz 1.2.8 Verify thatm=
1
p

andσ2 =
1
p2

Remark 1.2.9 In some literatures, the geometric distribution with parameterp is defined by

∞∑
k=0

p(1− p)kδk

4. Poisson distributionwith parameterλ > 0.

∞∑
k=0

e−λ
λk

k!
δk

The mean ism= λ and varianceσ2 = λ.

0.0
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0.2
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0.4

0.5

0.6

0.7
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λ = 0.5

0.0
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0.2

0.3

0.4

0 1 2 3 4 5 6 7

λ = 1

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

λ = 3

Figure 1.2: Poisson distributionλ = 1/2,1,3

Problem 1 Setpk = e−λ
λk

k!
and consider the generating function defined by

G(z) =
∞∑

k=0

pkz
k.

(1) Compute the above sum and derive a concise expression ofG(z).

(2) By usingG′(1) show that the mean value of the Poisson distribution with parameterλ is given bym= λ.

(3) By usingG′′(1) show that the variance of the Poisson distribution with parameterλ is given byσ2 = λ.
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1.2.3 A list of continuous distributions (density functions)

1. Uniform distribution on [a,b].

f (x) =


1

b− a
, a ≤ x ≤ b,

0, otherwise

a b x

ab

1

The mean value and the variance are given by

m=
∫ b

a
x

dx
b− a

=
a+ b

2
,

σ2 =

∫ b

a
x2 dx

b− a
−m2 =

(b− a)2

12
.

2. Exponential distribution with parameterλ > 0.

f (x) =

λe−λx , x ≥ 0,

0, otherwise.

This is a model for waiting time (continuous time).

0 x

λ

Quiz 1.2.10 Verify thatm=
1
λ

andσ2 =
1
λ2

.

3. Normal (Gaussian) distribution N(m, σ2) (σ > 0, m ∈ R)

f (x) =
1

√
2πσ2

exp

{
− (x−m)2

2σ2

}
In particular,N(0,1) is called thestandard normal distribution.
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Quiz 1.2.11 Differentiating both sides of the known formula:∫ +∞

0
e−tx2

dx=

√
π

2
√

t
, t > 0,

find the values ∫ +∞

0
x2ne−x2

dx, n = 0,1,2, . . . .

Quiz 1.2.12 Prove that the abovef (x) is a probability density function. Then prove by integration that the mean
is mand the variance isσ2:

m=
1

√
2πσ2

∫ +∞

−∞
x exp

{
− (x−m)2

2σ2

}
dx,

σ2 =
1

√
2πσ2

∫ +∞

−∞
(x−m)2 exp

{
− (x−m)2

2σ2

}
dx

Problem 2 Choose randomly a pointA from the disc with radius one and letX be the radius of the inscribed
circle with centerA.

(1) Forx ≥ 0 find the probabilityP(X ≤ x).

(2) Find the probability density functionfX(x) of X. (Note thatx varies over all real numbers.)

(3) Calculate the mean and variance ofX.

(4) Calculate the mean and variance of the area of inscribed circleS = πX2.

A

X
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2 Bernoulli Trials

Repeated independent coin tosses are called theBernoulli trials, where the tossed coins are identical in the
sense that the probabilities of heads and tails remain the same throughout the trials. The Bernoulli trials form the
most fundamental stochastic process.

2.1 Independence
2.1.1 Independent events

Definition 2.1.1 (Pairwise independence)A (finite or infinite) sequence of eventsA1,A2, . . . is calledpairwise
independentif any pair of eventsAi1,Ai2 (i1 , i2) verifies

P(Ai1 ∩ Ai2) = P(Ai1)P(Ai2).

Definition 2.1.2 (Independence)A (finite or infinite) sequence of eventsA1,A2, . . . is calledindependentif any
choice of finitely many eventsAi1, . . . ,Ain (i1 < i2 < · · · < in) satisfies

P(Ai1 ∩ Ai2 ∩ · · · ∩ Ain) = P(Ai1)P(Ai2) · · ·P(Ain).

Example 2.1.3 Consider the trial to randomly draw a card from a deck of 52 cards. LetA be the event that the
result is an ace andB the event that the result is spades. ThenA, B are independent.

Example 2.1.4 An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random and letX1

be the first digit,X2 the second digit, andX3 the last digit. Fori = 1, 2,3 we define an eventAi by Ai = {Xi = 1}.
Then{A1,A2,A3} is pairwise independent but is not independent.

Remark 2.1.5 It is allowed to consider whether the sequence of events{A,A} is independent or not. If they are
independent, by definition we have

P(A∩ A) = P(A)P(A).

ThenP(A) = 0 or P(A) = 1. Notice thatP(A) = 0 does not implyA = ∅. Similarly, P(A) = 1 does not imply
A = Ω (whole event).

Quiz 2.1.6 For A we writeA# for itself A or its complementary eventAc. Prove the following assertions.

(1) If A andB are independent, so areA# andB#.

(2) If A1,A2, . . . are independent, so areA#
1,A

#
2, . . . .

Definition 2.1.7 (Conditional probability) For two eventsA, B theconditional probability of A relative to B(or
on the hypothesis B, or for given B) is defined by

P(A|B) =
P(A∩ B)

P(B)

wheneverP(B) > 0.

Theorem 2.1.8 Let A, B be events withP(A) > 0 andP(B) > 0. Then, the following assertions are equivalent:

(i) A, B are independent;

(ii) P(A|B) = P(A);

(iii) P(B|A) = P(B);
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2.1.2 Independent random variables

Definition 2.1.9 A (finite or infinite) sequence of random variablesX1,X2, . . . is independent(resp. pairwise
independent) if so is the sequence of events{X1 ≤ a1}, {X1 ≤ a2}, . . . for anya1,a2, · · · ∈ R.

In other words, a (finite or infinite) sequence of random variablesX1,X2, . . . is independent if for any finite
Xi1, . . . ,Xin (i1 < i2 < · · · < in) and constant numbersa1, . . . ,an

P(Xi1 ≤ a1 ,Xi2 ≤ a2 , . . . ,Xin ≤ an) = P(Xi1 ≤ a1)P(Xi2 ≤ a2) · · ·P(Xin ≤ an) (2.1)

holds. Similar assertion holds for the pairwise independence.
If random variablesX1,X2, . . . are discrete, (2.1) may be replaced with

P(Xi1 = a1 ,Xi2 = a2 , . . . ,Xin = an) = P(Xi1 = a1)P(Xi2 = a2) · · ·P(Xin = an).

Example 2.1.10Choose at random a point from the rectangleΩ = {(x, y) ; a ≤ x ≤ b, c ≤ y ≤ d}. Let X denote
thex-coordinates of the chosen point andY they-coordinates. ThenX,Y are independent.

2.2 Covariance and Correlation Coefficient
Recall that the mean of a random variableX is defined by

mX = E(X) =
∫ +∞

−∞
xµX(dx).

Theorem 2.2.1 (Linearity) For two random variablesX,Y and two constant numbersa,b it holds that

E(aX+ bY) = aE(X) + bE(Y).

Theorem 2.2.2 (Multiplicativity) If random variablesX1,X2, . . . ,Xn are independent, we have

E[X1X2 · · ·Xn] = E[X1] · · ·E[Xn]. (2.2)

Proof We first prove the assertion forXk = 1Ak (indicator random variable). By definitionX1, . . . ,Xn are
independent if and only if so areA1, . . . ,An. Therefore,

E[X1 · · ·Xn] = E[1A1∩···∩An] = P(A1 ∩ · · · ∩ An)

= P(A1) · · ·P(An) = E[X1] · · ·E[Xn].

Thus (2.2)is verified. Then, by linearity the assertion is valid forXk taking finitely many values (finite linear
combination of indicator random variables). Finally, for generalXk, coming back to the definition of Lebesgue
integration, we can prove the assertion by approximation argument.

Thevarianceof X is defined by

σ2
X = V(X) = E[(X −mX)2] = E[X2] − E[X]2.

By means of the distributionµ(dx) of X we may write

V(X) =
∫ +∞

−∞
(x−mX)2µ(dx) =

∫ +∞

−∞
x2µ(dx) −

(∫ +∞

−∞
xµ(dx)

)2

.

Definition 2.2.3 Thecovarianceof two random variablesX,Y is defined by

σXY = E[(X − E(X))(Y− E(Y))] = E[XY] − E[X]E[Y].

In particular,σXX = σ
2
X becomes the variance ofX.

Definition 2.2.4 X,Y are called uncorrelated ifσXY = 0. They are called positively (resp. negatively) correlated
if σXY > 0 (resp.σXY < 0).
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Theorem 2.2.5 If two random variablesX,Y are independent, they are uncorrelated.

Remark 2.2.6 The converse of Theorem 2.2.5 is not true in general. LetX be a random variable satisfying

P(X = −1) = P(X = 1) =
1
4
, P(X = 0) =

1
2

and setY = X2. Then,X,Y are not independent, butσXY = 0.

Problem 3 Let X andY be random variables such that

P(X = a) = p1, P(X = b) = q1 = 1− p1, P(Y = c) = p2, P(Y = d) = q2 = 1− p2,

wherea,b, c, d are constant numbers and 0< p1 < 1, 0< p2 < 1. Show thatX,Y are independent ifσXY = 0. [In
general, uncorrelated random variables are not necessarily independent. Hence, this falls into a very particular
situation.]

Theorem 2.2.7 (Additivity of variance) Let X1,X2, . . . ,Xn be random variables, any pair of which is uncorre-
lated. Then

V

 n∑
k=1

Xk

 = n∑
k=1

V[Xk].

Definition 2.2.8 Thecorrelation coefficientof two random variablesX,Y is defined by

ρXY =
σXY

σXσY
,

wheneverσX > 0 andσY > 0.

Theorem 2.2.9−1 ≤ ρXY ≤ 1 for two random variablesX,Y with σX > 0,σY > 0.

Problem 4 Throw two dice and letL be the larger spot andS the smaller. (If double spots, setL = S.)

(1) Calculate the covarianceσLS and the correlation coefficientrLS .

(2) Are L,S independent?

2.3 Bernoulli trials
Definition 2.3.1 A sequence of random variables (or a discrete-time stochastic process){X1,X2, . . . ,Xn, . . . } is
called theBernoulli trials with success probabilityp (0 ≤ p ≤ 1) if they are independent and have the same
distribution as

P(Xn = 1) = p, P(Xn = 0) = q = 1− p.

By definition we have

P(X1 = ξ1,X2 = ξ2, . . . ,Xn = ξn) =
n∏

k=1

P(Xk = ξk) for all ξ1, ξ2, . . . , ξn ∈ {0,1}.

In general, statistical quantity in the left-hand side is called thefinite dimensional distributionof the stochastic
process{Xn}. The total set of finite dimensional distributions characterizes a stochastic process.

Definition 2.3.2 (binomial process)Let {Xn} be Bernoulli trials with success probabilityp. The stochastic pro-
cess{Sn} defined by

Sn =

n∑
k=1

Xk S0 = 0. (2.3)

is called thebinomial process.

SinceSn counts the number of success during the firstn trials, we know that

Sn ∼ B(n, p).

Asymptotic properties of a binomial process are very important.
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2.4 Law of Large Numbers (LLN)
2.4.1 Observation

Let {Xn} be a Bernoulli trial with success probability 1/2, namely, tossing a fair coin, and consider the
binomial process defined by

Sn =

n∑
k=1

Xk.

SinceSn counts the number of heads during the firstn trials,

Sn

n
=

1
n

n∑
k=1

Xk

gives the relative frequency of heads during the firstn trials.
Computer simulation is easy. The following is just one example showing that the relative frequency of heads

Sn/n tends to 1/2.
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Figure 2.1: Relative frequency of headsSn/n

It is our aim to show this mathematically. However, we cannot accept a naive formula:

lim
n→∞

Sn

n
=

1
2

(2.4)

because

1. Notice thatSn/n is a random variable taking values in{0,1/n,2/n, . . . ,1}.

2. From one series of trialsω = (ω1, ω2, . . . ) we obtain a sequence of relative frequencies:

S1(ω),
S2(ω)

2
,

S3(ω)
3
, . . . ,

Sn(ω)
n
, . . . .

3. For example, forω = (1,1,1, . . . ), Sn/n converges to 1; Forω = (0,0,0, . . . ), Sn/n converges to 0.
Moreover, for any 0≤ t ≤ 1 there existsω such thatSn/n converges tot; there existsω such thatSn/n
does not converge (oscillating).

4. Namely, it is impossible to show the limit formula (2.4) forall samplesω.

Therefore, to show the empirical fact (2.4) we need someprobabilistic formulation.

2.4.2 Law of Large Numbers

Theorem 2.4.1 (Weak Law of Large Numbers)Let X1,X2, . . . be identically distributed random variables with
meanm and varianceσ2. (This means thatXi has a finite variance.) IfX1,X2, . . . are uncorrelated, for anyϵ > 0
we have

lim
n→∞

P


∣∣∣∣∣∣∣1n

n∑
k=1

Xk −m

∣∣∣∣∣∣∣ ≥ ϵ
 = 0.
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We say that
1
n

n∑
k=1

Xk converges tom in probability.

Remark 2.4.2 In many literatures the weak law of large numbers is stated under the assumption thatX1,X2, . . .
are independent. It is noticeable that the same result holds under the weaker assumption of being uncorrelated.

Theorem 2.4.3 (Chebyshev inequality)Let X be a random variable with meanm and varianceσ2. Then, for
anyϵ > 0 we have

P(|X −m| ≥ ϵ) ≤ σ
2

ϵ2
.

Proof By definition we have

m= E[X] =
∫
Ω

X(ω) P(dω),

σ2 = E[(X −m)2] =
∫
Ω

(X(ω) −m)2P(dω).

The above integral for the variance is divided into two parts as follows:

σ2 =

∫
Ω

(X(ω) −m)2P(dω)

=

∫
|X−m|≥ϵ

(X(ω) −m)2P(dω) +
∫
|X−m|<ϵ

(X(ω) −m)2P(dω)

Then we have

σ2 ≥
∫
|X−m|≥ϵ

(X(ω) −m)2P(dω) ≥
∫
|X−m|≥ϵ

ϵ2P(dω) = ϵ2P(|X −m| ≥ ϵ),

as desired.

Proof [Theorem 2.4.1 (Weak Law of Large Numbers)] For simplicity we set

Y = Yn =
1
n

n∑
k=1

Xk .

The mean value is given by

E[Y] =
1
n

n∑
k=1

E[Xk] = m.

Let us compute the variance. SinceE[XkXl ] = E[Xk]E[Xl ] (k , l) by assumption of being uncorrelated, we have

E[Y2] =
1
n2

n∑
k,l=1

E[XkXl ]

=
1
n2

 n∑
k=1

E[X2
k ] +

∑
k,l

E[XkXl ]


=

1
n2

 n∑
k=1

(
V[Xk] + E[Xk]

2
)
+

∑
k,l

E[Xk]E[Xl ]


=

1
n2

{
nσ2 + nm2 + (n2 − n)m2

}
=
σ2

n
+m2.

Therefore,

V[Y] = E[Y2] − E[Y]2 =
σ2

n
.
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On the other hand, applying Chebyshev inequality, we have

P(|Y−m| ≥ ϵ) ≤ V[Y]
ϵ2
=
σ2

nϵ2
.

Consequently,
lim
n→∞

P(|Yn −m| ≥ ϵ) = 0,

as desired.

Example 2.4.4 (Coin-toss)

In fact, we have a stronger result.

Theorem 2.4.5 (Strong law of large numbers)Let X1,X2, . . . be identically distributed random variables with
meanm. (This means thatXi has a mean but is not assumed to have a finite variance.) IfX1,X2, . . . are pairwise
independent, we have

P

 lim
n→∞

1
n

n∑
k=1

Xk = m

 = 1.

In other words,

lim
n→∞

1
n

n∑
k=1

Xk = m a.s.

Remark 2.4.6 Kolmogorov proved the strong law of large numbers under the assumption thatX1,X2, . . . are
independent. In many literatures, the strong law of large numbers is stated as Kolmogorov proved. Its proof
being based on the so-called “Kolmogorov’s almost sure convergence theorem,” we cannot relax the assumption
of independence. Theorem 2.4.5 is due to N. Etemadi (1981), where the assumption is relaxed to being mutually
independent and the proof is more elementary, see also books by Sato, by Durrett, etc.

2.5 Central Limit Theorem (CLT)
2.5.1 De Moivre–Laplace theorem

From numerical computation we see that the binomial distributionB(n, p) is close to the normal distribution
having the same meanm= npand the varianceσ2 = np(1− p):

B(n, p) ≈ N(np,np(1− p)) (2.5)

We see that the matching becomes better for largern.
The approximation (2.5) means that distribution functions are almost the same: For a random variableS

obeying the binomial distributionB(n, p) we have

P(S ≤ x) ≈ 1
√

2πσ2

∫ x

−∞
e−(t−m)2/2σ2

dt, m= np, σ2 = np(1− p).

Changing the variables, we come to

P(S ≤ x) ≈ 1
√

2π

∫ (x−m)/σ

−∞
e−t2/2dt.

Noting the obvious identity:

P(S ≤ x) = P
(S −m
σ
≤ x−m
σ

)
and replacing (x−m)/σ with x, we obtain

P

 S − np√
np(1− p)

≤ x

 ≈ 1
√

2π

∫ x

−∞
e−t2/2dt. (2.6)

The right-hand side is an integral with respect to the normal lawN(0,1) and is independent ofn. The identity
(2.6) provides the best formulation of the fact that (2.5) becomes better approximation for largern.
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Figure 2.2: The normal distribution whose mean and variance are the same asB(100,0.4)

Theorem 2.5.1 (de Moivre–Laplace theorem)Let 0 < p < 1. Let Sn be a random variable obeying the bino-
mial distributionB(n, p). Then,

lim
n→∞

P

 Sn − np√
np(1− p)

≤ x

 = 1
√

2π

∫ x

−∞
e−t2/2dt. (2.7)

In short, the binomial distributionB(n, p) is close to the normal distributionN(np,np(1−p)) asn tends to infinity.

The proof is omitted, see the relevant books.

2.5.2 Central Limit Theorem

We start with an alternative form of Theorem 2.5.1. LetZ1,Z2, . . . be the Bernoulli trials with success
probability p. Define the normalization by

Z̄k =
Zk − p√
p(1− p)

.

ThenZ̄1, Z̄2, . . . become iid random variables with mean 0 and variance 1.
Since we have

Sn − np√
np(1− p)

=
1
√

n

n∑
k=1

Zk − p√
p(1− p)

=
1
√

n

n∑
k=1

Z̄k

(2.7) becomes

lim
n→∞

P

 1
√

n

n∑
k=1

Z̄k ≤ x

 = 1
√

2π

∫ x

−∞
e−t2/2dt.

Indeed, the above limit formula holds for general iid random variables.

Theorem 2.5.2 (Central Limit Theorem) Let X1,X2, . . . be iid random variables with mean 0 and variance 1.
Then, for anyx ∈ R it holds that

lim
n→∞

P

 1
√

n

n∑
k=1

Xk ≤ x

 = 1
√

2π

∫ x

−∞
e−t2/2dt.

In short, the distribution of
1
√

n

n∑
k=1

Xk converges weakly to the standard normal distributionN(0,1) asn→ ∞.
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For the proof we need the characteristic function of a distribution.

Definition 2.5.3 Thecharacteristic functionof a random variableX is defined by

φ(z) = E[eizX] =
∫ +∞

−∞
eizxµ(dx), z ∈ R,

whereµ(dx) is the distribution ofX. We also say thatφ(z) is the characteristic function ofµ(dx).

Theorem 2.5.4 (Glivenko) Let µ1, µ2, . . . , µ be a sequence of probability distributions andφ1, φ2, . . . , φ their
characteristic functions. If limn→∞ φn(z) = φ(z) holds for allz ∈ R, thenµn converges weakly toµ. In other
words, lettingF1, F2, . . . , F be distribution functions ofµ1, µ2, . . . , µ, we have

lim
n→∞

Fn(x) = F(x)

for all continuous pointx of F.

Proof of Central Limit Theorem (outline) 1) Letφn(z) be the characteristic function of
1
√

n

n∑
k=0

Xk, i.e.,

φn(z) = E

exp
{ iz
√

n

n∑
k=0

Xk

} . (2.8)

On the other hand, it is known that the characteristic function ofN(0,1) is given bye−z2/2 (Quiz 2.5.6). By virtue
of Glivenko’s theorem it is sufficient to show that

lim
n→∞
φn(z) = e−z2/2, z ∈ R. (2.9)

2) The characteristic functions ofX1,X2, . . . are identical, since they have the same distribution. We set

φ(z) = E[eizX1].

SinceX1,X2, . . . are independent, we have

φn(z) =
n∏

k=1

E
[
exp

{ iz
√

n
Xk

}]
= φ

( z
√

n

)n
. (2.10)

3) By Taylor expansion we write

ei z√
n

X1 = 1+ i
z
√

n
X1 −

z2

2n
X2

1 + Rn(z)

and take the expectation

φ
( z
√

n

)
= E

[
ei z√

n
X1] = 1− z2

2n
+ E[Rn(z)],

whereE[X1] = 0 andV[X1] = 1 are taken into account. Hence (2.10) becomes

φn(z) =
(
1− z2

2n
+ E[Rn(z)]

)n

. (2.11)

4) We note a general limit theorem for the exponential function (Quiz 2.5.7).
5) We need to prove that

lim
n→∞

nE[Rn(z)] = 0. (2.12)

In fact, by 4) we obtain

lim
n→∞
φn(z) = lim

n→∞

(
1− z2

2n
+ E[Rn(z)]

)n

= e−z2/2.

15



6) We have a useful inequality:∣∣∣∣∣∣eix −
(
1+ ix +

(ix)2

2!

)∣∣∣∣∣∣ ≤ min

{
|x|3
6
, |x|2

}
, x ∈ R. (2.13)

(Try to prove!) Then we obtain

|Rn(z)| ≤ min

1
6

∣∣∣∣∣∣ z
√

n
X1

∣∣∣∣∣∣3 ,
∣∣∣∣∣∣ z
√

n
X1

∣∣∣∣∣∣2


and

|nE[Rn(z)]| ≤ E[n|Rn(z)|] ≤ |z|2E
[
min

{
|z|

6
√

n
|X1|3, |X1|2

}]
. (2.14)

Note that

min

{
|z|

6
√

n
|X1|3, |X1|2

}
≤ |X1|2

andE[|X1|2] < ∞ by assumption. Then, applying the Lebesgue convergence theorem we come to

lim
n→∞

E
[
min

{
|z|

6
√

n
|X1|3, |X1|2

}]
= E

[
lim
n→∞

min

{
|z|

6
√

n
|X1|3, |X1|2

}]
= 0,

which shows (2.12).

Remark 2.5.5 In the above proof we did not requireE[|X1|3] < ∞. If E[|X1|3] < ∞ is satisfied, (2.12) follows
more easily without appealing to the Lebesgue convergence theorem.

Quiz 2.5.6 Calculate the characteristic function of the standard normal distribution:

1
√

2π

∫ +∞

−∞
eizxe−x2/2dx= e−z2/2, z ∈ R.

Quiz 2.5.7 Let a ∈ C and let{ϵn} be a sequence of complex numbers converging to 0. Prove that

lim
n→∞

(
1+

a
n
+
ϵn
n

)n
= ea.

Problem 5 (Monte Carlo simulation) Let x1, x2, . . . is a sequence taken randomly from [0,1]. Then for a con-
tinuous functionf (x) on the interval [0,1], the mean

1
n

n∑
k=1

f (xk)

is considered as a good approximation of the integral∫ 1

0
f (x)dx.

(1) Explain the above statement by means of law of large numbers and central limit theorem.

(2) By using a computer, verify the above fact forf (x) =
√

1− x2.
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3 Random Walks

3.1 One-Dimensional Random Walks
Let us model a drunken man (random walker) walking along a straight road. Suppose that the random walker

chooses the direction (left or right) randomly at each step. Let the probability of choosing the right-move bep
and the left-moveq (p > 0, q > 0, p+ q = 1). These are assumed to be independent of the position and time.

s s s s s s s
0−1−2−3 1 2 3

�
q

-
p

Let Xn denote the position of the random walker at timen. We assume that the random walker sits at the
origin 0 at timen = 0, namely,X0 = 0. Then{Xn} becomes a discrete time stochastic process, which is called the
one-dimensional random walk.

To be more precise, introduce a stochastic process{Zn} satisfying

(i) P(Zn = 1) = p andP(Zn = −1) = q = 1− p with 0 < p < 1;

(ii) Z1,Z2, . . . are independent.

We call{Zn} Bernoulli trials too. Define

X0 = 0, Xn =

n∑
k=1

Zk , n ≥ 1. (3.1)

The stochastic process{Xn} is called theone-dimensional random walkwith right-move probabilityp and the
left-move probabilityq = 1− p.

Computer simulation is easy.

Figure 3.1: Random walk (p = q = 1/2)

Theorem 3.1.1 Xn is a random variable taking values in{−n,−n+2, . . . ,n−2,n}. The distribution ofXn is given
by

P(Xn = n− 2k) =

(
n
k

)
pn−kqk, k = 0,1,2, . . . , n.
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Proof Let k = 0,1,2, . . . ,n. We observe that

Xn = Z1 + Z2 + · · · + Zn = n− 2k = (n− k) − k

if and only if the number ofi’s such thatZi = −1 isk, and the one such thatZi = 1 isn− k. Therefore,

P(Xn = n− 2k) =

(
n
k

)
pn−kqk,

as desired.

Theorem 3.1.2 It holds that
E[Xn] = (p− q)n, V[Xn] = 4pqn.

Proof Note first that
E[Zk] = p− q, V[Zk] = 4pq.

Then, by linearity of the expectation we have

E[Xn] =
n∑

k=1

E[Zk] = (p− q)n.

Since{Zn} is independent, by the additivity of variance we have

V[Xn] =
n∑

k=1

V[Zk] = 4pqn.

The distribution ofXn tells us where the random walker at timen is found. It has fluctuation around the men
value (p − q)n. The range ofXn grows asn → ∞ and so does the variance. It is noticeable that the growth of
variance is promotional ton. Finally, we note that the distribution is approximated by the normal distribution
N((p− q)n,4pqn) for a largen (de Moivre–Laplace theorem).

0

(p−q )n

n

x

Theorem 3.1.3 Let {Xn} be the random walk as above. The covariance is

Cov(Xm,Xm+n) = E[(Xm − E[Xm])(Xm+n − E[Xm+n])] = 4pqm

and the correlation coefficient is

ρ(Xm,Xm+n) =
Cov(Xm,Xm+n)
√

V[Xm]
√

V[Xm+n]
=

√
m

m+ n
.

Problem 6 Let {Xn} be the random walk defined by (3.1). A time point 1≤ k ≤ n− 1 is calledturn if

Xk−1 < Xk > Xk+1 or Xk−1 > Xk < Xk+1

Find the distribution of the number of turns up to timen. Namely, lettingN be the number of turns, findP(N = j)
for j = 0,1,2, . . . .
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3.2 Recurrence
Will a random walker return to the origin in finite time? More precisely, we are interested in the probability

that a random walker will return to the origin in finite time.
As in the previous section, letXn be the position of a random walker starting from the origin (i.e.,X0 = 0)

with right-move probabilityp and left-move probabilityq. Since the random walker returns to the origin only
after even steps, we need to calculate

R= P

 ∞∪
n=1

{X2n = 0}
 . (3.2)

It is important to note that
∞∪

n=1

{X2n = 0}

is not the sum of disjoint events.
Let p2n be the probability that the random walker is found at the origin at time 2n, that is,

p2n = P(X2n = 0) =

(
2n
n

)
pnqn =

(2n)!
n!n!

pnqn, n = 1, 2, . . . . (3.3)

For convenience set
p0 = 1.

Note that the right hand side of (3.2) is not the sum ofp2n. Instead, we need to consider the probability that the
random walker returns to the origin after 2n steps but not before:

q2n = P(X2 , 0, X4 , 0, . . . ,X2n−2 , 0, X2n = 0) n = 1,2, . . . .

Notice the difference betweenp2n andq2n.
The following definition is useful.

Definition 3.2.1 We set
T = inf {n ≥ 1 ; Xn = 0}, (3.4)

whereT = +∞ for {n ≥ 1 ; Xn = 0} = ∅. We callT thefirst hitting timeto the origin. (Strictly according to our
definition in Chapter 1,T is not a random variable. It is, however, commonly accepted that a random variable
takes values in (−∞,+∞) ∪ {±∞}.)

By definition we have
P(T = 2n) = q2n (3.5)

and the return probability is given by

R= P(T < ∞) =
∞∑

n=1

q2n. (3.6)

A direct calculation ofq2n will be given in the next section. Here we apply the method of generating functions.
The key relation between{p2n} and{q2n} is given by

p2n =

n∑
k=1

q2kp2n−2k, n = 1,2, . . . ; p0 = 1, (3.7)

which is easily verified by observing when the random walker returning to the origin after 2n steps hits first the
origin. Define the generating functions of{p2n} and{q2n} by

g(z) =
∞∑

n=0

p2nz2n, h(z) =
∞∑

n=1

q2nz2n. (3.8)
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These are convergent in|z| ≤ 1. Multiplying z2n to both sides of (3.7) and summing up overn, we obtain

g(z) − 1 =
∞∑

n=1

n∑
k=1

q2kz
2kp2n−2kz

2n−2k

=

∞∑
k=1

∞∑
n=0

q2kz
2kp2nz2n

= h(z)g(z).

Hence,

h(z) = 1− 1
g(z)
. (3.9)

On the other hand, by the formula of the binomial coefficients we can computeg(z) explicitly (Problem 7).
In fact, we have

g(z) =
∞∑

n=0

p2nz2n =

∞∑
n=0

(
2n
n

)
pnqnz2n =

1√
1− 4pqz2

so that (3.9) becomes

h(z) = 1− 1
g(z)
= 1−

√
1− 4pqz2. (3.10)

Lettingz→ 1− 0, we see that

R= h(1) =
∞∑

n=1

q2n = 1−
√

1− 4pq= 1− |p− q|.

Here we used a general property stated in Problem 8. Thus, we come to the following

Theorem 3.2.2 Let R be the probability that a random walker starting from the origin returns to the origin in
finite time. Then we have

R= 1− |p− q|.

Definition 3.2.3 A random walk is calledrecurrentif R= 1, otherwise it is calledtransient.

Theorem 3.2.4 The one-dimensional random walk is recurrent if and only ifp = q = 1/2 (isotropic). It is
transient if and only ifp , q.

When a random walk is recurrent, it is meaningful to consider the mean recurrent time.

Theorem 3.2.5 (Null recurrence) The mean recurrent time of the isotropic, one-dimensional random walk is
infinity: E[T] = +∞.

Proof Let T be the first hitting time to the origin. The mean recurrent time is given by

E(T) =
∞∑

n=1

2nP(T = 2n) =
∞∑

n=1

2nq2n. (3.11)

On the other hand, in view of (3.8) and (3.10) we see that the generating function forp = q = 1/2 is given by

h(z) =
∞∑

n=1

q2nz2n = 1−
√

1− z2 .

Differentiating with respect toz, we have

h′(z) =
∞∑

n=1

2nq2nz2n−1 =
z

√
1− z2

.
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Lettingz→ 1− 0, we have

E(T) =
∞∑

n=1

2nq2n = lim
z→1−0

h′(z) = lim
z→1−0

z
√

1− z2
= +∞.

This completes the proof.

Remark 3.2.6 We will study the recurrence of a random walk within the framework of a general Markov chain.

Remark 3.2.7 Some relations between{p2n} and{q2n}.

q2n =
2pq
n

p2n−2 , n ≥ 1,

q2n = 4pqp2n−2 − p2n , n ≥ 1.

Problem 7 Let α be a real constant. Using the binomial expansion:

(1+ x)α =
∞∑

n=0

(
α

n

)
xn, |x| < 1,

prove that
∞∑

n=0

(
2n
n

)
zn =

1
√

1− 4z
, |z| < 1

4
.

Problem 8 Let an ≥ 0 for n = 0,1,2, . . . and assume that the radius of convergence of the power series

f (x) =
∞∑

n=0

anxn

is ≥ 1. Prove

lim
x→1−0

f (x) =
∞∑

n=0

an

holds including the case of∞ = ∞. [Hint] Verify the following two inequalities:

lim inf
x→1−0

f (x) ≥
N∑

n=0

an , N ≥ 1,

f (x) ≤
∞∑

n=0

an , x < 1.

3.3 The Catalan Number
The Catalan number is a famous number known in combinatorics (Eugène Charles Catalan, 1814–1894).

Richard P. Stanley (MIT) collected many appearances of the Catalan numbers (http://www-math.mit.edu/ rstan/ec/).
We start with the definition. Letn ≥ 1 and consider a sequence (ϵ1, ϵ2, . . . , ϵn) of ±1, that is, an element of

{−1,1}n. This sequence is called aCatalan pathif

ϵ1 ≥ 0

ϵ1 + ϵ2 ≥ 0

· · ·
ϵ1 + ϵ2 + · · · + ϵn−1 ≥ 0

ϵ1 + ϵ2 + · · · + ϵn−1 + ϵn = 0.

It is apparent that there is no Catalan path of odd length.
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Definition 3.3.1 The n-th Catalan numberis defined to be the number of Catalan paths of length 2n and is
denoted byCn. For convenience we setC0 = 1.

The first Catalan numbers forn = 0,1,2,3, ... are

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440, ...

We will derive a concise expression for the Catalan numbers by using a graphical representation. Considern× n
grid with the bottom-left corner being given the coordinate (0,0). With each sequence (ϵ1, ϵ2, . . . , ϵn) consisting
of ±1 we associate vectors

ϵk = +1↔ uk = (1,0) ϵk = −1↔ uk = (0,1)

and consider a polygonal line connecting

(0,0), u1, u1 + u2, . . . , u1 + u2 + · · · + un−1, u1 + u2 + · · · + un−1 + un

in order. Ifϵ1 + ϵ2 + · · · + ϵn−1 + ϵn = 0, the final vertex becomes

u1 + u2 + · · · + un−1 + un = (n,n)

so that the obtained polygonal line is a shortest path connecting (0,0) and (n,n) in the grid.

Lemma 3.3.2 There is a one-to-one correspondence between the Catalan paths of length 2n and the shortest
paths connecting (0,0) and (n,n) which do not pass the upper region of the diagonaly = x.

Theorem 3.3.3 (Catalan number)

Cn =
(2n)!

(n+ 1)!n!
, n = 0,1,2, . . . ,

Proof Forn = 0 it is apparent by the definition 0!= 1. Supposen ≥ 1. We see from Fig. 3.3 that

Cn =

(
2n
n

)
−

(
2n

n+ 1

)
=

(2n)!
n!(n+ 1)!

,

as desired.

Lemma 3.3.4 The generating function of the Catalan numbersCn is given by

f (z) =
∞∑

n=0

Cnzn =
1−
√

1− 4z
2z

. (3.12)
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Proof Problem 9.

An alternative representation of the Catalan paths: Consider in thexy-plane a polygonal line connecting the
vertices:

(0,0), (1, ϵ1), (2, ϵ1 + ϵ2), . . . , (n− 1, ϵ1 + ϵ2 + · · · + ϵn−1), (n, ϵ1 + ϵ2 + · · · + ϵn−1 + ϵn)

in order. Then, there is a one-to-one correspondence between the Catalan paths of length 2n and the sample
paths of a random walk starting 0 at time 0 and returning 0 at time 2n staying always in the half line [0,+∞).
Therefore,

Lemma 3.3.5 Let n ≥ 1. The number of sample paths of a random walk starting 0 at time 0 and returning 0 at
time 2n staying always in the half line [0,+∞) is the Catalan numberCn.

Theorem 3.3.6 Let {Xn} be the random walk starting from 0 with right-move probabilityp and left-move prob-
ability q. Let T be the first hitting-time to 0. Then

q2n = P(T = 2n) = 2Cn−1(pq)n, n = 1,2, . . . .

Proof Obviously, we have

q2n = P(X2 , 0, X4 , 0, . . . ,X2n−2 , 0, X2n = 0)

= P(X1 > 0, X2 > 0, X3 > 0, . . . ,X2n−2 > 0, X2n−1 > 0, X2n = 0)

+ P(X1 < 0, X2 < 0, X3 < 0, . . . ,X2n−2 < 0, X2n−1 < 0, X2n = 0).

In view of Fig. 3.3 we see that

P(X1 > 0, X2 > 0, X3 > 0, . . . ,X2n−2 > 0, X2n−1 > 0, X2n = 0) = p×Cn−1(pq)n−1 × q.

Then the result is immediate.

p q

0 2n

2n-2

Figure 3.2: CalculatingP(X1 > 0, X2 > 0, . . . ,X2n−1 > 0, X2n = 0)

Problem 9 Find the Catalan numbersCn in the following steps.

(1) Prove thatCn =

n∑
k=1

Ck−1Cn−k by using graphical expressions.

(2) Using (1), prove that the generating function of the Catalan numbersf (z) =
∞∑

n=0

Cnzn verifies

f (z) − 1 = z{ f (z)}2.

(3) Find f (z).

(4) Using Taylor expansion off (z) obtained in (3), findCn.
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Problem 10 In them× (m+ n) grid consider a shortest path connecting (0,0) and (m+ n,m) which do not pass
the region upper than the line connecting (0,0) and (m,m). Show that the number of such paths is given by

(2m+ n)!(n+ 1)
m!(m+ n+ 1)!

.

Problem 11 Using Theorem 3.3.6 and the generating function of the Catalan numbers, give alternative proofs
of the following results.

(1) [Theorem 3.2.2]R= 1− |p− q|.

(2) [Theorem 3.2.5] Ifp = q, thenE[T] = +∞.

Problem 12 Let {Xn} be a random walk starting from 0 with right-movep and left-moveq. Show that

P(X1 ≥ 0,X2 ≥ 0, . . . ,X2n−1 ≥ 0)

= P(X1 ≥ 0,X2 ≥ 0, . . . ,X2n ≥ 0) = 1− q
n−1∑
k=0

Ck(pq)k

for n = 1,2, . . . , whereCk is the Catalan number. Using this result, show next that

P (Xn ≥ 0 for all n ≥ 1) =

1− q
p
, p > q,

0, p ≤ q.

3.4 The Law of Long Lead
Let us consider an isotropic random walk{Xn}, namely, letting{Zn} be the Bernoulli trials such that

P(Zn = +1) = P(Zn = −1) =
1
2
,

we set

X0 = 0, Xn =

n∑
k=1

Zk .

Fig. 3.3 shows sample paths ofX0,X1,X2, . . . ,X10000. We notice that these are just two examples among many
different patterns.

Figure 3.3: Sample paths of a random walk up to time 10000

By the law of large numbers we know that±1 occur almost 5000 times. In fact, we see from the value of
X10000 that±1 occur 5000± 50 times. In other words, along the polygonal line the up-move and down-move
occur almost the same times, however, the polygonal line stays more often in the upper or lower half region.
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We say that a random walk stays in the positive region in the time interval [i, i + 1] if Xi ≥ 0 andXi+1 ≥ 0.
Similarly, we say that a random walk stays in the negative region in the time interval [i, i + 1] if Xi ≤ 0 and
Xi+1 ≤ 0. Let

W(2k|2n), n = 1,2, . . . , k = 0,1, . . . , n,

be the probability that the total time of the random walk staying in the positive region during [0,2n] is 2k.
Remind that in this section we only consider an isotropic random walk (p = q = 1/2). Forn = 1 we have

W(2|2) = 2×
(
1
2

)2

=
1
2
, W(0|2) = 2×

(
1
2

)2

=
1
2
.

Similarly, we have

W(4|4) = 6×
(
1
2

)4

, W(2|4) = 4×
(
1
2

)4

, W(0|4) = 6×
(
1
2

)4

,

W(6|6) = 20×
(
1
2

)6

, W(4|6) = 12×
(
1
2

)6

, W(2|6) = 12×
(
1
2

)6

, W(0|6) = 20×
(
1
2

)6

,

0

2 4 6

For generalW(2k|2n) we start with some simple calculations. First recall that

p2n ≡ P(X2n = 0) =

(
2n
n

)(1
2

)2n

, n = 0,1,2, . . . ,

q2n ≡ P(T = 2n) = 2P(X1 > 0,X2 > 0, . . . ,X2n−1 > 0,X2n = 0)

= 2Cn−1

(1
2

)2n

=
1
2n

p2n−2, n = 1,2, . . . .

Lemma 3.4.1 Forn = 1,2, . . . we have

P(X1 , 0,X2 , 0, . . . ,X2n−1 , 0,X2n , 0) = p2n .

Proof By direct verification we see that

p2n−2 − p2n =

(
2n− 2
n− 1

)(1
2

)2n−2

−
(
2n
n

)(1
2

)2n

=
1
2n

(2n− 2)!
(n− 1)!(n− 1)!

(1
2

)2n−2

=
1
2n

p2n−2 = q2n .
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Hence

P(X1 , 0,X2 , 0, . . . ,X2n−1 , 0,X2n , 0)

= P(T ≥ 2n+ 2) =
∞∑

k=n+1

q2k =

∞∑
k=n+1

(p2k−2 − p2k) = p2n,

which completes the proof.

Lemma 3.4.2 Forn = 1,2, . . . we have

P(X1 ≥ 0,X2 ≥ 0, . . . ,X2n−1 ≥ 0,X2n ≥ 0) = p2n .

Proof Taking the complement into account, we only need to use the relation:

q2n = p2n−2 − p2n =
1
2n

p2n−2 .

Theorem 3.4.3 Forn = 1,2, . . . it holds that

W(2k|2n) = p2kp2n−2k =

(
2k
k

)(
2n− 2k
n− k

)(1
2

)2n

, k = 0,1, . . . ,n.

Proof We first note an obvious relation:

W(2k|2n) =
k∑

r=1

q2r

2
W(2k− 2r |2n− 2r) +

n−k∑
r=1

q2r

2
W(2k|2n− 2r).

Then the assertion is proved by induction onk,n (try!).

We find a good approximation whenn→ ∞. For 0< a < b < 1 we have

P(a < ratio of time staying in the positive region< b)

=

bn∑
k=an

W(2k|2n)

=

n∑
k=0

χ[an,bn](k)W(2k|2n)

=

n∑
k=0

χ[a,b]

(k
n

)(2k
k

)(
2n− 2k
n− k

)(1
2

)2n

,

whereχI (x) is the indicator function of an intervalI , that is, takes 1 forx ∈ I and 0 otherwise.
Using the Stirling formula:

n! ∼
√

2πn
(n
e

)n

n→ ∞,

we obtain (
2k
k

)(1
2

)2k

∼ 1
√
πk
.

Therefore,

P(a < ratio of time staying in the positive region< b)

∼
n∑

k=0

χ[a,b]

(k
n

) 1

π
√

k(n− k)

=

n∑
k=0

χ[a,b]

(k
n

) 1

π
√

k
n(1− k

n)

1
n

→
∫ 1

0
χ[a,b](x)

dx

π
√

x(1− x)
.

26



Definition 3.4.4 The probability distribution defined by the density function:

dx

π
√

x(1− x)
. 0 < x < 1,

is called thearcsine law. The distribution function is given by

F(x) =
∫ x

0

dt

π
√

t(1− t)
=

2
π

arcsin
√

x =
1
2
+

1
π

arcsin(2x− 1).

For example,

F(0.9) =
2
π

arcsin
√

0.9 ≈ 0.795.

Namely, during the long game, the probability that the ratio of winning time exceeds 90% is 1− F(0.9) ≈ 0.205,
which sounds larger than one expects.

Problem 13 Prove Lemma 3.4.2.

3.5 Gambler’s Ruin
Let us consider a random walker starting from the origin 0 at timen = 0. Now there are barriers at the

positions−A andB (A ≥ 1, B ≥ 1). If the random walker touches the barrier, it remains there afterward. In this
sense the positions−A andB are calledabsorbing barriers.

Let Z1,Z2, . . . be Bernoulli trials with success probability 0< p < 1. Define a discrete time stochastic process
X0,X1,X2, . . . by

X0 = 0, Xn =


Xn−1 + Zn , −A < Xn−1 < B,

−A, Xn−1 = −A,

B, Xn−1 = B.

(3.13)

This {Xn} is called arandom walk with absorbing barriers.

−A

0

B

�
�
��@

@
@
@R�

��@
@
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��@
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@
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We are interested in the absorbing probability, i.e.,

R= P(Xn = −A for somen = 1,2, . . . ) = P

 ∞∪
n=1

{Xn = −A}
 ,

S = P(Xn = B for somen = 1,2, . . . ) = P

 ∞∪
n=1

{Xn = B}
 .

Note that the events in the right-hand sides are not the unions of disjoint events.
A key idea is to introduce a similar random walk starting atk, −A ≤ k ≤ B, which is denoted byX(k)

n . Then
the original one isXn = X(0)

n . Let Rk andSk be the probabilities that the random walkX(k)
n is absorbed at−A and

B, respectively. We wish to findR= R0 andS = S0.

Lemma 3.5.1 {Rk ; , −A ≤ k ≤ B} fulfills the following difference equation:

Rk = pRk+1 + qRk−1 , R−A = 1, RB = 0. (3.14)

Similarly, {Sk ; , −A ≤ k ≤ B} fulfills the following difference equation:

Sk = pSk+1 + qSk−1 , S−A = 0, SB = 1. (3.15)

Theorem 3.5.2 Let A ≥ 1 andB ≥ 1. Let {Xn} be the random walk with absorbing barriers at−A andB, which
is defined by (3.13). Then the probabilities that{Xn} is absorbed at the barriers are given by

P(Xn = −A for somen) =


(q/p)A − (q/p)A+B

1− (q/p)A+B
, p , q,

B
A+ B

, p = q =
1
2
,

P(Xn = B for somen) =


1− (q/p)A

1− (q/p)A+B
, p , q,

A
A+ B

, p = q =
1
2
.

In particular, the random walk is absorbed at the barriers at probability 1.

An interpretation of Theorem 3.5.2 gives the solution to thegambler’s ruin problem. Two players A and B
toss a fair coin by turns. LetA andB be their allotted points when the game starts. They exchange 1 point after
each trial. This game is over when one of the players loses all the allotted points and the other getsA+ B points.
We are interested in the probability of each player’s win. For eachn ≥ 0 defineXn in such a way that the allotted
point of A at timen is given byA+ Xn. Then{Xn} becomes a random walk with absorbing barrier at−A andB.
It then follows from Theorem 3.5.2 that the winning probability of A and B are given by

P(A) =
A

A+ B
, P(B) =

B
A+ B

, (3.16)

respectively. As a result, they are proportional to the initial allotted points. For example, ifA = 1 andB = 100,
we haveP(A) = 1/101 andP(B) = 100/101, which sounds that almost no chance of A’s win.

In a fair bet the recurrence is guaranteed by Theorem 3.2.2. Even if one has much more losses than wins,
continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited money.
(3.16) tells the effect of the barrier.

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 3.5.3 Let {Xn} be the same as in Theorem 3.5.2. The expected life time of this random walk until
absorption is given by 

A
q− p

− A+ B
q− p

1− (q/p)A

1− (q/p)A+B
, p , q,

AB, p = q =
1
2
.
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Proof Let Yk be the life time of a random walk starting from the positionk (−A ≤ k ≤ B) at timen = 0 until
absorption. In other words,

Yk = min{ j ≥ 0 ; X(k)
j = −Aまたは X(k)

j = B }.
We wish to computeE(Y0). We see by definition that

E(Y−A) = E(YB) = 0. (3.17)

For−A < k < B we have

E(Yk) =
∞∑
j=1

jP(Yk = j). (3.18)

In a similar manner as in the proof of Theorem 3.5.2 we note that

P(Yk = j) = pP(Yk+1 = j − 1)+ qP(Yk−1 = j − 1). (3.19)

Inserting (3.19) into (3.18), we obtain

E(Yk) = p
∞∑
j=1

jP(Yk+1 = j − 1)+ q
∞∑
j=1

jP(Yk−1 = j − 1)

= pE(Yk+1) + qE(Yk−1) + 1. (3.20)

Thus,E(Yk) is the solution to the difference equation (3.20) with boundary condition (3.17). This difference
equation is solved in a standard manner and we find

E(Yk) =


A+ k
q− p

− A+ B
q− p

1− (q/p)A+k

1− (q/p)A+B
, p , q,

(A+ k)(B− k), p = q =
1
2
.

Settingk = 0, we obtain the result.

If p = q = 1/2 andA = 1, B = 100, the expected life time isAB= 100. The gambler A is much inferior to B
in the amount of funds (as we have seen already, the probability of A’s win is just 1/101), however, the expected
life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps this is because
the gambler cannot quit gambling.

Problem 14 Explain about the general solutions to the difference equation:

xn+2 + axn+1 + bxn = c,

wherea,b, c are constant numbers. Solve the difference equation (3.20) with boundary condition (3.17).

3.6 Variants of Boundary Conditions
There is another type of barrier called areflecting barrier. A random walk touches the reflecting barrier,

it changes the direction in the next step and continue to move. LetZ1,Z2, . . . be Bernoulli trials with success
probability 0< p < 1. Consider barriers at positions−A andB, A ≥ 1, B ≥ 1. DefineX0,X1,X2, . . . by

X0 = 0, Xn =


Xn−1 + Zn , −A < Xn−1 < B,

−A+ 1, Xn−1 = −A,

B− 1, Xn−1 = B.

(3.21)

Then{Xn} is called a random walk with reflecting barriers.

Problem 15 Let {Xn ; n = 0,1,2, . . . } be an isotropic random walk on the half line{0,1, 2, . . . } starting from the
origin 0 at timen = 0, where the origin is a reflecting barrier. FindP(X2n = 0).
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As another boundary condition, we consider a random walk{Xn} on the half-line{0,1, 2, . . . } starting from
the origin 0 at timen = 0. When the random walker sits at one of{1,2, . . . }, it moves to the right with probability
p and to the left withq = 1 − p. When it sits at 0, it moves to the right with probabilityp and stay there with
q = 1− p. Let T be the first hitting time of{Xn} to 0, i.e.,

T = inf {n ≥ 1 ; Xn = 0}.

Then we have
P(T = 1) = q, P(T = 2n) = Cn−1(pq)n .

Problem 16 Let {Xn ; n = 0,1,2, . . . } be the random walk as above.

(1) Show thatP(T < ∞) = 1 for q ≥ 1/2 andP(T < ∞) = 2q for q < 1/2.

(2) CalculateE[T].
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4 Markov Chains

Let us recall a typical property of a random walk: the next position is determined probabilistically only by
the present position. Namely, the next-step movement is independent of the past trajectories. As the position of
the one-dimensional random walk is described in terms of the usual coordinate systemZ = {· · · ,−1,0,1, 2, . . . },
the random walk is formulated as a discrete time stochastic process{Xn} taking values inZ. In this sense we call
Z a state space. For wider applications a state space is not necessarily a set of numbers, but may be an arbitrary
set. Keeping the typical property of the random walk and generalizing the state space, we come to the concept of
Markov chain.

4.1 Conditional Probability
For two eventsA, B we define

P(A|B) =
P(A∩ B)

P(B)
(4.1)

wheneverP(B) > 0. We callP(A|B) theconditional probability of A relative to BIt is interpreted as the proba-
bility of the eventA assuming the eventB occurs, see Section 2.1.1.

Formula (4.1) is often used in the following form:

P(A∩ B) = P(B)P(A|B) (4.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in compu-
tation of probability. For example, for two eventsA, B see Fig. 4.1.

������*P(A)

HHHHHHjP(Ac)

A

Ac

������1P(B|A)

PPPPPPqP(Bc|A)

������1P(B|Ac)

PPPPPPqP(Bc|Ac)

A∩ B

A∩ Bc

Ac ∩ B

Ac ∩ Bc

Figure 4.1: Tree diagram

Theorem 4.1.1 (Compound probabilities)For eventsA1,A2, . . . ,An we have

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · ·P(An|A1 ∩ A2 ∩ · · · ∩ An−1). (4.3)

Proof Straightforward by induction onn.

4.2 Markov Chains
Let S be a finite or countable set. Consider a discrete time stochastic process{Xn ; n = 0,1,2, . . . } taking

values inS. This S is called astate spaceand is not necessarily a subset ofR in general. In the following we
often meet the cases ofS = {0,1}, S = {1,2, . . . ,N} andS = {0,1,2, . . . }.
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Definition 4.2.1 Let {Xn ; n = 0,1,2, . . . } be a discrete time stochastic process overS. It is called aMarkov
processoverS if

P(Xn = b|Xi1 = a1, Xi2 = a2, . . . ,Xik = ak, Xi = a) = P(Xn = b|Xi = a)

holds for any 0≤ i1 < i2 < · · · < ik < i < n anda1,a2, . . . ,ak,a,b ∈ S.

If {X1,X2, . . . } are independent random variables with values inS, obviously they form a Markov chain.
Hence the Markov property is weaker than independence.

Example 4.2.2 Let r ≥ 1 ands ≥ 1 such thatr + s = N. There arer black balls ands white balls in a box. We
pick up balls in the box one by one and setXn = 1 if a black ball is picked up at then-th trial and 0 if a white ball
is picked up at then-th trial. Then{X1,X2, . . . ,XN} is a stochastic process. We note that

P(Xn = 1|X1 = a1, X2 = a2, . . . ,Xn−1 = an−1) =
1

N − (n− 1)

n−1∑
k=1

ak

and
P(Xn = 1|Xn−1 = an−1) =

r − an−1

N − 1
,

for a1, . . . ,an−1 ∈ {0,1}. Hence{Xn} is not a Markov chain. Define

Yn =

n∑
k=1

Xk ,

which stands for the number of black balls picked up during the firstn trials. We the see easily that{Yn} is a
Markov chain.

Definition 4.2.3 For a Markov chain{Xn} overS,

P(Xn+1 = j|Xn = i)

is called thetransition probabilityat timen from a statei to j. If this is independent ofn, the Markov chain is
calledtime homogeneous. In this case we write

pi j = p(i, j) = P(Xn+1 = j|Xn = i)

and simply call it the transition probability. Moreover, the matrix

P = [pi j ]

is called thetransition matrix.

Obviously, we have for eachi ∈ S,∑
j∈S

p(i, j) =
∑
j∈S

P(Xn+1 = j|Xn = i) = 1.

Taking this into account, we give the following

Definition 4.2.4 A matrix P = [pi j ] with index setS is called astochastic matrixif

pi j ≥ 0 and
∑
j∈S

pi j = 1.

Theorem 4.2.5 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochastic
matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic matrix.

It is convenient to use thetransition diagramto illustrate a Markov chain. With each state we associate a
point and we draw an arrow fromi to j whenp(i, j) > 0.
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Example 4.2.6 (2-state Markov chain)A Markov chain over the state space{0,1} is determined by the transi-
tion probabilities:

p(0,1) = p, p(0,0) = 1− p, p(1,0) = q, p(1,1) = 1− q.

The transition matrix is defined by [
1− p p

q 1− q

]
.

The transition diagram is as follows:

p

p

pp

 p=

 q=

 1 p=  1 q=

Example 4.2.7 (3-state Markov chain)An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain on{H,S,D} described by the following transition diagram:

b

p

 a

 q

H S D

 r

The transition matrix is defined bya b 0
p r q
0 0 1

 , a+ b = 1, p+ q+ r = 1.

Example 4.2.8 (Random walk onZ1) The transition probabilities are given by

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.

The transition matrix is a two-sided infinite matrix given by

. . .
. . .

. . .
. . .

. . . q 0 p 0

0 q 0 p 0

0 q 0 p 0

0 q 0 p
. . .

. . .
. . .

. . .
. . .


Example 4.2.9 (Random walk with absorbing barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers at−A andB is S = {−A,−A+ 1, . . . , B− 1, B}. Then the transition probabilities are
given as follows. For−A < i < B,

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.
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For i = −A or i = B,

p(−A, j) =

1, if j = −A,

0, otherwise,
p(B, j) =

1, if j = B,

0, otherwise.

In a matrix form we have 

1 0 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...
...
. . .

. . .
. . .

...
...

0 0 · · · q 0 p 0
0 0 · · · 0 q 0 p
0 0 · · · 0 0 0 1


Example 4.2.10 (Random walk with reflecting barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers at−A andB is S = {−A,−A+1, . . . , B−1, B}. The transition probabilities are given
as follows. For−A < i < B,

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.

For i = −A or i = B,

p(−A, j) =

1, if j = −A+ 1,

0, otherwise,
p(B, j) =

1, if j = B− 1,

0, otherwise.

In a matrix form we have 

0 1 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...
...
. . .

. . .
. . .

...
...

0 0 · · · q 0 p 0
0 0 · · · 0 q 0 p
0 0 · · · 0 0 1 0


4.3 Distribution of a Markov Chain

Let S be a state space as before. In general, a row vectorπ = [· · · πi · · · ] indexed byS is called adistribution
onS if

πi ≥ 0 and
∑
i∈S
πi = 1. (4.4)

For a Markov chain{Xn} onS we set

π(n) = [· · · πi(n) · · · ], πi(n) = P(Xn = i),

which becomes a distribution onS. We callπ(n) thedistributionof Xn. In particular,π(0), the distribution ofX0,
is called theinitial distribution. We often take

π(0) = [· · · 0,1,0, · · · ], where 1 occurs ati-th posotion.

In this case the Markov chain{Xn} starts from the statei.
For a Markov chain{Xn} with a transition matrixP = [pi j ] then-step transition probabilityis defined by

pn(i, j) = P(Xm+n = j|Xm = i), i, j ∈ S.

The right-hand side is independent ofn because our Markov chain is assumed to be time homogeneous.
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Theorem 4.3.1 (Chapman–Kolmogorov equation)For 0≤ r ≤ n we have

pn(i, j) =
∑
k∈S

pr (i, k)pn−r (k, j). (4.5)

Proof First we note the obvious identity:

pn(i, j) = P(Xm+n = j|Xm = i) =
∑
k∈S

P(Xm+n = j,Xm+r = k|Xm = i).

Moreover,

P(Xm+n = j,Xm+r = k|Xm = i) =
P(Xm+n = j,Xm+r = k,Xm = i)

P(Xm+r = k,Xm = i)
× P(Xm+r = k,Xm = i)

P(Xm = i)

= P(Xm+n = j|Xm+r = k,Xm = i)P(Xm+r = k|Xm = i).

Using the Markov property, we have

P(Xm+n = j|Xm+r = k,Xm = i) = P(Xm+n = j|Xm+r = k)

so that
P(Xm+n = j,Xm+r = k|Xm = i) = P(Xm+n = j|Xm+r = k)P(Xm+r = k|Xm = i).

Finally, by the property of being time homogeneous, we come to

P(Xm+n = j,Xm+r = k|Xm = i) = pn−r (k, j)pr (i, k).

Thus we have obtained (4.5).

Applying (4.5) repeatedly and noting thatp1(i, j) = p(i, j), we obtain

pn(i, j) =
∑

k1,...,kn−1∈S
p(i, k1)p(k1, k2) · · · p(kn−1, j). (4.6)

The right-hand side is nothing else but the multiplication of matrices, i.e., then-step transition probabilitypn(i, j)
is the (i, j)-entry of then-power of the transition matrixP. Summing up, we obtain the following important
result.

Theorem 4.3.2 Form,n ≥ 0 andi, j ∈ S we have

P(Xm+n = j|Xm = i) = pn(i, j) = (Pn)i j .

Proof Immediate from Theorem 4.3.1.

Remark 4.3.3 As a result, the Chapman-Kolmogorov equation is nothing else but an entrywise expression of
the obvious relation for the transition matrix:

Pn = Pr Pn−r

(As usual,P0 = E (identity matrix).)

Theorem 4.3.4 We have
π(n) = π(n− 1)P, n ≥ 1,

or equivalently,
π j(n) =

∑
i

πi(n− 1)pi j .

Therefore,
π(n) = π(0)Pn.
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Proof We first note that

π j(n) = P(Xn = j) =
∑
i∈S

P(Xn = j|Xn−1 = i)P(Xn−1 = i) =
∑
i∈S

pi jπi(n− 1),

which provesπ(n) = π(n− 1)P. By repeated application we have

π(n) = π(n− 1)P = (π(n− 2)P)P = (π(n− 2)P2 = · · · = π(0)Pn,

as desired.

Example 4.3.5 (2-state Markov chain)Let {Xn} be the Markov chain introduced in Example 4.2.6. The eigen-
values of the transition matrix

P =

[
1− p p

q 1− q

]
.

are 1,1− p− q. These are distinct ifp+ q > 0. Omitting the case ofp+ q = 0, i.e.,p = q = 0, we assume that
p+ q > 0. By standard argument we obtain

Pn =
1

p+ q

[
q+ prn p− prn

q− qrn p+ qrn

]
, r = 1− p− q.

Let π(0) = [π0(0) π1(0)] be the distriution ofX0. Then the distribution ofXn is given by

π(n) = [P(Xn = 0) , P(Xn = 1)] = [π0(0) π1(0)]Pn = π(0)Pn.

Here let us observe the limit asn→ ∞. Assume that 0< p+ q < 2, or equivalently,|r | < 1. Then

lim
n→∞

Pn =
1

p+ q

[
q p
q p

]
and

lim
n→∞
π(n) = lim

n→∞
π(0)Pn = [π0(0) π1(0)] × 1

p+ q

[
q p
q p

]
=

[
q

p+ q
p

p+ q

]
.

Note that [
q

p+ q
p

p+ q

]
P =

[
q

p+ q
p

p+ q

]
.

This means that the distribution
[

q
p+q

p
p+q

]
is invariant under the Markov chain.

Problem 17 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every
election. Suppose that just before an election, 25% of the supporters of A change to support B and 20% of the
supporters of B change to support A. At the beginning, 85% of the voters support A and 15% support B. When
will the party B command a majority? Moreover, find the final ratio of supporters after many elections if the
same situation continues.

4.4 Stationary Distributions
Definition 4.4.1 Let {Xn} be a Markov chain onS with transition probability matrixP. A distributionπ on S is
calledstationary(or invariant) if

π = πP, (4.7)

or equivalently,
π j =

∑
i∈S
πi pi j , j ∈ S. (4.8)

Thus, to find a stationary distribution we need to solve (4.7) (or equivalently (4.8)) together with (4.4). IfS
is a finite set, finding stationary distributions is reduced to a simple linear system.
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Example 4.4.2 (2-state Markov chain)Consider the transition matrix:

P =

[
1− p p

q 1− q

]
.

Let π = [π0 π1] and supposeπP = π. Then we have

[π0 π1]

[
1− p p

q 1− q

]
= [(1 − p)π0 + qπ1 pπ0 + (1− q)π1] = [π0 π1],

which is equivalent to the following
pπ0 − qπ1 = 0.

Together with
π0 + π1 = 1,

we obtain
π0 =

q
p+ q

, π1 =
p

p+ q
,

wheneverp+ q > 0. Indeed,

π =

[
q

p+ q
,

p
p+ q

]
is a distribution onS = {0,1}, so it is a stationary distribution. In this case a stationary distribution is unique.
Note that the stationary distribution is obtained as a limit distribution, see Example 4.3.5. In the uninteresting
case ofp = q = 0, anyπ = [π0 , π1] is a stationary distribution.

Example 4.4.3 (3-state Markov chain)We discuss the Markov chain{Xn} introduced in Example 4.2.7. If
q > 0 andb > 0, a stationary distribution is unique and given byπ = [0 0 1].

Example 4.4.4 (One-dimensional RW)Consider the 1-dimensional random walk with right-move probability
p > 0 and left-move probabilityq = 1 − p > 0. Let [· · · π(k) · · · ] be a distribution onZ. If it is stationary, we
have

π(k) = pπ(k− 1)+ qπ(k+ 1), k ∈ Z. (4.9)

The characteristic equation of the above difference equation is

0 = qλ2 − λ + p = (qλ − p)(λ − 1)

so that the eigenvalues are 1, p/q.
(Case 1)p , q. Then a general solution to (4.9) is given by

π(k) = C11k +C2

(
p
q

)k

= C1 +C2

(
p
q

)k

, k ∈ Z.

This never becomes a probability distribution for any choice ofC1 and C2. Namely, there is no stationary
distribution.

(Case 2)p = q. In this case a general solution to (4.9) is given by

π(k) = (C1 +C2k)1k = C1 +C2k, k ∈ Z.

This never becomes a probability distribution for any choice ofC1 and C2. Namely, there is no stationary
distribution.

Example 4.4.5 (One-dimensional RW with reflection barrier) There is a unique stationary distribution when
p < q. In fact,

π(0) = Cp, π(k) = C

(
p
q

)k

, k ≥ 1,

whereC is determined in such a way that
∑∞

k=0 π(k) = 1. Namey,

C =
q− p
2q2
.

If p ≥ q, then there is no stationary distribution.
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Theorem 4.4.6 A Markov chain over a finite state spaceS has a stationary distribution.

A simple proof is based on the Brouwer’s fixed-point theorem saying that every continuous function from
a convex compact subset of a Euclidean space to itself has a fixed point. In fact, the set of distributions onS
is a convex compact subset of a Euclidean space and the mapπ 7→ πP is continuous. Note that the stationary
distribution mentioned in the above theorem is not necessarily unique.

We are going into a discussion about unique existence of a stationary distribution.

Definition 4.4.7 We say that a statej can be reached froma statei if there exists somen ≥ 0 such thatpn(i, j) > 0.
By definition every statei can be reached from itself. We say that two statesi and j intercommunicateif i can
be reached formj and j can be reached fromi, i.e., there existm ≥ 0 andn ≥ 0 such thatpn(i, j) > 0 and
pm( j, i) > 0.

Lemma 4.4.8 For two statesi, j ∈ S we define a binomial relationi ∼ j when they intercommunicate. Then∼
becomes an equivalence relation onS, namely,

(i) i ∼ i;

(ii) i ∼ j implies j ∼ i;

(iii) If i ∼ j and j ∼ k, theni ∼ k.

Proof (i), (ii) are obvious by definition. (iii) is verified by the Chapman-Kolmogorov equation.

Thereby the state spaceS is classified into a disjoint set of equivalence classes determined by the above∼.
Namely, each equivalence class consists of states which intercommunicate each other.

Definition 4.4.9 A statei is calledabsorbingif

p(i, j) =

1, for j = i,

0, otherwise.

In particular, an absorbing state is a state which constitutes an equivalence class by itself.

Definition 4.4.10 A Markov chain is calledirreducible if every state can be reached from every other state, i.e.,
if there is only one equivalence class of intercommunicating states.

Example 4.4.11Examine the equivalence relation among the states of a Markov chain described by the follow-
ing transition diagram:

Then we have the following fundamental result.

Theorem 4.4.12An irreducible Markov chain on a finite state spaceS admits a unique stationary distribution
π = [πi ]. Moreover,πi > 0 for all i ∈ S.

38



In fact, the proof owes to the following two facts:

(1) For an irreducible Markov chain the following assertions are equivalent:

(i) it admits a stationary distribution;
(ii) every state is positive recurrent.

In this case the stationary distributionπ is unique and given by

πi =
1

E(Ti |X0 = i)
, i ∈ S.

(2) Every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem 4.5.9).

Finally, the distribution of a Markov chain does not necessarily converge to a stationary distribution even if
it exists uniquely.

Example 4.4.13Consider a Markov chain determined by the transition matrix:

P =

[
0 1
1 0

]
.

We first note that there exists a unique stationary distribution. But for a given initial distributionπ(0) it is not
necessarily true that lim

n→∞
π(n) converges to the stationary distribution.

Roughly speaking, we need to avoid the periodic transition in order to have the convergence to a stationary
distribution.

Definition 4.4.14 For a statei ∈ S,

GCD{n ≥ 1 ; P(Xn = i|X0 = i) > 0}

is called theperiodof i. (When the set in the right-hand side is empty, the period is not defined.) A statei ∈ S is
calledaperiodicif its period is one.

For an irreducible Markov chain, every state has a common period.

Theorem 4.4.15Let π be a stationary distribution of an irreducible Markov chain on a finite state space (It is
unique, see Theorem 4.4.12). If{Xn} is aperiodic, for anyj ∈ S we have

lim
n→∞

P(Xn = j) = π j .

Problem 18 Consider a Markov chain determined by the transition diagram below.

(1) Is the Markov chain irreducible?

(2) Find all stationary distibutions.

Problem 19 Let {Xn} be a Markov chain on{0,1} given by the transition matrixP =

[
1− p p

q 1− q

]
with the

initial distributionπ0 = [q/(p+ q) p/(p+ q)]. Calculate the following statistical quantities:

E[Xn], V[Xn], Cov (Xm+n,Xn) = E[Xm+nXn] − E[Xm+n]E[Xn], ρ(Xm+n,Xn) =
Cov (Xm+n,Xn)
√

V[Xm+n]V[Xn]
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Problem 20 Let {Xn} be a Markov chain described by the following transition diagram.

p

p

pp

 p=

 q=

 1 p=  1 q=

For a statei ∈ S, define thefirst hitting timeor first passage timeto i by

Ti = inf {n ≥ 1 ; Xn = i}.

(If there exists non ≥ 1 such thatXn = i, we defineTi = ∞.)

(1) Calculate

P(T0 = 1|X0 = 0), P(T0 = 2|X0 = 0), P(T0 = 3|X0 = 0), P(T0 = 4|X0 = 0).

(2) FindP(T0 = n|X0 = 0) and calculate

∞∑
n=1

P(T0 = n|X0 = 0),
∞∑

n=1

nP(T0 = n|X0 = 0).

Problem 21 Let {Xn} be the Markov chain introduced in Example 4.2.7:

b

p

 a

 q

H S D

 r

For n = 1, 2, . . . let Hn denote the probability of starting from H and terminating at D atn-step. Similarly, for
n = 1,2, . . . let Sn denote the probability of starting from S and terminating at D atn-step.

(1) Show that{Hn} and{Sn} satisfies the following linear system:Hn = aHn−1 + bSn−1,

Sn = pHn−1 + rSn−1,
n ≥ 2; H1 = 0, S1 = q.

(2) Let H andS denote the life times starting from the state H and S, respectively. Solving the linear system
in (1), prove the following identities for the mean life times:

E[H] =
∞∑

n=1

nHn =
b+ p+ q

bq
, E[S] =

∞∑
n=1

nSn =
b+ p

bq
.

4.5 Recurrence
Definition 4.5.1 Let i ∈ S be a state. Define thefirst hitting timeor first passage timeto i by

Ti = inf {n ≥ 1 ; Xn = i}.

If there exists non ≥ 1 such thatXn = i, we defineTi = ∞. A statei is calledrecurrentif P(Ti < ∞|X0 = i) = 1.
It is calledtransientif P(Ti = ∞|X0 = i) > 0.
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Theorem 4.5.2 A statei ∈ S is recurrent if and only if

∞∑
n=0

pn(i, i) = ∞.

Proof (basically the same as the proof of recurrence of one-dimensional random walk) We first put

pn(i, j) = P(Xn = j|X0 = i), n = 0,1,2, . . . ,

fn(i, j) = P(T j = n|X0 = i)

= P(X1 , j, . . . ,Xn−1 , j,Xn = j|X0 = i), n = 1,2, . . . .

pn(i, j) is nothing else but then step transition probability. On the other hand,fn(i, j) is the probability that the
Markov chain starts fromi and reachj first time aftern step. Dividing the set of sample paths fromi to j in n
steps according to the number of steps after which the path reachesj for the first time, we obtain

pn(i, j) =
n∑

r=1

fr (i, j)pn−r ( j, j), i, j ∈ S, n = 1,2, . . . . (4.10)

We next introduce the generating functions:

Gi j (z) =
∞∑

n=0

pn(i, j)zn, Fi j (z) =
∞∑

n=1

fn(i, j)zn.

In view of (4.10) we see easily that
Gi j (z) = p0(i, j) + Fi j (z)G j j (z). (4.11)

Settingi = j in (4.11), we obtain
Gii (z) = 1+ Fii (z)Gii (z).

Hence,

Gii (z) =
1

1− Fii (z)
.

On the other hand, since

Gii (1) =
∞∑

n=0

pn(i, i), Fii (1) =
∞∑

n=1

fn(i, i) = P(Ti < ∞|X0 = i)

we see that two conditionsFii (1) = 1 andGii (1) = ∞ are equivalent.

During the above proof we have already established the following

Theorem 4.5.3 If a statei is transient, we have

∞∑
n=0

pn(i, i) < ∞

and
∞∑

n=0

pn(i, i) =
1

1− P(Ti < ∞|X0 = i)
.

Example 4.5.4 (random walk onZ) Obviously, the random walk starting from the origin 0 returns to it only
after even steps. Therefore, for recurrence we only need to compute the sum ofp2n(0,0). On the other hand, we
know that

p2n(0,0) =
(2n)!
n!n!

pnqn, p+ q = 1,

see Chapter (3.1.1). Using the Stirling formula:

n! ∼
√

2πn
(n
e

)n
(4.12)
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we have

p2n(0,0) ∼ 1
√
πn

(4pq)n.

Hence, ifp , q we have
∞∑

n=0

p2n(0,0) < ∞.

If p = q =
1
2

, we have
∞∑

n=0

p2n(0,0) = ∞.

Consequently, one-dimensional random walk is transient ifp , q, and it is recurrent ifp = q =
1
2

.

Remark 4.5.5 Let {an} and{bn} be sequences of positive numbers. We writean ∼ bn if

lim
n→∞

an

bn
= 1.

In this case, there exist two constant numbersc1 > 0 andc2 > 0 such that

c1an ≤ bn ≤ c2an .

Hence
∞∑

n=1

an and
∞∑

n=1

bn converge or diverge at the same time.

Example 4.5.6 (random walk onZ2) Obviously, the random walk starting from the origin 0 returns to it only
after even steps. Therefore, for recurrence we only need to compute the sum ofp2n(0,0). For two-dimensional
random walk we need to consider two directions along withx-axis andy-axis. We see easily that

p2n(0,0) =
∑

i+ j=n

(2n)!
i!i! j! j!

(
1
4

)2n

=
(2n)!
n!n!

(
1
4

)2n ∑
i+ j=n

n!n!
i!i! j! j!

=

(
2n
n

) (
1
4

)2n n∑
i=0

(
n
i

)2

.

Employing the formula for the binomial coefficients:

n∑
i=0

(
n
i

)2

=

(
2n
n

)
, (4.13)

wich is a good exercise for the readers, we obtain

p2n(0,0) =

(
2n
n

)2 (
1
4

)2n

.

Then, by using the Stirling formula, we see that

p2n(0,0) ∼ 1
πn

so that
∞∑

n=1

p2n(0,0) = ∞.

Consequently, two-dimensional random walk is recurrent.
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Example 4.5.7 (random walk onZ3) Let us consider the isotropic random walk in 3-dimension. As there are
three directions, say,x, y, z-axis, we have

p2n(0,0) =
∑

i+ j+k=n

(2n)!
i!i! j! j!k!k!

(
1
6

)2n

=
(2n)!
n!n!

(
1
6

)2n ∑
i+ j+k=n

n!n!
i!i! j! j!k!k!

=

(
2n
n

) (
1
6

)2n ∑
i+ j+k=n

(
n!

i! j!k!

)2

.

We note the following two facts. First, ∑
i+ j+k=n

n!
i! j!k!

= 3n. (4.14)

Second, the maximum value

Mn = max
i+ j+k=n

n!
i! j!k!

is attained when
n
3
− 1 ≤ i, j, k ≤ n

3
+ 1 so

Mn ∼
3
√

3
2πn

3n

by the Stirling formula. Then we have

p2n(0,0) ≤
(
2n
n

) (
1
6

)2n

3nMn ∼
3
√

3

2π
√
π

n−3/2.

Therefore.
∞∑

n=1

p2n(0,0) < ∞,

which implies that the random walk is not recurrent (i.e., transient).

A state i is calledrecurrent if P(Ti < ∞|X0 = i) = 1. In this case we are interested in the mean value
E(Ti |X0 = i) (mean recurrent time). As we have already shown (Theorem 3.2.5), the mean recurrent time of the
one-dimensional isotropic random walk is infinity although it is recurrent. In this case the state is callednull
recurrent. On the other hand, ifE(Ti |X0 = i) < ∞ the statei is calledpositive recurrent.

Theorem 4.5.8 The states in an equivalence class are all positive recurrent, or all null recurrent, or all transient.
In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null recurrent, or all
transient.

Theorem 4.5.9 For an irreducible Markov chain on a finite state spaceS, every state is positive recurrent.
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5 Poisson Processes

Let T ⊂ R be an interval. A family of random variables{X(t) ; t ∈ T} is called acontinuous time stochastic
process. We often considerT = [0,1] andT = [0,∞). As X(t) is a random variable for eacht ∈ T, it has another
variableω ∈ Ω. When we need to explicitly refer toω, we writeX(t, ω) or Xt(ω). For fixedω ∈ Ω, the function

t 7→ X(t, ω)

is called asample pathof the stochastic process{X(t)}. It is the central idea of stochastic processes that a random
evolution in the real world is expressed by a single sample path selected randomly from all the possible sample
paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian motion
(Wiener process). In the recent study of mathematical physics and mathematical finance, a kind of composition
of these two processes, called the Lévy process (or additive process), has received much attention.

5.1 Heuristic Introduction
Let us imagine that the number of objects changes as time goes on. The number at timet is modelled by a

random variableXt and we wish to construct a stochastic process{Xt}. In this caseXt takes values in{0,1, 2, . . . }.
In general, such a stochastic process is called acounting process.

There are many different variations of randomness and so wide variations of counting processes. We below
consider the simple situation as follows: We focus an eventE which occurs repeatedly at random as time goes
on. For example,

(i) alert of receiving an e-mail;

(ii) telephone call received a call center;

(iii) passengers making a queue at a bus stop;

(iv) customers visiting a shop;

(v) occurrence of defect of a machine;

(vi) traffic accident at a corner;

(vii) radiation from an atom.

Let fix a time origin ast = 0. We count the number of occurrence of the eventE during the time interval [0, t]
and denote it byXt. Let t1, t2, . . . be the time whenE occurs, see Fig. 5.1.

0 t
nt t t

Figure 5.1: Recording when the eventE occurs

There are two quantities which we measure.

(i) The number of occurrence ofE up to timet, say,Xt. Then{Xt ; t ≥ 0} becomes a counting process.

(ii) The waiting time of then-th occurrence after the (n− 1)-th occurrence, say,Tn . HereT1 is defined to be
the waiting time of the first occurrence ofE after starting the observation. Then{Tn ; n = 1,2, . . . } is a
sequence of random variables taking values in [0,∞).

We will introduce heuristically a stochastic process{Xt} from the viewpoint of (i). It is convenient to start
with discrete time approximation. Fixt > 0 and divide the time interval [0, t] into n small intervals. Let

∆t =
t
n

be the length of the small intervals and number from the time origin in order.
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Figure 5.2: The counting process and waiting times
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We assume the following conditions on the occurrence of the eventE:

(1) There exists a constantλ > 0 such that

P(E occurs just once in a small time interval of length∆t) = λ∆t + o(∆t),

P(E does not occur in a mall time interval of length∆t) = 1− λ∆t + o(∆t),

P(E occurs more than once in a small time interval of length∆t) = o(∆t).

(2) Occurrence ofE in disjoint time intervals is independent.

Some more accounts. Let us imagine the alert of receiving an e-mail. That

P(E occurs more than once in a small time interval of length∆t) = o(∆t)

means that two occurrences of the eventE is always separated. That

P(E occurs just once in a small time interval of length∆t) = λ∆t + o(∆t)

means that when∆t is small the probability of occurrence ofE in a time interval is proportional to the length of
the time interval. We understand from (2) that occurrence ofE is independent of the past occurrence.

Let Zi denote the number of occurrence of the eventE in the i-th time interval. ThenZ1,Z2, . . . ,Zn become a
sequence of independent random variables with an identical distribution such that

P(Zi = 0) = 1− λ∆t + o(∆t), P(Zi = 1) = λ∆t + o(∆t), P(Zi ≥ 2) = o(∆t).

The number of occurrence ofE during the time interval [0, t] is given by

n∑
i=1

Zi .
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The length∆t is introduced for a technical reason and is not essential in the probability model so letting∆t → 0
or equivalentlyn→ ∞, we defineXt by

Xt = lim
∆t→0

n∑
i=1

Zi . (5.1)

Thus{Xt} is a continuous time stochastic process which gives the number of occurrence of the eventE up to time
t. This is called thePoisson processwith parameterλ > 0.

We note that

P

 n∑
i=1

Zi = k

 = (
n
k

)
(λ∆t)k(1− λ∆t)n−k + o(∆t).

In view of∆t = t/n we letn tend to the infinity and obtain

P(Xt = k) = lim
∆t→0

(λt)k

k!
n(n− 1) . . . (n− k+ 1)

nk

(
1− λt

n

)n−k

=
(λt)k

k!
e−λt .

In other words,Xt obeys the Poisson distribution with parameterλt.

Remark 5.1.1 The essence of the above argument is thePoisson’s law of small numberswhich says that the
binomial distributionB(n, p) is approximated by Poisson distribution with parameterλ = np whenn is large
and p is small. The following table shows the distributions ofB(100,0.02) and the Poisson distribution with
parameterλ = 2.

k 0 1 2 3 4 5 6 · · ·
Binomial 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114· · ·
Poisson 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120· · ·

Theorem 5.1.2 A Poisson process{Xt ; t ≥ 0} satisfies the following properties:

(1) (counting process)Xt takes vales in{0,1,2, . . . };
(2) X0 = 0;

(3) (monotone increasing)Xs ≤ Xt for 0 ≤ s≤ t;

(4) (independent increment) if 0≤ t1 < t2 < · · · < tk, then

Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtk − Xtk−1 ,

are independent;

(5) (stationarity) for 0≤ s< t andh ≥ 0, the distributions ofXt+h − Xs+h andXt − Xs are identical;

(6) there exists a constantλ > 0 such that

P(Xh = 1) = λh+ o(h), P(Xh ≥ 2) = o(h).

Proof (1) SinceXt obeys the Poisson distribution with parameterλt, it takes values in non-negative integers
almost surely.

(2) Obvious by definition.
(3) Let s= m∆t, t = n∆t, m< n. Then we have obviously

Xs = lim
∆t→0

m∑
i=1

Zi ≤ lim
∆t→0

n∑
i=1

Zi = Xt .

(4) Supposet1 = n1∆t, . . . , tk = nk∆t with n1 < · · · < nk. Then we have

Xt2 − Xt1 = lim
∆t→0

n2∑
i=1

Zi − lim
∆t→0

n1∑
i=1

Zi = lim
∆t→0

n2∑
i=n1+1

Zi .
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In other words,Xt2 − Xt1 is the sum ofZi ’s corresponding to the small time intervals contained in [t2, t1). Hence,
Xt2 − Xt1 , . . . ,Xtk − Xtk−1 are the sums ofZi ’s and there is no commonZi appearing in the summands. Since{Zi}
are independent, so areXt2 − Xt1 , . . . ,Xtk − Xtk−1.

(5) SinceXt+h − Xs+h andXt − Xs are defined from the sums ofZi ’s and the numbers of the terms coincide.
Therefore the distributions are the same.

(6) Recall thatXh obeys the Poisson distribution with parameterλh. Hence,

P(Xh = 0) = e−λh = 1− λh+ · · · = 1− λh+ o(h),

P(Xh = 1) = λhe−λh = λh(1− λh+ . . . ) = λh+ o(h).

Therefore we have
P(Xh ≥ 2) = 1− P(Xh = 0)− P(Xh = 1) = o(h).

Example 5.1.3 The average number of customers visiting a certain service gate is two per minute. Using the
Poisson model, calculate the following probabilities.

(1) The probability that no customer visits during the first two minutes after the gate opens.

(2) The probability that no customer visits during a time interval of two minutes.

(3) The probability that no customer visits during the first two minutes after the gate opens and that two
customers visit during the next one minute.

Let Xt be the number of visitors up to timet. By assumption{Xt} is a Poisson process with parameterλ = 2.
(1) We need to calculateP(X2 = 0). SinceX2 obeys the Poisson distribution with parameter 2λ = 4, we have

P(X2 = 0) =
40

0!
e−4 ≈ 0.018.

(2) Suppose that the time interval starts att0. Then the probability under discussion is given byP(Xt0+2−Xt0 =

0). By stationarity we have

P(Xt0+2 − Xt0 = 0) = P(X2 − X0 = 0) = P(X2 = 0),

which coincides with (1).
(3) We need calculate the probabilityP(X2 = 0,X3 − X2 = 2). SinceX2 andX3 − X2 are independent,

P(X2 = 0,X3 − X2 = 2) = P(X2 = 0)P(X3 − X2 = 2).

By stationarity we have

= P(X2 = 0)P(X1 = 2) =
40

0!
e−4 × 22

2!
e−2 ≈ 0.00496.

Problem 22 Let {Xt} be a Poisson process. Show that

P(Xs = k|Xt = n) =

(
n
k

) ( s
t

)k (
1− s

t

)n−k
, k = 0,1, . . . ,n,

for 0 < s< t. Next give an intuitive explanation of the above formula.

5.2 Waiting Time
Let {Xt ; t ≥ 0} be a Poisson process with parameterλ. By definitionX0 = 0 andXt increases by one as time

passes. It is convenient to remind that the Poisson process counts the number of events occurring up to timet.
First we set

T1 = inf {t ≥ 0 ; Xt ≥ 1}. (5.2)
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This is the waiting time for the first occurrence of the eventE. Let T2 be the waiting time for the second
occurrence of the eventE after the first occurrence, i.e.,

T2 = inf {t ≥ 0 ; Xt ≥ 2} − T1 .

In a similar fashion, we set

Tn = inf {t ≥ 0 ; Xt ≥ n} − Tn−1, n = 2,3, . . . . (5.3)

Theorem 5.2.1 Let {Xt} be a Poisson process with parameterλ. Define the waiting timeTn by (5.2) and (5.3).
Then,{Tn ; n = 1,2, . . . } becomes a sequence of iid random variables, of which distribution is the exponential
distribution with parameterλ.

Proof Sett = n∆t and consider the approximation by refinement of the time interval. Recall that to each
small time interval of length∆t a random variableZi is associated. Then we know that

P(T1 > t) = lim
∆t→0

P(Z1 = · · · = Zn = 0)

= lim
∆t→0

(1− λ∆t)n

= lim
∆t→0

(
1− λt

n

)n

= e−λt.

Therefore,

P(T1 ≤ t) = 1− e−λt =
∫ t

0
λe−λsds,

which shows thatT1 obeys the exponential distribution with parameterλ.
The distributions ofT2,T3, . . . are similar.

Remark 5.2.2 Let {Xt} be a Poisson process with parameterλ. We know thatE(X1) = λ, which means the
average number of occurrence of the event during the unit time interval. Hence, it is expected that the average
waiting time between two occurrences is 1/λ. Theorem 5.2.1 says that the waiting time obeys the exponential
distribution with parameterλ so its mean value is 1/λ. Thus, our rough consideration gives the correct answer.

Problem 23 Let {Xt} be a Poisson process with parameterλ. The waiting time forn occurrence of the events
is defined bySn = T1 + T2 + · · · + Tn, whereTn is given in Theorem 5.2.1. CalculateP(S2 ≤ t) and find the
probability density function ofS2. [In general,Sn obeys a gamma distribution.]

5.3 The Rigorous Definition of Poisson Processes
The “definition” of a Poisson process in (5.1) is intuitive and instructive for modeling random phenomena.

However, strictly speaking, the argument is not sufficient to define a stochastic process{Xt}. For example, the
probability space (Ω,F ,P) on which{Xt} is defined is not at all clear.

We need to start with the waiting time{Tn}. First we prepare a sequence of iid random variables{Tn ; n =
1,2, . . . }, of which the distribution is the exponential distribution with parameterλ > 0. Here the probability
space (Ω,F ,P) is clearly defined. Next we set

S0 = 0, Sn = T1 + · · · + Tn , n = 1,2, . . . ,

and fort ≥ 0,
Xt = max{n ≥ 0 ; Sn ≤ t}.

It is obvious that for eacht ≥ 0, Xt is a random variable defined on the probability space (Ω,F ,P). In other
words,{Xt ; t ≥ 0} becomes a continuous time stochastic process. This is calledPoisson processwith parameter
λ by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 5.1.2.
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6 Queueing Theory

6.1 Modeling Queues
In our daily life, we observe often waiting lines or queues of customers for services. Agner Krarup Erlang

(1878–1929, Danish engineer at the Copenhagen Telephone Exchange) published in 1909 the paper entitled:The
Theory of Probabilities and Telephone Conversations, which opened the door to the research field ofqueueing
theory. Such a queue is modeled in terms of a system consisting of servers and a waiting room. Customers
arriving at the system are served at once if there is an idle server. Otherwise, the customer waits for a vacant
server in a waiting room. After being served, the customer leaves the system.

system

servers waiting room

arrivaldeparture

customers

In most of the qeueing models, a customer arrives at random and the service time is also random. So we are
interested in relevant statistics such as

(1) sojourn time (time of a customer staying in the system)

(2) waiting time (= sojourn time - service time)

(3) the number of customers in the system

Apparently, many different conditions may be introduced for the queueing system. In 1953, David G. Kendall
introduced the so-calledKendall’s notation

A/B/c/K/m/Z

for describing the characteristics of a queuing model, where

A: arrival process,
B: service time distribution,
c: number of servers,
K: number of places in the system (or in the waiting room),
m: calling population,
Z: queue’s discipline or priority order, e.g., FIFO (First In First Out)

The first model analyzed by Erlang in 1909 was theM/D/1 queue in Kendall’s notation, whereM means that
arrivals occur according to a Poisson process, andD stands for deterministic (i.e., service time is not random but
constant).

Most of queueing models are classified into four categories by the behavior of customers as follows:

(I) Delay models: customers wait in line until they can be served.

Example:M/M/c queue, where

49



(i) customers arrive according to a Poisson process with rateλ;
(ii) there arec servers and there is an infinite waiting space;

(iii) each customer requires an exponential service time with mean 1/µ;
(iv) customers who upon arrival find all servers busy wait in line to be served.

(II) Loss models: customers leave the system when they find all servers busy upon arrival.

Example: Erlang’s loss modelM/G/c/c, where

(i) customers arrive according to a Poisson process with rateλ;
(ii) there arec servers and the capacity of the system is limited toc customers, i.e., there is no waiting

space;
(iii) each customer requires a generally distributed service time;
(iv) customers who upon arrival find all servers busy are rejected forever.

(III) Retrial models: customers who do not find an idle server upon arrival leave the system only temporarily,
and try to reenter some random time later.

Example: the Palm/Erlang-A queue, where

(i) customers arrive according to a Poisson process with rateλ;
(ii) there arec servers and there is an infinite waiting space;

(iii) each customer requires an exponential service time with mean 1/µ;
(iv) customers who upon arrival find all servers busy wait in line to be served;
(v) customers wait in line only an exponentially distributed time with mean 1/θ (patience time).

(IV) Abandonment models: customers waiting in line will leave the system before being served after their
patience time has expired.
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6.2 M/M/1 Queue
This is the most fundamental model, which satisfies the following conditions:

(i) arrivals occur according to a Poisson process with parameterλ;

(ii) service times obey an exponential distribution with parameterµ;

(iii) arrivals of customers and service times are independent;

(iii) the system contains a single server;

(iv) the size of waiting room is infinite;

(v) (FIFO= First In First Out) customers are served from the front of the queue, i.e., according to a first-come,
first-served discipline.

Thus there are two parameters characterizing anM/M/1 queue, that is, the parameterλ > 0 for the Poisson
arrival and the oneµ > 0 for the exponential service. In other words, a customer arrives at the system with
average time interval 1/λ and the average service time is 1/µ. In the queuing theoryλ is called themean arrival
rate andµ themean service rate. Let X(t) be the number of customers in the system at timet. It is the proved
that {X(t) ; t ≥ 0} becomes a continuous time Markov chain on{0, 1,2,3, ...}. In fact, the letter “M” stands for
“Markov” or “memoryless”.

Our main objective is
pn(t) = P(X(t) = n|X(0) = 0),

i.e., the probabbility of findingn customers in the system at timet > 0 subject to the initial conditionX(0) = 0.
Let us consider the change of the system during the small time interval [t, t + ∆t]. It is assumed that during the
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small time interval∆t only one event happens, namely, a new customer arrives, a customer under service leaves
the system, or nothing changes. The probabilities of these events are given byλ∆t, µ∆t, 1− λ∆t − µ∆t.

t t + ∆t

n n

n+1

n−1

λ∆t

µ∆t

t t + ∆t

n

λ∆t

µ∆t

n

n+1

n−1

Therefore,P(X(t) = n|X(0) = 0) fulfills the following equation:

P(X(t + ∆t) = n|X(0) = 0) = P(X(t + ∆t) = n|X(t) = n− 1)P(X(t) = n− 1|X(0) = 0)

+ P(X(t + ∆t) = n|X(t) = n)P(X(t) = n|X(0) = 0)

+ P(X(t + ∆t) = n|X(t) = n+ 1)P(X(t) = n+ 1|X(0) = 0)

= λ∆tP(X(t) = n− 1|X(0) = 0)

+ (1− λ∆t − µ∆t)P(X(t) = n|X(0) = 0)

+ µ∆tP(X(t) = n+ 1|X(0) = 0),

P(X(t + ∆t) = 0|X(0) = 0) = (1− λ∆t)P(X(t) = 0|X(0) = 0)+ µ∆tP(X(t) = 1|X(0) = 0).

Hence forpn(t) = P(X(t) = n|X(0) = 0) we have

p′n(t) = λpn−1(t) − (λ + µ)pn(t) + µpn+1(t), n = 1,2, . . . ,
p′0(t) = −λp0(t) + µp1(t).

(6.1)

The initial condition is as follows:

p0(0) = 1, pn(0) = 0 for n ≥ 1. (6.2)

Solving the linear system (6.1) with the initial condition (6.2) is not difficult with the help of linear algebra
and spectral theory. However, the explicit solution is not so simple and is omitted. We only mention that most
important characteristics are obtained from the explicitpn(t).

Here we focus on the equilibrium solution (limit transition probability), i.e.,

pn = lim
t→∞

pn(t)

whenever the limit exists. Since in the equilibrium the derivative of the left hand side of (6.1) is 0, we have

λpn−1 − (λ + µ)pn + µpn+1 = 0 n = 1,2, . . . ,
−λp0 + µp1 = 0.

(6.3)

A general solution to (6.3) is easily derived:

pn =

C1 +C2

(
λ

µ

)n

, λ , µ,

C1 +C2n, λ = µ.

Sincepn gives a probability distribution, we havepn ≥ 0 and
∞∑

n=0

pn = 1. This occurs only whenλ < µ and we

have

pn =

(
1− λ
µ

) (
λ

µ

)n

, n = 0, 1,2, . . . .
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This is the geometric distribution with parameterλ/µ.
In queuing theory, the ratio of the mean arrival rateλ and the mean service rateµ is called theutilization:

ρ =
λ

µ
.

Utilization stands for how busy the system is. It was shown above that the number of customers in the system
after long time obeys the geometric distribution with parameterρ. If ρ < 1, the system functions well. Otherwise,
the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium the number of customers
in the system obeys the geometric distribution:

(1− ρ)ρn, n = 0,1,2, . . . .

In particular, the probability that the server is free is 1− ρ and the probability that the server is busy and the
customer need to wait isρ. This is the origin of the termutilization. Note also that the mean number of the
customers in the system is given by

∞∑
n=0

npn =
ρ

1− ρ =
λ

µ − λ .

Example 6.2.1 There is an ATM, where each customer arrives with average time interval 5 minutes and spends
3 minutes in average for the service. Using anM/M/1 queue, we know some statistical characteristics. We set

λ =
1
5
, µ =

1
3
, ρ =

λ

µ
=

3
5
.

Then the probability that the ATM is free isp0 = 1− ρ = 2
5

. The probability that the ATM is busy but there is no

waiting customer is

p1 =
2
5
× 3

5
=

6
25
.

Hence the probability that the ATM is busy and there is some waiting customers is

1− p0 − p1 = 1− 2
5
− 6

25
=

9
25
= 0.36.

So, roughly speaking, a customer needs to make a queue once per three visits.

Remark 6.2.2 The Markov processX(t) appearing in theM/M/1 queuing model is studied more generally
within the framework ofbirth-and-death process.

Problem 24 (M/M/1/1 queue) There is a single server and no waiting space. Customers arrive Poisson withλ,
servoice inµ Let Q(t) be the number of customers in the system at timet. In fact,

Q(t) =

1, server is busy,

0, server is idle,

(1) Find

p0(t) = P(Q(t) = 0|Q(0) = 0),

p1(t) = P(Q(t) = 1|Q(0) = 0)

by solving a linear system satisfied by thosepn(t).

(2) Using the results in (1), calculate

p̄0 = lim
t→∞

p0(t), p̄1 = lim
t→∞

p1(t),

(3) Find the mean number of customers in the system in the long time limit:

lim
t→∞

E[Q(t)].
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7 Galton-Watson Branching Processes

Consider a simplified family tree where each individual gives birth to offspring (children) and dies. The
number of offsprings is random. We are interested in whether the family survives or not. A fundamental model
was proposed by F. Galton in 1873 and basic properties were derived by Galton and Watson in their joint paper
in the next year. The name “Galton-Watson branching process” is quite common in literatures after their paper,
but it would be more fair to refer to it as “BGW process.” In fact, Iréńee-Jules Bienayḿe studied the same model
independently already in 1845.

References

1. R. B.シナジ（今野紀雄・林俊一訳): マルコフ連鎖から格子確率モデルへ,シュプリンガー東京, 2001.

2. K. B. Athreya and P. E. Ney: Branching Processes, Dover 2004 (original version, Springer 1972)

7.1 Definition
Let Xn be the number of individuals of then-th generation. Then{Xn ; n = 0,1,2, . . . } becomes a discrete-

time stochasic process. We assume that the number of children born from each individual obeys a common
probability distribution and is independent of individuals and of generation. Under this assupmtion{Xn} becomes
a Markov chain.

Let us obtain the transition probability. LetY be the number of children born from an individual and set

P(Y = k) = pk , k = 0,1,2, . . . .

The sequence{p0, p1, p2, . . . } describes the distribution of the number of children born from an individual. In
fact, what we need is the condition

pk ≥ 0,
∞∑

k=0

pk = 1.

We refer to{p0, p1, . . . } as theoffspring distribution. LetY1,Y2, . . . be independent identically distributed random
variables, of which the distribution is the same asY. Then, we define the transition probability by

p(i, j) = P(Xn+1 = j|Xn = i) = P

 i∑
k=1

Yk = j

 , i ≥ 1, j ≥ 0,

and

p(0, j) =

0, j ≥ 1,

1, j = 0.
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Clearly, the state 0 is an absorbing one. The above Markov chain{Xn} over the state space{0,1,2, . . . } is called
theGalton-Watson branching processwith offspring distribution{pk ; k = 0,1, 2, . . . }.

For simplicity we assume thatX0 = 1. Whenp0 + p1 = 1, the famility tree is reduced to just a path without
branching so the situation is much simpler (Problem 25). We will focus on the case where

p0 + p1 < 1, p2 < 1, . . . , pk < 1, . . . .

In the next section on we will always assume the above conditions.

Problem 25 (One-child policy) Consider the Galton-Watson branching process with offspring distribution sat-
isfying p0 + p1 = 1. Calculate the probabilities

q1 = P(X1 = 0), q2 = P(X1 , 0,X2 = 0), . . . , qn = P(X1 , 0, . . . ,Xn−1 , 0,Xn = 0), . . .

and find the extinction probability

P =

 ∞∪
n=1

{Xn = 0}
 = P(Xn = 0 occurs for somen ≥ 1).

7.2 Generating Functions
Let {Xn} be the Galton-Watson branching process with offspring distribution{pk ; k = 0,1,2, . . . }. Let

p(i, j) = P(Xn+1 = j|Xn = i) be the transition probability. We assume thatX0 = 1.
Define the generating function of the offspring distribution by

f (s) =
∞∑

k=0

pksk. (7.1)

The series in the right-hand side converges for|s| ≤ 1. We set

f0(s) = s, f1(s) = f (s), fn(s) = f ( fn−1(s)).

Lemma 7.2.1
∞∑
j=0

p(i, j)sj = [ f (s)] i , i = 1,2, . . . . (7.2)

Proof By definition,

p(i, j) = P (Y1 + · · · + Yi = j) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

P(Y1 = k1, . . . ,Yi = ki).

SinceY1, . . . ,Yi are independent, we have

p(i, j) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

P(Y1 = k1) · · ·P(Yi = ki) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

pk1 · · · pki .

Hence,

∞∑
j=0

p(i, j)sj =

∞∑
j=0

∑
k1+···+ki= j
k1≥0,...,ki≥0

pk1 · · · pki s
j

=

∞∑
k1=0

pk1 sk1 · · ·
∞∑

ki=0

pki s
ki

= [ f (s)] i ,

which proves the assertion.

54



Lemma 7.2.2 Let pn(i, j) be then-step transition probability of the Galton-Watson branching process. We have

∞∑
j=0

pn(i, j)sj = [ fn(s)] i , i = 1,2, . . . . (7.3)

Proof We prove the assertion by induction onn. First note thatp1(i, j) = p(i, j) and f1(s) = f (s) by
definition. Forn = 1 we need to show that

∞∑
j=0

p(i, j)sj = [ f (s)] i , i = 1,2, . . . , (7.4)

Which was shown in Lemma 7.2.1. Suppose thatn ≥ 1 and the claim (7.3) is valid up ton. Using the Chapman-
Kolmogorov identity, we see that

∞∑
j=0

pn+1(i, j)sj =

∞∑
j=0

∞∑
k=0

p(i, k)pn(k, j)sj .

Since
∞∑
j=0

pn(k, j)sj = [ fn(s)]k

by assumption of induction, we obtain

∞∑
j=0

pn+1(i, j)sj =

∞∑
k=0

p(i, k)[ fn(s)]k.

The right-hand side coincides with (7.4) wheres is replaced byfn(s). Consequently, we come to

∞∑
j=0

pn+1(i, j)sj = [ f ( fn(s))] i = [ fn+1(s)] i ,

which proves the claim forn+ 1.

SinceX0 = 1,
P(Xn = j) = P(Xn = j|X0 = 1) = pn(1, j).

In particular,
P(X1 = j) = P(X1 = j|X0 = 1) = p1(1, j) = p(1, j) = p j .

Theorem 7.2.3 Assume that the mean value of the offspring distribution is finite:

m=
∞∑

k=0

kpk < ∞.

Then we have
E[Xn] = mn.

Proof Differentiating (7.1), we obtain

f ′(s) =
∞∑

k=0

kpksk−1, |s| < 1. (7.5)

Letting s→ 1− 0, we have
lim

s→1−0
f ′(s) = m.

On the other hand, settingi = 1 in (7.3), we have

∞∑
j=0

pn(1, j)sj = fn(s) = fn−1( f (s)). (7.6)
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Differentiating both sides, we come to

f ′n(s) =
∞∑
j=0

jpn(1, j)sj−1 = f ′n−1( f (s)) f ′(s). (7.7)

Letting s→ 1− 0, we have

lim
s→1−0

f ′n(s) =
∞∑
j=0

jpn(1, j) = lim
s→1−0

f ′n−1( f (s)) lim
s→1−0

f ′(s) = m lim
s→1−0

f ′n−1(s).

Therefore,
lim

s→1−0
f ′n(s) = mn,

which means that

E(Xn) =
∞∑
j=0

jP(Xn = j) =
∞∑
j=0

jpn(1, j) = mn.

In conclusion, the mean value of the number of individuals in then-th generation,E(Xn), decreases and
converges to 0 ifm < 1 and diverges to the infinity ifm > 1, asn→ ∞. It stays at a constant ifm = 1. We are
thus suggested that extinction of the family occurs whenm< 1.

Problem 26 Assume that the variance of the offspring distribution is finite:V[Y] = σ2 < ∞. By similar
argument as in Theorem 7.2.3, prove that

V[Xn] =


σ2mn−1(mn − 1)

m− 1
, m, 1,

nσ2, m= 1.

7.3 Extinction Probability
The event{Xn = 0} means that the family died out until then-th generation. So

q = P

 ∞∪
n=1

{Xn = 0}


is the probability of extinction of the family. Note that the events in the right-hand side is not mutually exclusive
but

{X1 = 0} ⊂ {X2 = 0} ⊂ · · · ⊂ {Xn = 0} ⊂ . . . .
Therefore, it holds that

q = lim
n→∞

P(Xn = 0). (7.8)

If q = 1, this family almost surely dies out in some generation. Ifq < 1, the survival probability is positive
1− q > 0. We are interested in whetherq = 1 or not.

Lemma 7.3.1 Let f (s) be the generating function of the offspring distribution, and setfn(s) = f ( fn−1(s)) as
before. Then we have

q = lim
n→∞

fn(0).

Therefore,q satisfies the equation:
q = f (q). (7.9)
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Proof It follows from Lemma 7.2.2 that

fn(s) =
∞∑
j=0

pn(1, j)sj .

Hence,
fn(0) = pn(1,0) = P(Xn = 0|X0 = 1) = P(Xn = 0),

where the last identity is by the assumption ofX0 = 1. The assertion is now straightforward by combining (7.8).
The second assertion follows sincef (s) is a continuous function on [0,1].

Lemma 7.3.2 Assume that the offspring distribution satisfies the conditions:

p0 + p1 < 1, p2 < 1, . . . , pk < 1, . . . .

Then the generating functionf (t) verifies the following properties.

(1) f (s) is increasing, i.e.,f (s1) ≤ f (s2) for 0 ≤ s1 ≤ s2 ≤ 1.

(2) f (s) is strictly convex, i.e., if 0≤ s1 < s2 ≤ 1 and 0< θ < 1 we have

f (θs1 + (1− θ)s2) < θ f (s1) + (1− θ) f (s2).

Proof (1) is apparent since the coefficient of the power seriesf (s) is non-negative. (2) follows byf ′′(s) > 0.

Lemma 7.3.3 (1) If m≤ 1, we havef (s) > s for 0 ≤ s< 1.

(2) If m> 1, there exists a uniques such that 0≤ s< 1 and f (s) = s.

Lemma 7.3.4 f1(0) ≤ f2(0) ≤ · · · → q.

Theorem 7.3.5 The extinction probabilityq of the Galton-Watson branching process as above coincides with
the smallests such that

s= f (s), 0 ≤ s≤ 1.

Moreover, ifm≤ 1 we haveq = 1, and ifm> 1 we haveq < 1.

The Galton-Watson branching process is calledsubcritical, critical andsupercritical if m < 1, m = 1 and
m > 1, respectively. The survival is determined only by the mean valuem of the offspring distribution. The
situation changes dramatically atm = 1 and, following the terminology of statistical physics, we call itphase
transition.

Problem 27 Let b, p be constant numbers such thatb > 0, 0< p < 1 andb+p < 1. For the offspring distribution
given by

pk = bpk−1, k = 1,2, . . . ,

p0 = 1−
∞∑

k=1

pk,

find the generating functionf (s). Moreover, settingm= 1, find fn(s).
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8 Brownian Motion

In 1827 Robert Brown (1773–1858, Scottish botanist) observed a continuous jittery motion of small particles
spouting from pollen of the plantClarkia pulchellain water under a microscope. For a long period the mechanism
of this motion was unknown. In 1905 (known as the miracle year in physics) Albert Einstein published a paper
that the Brownian motion was caused by individual water molecules and was given a mathematical description
along with physical discussion. The original article is collected in A. Einstein: “Investigations on the Theory of
the Brownian Movement,” (Dover, 2011). It is probably fair to refer to Marian Smoluchowski (1872–1917, Polish
physicist) who also gave a similar mathematical model of Brownian motion. Although his paper was published
in 1906, it is said in the exhibition at Krakow University, Poland, that his manuscript was sent to Einstein before
his work.

After the physical investigations mathematical study of Brownian motion or more general stochastic pro-
cesses started. The contributions by Norbert Wiener (1894–1964) and Paul Lévy (1886–1971) were most essen-
tial. Thereby Brownian motion is also called theWiener process. In 1940s Kiyoshi It̂o (1915–2008, Japanese
probabilist) initiated the theory of stochastic differential equations which is nowadays commonly called theItô
calculus. During the last 60 years the Itô calculus has developed drastically for vast applications. It is only
a small part of the story that financial engineering without Itô formula is impossible and Itô became the most
famous Japanese in Wall Street.

8.1 From Random Walk to Brownian Motion
Consider one-dimensional random walk, where the random walker starts from the originx = 0 at timet = 0,

and tosses a fair coin every short time interval∆t, and move a very short distance ofϵ to the right or left. Let
X(t) = X(t;∆t, ϵ) be the position of the above random walker at timet ≥ 0.

It is convenient to expressX(t) by means of Bernoulli trials. Let{Zn} be a Bernoulli trial with success
probability 1/2, i.e.,

P(Zn = +1) = P(Zn = −1) =
1
2
.

Then fort = n∆t we have

X(t) =
n∑

k=1

ϵZk . (8.1)

x

t

∆t

ε

We easily see from (8.1) that

E[X(t)] = ϵ
n∑

k=1

E(Zk) = 0, (8.2)

V[X(t)] = ϵ2
n∑

k=1

V(Zk) = ϵ
2n =

ϵ2

∆t
t. (8.3)

Moreover, fors= m∆t andt = n∆t,

Cov (X(s),X(t)) = ϵ2
m∑
j=1

n∑
k=1

Cov (Z j ,Zk) = ϵ
2 min {m,n} = ϵ

2

∆t
min {s, t}. (8.4)
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We are interested in the limit as∆t → 0 andϵ → 0, whereas (8.3) suggests that a reasonable limit is obtained
under the condition

ϵ2

∆t
→ α (constant). (8.5)

In the following, we setα = 1 in (8.5) for simplicity. We hope to obtain a stochastic processB(t) as a limit of the
random walkX(t;∆t, ϵ) as

B(t) = lim X(t;∆t, ϵ), (8.6)

where the limit is taken in such a way that∆t → 0, ϵ → 0 with ϵ2/∆t → 1. We then see from (8.2)–(8.4) that

E[B(t)] = 0, (8.7)

V[B(t)] = t, (8.8)

Cov (B(s), B(t)) = min{s, t}. (8.9)

Moreover, we obtain

X(t;∆t, ϵ) =
n∑

k=1

ϵZk = ϵ
√

n
1
√

n

n∑
k=1

Zk

= ϵ

√
t
∆t

1
√

n

n∑
k=1

Zk

=

√
ϵ2

∆t

√
t

1
√

n

n∑
k=1

Zk . (8.10)

It follows from the central limit theorem that
1
√

n

n∑
k=1

Zk

obeys the standard normal lawN(0,1) in the limit. So we see from (8.10) thatB(t) being the limit ofX(t;∆t, ϵ),
obeys the normal lawN(0, t). We call{B(t)} the Brownian motion or the Wiener process.

-30

-20

-10

0

10

20

30

200 600

800

1000

Figure 8.1: Random walk as a simulation of Brownian motion

Remark 8.1.1 The above “construction” of Brownian motion from the random walk is heuristic and instructive,
however, the important step was omitted. Namely, we did not argue that the limit of random walksX(t;∆t, ϵ)
exists in the sense of stochastic process. In fact, we may give rigorous proof to this point but mathematically
totally non-trivial. On the other hand, in most textbooks the Brownian motion is introduced independently of
random walk, where the argument becomes much simpler but loses the intuition of the jittery movement of
Brownian motion.
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We mention most essential propertirs of Brownian motion, where we have to accept them only with intuitive
reasonings suggested by the above “construction.”

(B1) {B(t) ; t ≥ 0} forms a Gaussian system, i.e., for any finite number of time pointst1, t2, . . . , tn the random
vector (B(t1), B(t2), . . . , B(tn)) obeys an-dimensional normal law (may be degenerate).

(B2) E[B(t)] = 0

(B3) Cov(B(s), B(t)) = E[B(s)B(t)] = min{s, t}
(B4) B(0) = 0

(B5) (Continuous sample path)t 7→ B(t) is continuous almost surely.

In most literatures a stochastic process satisfying (B1)–(B5) is called aBrownian motionby definition. Then
we need to verify the existence of such a stochastic process. In fact, it is not very difficult to show (or con-
struct) a stochastic process satisfying (B1)–(B4), which is often called aweak Brownian motion. Then applying
Kolmogorov’s continuous version theorem we may derive (B5).

Moreover, we have

(B6) (Independent increments) for 0≤ t1 < t2 < · · · < tn, the random variables

B(t1), B(t2) − B(t1), B(t3) − B(t2), . . . , B(tn) − B(tn−1)

are independent.

(B7) {B(t)} is a Markov process. (For the precise definition of Markov process we need some advanced knowl-
edge of conditional probability.)

8.2 Stochastic Differential Equations (SDEs)
An ordinary differential equation (ODE) is in general of the form:

dx
dt
= f (t, x), x(0) = x0 (initial condition), (8.11)

wherex = x(t) is unknown function. The ordinary differential equation (8.11) describes howx(t) changes in a
small time duration∆t, namely, we have

x(t + ∆t) − x(t) = f (t, x(t))∆t + o(∆t) (8.12)

Thereby we often write (8.11) as
dx(t) = f (t, x)dt, x(0) = x0 , (8.13)

or in an integral form:

x(t) = x0 +

∫ t

0
f (s, x(s))ds. (8.14)

We understand that (8.11), (8.13) and (8.14) are equivalent.
We know from general theory that the differential equation (8.11) possesses a unique solution under cer-

tain condition (e.g., Lipschitz condition) onf (t, x). In other words, the movement ofx = x(t) is completely
determined by (8.11) together with initial condition.

We now consider the case where the movement is disturbed by random noise at each time.

x(t) - x(t + ∆t)- -?

noise

?

noise

?

noise
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A noise term must be added to the differential equation (8.11). Starting with (8.12), we try to get a suitable
expression for

x(t + ∆t) − x(t) = f (t, x(t))∆t + (noise). (8.15)

It is natural to think that noises occurring at different time are independent. Since Brownian motion{B(t)} has
independent increment, the noise term in (8.15) being given asB(t + ∆t) − B(t), we come naturally to

x(t + ∆t) − x(t) = f (t, x(t))∆t + (B(t + ∆t) − B(t)).

More generally, allowing the noise to depend onx(t) andt, we may consider:

x(t + ∆t) − x(t) = f (t, x(t))∆t + g(t, x(t))(B(t + ∆t) − B(t)).

Since{B(t)} is a stochastic process, so is{x(t)}. According to our tradition, we writeX(t) for x(t) from now on.
Finally, letting∆t → 0 we expect to obtain an expression as

dX(t) = f (t,X(t))dt+ g(t,X(t))dB(t) , X(0) = x0 (initial condition). (8.16)

In the integral form we have

X(t) = x0 +

∫ t

0
f (s,X(s))ds+

∫ t

0
g(s,X(s))dB(s) . (8.17)

We have thus obtained formally natural expressions (8.16) and (8.17). The former is called a stochastic
differential equation and the latter a stochastic integral equation. However, the above argument being just heristic,
we do not know whetherdB(s) makes a mathematica sense. It was K. Itô that gave a mathematical definition of
dB(t) and constructed the theory of stochastic differential equations. Nowadays, the theory initiated by him is
calledItô calculusand is widely accepted.

8.3 Stochastic Integrals and It̂o Formula
In Itô theory we first formulate the integral equation (8.17) and then a stochastic differential equation (8.16) is

accepted as a short-hand notation for (8.17). The second term of the right-hand side of (8.17) is a usual integral,
but the third term is a new type of integral.

In general, for a stochastic process{G(t)} adapted to the Brownian motion{Bt} thestochastic integral (of Itô
type)or theItô integral is defined:

I (t) =
∫ t

0
G(s) dB(s) .

Then{I (t)} becomes a stochastic process adapted to{Bt}. (For adaptedness, several basic concepts in stochastoic
processes are required and so we give up to go into details.) Thus, (8.17) is an equation for finding a stochastic
process{X(t)} adapted to the Brownian motion and satisfying (8.17).

A stochastic process{X(t)} is calledItô processif it admits an expression as in

X(t) = x0 +

∫ t

0
F(s)ds+

∫ t

0
G(s)dB(s).

We often use a differential form:
dX = Fds+GdB.

Let f (t, x) be a function andX(t) an Itô process. Then it is known that the composition

Y(t) = f (t,X(t))

is again an It̂o process. HenceY(t) admits an expression of the form:

Y(t) = y0 +

∫ t

0
F1(s)ds+

∫ t

0
G1(s)dB(s) or dY= F1dt+G1dB. (8.18)

The integrandsF1(s) andG1(s) are computed by the famousItô formula.
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Theorem 8.3.1 (It̂o formula) Assume thatf (t, x) is C1-class with respect tot andC2-class with respect tox.
Then, forY(t) = f (t,X(t)) we have

dY=
∂ f
∂t

(t,X(t))dt+
∂ f
∂x

(t,X(t))dX+
1
2
∂2 f
∂x2

(t,X(t))(dX)2,

where
dX = Fdt+GdB, and (dX)2 = G2dt .

Consequently,F1 andF2 in (8.18) are given by

F1 =
∂ f
∂t

(t,X(t)) +
∂ f
∂x

(t,X(t)) · F(t) +
1
2
∂2 f
∂x2

(t,X(t)) ·G(t)2,

F2 =
∂ f
∂x

(t,X(t)) ·G(t).

The essence of Itô formula is found in the relations:

(dt)(dt) = (dB)(dt) = (dt)(dB) = 0, (dB)(dB) = dt.

8.4 Black-Scholes Model
Let α ∈ R andσ > 0 be constant numbers. We will study a stochastic differential equation:

dX = αXdt+ σXdB, X0 = x0 . (8.19)

If σ = 0, then (8.19) becomes an ordinary differential equation:

dx= αxdt, x(0) = x0 , (8.20)

and the solution is immediately obtained:
x(t) = x0eαt.

In this casex(t) increases or decreases exponentially according asα > 0 orα < 0. There are many phenomena
modeled by (8.20), for example, in finance it stands for the amount ofcontinuous compoundingat timet. The
stochastic differential equation (8.19) is formally written as

dX
dt
=

(
α + σ

dB
dt

)
X. (8.21)

Comparing with (8.20), we understand that the amountX(t) grows with an interest rate fluctuating aroundα.
As an application of the Itô formula, we will solve (8.19). Setting

X(t) = Y(t)eσB(t), (8.22)

we immediately obtain
dX = dYeσB(t) + Yd(eσB(t)). (8.23)

Now applying the It̂o formula we obtain

d(eσB(t)) = σeσB(t)dB+
σ2

2
eσB(t)dt,

hence (8.23) becomes

dX = dYeσB(t) + Y

(
σeσB(t)dB+

σ2

2
eσB(t)dt

)
. (8.24)

Inserting (8.22) and (8.24) into (8.19), we obtain

dYeσB(t) + Y

(
σeσB(t)dB+

σ2

2
eσB(t)dt

)
= αYeσB(t)dt+ σYeσB(t)dB,
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so that

dY=

(
α − σ

2

2

)
Ydt.

The above is an ordinary differential equation and we know a general solution:

Y = K exp

{(
α − σ

2

2

)
t

}
, K: arbitrary constant.

Thus, coming back to (8.22), we obtain the solution to (8.19) as follows:

X(t) = x0 exp

{(
α − σ

2

2

)
t + σB(t)

}
. (8.25)

Definition 8.4.1 A stochastic process of the form exp(at + bBt), wherea,b ∈ R are constant numbers, is called
ageometric Brownian motion.

Figure 8.2: Simulation of geometric Brownian motion

In mathematical finance the geometric Browian motion (8.25) is the most fundamental model of the time
evolution of stock price. In such a context, (8.25) is also called theBlack-Scholes model. The famous option
price formula, called theBlack-Scholes formula, is derived from this model (Nobel prize was awarded to Merton
and Scholes in 1997).
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