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Mathematical analysis is important for the understanding of random phenomenon apperaing in var-
ious fields of natural, life and social sciences, and the probabilistic approach is essential. We start
with fundamental concepts in probability theory and learn basic tools for probabilistic models. In
particular, for the time evolution of random phenomenon we study basic properties of random walks,
Markov chains, Markov processes, and take a bird’s-eye view of their wide applications.
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Random variables and probability distributions
Bernoulli trials

Random walks

Markov chains

Poisson processes

Queues

Galton-Watson branching processes
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Birth-and-death processes .... etc
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Overview

0.1 Stochastic Processes

We will study the probability models for time evolution of random phenomena. Measuring a certain quantity
of the random phenomenon at each time step0, 1, 2, ..., we obtain a sequence of real values:

X07X1,X2,--~,Xn,....

Because of randomness, we consigens a realized value of a random variable Here a random variable
is a variable taking several figrent values with certain probabilities. Thus, the time evolution of a random
phenomenon is modeled by a sequence of random variables

{Xn, n:O,l,Z,u-}:{X07X1’X2,--~,Xn’~~-},

which is called aliscrete-time stochastic procedthe measurement is performed along with continuous time,
we need aontinuous-time stochastic process

{X; 1= 0}

It is our purpose to construct stochastic processes modeling typical random phenomena and to demonstrate their
properties within the framework of modern probability theory.
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Figure 1: Solar spots and exchanging rates

We hope that you will obtain basic concepts and methods through the following three subjects:

0.2 One-Dimensional Random Walk and Gambler’'s Ruin Problem

Let us consider coin tossing. We getl if the heads appears, while we get (i.e., lose+1) if the tails
appears. Le¥, be the value of the-th coin toss.

To be precise, we must say thai,} is a sequence of independent, identically distributed (iid) random vari-
ables with the common distribution

P(Z, = +1)=P(Z, = -1) = %
In short,{Z,} is called theBernoulli trials with success probability/2. Define

n
Xo =0, xn:sz n=12....
k=1

Then X, means the net income at the timgor the coordinate of a drunken walker aftesteps. The discrete
time stochastic proce$X,} is calledone-dimensional random walk



(i) law of large numbers
(ii) diffusion speed (central limit theorem)
(iii) recurrence
(iv) long leads (law of happy time)
(v) gambler’s ruin (random walk with barriers)

0.3 Markov Chains

Consider the time evolution of a random phenomenon, where sevéiereditstatesare observed at each
time stepn = 0,1,2,.... For example, for the ever-changing weather, after simplification we observe three
states: fine, cloudy, rainy. Collected data look like a sequenée@fR:

FFCRFCCEFR...

from which we may find the conditional probabiliB(X|Y) of having a weatheX just afterY. Then we come to
the transition diagram, where each arrgw- X is asigned the conditional probabiliB(X|Y).

The above diagram describes a general Markov chain over the three states because the transitions occur
between every possible pair of states. According to our purpose, we may consider variations. For example, we
may consider the following diagram for analysis of life span.




A Markov chain{X,} is a discrete-time stochastic process over a state $pacé, j,...} (always assumed
to be finite or countably infinite), which is governed by the one-step transition probability:

pij = P(Xn+l = j|xn = |)

where the right hand side is independenhdfime homogeneous). A random walk is an example of a Markov
chain. The theory of Markov chains is one of the best successful theories in probability theory for its simple
description and unexpectedly rich structure. We are interested in the following topics:

(i) stationary distribution

(i) recurrence

(iii) average life span

(iv) survival of family names (Galton-Watson tree)

(v) birth-and-death chains

0.4 Poisson Process

Let us imagine that an eveRtoccurs repeatedly at random as time goes on. For example, alert of receiving
an e-mail, passengers making a queue at a bus stop, customers visiting a shop, occurrence of defect of a machine,
radiation from an atom, etc.

10 ms

t

Figure 2: Nerve impulses

To obtain a stochastic process, we count the number of occurrence of theEegtaring the time interval
[0,1], which is denoted byX;. Then we obtain a stochastic procégXs; t > 0}. The situation is illustrated as
follows, wherety, to, . .. are the time whelft occurs.



A fundamental case is described by a Poisson process, where the event happens independently each other.
The first to check is the statistics between two consecutive occurrence of events (waiting time).

(i) Applications to queuing theory (waiting lines are modeled by a Poisson process).
(ii) A birth-and-death process as generalization.

Poisson process is one of the fundamental examples of (continuousMiank)v processesAnother is the
Brownian motion (Wiener process).

Figure 3: Two-dimensional Brownian Motion (simulation)
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1 Random Variables and Probability Distributions

1.1 Random variables

A naive account: “variabl&” vs “random variablex”

A random variableX is a variable varying over a certain range of real numbers and the probability is assigned
to each possible value.

Example 1.1.1 (1) Let’s flip a coin. Heads or tails?
(2) Cut a stick and measure the length of the longer segments.
(3) Choose one person from a population and measure the weight.

1.1.1 Discrete random variables

A random variableX is calleddiscreteif the number of values thaX takes is finite or countably infinite.
To be more precise, for a discrete random variablere exist a (finite or infinite) sequence of real numbers
ai, a, ... and corresponding nonnegative numbgrsp,, . .. such that

PX=a)=p, P20 Y p=1

In this case

px(@) = ) pioa(dX) = > po(x— a)dx

is called theg(probability) distributionof X.

Obviously,
P@< X<h)= Z pi
i:a<a<b
Py
pi
a, a, as a;
Example 1.1.2 (coin toss)We set
1, h
x 1L gads
0, tails.

Then
P(X=1)=p, P(X=0)=qg=1-p.

For a fair coin we sep = 1/2.

Example 1.1.3 (waiting time) Flip a fair coin repeatedly until we get the heads. Tebe the number of coin
tosses to get the first heads. (If the heads occurs at the first trial, wd have If the tails occurs at the first trial
and the heads at the second trial, we have 2, and so on.)

P(T:k):(l—p)kilp’ k=1,2,....



1.1.2 Continuous random variables

A random variableX is calledcontinuousf P(X = a) = 0 for alla € R. We understand intuitively that

varies continuously.
If there exists a functiori(x) such that

b
P(asXsb)zf f()dx a<b,
a
we say thaiX admits aprobability density functionNote that

fm f(dx=1,  f(x)>0.

00

In this case,
ux(dx) = f(x)dx

is called the(probability) distributionof X.

S (x)

a b X
It is useful to consider thdistribution function
X
Fx(X) =P(X < x) = f fy (t)dt, X € R.

Then we have g
fx(x) = ax Fx(X).

Remark 1.1.4 (1) A continuous random variable does not necessarily admit a probability density function.
But many continuous random variables in practical applications admit probability density functions.

(2) There is arandom variable which is neither discrete nor continuous. But most random variables in practical
applications are either discrete or continuous.

Example 1.1.5 (random cut) Divide the interval [QL] (L > 0) into two segments.

(1) LetX be the coordinate of the cutting point (the length of the segment containing 0).

o, X < 0;
Fx(¥) = {x/L, 0<x<L;
1, x> L.
(2) LetM be the length of the longer segment.
0, X< L/2;
Fu(¥) =¢(2x-L)/L, L/2<x<L;
1, X > L.



Example 1.1.6 Let Abe arandomly chosen point from the disc with radius 0. LetX be the distance between
the centelO andA. We have

2 _ A2 b
P(asXsb)z%zéfzmx O<a<b<R
a

so the probability density function is given by

F(x) = ;—ﬁ 0<x<R

Figure 1.1: Random choice of a point

1.2 Probability distributions

1.2.1 Mean and variance

Definition 1.2.1 Themeanor expectation valuef a random variablX is defined by

m=epq= [ " (@)

o |f X is discrete, we have

EIX] =) api.
i
o If X admits a probability density functiof(x), we have

E[X] = Imxf(x)dx

00

Remark 1.2.2 For a functionp(x) we have

ELe(X)] = f " o (u(d).

o]

For example,

E[X™ = IM X"u(dx) (m-th moment)

oo

+00
E[€™] = f €*u(dx)  (characteristic function)

00



Definition 1.2.3 Thevarianceof a random variablX is defined by
o? = V[X] = E[(X - E[X])’] = E[X?] - E[X]?,

or equivalently,

+00 +00 +00 2
o =viXi= [ - = [ Xzﬂ(dx)—( [ X,U(dx)) .

Quiz 1.2.4 (see Example 1.1.3Talculate the mean and variance of the waiting time

Quiz 1.2.5 Let S be the length of the shorter segment obtained by randomly cutting the interil (Dalculate
the mean and variance 8t

1.2.2 Alist of discrete distributions
1. Bernoulli distribution with success probability @ p < 1.
(1 - p)do + po1

This is the distribution of coin toss.
m=p, o’ =pl-p)

Quiz 1.2.6 Let a, b be distinct real numbers. A general two-point distribution is defined by
Pda + Qdp ,
where 0< p < 1 andp + g = 1. Determine the two-point distribution having mean 0, variance 1.

2. Binomial distribution B(n,p) (0 < p<1,n>1).

n

D (E) p*(1 - P o

k=0

0.08 4§ M

0.04 4

1b Zb 30 4‘0 50 éO 7‘0 éO §O 160
B(100,0.4)

The quantity

n _

(k) pk(l _ p n-k

is the probability thanh coin tosses with probabilitiep for heads and] = 1 — p for tails result ink heads and
n — k tails.

Quiz 1.2.7 Verify thatm = npando? = np(1 — p) for B(n, p).



3. Geometric distribution with parameter & p < 1.

0

> (- o

k=1
This is the distribution of waiting time for the first heads (Example 1.1.3).

1

Quiz 1.2.8 Verify thatm = % ando? = P

Remark 1.2.9 In some literatures, the geometric distribution with parampterdefined by

00

> p(L - p)Fo

k=0

4. Poisson distributionwith parameten > 0.

Z e_/l W Ok
k=0 ’

The mean isn = 1 and variance 2 = A.

0.7
2=0.5

X E—

R ——

(R S— 0.4
R TE— 03
(PR | E—— 02
0.1 0.1
0.0 0.0

012345 01234567 012345678910
Figure 1.2: Poisson distributioh=1/2,1,3

k

Problem 1 Setp, = e % and consider the generating function defined by

6@ = ) P
k=0

(1) Compute the above sum and derive a concise express{e(zof
(2) By usingG’(1) show that the mean value of the Poisson distribution with paramésegiven bym = A.
(3) By usingG” (1) show that the variance of the Poisson distribution with parametegiven byo? = 1.



1.2.3 Alist of continuous distributions (density functions)

1. Uniform distribution on [a, b].
1

—, <Xx<bh,
f(x)={b-a
0, otherwise
1
b-a
a b

The mean value and the variance are given by

m—fbx dx a+b
~Js "b-a 27

b dx (b - a)?
2— 2——||| =
7 _fa *b-a 12

2. Exponential distribution with parameten > 0.

—AX
f(x):{/le , X>0,

o, otherwise

This is a model for waiting time (continuous time).

. . 1 1
Quiz 1.2.10 Verify thatm = 3 ando? = 2z

3. Normal (Gaussian) distribution N(m, o?) (o > 0, m€ R)

B (x—m)?
.,

In particular,N(0, 1) is called thestandard normal distribution

0.5

0.4




Quiz 1.2.11 Differentiating both sides of the known formula:
+00
f e ¥dx = ﬁ t>0,
0 24/t

find the values .
f e dx n=0,12,....
0

Quiz 1.2.12 Prove that the abov&(x) is a probability density function. Then prove by integration that the mean
is mand the variance is?:

m= = fmxex _(x=mp? d
V2702 Jwe P 202 %

+00 _ 2
o? = \/%fm (x — m)? exp{—(xzo_r;) } dx

Problem 2 Choose randomly a poir& from the disc with radius one and |¥tbe the radius of the inscribed
circle with centerA.

(1) Forx > 0 find the probabilityP(X < x).

(2) Find the probability density functiofy(x) of X. (Note thatx varies over all real numbers.)
(3) Calculate the mean and varianceXof

(4) Calculate the mean and variance of the area of inscribed GrelerX?.



2 Bernoulli Trials

Repeated independent coin tosses are calle@éneoulli trials, where the tossed coins are identical in the
sense that the probabilities of heads and tails remain the same throughout the trials. The Bernoulli trials form the
most fundamental stochastic process.

2.1 Independence

2.1.1 Independent events

Definition 2.1.1 (Pairwise independence) (finite or infinite) sequence of evends, A,, ... is calledpairwise
independenif any pair of event#\,, A, (i1 # i2) verifies

P(A, N A,) = P(AL)P(A,).

Definition 2.1.2 (Independence)A (finite or infinite) sequence of everkg, A,, . . . is calledindependenif any
choice of finitely many events;,, ..., A, (i1 <iz < --- < i,) satisfies

P(A, N A, N---NA) = P(A)PA,) - - - P(A,).

Example 2.1.3 Consider the trial to randomly draw a card from a deck of 52 cardsAlbe the event that the
result is an ace and the event that the result is spades. TheB are independent.

Example 2.1.4 An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random Zhd let
be the first digit X, the second digit, an¥3 the last digit. Foii = 1,2, 3 we define an everfy; by A = {X; = 1}.
Then{Ay, Ay, As} is pairwise independent but is not independent.

Remark 2.1.5 It is allowed to consider whether the sequence of evghta} is independent or not. If they are
independent, by definition we have
P(AN A) = P(AP(A).

ThenP(A) = 0 or P(A) = 1. Notice thatP(A) = 0 does not implyA = @. Similarly, P(A) = 1 does not imply
A = Q (whole event).

Quiz 2.1.6 For A we write A for itself A or its complementary eved€. Prove the following assertions.
(1) If AandB are independent, so afé andB”.
(2) If A, Ao,... are independent, so afé, Aj, ...

Definition 2.1.7 (Conditional probability) For two eventd\, B theconditional probability of A relative to Bor
on the hypothesis,Br for given B is defined by

P(AN B)

whenevelP(B) > 0.
Theorem 2.1.8 Let A, B be events wittP(A) > 0 andP(B) > 0. Then, the following assertions are equivalent:
(i) A Bareindependent;
(i) P(AIB) = P(A);
(iii) P(B|A) = P(B);



2.1.2 Independent random variables

Definition 2.1.9 A (finite or infinite) sequence of random variablgg X, ... is independenf{resp. pairwise
independentif so is the sequence of everit§; < a3}, {X1 < a},... foranyas,ap,--- € R.

In other words, a (finite or infinite) sequence of random variallleX,, . .. is independent if for any finite
Xy, ..., X, (i1 < iz <--- <ip) and constant numbess, .. ., a,

F’(Xi1 <ag, X, <ag,..., X, < an) = F’(Xi1 < al)P(Xiz <ay)--- P(Xin <ap) (2.1)

holds. Similar assertion holds for the pairwise independence.
If random variables(i, Xy, ... are discrete, (2.1) may be replaced with

P(Xi, = a1, X, = az,..., X, = an) = P(X;, = a1)P(X;, = az) - -- P(X;, = ay).

Example 2.1.10Choose at random a point from the rectam@le {(x,y); a< x< b, c <y < d}. Let X denote
the x-coordinates of the chosen point avidhey-coordinates. ThelX, Y are independent.

2.2 Covariance and Correlation Codficient

Recall that the mean of a random variallés defined by
+00
my = E(X) = f Xux (dX).

Theorem 2.2.1 (Linearity) For two random variableX, Y and two constant numbeasb it holds that
E(aX + bY) = aE(X) + bE(Y).
Theorem 2.2.2 (Multiplicativity) If random variables(, X,, ..., X, are independent, we have
E[X1Xz-- - Xa] = E[X1] - -- E[Xq]. (2.2)

Proof We first prove the assertion fofc = 15, (indicator random variable). By definitiod, .. ., X, are
independent if and only if so ar, . .., A,. Therefore,

E[Xl e Xn] = E[lAlﬂ--ﬂAU] = P(A]_ N---N An)
= P(A1) - - P(An) = E[Xa] - - - E[Xn].

Thus (2.2)is verified. Then, by linearity the assertion is validXgrtaking finitely many values (finite linear
combination of indicator random variables). Finally, for gene§alcoming back to the definition of Lebesgue
integration, we can prove the assertion by approximation argument. |

Thevarianceof X is defined by
0% = V(X) = E[(X - mx)?] = E[X*] - E[X]*.

By means of the distributiop(dx) of X we may write

+00 +00 +00 2
V0= [ x-mou(n = [ x%(dx)—( [ Xﬂ(dx))-

Definition 2.2.3 Thecovarianceof two random variableX, Y is defined by
oxy = E[(X - EX))(Y - E(V))] = E[XY] - E[X]E[Y].
In particular,oxx = o-f( becomes the variance ¥t

Definition 2.2.4 X, Y are called uncorrelatedifxy = 0. They are called positively (resp. negatively) correlated
if oxy > 0 (resp.oxy < 0).



Theorem 2.2.5If two random variable¥, Y are independent, they are uncorrelated.
Remark 2.2.6 The converse of Theorem 2.2.5 is not true in general XUe¢ a random variable satisfying
1 1
PX=-1)=PX=1)=>, P(X=0)==
4 2
and sety = X2. Then,X, Y are not independent, buty = 0.

Problem 3 Let X andY be random variables such that
PX=a)=p, PX=b)=q=1-p;, PY=¢)=p2, P(Y=0d)=02=1-pp,

wherea, b, ¢, d are constant numbers and0p; < 1, 0< p, < 1. Show tha, Y are independent ifxy = 0. [In
general, uncorrelated random variables are not necessarily independent. Hence, this falls into a very particular
situation.]

Theorem 2.2.7 (Additivity of variance) Let X3, Xo, ..., X, be random variables, any pair of which is uncorre-

lated. Then | |
v [Z X¢| = Z V[Xd].
k=1

k=1
Definition 2.2.8 Thecorrelation cogficientof two random variable¥ Y is defined by

_ Oxy

whenevewyx > 0 andoy > 0.
Theorem 2.2.9 -1 < pxy < 1 for two random variableX, Y with ox > 0,0y > 0.

Problem 4 Throw two dice and leL be the larger spot arfd the smaller. (If double spots, set= S.)

(1) Calculate the covarianes s and the correlation cdéicientr s .
(2) Arel, S independent?

2.3 Bernoulli trials

Definition 2.3.1 A sequence of random variables (or a discrete-time stochastic prq2gsx}, ..., Xn,...} is
called theBernoulli trials with success probabilitp (0 < p < 1) if they are independent and have the same
distribution as

PXn=1)=p, PXn=0)=q=1-p.

By definition we have
n
POu=61X =&, Xo=&) = [ [PO=6&)  foralléé,....0€(0,1).
k=1

In general, statistical quantity in the left-hand side is calledfitiiee dimensional distributionf the stochastic
procesgX,}. The total set of finite dimensional distributions characterizes a stochastic process.

Definition 2.3.2 (binomial process)Let {X,} be Bernoulli trials with success probabilipy The stochastic pro-
cess{S,} defined by

n
Sn=> X  So=0 (2.3)
k=1
is called thebinomial process
SinceS,, counts the number of success during the firstals, we know that
Sn ~ B(n, p)~

Asymptotic properties of a binomial process are very important.

10



2.4 Law of Large Numbers (LLN)
2.4.1 Observation

Let {X,} be a Bernoulli trial with success probability2, namely, tossing a fair coin, and consider the
binomial process defined by
n
Sn= ) X
k=1

SinceS,, counts the number of heads during the firstials,
Sn 1¢
-n_= X
n n kZ:;l k

gives the relative frequency of heads during the firstals.
Computer simulation is easy. The following is just one example showing that the relative frequency of heads

S,/ntends to 12.

0.60

ol
0.8 1
o7 |\

0.6 V\

05 w\fn e 05 S
e e — Po——

0.55
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0.3

0.45
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0.0 0.40
0 200 400 600 800 1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 2.1: Relative frequency of heaBig/n

It is our aim to show this mathematically. However, we cannot accept a naive formula:

. Sn 1
lim =0 = (2.4)

because
1. Notice thatS,/nis a random variable taking values{in 1/n, 2/n,.. ., 1}.
2. From one series of trials = (w1, w2, . .. ) We obtain a sequence of relative frequencies:

Sow) Salw)  Sulw)

Sl(w), 2 5 3 s ey n

3. For example, fow = (1,1,1,...), Sp/n converges to 1; Fow = (0,0,0,...), Sp/n converges to O.
Moreover, for any O< t < 1 there existgv such thatS,/n converges td; there existso such thatS,/n
does not converge (oscillating).

4. Namely, it is impossible to show the limit formula (2.4) &l sampleso.

Therefore, to show the empirical fact (2.4) we need sprobabilistic formulation

2.4.2 Law of Large Numbers

Theorem 2.4.1 (Weak Law of Large Numbers)Let Xy, Xo, ... be identically distributed random variables with
meanm and variancer?. (This means thaX; has a finite variance.) )Xy, X, ... are uncorrelated, for ary> 0

we have
1 n
F] Z X —m
k=1

11

lim P( > e) =0.
Nn—oo



13 : .
We say tha% Z Xk converges tanin probability.
k=1

Remark 2.4.2 In many literatures the weak law of large numbers is stated under the assumptixn at . .
are independent. It is noticeable that the same result holds under the weaker assumption of being uncorrelated.

Theorem 2.4.3 (Chebyshev inequality)Let X be a random variable with meanand variancer?. Then, for
anye > 0 we have
o2
P(X-m>¢€) < —.
€

Proof By definition we have
m=E[X] = f X(w) P(dw),
Q
o? = E[(X-m)?] = f (X(w) = M)?P(dw).
Q
The above integral for the variance is divided into two parts as follows:
o? = f (X(w) — m)?P(dw)
Q
= f (X(w) — M>?P(dw) + f (X(w) — M)?P(dw)

IX-mize [X-mmi<e

Then we have

2 - m)2P(dw e?P(dw) = €2 - €
o ZL_mPE(X(w) m)“P(d )Zf P(dw) P(IX-m > e),

[X-mi>e

as desired. 1

Proof [Theorem 2.4.1 (Weak Law of Large Numbers)] For simplicity we set

1 n
Y:Ynz—Zxk.
r]k:l

The mean value is given by
1 n
E[Y] = - > EIXd =
k=1

Let us compute the variance. SinepXX|] = E[X]E[X/] (k # I) by assumption of being uncorrelated, we have

£V = > B
k,
1
=_2{

{na- +nnt + (n? - n)rnz}

II
=

>

= I

HM+Zamm}

k1

wm+anﬂ+2anmm%

kel

T
IR

Therefore, ,

VIY] = E[Y]] - E[V)* = =

12



On the other hand, applying Chebyshev inequality, we have

VIY] o2
PIY-m>e) < —= = —.
(Y-mzes-5 =7
Consequently,
rI1im P(Yn—m >¢€) =0,
as desired. |

Example 2.4.4 (Coin-toss)

In fact, we have a stronger result.

Theorem 2.4.5 (Strong law of large numbers)Let Xy, Xo, ... be identically distributed random variables with
meanm. (This means thaX; has a mean but is not assumed to have a finite varianck;) ¥, ... are pairwise
independent, we have

In other words,

Remark 2.4.6 Kolmogorov proved the strong law of large numbers under the assumptioXthé, ... are
independent. In many literatures, the strong law of large numbers is stated as Kolmogorov proved. Its proof
being based on the so-called “Kolmogorov’s almost sure convergence theorem,” we cannot relax the assumption
of independence. Theorem 2.4.5 is due to N. Etemadi (1981), where the assumption is relaxed to being mutually
independent and the proof is more elementary, see also books by Sato, by Durrett, etc.

2.5 Central Limit Theorem (CLT)
2.5.1 De Moivre—Laplace theorem

From numerical computation we see that the binomial distribuBign p) is close to the normal distribution
having the same mean = npand the variance® = np(1 - p):

B(n. p) ~ N(np.np(1 - p)) (2.5)

We see that the matching becomes better for langer
The approximation (2.5) means that distribution functions are almost the same: For a random @riable
obeying the binomial distributioB(n, p) we have

X
f e @M /2”gqt  m=np, ¢2=npl-p).

PS<x = Nz

Changing the variables, we come to
1 (x—m)/o )
PS<X)~ — f e t/2dt.
Vor Jow

P(S < X) = P(S_

Noting the obvious identity:

and replacingX — m)/o- with x, we obtain

P[ﬂ < x] ~ L fx e /24t (2.6)
wa-p ) Var Jw ' '
The right-hand side is an integral with respect to the normalNg@ 1) and is independent af. The identity
(2.6) provides the best formulation of the fact that (2.5) becomes better approximation fonlarger

13
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Figure 2.2: The normal distribution whose mean and variance are the s&(E08s0.4)

Theorem 2.5.1 (de Moivre—Laplace theorem)Let 0 < p < 1. LetS, be a random variable obeying the bino-
mial distributionB(n, p). Then,

A

lim P[ﬂ x] -1 f " etrgy @2.7)
oo np(l-p) V2r J- ' '
In short, the binomial distributioB(n, p) is close to the normal distributidd(np, np(1- p)) asn tends to infinity.

The proof is omitted, see the relevant books.

2.5.2 Central Limit Theorem

We start with an alternative form of Theorem 2.5.1. IgtZ,,... be the Bernoulli trials with success
probability p. Define the normalization by

Thenzy, Zy, ... become iid random variables with mean 0 and variance 1.
Since we have

Sn—np 1 - Z-p 1 G-
TP VR e e
(2.7) becomes
lim P(i iz‘k < x] -1 f e /2t
e VN H Vo Jw
Indeed, the above limit formula holds for general iid random variables.

Theorem 2.5.2 (Central Limit Theorem) Let Xy, Xp, ... be iid random variables with mean 0 and variance 1.
Then, for anyx € R it holds that

o 1 o
In short, the distribution of—n Z Xk converges weakly to the standard normal distribubigf, 1) asn — oo.
k=1

14



For the proof we need the characteristic function of a distribution.

Definition 2.5.3 Thecharacteristic functiorof a random variabl& is defined by

¢(2) = E[€7] = f é2u(dy),  zeR,
whereu(dx) is the distribution ofX. We also say thap(2) is the characteristic function g{dx).
Theorem 2.5.4 (Glivenko) Let u1,us,...,u be a sequence of probability distributions apde,, . .., ¢ their

characteristic functions. If lim,e ¢n(2) = ¢(2) holds for allz € R, thenu, converges weakly tg. In other
words, lettingF, Fo, . .., F be distribution functions ofis, uo, . . . , u, we have

lim Fn(x) = F(X)

for all continuous poink of F.

n
Proof of Central Limit Theorem (outline) 1) Letyn(2) be the characteristic function e}— Z Xk, 1.e.,
n
k=0

() =E [exp{i—j_ Zn: Xk}} : (2.8)

k=0

=)

On the other hand, it is known that the characteristic functiad(6f 1) is given bye‘zz/2 (Quiz 2.5.6). By virtue
of Glivenko’s theorem it is dficient to show that

lim ¢n(2) = €772,
nN—oo

zeR. (2.9)
2) The characteristic functions &, X,, ... are identical, since they have the same distribution. We set
¢(2) = E[¢].

SinceXy, X, ... are independent, we have

en@ =] |E

k=1

iz Z \n
3) By Taylor expansion we write

i .z Z
€V =1+i——X - —X+R\2

yn 2n

El

and take the expectation

B

ga(%) =E[e ) =1- ; + E[R\(2)].

whereE[X;] = 0 andV[X;] = 1 are taken into account. Hence (2.10) becomes

Z2 n
en@ = (1- 2 + EIR(@1) - 211)
4) We note a general limit theorem for the exponential function (Quiz 2.5.7).
5) We need to prove that
lim nE[R,(2)] = 0. (2.12)
n—oo

In fact, by 4) we obtain

im o = 1im (1 2+ ERy@)) = e 7

15



6) We have a useful inequality:
(ix)?
e - (1 +ix + 5

(Try to prove!) Then we obtain

3
< mm{% |x|2} xeR. (2.13)

2
IRa(2)] < mm{ '— X1, % X1 }
and
INE[Ry()]] < EMNR,@) < 12E [mm{% %P, |x1|2}]. (2.14)
Note that

) 14 3 2} 2
min [Xel?, [Xa|*p < Xyl
{ 6vn

andE[|X1/?] < oo by assumption. Then, applying the Lebesgue convergence theorem we come to

r!i_r)rgoE[min{(S'fl/_ X1, (X2 |2H [Jm min{6|—jﬁ |x1|3,|x1|2}] =0,
which shows (2.12). |

Remark 2.5.5 In the above proof we did not requiB|X;*] < co. If E[|X1%] < oo is satisfied, (2.12) follows
more easily without appealing to the Lebesgue convergence theorem.

Quiz 2.5.6 Calculate the characteristic function of the standard normal distribution:

1 +00 . 5
— g ¥ 2dx = e %12, zeR.
=1

Quiz 2.5.7 Leta € C and let{¢,} be a sequence of complex numbers converging to 0. Prove that

lim (1+9+ﬂ) =€
n n

n—oo

Problem 5 (Monte Carlo simulation) Let xg, %o, ... is a sequence taken randomly from 1R Then for a con-
tinuous functionf (x) on the interval [01], the mean

n

NS
k=1

is considered as a good approximation of the integral

fol f(x)dx

(1) Explain the above statement by means of law of large numbers and central limit theorem.

(2) By using a computer, verify the above fact fiqix) = V1 — x2.

16



3 Random Walks

3.1 One-Dimensional Random Walks

Let us model a drunken man (random walker) walking along a straight road. Suppose that the random walker
chooses the direction (left or right) randomly at each step. Let the probability of choosing the right-mpve be
and the left-move (p > 0,9 > 0, p+ g = 1). These are assumed to be independent of the position and time.

-3 -2 -1 0 1 2 3

Let X, denote the position of the random walker at timeWe assume that the random walker sits at the
origin O at timen = 0, namely Xy = 0. Then{X,} becomes a discrete time stochastic process, which is called the
one-dimensional random walk

To be more precise, introduce a stochastic progggssatisfying

() P(Zn=1)=pandP(Z,=-1)=q=1-pwithO< p<1;
(i) Z1,2,... are independent.

We call{Z,} Bernoulli trials too. Define
n
Xo =0, xn=sz, n> 1 (3.1)
k=1

The stochastic proce$¥} is called theone-dimensional random wailkith right-move probabilityp and the
left-move probabilityg = 1 — p.
Computer simulation is easy.

150

100

50

50

-100

-150

Figure 3.1: Random wallk(= g = 1/2)

Theorem 3.1.1 X, is a random variable taking values{ian, —n+2, ..., n—2, n}. The distribution ofX, is given
by
P(X, = n—2K) = (E)p“‘qu, K=0,1,2,....n.

17



Proof Letk=0,1,2,...,n. We observe that
Xn=Z1+Zp+---+Zy=n-2k=(n-K) -k
if and only if the number of's such tha®; = -1 isk, and the one such th&t = 1 isn — k. Therefore,
P(X)=n—2K) = (E) P,

as desired. |

Theorem 3.1.2 It holds that
E[Xa] = (p-a)n, V[Xa] = 4pgn

Proof Note first that
E[Z]l=p-a  VI[Z4]=4pa
Then, by linearity of the expectation we have

n
E[X] = > E[Z] = (p- o)n.
k=1
Since{Z,} is independent, by the additivity of variance we have
n
VXl = )" V[Z] = 4pan
k=1

The distribution ofX, tells us where the random walker at timés found. It has fluctuation around the men
value (P — g)n. The range ofX, grows asn — o and so does the variance. It is noticeable that the growth of
variance is promotional ta. Finally, we note that the distribution is approximated by the normal distribution
N((p - g)n, 4pgn) for a largen (de Moivre—Laplace theorem).

X

(p—-q)n

0 Al

N

Theorem 3.1.3 Let {X,} be the random walk as above. The covariance is
CovXm, Xmen) = E[(Xm — E[Xm])(Xmen — E[Xmen])] = 4pgm

and the correlation cd&cient is

Ko Xemir) = Cov(Xm, Xmin) [ m
P\Am, Amin) = ’—V[Xm] W[Xmm] = men’
Problem 6 Let {X,} be the random walk defined by (3.1). A time poinkk < n- 1 is calledturn if

Kier < XK > Kz OF - X > Xie < Kyt

Find the distribution of the number of turns up to timeNamely, lettingN be the number of turns, fid(N = j)
forj=0,1,2,....

18



3.2 Recurrence

Will a random walker return to the origin in finite time? More precisely, we are interested in the probability
that a random walker will return to the origin in finite time.

As in the previous section, lef, be the position of a random walker starting from the origin (d@.= 0)
with right-move probabilityp and left-move probability). Since the random walker returns to the origin only

after even steps, we need to calculate
R= P(U{XZn = 0}]. (3.2)

n=1
It is important to note that

(@:

{Xon =0}
1

=}
1]

is not the sum of disjoint events.
Let po, be the probability that the random walker is found at the origin at timefat is,

Zn)pn a_ (2!

N I p"q", n=12.... (3.3)

Pon = P(XZn = 0) = (
For convenience set
po=1

Note that the right hand side of (3.2) is not the sunpgf Instead, we need to consider the probability that the
random walker returns to the origin aftem &eps but not before:

On=PX2#0, X420, ..., Xn2#0, Xon=0) n=12....

Notice the diference betweep,, andgpn.
The following definition is useful.

Definition 3.2.1 We set
T=inf{(n>1; X, =0}, (3.4)

whereT = +oo for {n > 1; X, = 0} = 0. We callT thefirst hitting timeto the origin. (Strictly according to our
definition in Chapter 1T is not a random variable. It is, however, commonly accepted that a random variable
takes values inH{co, +00) U {#00}.)

By definition we have

P(T = 2n) = 0o (3.5)
and the return probability is given by
R=P(T <) = ) Gon. (3.6)
n=1

A direct calculation ofy,n will be given in the next section. Here we apply the method of generating functions.
The key relation betweefpz,} and{gzn} is given by

n
Pon = Z ok P2n-2k» n= 1, 2, ey Po = 1, (37)
k=1

which is easily verified by observing when the random walker returning to the origin aftgegs hits first the
origin. Define the generating functions{gh,} and{qy,} by

9@ =D pn?,  h@ =) gu?" (3.8)
n=0 n=1
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These are convergent o) < 1. Multiplying z2" to both sides of (3.7) and summing up ovemwe obtain

(] n

92-1= Z Z k2 pan- a2

n=1 k=1

Hence,
(3.9)

On the other hand, by the formula of the binomial fi@éents we can compuig(z) explicitly (Problem 7).
In fact, we have

— S nZZn: N (Zn) n nZZn: 1
92 Z; P2 ZO L
1
h(z) =1- @ =1- 4/1-4pg2 (3.10)

so that (3.9) becomes

Lettingz —» 1 - 0, we see that

00

R=h(1)=Z:an=1— V1-4pg=1-|p—q.

n=1
Here we used a general property stated in Problem 8. Thus, we come to the following
Theorem 3.2.2 Let R be the probability that a random walker starting from the origin returns to the origin in
finite time. Then we have
R=1-|p-q

Definition 3.2.3 A random walk is calledecurrentif R = 1, otherwise it is callettansient

Theorem 3.2.4 The one-dimensional random walk is recurrent if and onlp i q = 1/2 (isotropic). It is
transient if and only ifp # q.

When a random walk is recurrent, it is meaningful to consider the mean recurrent time.

Theorem 3.2.5 (Null recurrence) The mean recurrent time of the isotropic, one-dimensional random walk is
infinity: E[T] = +co.

Proof LetT be the first hitting time to the origin. The mean recurrent time is given by
E(T) = Z 2nP(T = 2n) = Z 2Nkn. (3.11)
n=1 n=1
On the other hand, in view of (3.8) and (3.10) we see that the generating functipra=fqr= 1/2 is given by
h(z) = qunzzn =1-+V1-2.
n=1

Differentiating with respect tp we have

W@ = 2nenZ™ = ———
n=1

1-2
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Lettingz — 1 - 0, we have

N o . z
E(M) = nz:; 2nCpn = _lim W(2) = lim Vi Z eo.

This completes the proof. |

Remark 3.2.6 We will study the recurrence of a random walk within the framework of a general Markov chain.

Remark 3.2.7 Some relations betwedp,,} and{qzn}.

2
Oon = %] P2n-2, n>1,

O2n = 4Pden-2 — Pon» n>1

Problem 7 Leta be a real constant. Using the binomial expansion:

@+x7=) (C;)x”, IX < 1,

n=0

2n 1 1
Z" = , <=
(”) 1-4z o 4

prove that

2,

[}
n=0

Problem 8 Leta, > 0forn=0,1,2,... and assume that the radius of convergence of the power series

f(x) = Z anx"
n=0
is> 1. Prove
i, 100=

holds including the case o6 = . [Hint] Verify the following two inequalities:

N
liminf f(x)znZ:;)aq, N> 1,

f(x)sZan, x< 1
n=0

3.3 The Catalan Number

The Catalan number is a famous number known in combinatoricse(ieug@harles Catalan, 1814-1894).
Richard P. Stanley (MIT) collected many appearances of the Catalan numbeys{ittpmath.mit.edprstanieq).

We start with the definition. Let > 1 and consider a sequeneg, €, . . ., €,) of +1, that is, an element of
{—1, 1}". This sequence is calledGatalan pathif

e >0

ea+e>0
a+e+---+e-1>0
a+e+ -+e-1+6=0.

It is apparent that there is no Catalan path of odd length.
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Definition 3.3.1 The n-th Catalan numberis defined to be the number of Catalan paths of lengtlad is
denoted byC,,. For convenience we s€ = 1.

The first Catalan numbers far=0,1,2, 3, ... are
1,1,2,5,14, 42,132 4291430 4862 1679658786 2080127429002674440...

We will derive a concise expression for the Catalan numbers by using a graphical representation. Gonsider
grid with the bottom-left corner being given the coordinatedJ0 With each sequence (e, ..., €,) consisting
of +1 we associate vectors

&=+1ou=(10) &=-1ou=(01)

and consider a polygonal line connecting
(0,0), ug, Up +Up, ..., Up+Up+-+-+Uyq, U+ U+ -+ Up_1 + Up
inorder. Ife; + €2 + - - - + -1 + €, = 0, the final vertex becomes
Up+ U+ -+ Uy1 + Uy = (N, N)
so that the obtained polygonal line is a shortest path connectjfy &dd 6, n) in the grid.

Lemma 3.3.2 There is a one-to-one correspondence between the Catalan paths of leragtti the shortest
paths connecting (@) and 6, n) which do not pass the upper region of the diaggnalx.

Theorem 3.3.3 (Catalan number)

(2n)!

Cn= mrm

n=0,12,...,
Proof Forn = 0itis apparent by the definition & 1. Suppos@ > 1. We see from Fig. 3.3 that
Co- 2n 2n\  (2n)!
"“\n) \n+1)/ 7 ni(n+2)°
as desired. |

(m,m)

Lemma 3.3.4 The generating function of the Catalan numh@gss given by

f(2) = icnz“ = 1_2— 'i_‘lz. (3.12)
n=0
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Proof Problem 9. |

An alternative representation of the Catalan paths: Consider irythéane a polygonal line connecting the
vertices:

(0,0), (Le), R er+e),....,n—-Le+e+ - +e1),(NNa+e+- - +e-1+6)

in order. Then, there is a one-to-one correspondence between the Catalan paths ofrlemgthtie sample
paths of a random walk starting O at time O and returning O at timst&ying always in the half line [@0).
Therefore,

Lemma 3.3.5Letn > 1. The number of sample paths of a random walk starting 0 at time 0 and returning O at
time 2n staying always in the half line [@0) is the Catalan numbég2,,.

Theorem 3.3.6 Let { X} be the random walk starting from 0 with right-move probabifitgnd left-move prob-
ability g. Let T be the first hitting-time to 0. Then

Gon = P(T = 2n) = 2C,1(pg)",  n=12....

Proof Obviously, we have

qZHZP(Xz?fO, Xa#0, ..., X002 #0, X2n=0)
=P(X1>0, Xo>0, X3>0,...,Xn2>0, Xon_1 >0, X2n=O)
+ P(X1<O, X2<0, X3<0, D O <0, X2n_1<0, X2n=0).

In view of Fig. 3.3 we see that
P(Xl >0, Xo0>0, X3>0,...,X0n2>0, Xon_1 >0, Xon = 0) =pX Cn_l(p(,])nil X Q.

Then the result is immediate. |

2n-2

0 2n

Figure 3.2: Calculating?(X; > 0, X, >0, ..., Xon-1 > 0, Xon =0)

Problem 9 Find the Catalan numbeg;, in the following steps.

n
(1) Prove thatC, = Z C«-1Cn_k by using graphical expressions.
k=1

(2) Using (1), prove that the generating function of the Catalan numi§grs- Z C.Z" verifies
n=0

f2)-1=2f@2)>

(3) Findf(2.
(4) Using Taylor expansion df(2) obtained in (3), findC,.
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Problem 10 In them x (m+ n) grid consider a shortest path connectingd)0and M+ n, m) which do not pass
the region upper than the line connectingdDand m, m). Show that the number of such paths is given by

2m+n)l(n+1)
mi(m+n+1)!

Problem 11 Using Theorem 3.3.6 and the generating function of the Catalan numbers, give alternative proofs
of the following results.

(1) [Theorem 3.2.2R=1-|p—{(.
(2) [Theorem 3.2.5] Ifp = g, thenE[T] = +co.
Problem 12 Let {X,} be a random walk starting from 0 with right-mopeand left-movey. Show that

P(X120,X2>0,..., X1 >0)

n-1
=P(Xy >0,X,>0,..., X >0)= l—qZCk(pq)k
k=0

forn=1,2,..., whereCy is the Catalan number. Using this result, show next that

1_g3 p>q3
PXp>0foralln>1) = p

0, p<a.

3.4 The Law of Long Lead

Let us consider an isotropic random wélk,}, namely, lettingZ,} be the Bernoulli trials such that

P(Zh=+1)=P(Zy=-1)=

NI =

s

we set

n
Xo =0, xn=sz.
k=1

Fig. 3.3 shows sample paths X§, X1, Xo, ..., X10000 We notice that these are just two examples among many
different patterns.

160 150
0 W ¢ ! A
5000 10000 5000 10000

-150 -50

Figure 3.3: Sample paths of a random walk up to time 10000
By the law of large numbers we know thal occur almost 5000 times. In fact, we see from the value of

X10000 that £1 occur 5000+ 50 times. In other words, along the polygonal line the up-move and down-move
occur almost the same times, however, the polygonal line stays more often in the upper or lower half region.
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We say that a random walk stays in the positive region in the time integvat fL] if X; > 0 andX,; > O.
Similarly, we say that a random walk stays in the negative region in the time interval I] if X; < 0 and
Xiz1 < 0. Let

W(2k|2n), n=2.2..., k=0,1,...,n,

be the probability that the total time of the random walk staying in the positive region dutifgj |6 2k.
Remind that in this section we only consider an isotropic random waikq = 1/2). Forn = 1 we have

W(22) = 2 (%)2 = % W(0]2) = 2 (%)2 1

E.
Similarly, we have

W(414) = 6 x (%)4 W(2/4) = 4 x (%)4 W(0l4) = 6 x (%)4

1\° 1\° 1\° 1\°
W(6|6):20><(§) , W(4|6):12><(§) . W(26) = 12><(§) , W(0|6):20><(§) ,

For generalW(2k|2n) we start with some simple calculations. First recall that

2n\/ 1\
= P(Xon = 0) = (—) -0.1.2....
p2n (2n ) (n)2 n
Gon = P(T = 20) = 2P(X; > 0, Xo > 0, ... Xon 1 > 0, Xon = 0)

1\ 1
=2 _(-) = o N=12...
Cn12 2np2n2 n

Lemma3.4.1Forn=12,... we have

P(X1 #0,X2 #0,...,Xon-1 # 0, Xon # 0) = pon .
Proof By direct verification we see that

2n—2\/1\22  (2n\/ 1\
Pan-2 = Pn :(n—l)(é) _(n)(i)
_1 (2n-2)! })2”*2 _1 _
2n (n= )i(n—1)! (2 2n Pan-2 = Gan-
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Hence
P(X1 #0,X#0,...,Xon-1 # 0, Xon # 0)

=P(T>2n+2)= Z Ok = Z (P2x-2 = P2x) = P2ns

k=n+1 k=n+1

which completes the proof.
Lemma 3.4.2Forn=1,2, ... we have
P(X1 > 0,X,>0,...,Xon_1>0,Xon>0) = pon.

Proof Taking the complement into account, we only need to use the relation:

1
Oon = Pon-2 — Pon = on Pon-2 .

Theorem 3.4.3Forn=1,2,... it holds that

2k\(2n — 2k\/1\2"
W(2K|2n) = pakpon-ok = ( k)( Nk )(E) , k=0,1,...,n.

Proof We first note an obvious relation:

W(2K2n) = Z % \Wi2k - 2rj2n - 2r) + Z

r=1 r=1

% \2kj2n - 2n).

Then the assertion is proved by inductionion (try!).
We find a good approximation when— . For O< a < b < 1 we have

P(a < ratio of time staying in the positive regicnb)

bn
= > W(2K2n)

k=an

n
= Z Xtanbrg (K)W(2k|2n)
k=0

Zn:X (k)(Zk)(Zn - 2k)( 1)2ﬂ

= [ab]\ 1 5] >

—d n\k/\ n-k \2

wherey, (X) is the indicator function of an intervdl that is, takes 1 fok € | and O otherwise.
Using the Stirling formula:

n' ~ %(g)n n— oo,
(e~ =

P(a < ratio of time staying in the positive regicnb)

we obtain

Therefore,

i Z“‘“’]( S W

—ZX[a“b]( ) m

1
—>f fab) )m

1
n
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Definition 3.4.4 The probability distribution defined by the density function:

dx O<x<l1
aVxI =X '
is called thearcsine law The distribution function is given by
X dt 2 . 1 1 .
F(x) = ———— = — arcsinyx= - + — arcsin(X - 1).
® fon\/t(l—t) n VX 2 ( )
4 |
3 |
2 4
14
0 1

For example,
2 .
F(0.9) = - arcsinv0.9 ~ 0.795

Namely, during the long game, the probability that the ratio of winning time exceeds 90%H$019) ~ 0.205,
which sounds larger than one expects.

Problem 13 Prove Lemma 3.4.2.

3.5 Gambler's Ruin

Let us consider a random walker starting from the origin O at time 0. Now there are barriers at the
positions—A andB (A > 1, B > 1). If the random walker touches the barrier, it remains there afterward. In this
sense the positionsA andB are callecabsorbing barriers

LetZ;, Z,, ... be Bernoulli trials with success probability<Op < 1. Define a discrete time stochastic process

Xo, X1, X2, ... by
X1 +2Zn, -A<Xn1<B,
Xo =0, Xn=1{-A Xn-1=—A (3.13)
B, Xn-1 = B.
This {X,} is called arandom walk with absorbing barriers

B
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We are interested in the absorbing probability, i.e.,

R=P(X, = -Aforsomen=1,2,...) = P[U{Xn = —A}},

n=1

S =P(X,=Bforsomen=1,2,...) = P(U{Xn = B}].
n=1

Note that the events in the right-hand sides are not the unions of disjoint events.

A key idea is to introduce a similar random walk startingatA < k < B, which is denoted bx{. Then
the original one isX, = Xﬁ,o). Let Rx and Sk be the probabilities that the random wa{#) is absorbed atA and
B, respectively. We wish to finR = Ry andS = S,.

Lemma 3.5.1 {Ry;, —A < k < B} fulfills the following difference equation:

R = pRu1 + qRe-1, Ra=1 Rg = 0. (3.14)
Similarly, {Sk;, —A < k < B} fulfills the following difference equation:

Sk = PSks1 + 0Sk-1+ S_.A=0, Sg=1 (3.15)

Theorem 3.5.2Let A > 1 andB > 1. Let{X,} be the random walk with absorbing barriers-#& andB, which
is defined by (3.13). Then the probabilities tfidt} is absorbed at the barriers are given by

(a/p)* - (a/p)**®

, P#(q,
P(X, = —A for somen) = é— (a/p)A+® .
A+B’ P=0=5.
1-(a/p*
T apaE: P*O
P(X, = B for somen) = A(Q/p) .
A+B’ P=0a=35.

In particular, the random walk is absorbed at the barriers at probability 1.

An interpretation of Theorem 3.5.2 gives the solution toghenbler’s ruin problem Two players A and B
toss a fair coin by turns. Let andB be their allotted points when the game starts. They exchange 1 point after
each trial. This game is over when one of the players loses all the allotted points and the other Baisints.
We are interested in the probability of each player’s win. For eaelD defineX, in such a way that the allotted
point of A at timen is given byA + X,. Then{X,} becomes a random walk with absorbing barrier AtandB.
It then follows from Theorem 3.5.2 that the winning probability of A and B are given by

B
A+B’ F)(B)_A+B’
respectively. As a result, they are proportional to the initial allotted points. For example;  andB = 100,
we haveP(A) = 1/101 andP(B) = 100/101, which sounds that almost no chance of A's win.
In a fair bet the recurrence is guaranteed by Theorem 3.2.2. Even if one has much more losses than wins,
continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited money.
(3.16) tells the #ect of the barrier.

P(A) = (3.16)

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 3.5.3 Let {X,,} be the same as in Theorem 3.5.2. The expected life time of this random walk until
absorption is given by
A A+B 1-(a/p*

q-p qg-p 1-(a/p*B”° L

P#a
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Proof Let Yy be the life time of a random walk starting from the positiof+A < k < B) at timen = 0 until
absorption. In other words,
Yi=min{j20; XY =-A %@ x¥ =B).

We wish to comput&(Yy). We see by definition that
E(Y_a) = E(Yg) = 0. (3.17)

For—A < k < Bwe have -
E(Y) = > iP(Y= ). (3.18)
j=1

In a similar manner as in the proof of Theorem 3.5.2 we note that
P(Yk=1) = pPP(Mkr1 = ] = 1)+ gP(Yier = - 1). (3.19)

Inserting (3.19) into (3.18), we obtain

E(M) =P iPMar=i-1)+0a ) P(Yer=j-1)

=1 j=1
= PE(Yis1) + E(Yi-2) + 1. (3.20)

Thus, E(Yy) is the solution to the dierence equation (3.20) with boundary condition (3.17). Thigedince
equation is solved in a standard manner and we find

A+k A+B1-(q/p™*
E(Y)={d-P a-p 1-(a/p*"’
(A+K)(B-Kk), p=0q=

p#0,

NI

Settingk = 0, we obtain the result. |

If p=qg=1/2andA =1, B =100, the expected life time KB = 100. The gambler A is much inferior to B
in the amount of funds (as we have seen already, the probability of A's win is jli6t), however, the expected
life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps this is because
the gambler cannot quit gambling.

Problem 14 Explain about the general solutions to thé&&lience equation:

Xn+2 + 8%1 + DX = C,

wherea, b, c are constant numbers. Solve th&elience equation (3.20) with boundary condition (3.17).

3.6 \Variants of Boundary Conditions

There is another type of barrier calledeflecting barrier A random walk touches the reflecting barrier,
it changes the direction in the next step and continue to moveZL. &b, ... be Bernoulli trials with success
probability 0< p < 1. Consider barriers at positiorA andB, A > 1, B > 1. DefineXp, X1, X, ... by

Xn-1+2Zn, —-A<Xy-1<B,
Xo=0, Xn=4-A+1 = Xoi=-A (3.21)
B—1, Xp1 = B.

Then{X,} is called a random walk with reflecting barriers.
Problem 15 Let{X,; n=0,1,2,...} be an isotropic random walk on the half lif& 1, 2, .. .} starting from the

origin 0 at timen = 0, where the origin is a reflecting barrier. FiR@X,, = 0).
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As another boundary condition, we consider a random W4lk on the half-line{0, 1, 2, ...} starting from
the origin 0 at timen = 0. When the random walker sits at ongdf2, .. . }, it moves to the right with probability
p and to the left withg = 1 — p. When it sits at 0, it moves to the right with probabilityand stay there with
g=1- p. LetT be the first hitting time ofX,} to O, i.e.,

T=infin>1; X, =0}

Then we have
P(T=1)=gq  P(T=2n)=Cnra(p9".

Problem 16 Let{X,; n=0,1,2,...} be the random walk as above.
(1) Show thatP(T < c0) =1 forg > 1/2 andP(T < o) = 2qfor q < 1/2.
(2) CalculateE[T].
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4 Markov Chains

Let us recall a typical property of a random walk: the next position is determined probabilistically only by
the present position. Namely, the next-step movement is independent of the past trajectories. As the position of
the one-dimensional random walk is described in terms of the usual coordinate &stém ,-1,0,1,2,...},
the random walk is formulated as a discrete time stochastic pr@¥gissaking values irZ. In this sense we call
Z a state spaceFor wider applications a state space is not necessarily a set of numbers, but may be an arbitrary
set. Keeping the typical property of the random walk and generalizing the state space, we come to the concept of
Markov chain

4.1 Conditional Probability
For two event#\, B we define
P(AN B)
P(B)
wheneverP(B) > 0. We callP(A|B) the conditional probability of A relative to B is interpreted as the proba-

bility of the eventA assuming the ever occurs, see Section 2.1.1.
Formula (4.1) is often used in the following form:

P(AIB) = 4.1)

P(A N B) = P(B)P(AB) (4.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in compu-
tation of probability. For example, for two everAsB see Fig. 4.1.

P(A) A
P(BS|A) AN B°
P(BJAC) A°N B
P(A°) AC
P(B°|A°) A°NB°

Figure 4.1: Tree diagram

Theorem 4.1.1 (Compound probabilities) For eventsiy, Ay, . .., Ay we have

P(Ar N AN -+ N Ay) = P(A)P(A2lA1)P(AglA N Ag) -+« P(AnlAL N A N -+ - N Any). (4.3)

Proof Straightforward by induction on. |

4.2 Markov Chains

Let S be a finite or countable set. Consider a discrete time stochastic prfogess = 0,1, 2, ...} taking
values inS. This S is called astate spac@nd is not necessarily a subsetfofn general. In the following we
often meet the cases 8f={0,1},S=1{1,2,...,N}andS ={0,1,2,...}.
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Definition 4.2.1 Let {X,; n = 0,1,2,...} be a discrete time stochastic process dveilt is called aMarkov
processoversS if

PXn=DbIX, = a1, Xi, =ag, ..., X, = &, Xi =a) = P(Xn = b|X; = a)
holds forany O< i; <ip < -+ <ix <i<nanda,ap,...,a abeS.

If {X1,Xo,...} are independent random variables with value§jrobviously they form a Markov chain.
Hence the Markov property is weaker than independence.

Example 4.2.2Letr > 1 ands > 1 such that + s= N. There areg black balls ands white balls in a box. We
pick up balls in the box one by one and ¥gt= 1 if a black ball is picked up at theth trial and 0 if a white ball
is picked up at the-th trial. Then{Xy, Xa, ..., Xy} is a stochastic process. We note that

1 n-1
PO = 1X = a1, Xo = 8, .. Yot = 80-2) = gy D, B
k=1

and
I—an-1

N-1"
forag,...,an-1 € {0, 1}. Hence{X,} is not a Markov chain. Define

P(Xn =1Xp-1 = an—l) =

which stands for the number of black balls picked up during the flitsials. We the see easily théY,} is a
Markov chain.

Definition 4.2.3 For a Markov chair{X,,} overS,
P(Xn+l = j|xn = |)

is called thetransition probabilityat timen from a state to j. If this is independent afi, the Markov chain is
calledtime homogeneousn this case we write

pij = P, ) = P(Xne1 = jIXa =)
and simply call it the transition probability. Moreover, the matrix
P=[p]
is called theransition matrix

Obviously, we have for eadhe S,

DRl 0) =) PO = jIXe =) = 1.

jesS jeS
Taking this into account, we give the following

Definition 4.2.4 A matrix P = [p;;] with index setS is called astochastic matrixf

pij >0 and Zpij =1

jes

Theorem 4.2.5 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochastic
matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic matrix.

It is convenient to use thegansition diagramto illustrate a Markov chain. With each state we associate a
point and we draw an arrow froirto j whenp(i, j) > 0.
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Example 4.2.6 (2-state Markov chain)A Markov chain over the state spaffe 1} is determined by the transi-
tion probabilities:
p(0.1)=p. p(0.0)=1-p, p(1.0)=0q plLl)=1-q

The transition matrix is defined by

F—p p].
q 1-q
The transition diagram is as follows:
P, =P
Py=1-p ‘° G hi=1-4q
Py=4q

Example 4.2.7 (3-state Markov chain)An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain ofiH, S, D} described by the following transition diagram:

b q
(@ <> ® )
4 r
The transition matrix is defined by
a b o
p r qf, a+b=1 p+q+r=1
0 01

Example 4.2.8 (Random walk oriz!) The transition probabilities are given by

P, if j=i+1,
p(,j))=49=1-p, ifj=i-1,
0, otherwise

The transition matrix is a two-sided infinite matrix given by

o
O O O

‘O oo o

Example 4.2.9 (Random walk with absorbing barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers atAandBis S = {-A,-A+1,..., B -1, B}. Then the transition probabilities are
given as follows. ForA < i < B,

P, if j=i+1,
pi.j)=1q=1-p ifj=i-1,
0, otherwise
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Fori =—-Aori =B,

. 1 ifj=-A ) 1, if j=B,
-_ = B’ = .
PC-A1) {O, otherwise P(B. 1) {O, otherwise
In a matrix form we have

1 0 0 O 0 --- 0]
qgqo0 p O O0 --- O
0O0g O p 0 --- 0
00 g 0 p O
00 0O g 0 p
00 O 0 0 1

Example 4.2.10 (Random walk with reflecting barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers atAandBis S = {-A,-A+1,...,B-1, B}. The transition probabilities are given
as follows. Fo-A <i < B,

P, if j=i+1,
pii.)=qa=1-p, ifj=i-1
o, otherwise
Fori = -Aori =B,
. 1, ifj=-A+1 _ 1, if j=B-1,
-_ = B =
PC-AD {O, otherwise P(B. ) {O, otherwise
In a matrix form we have
01 o O 0 - 0
g0 p O O --- 0
0qg 0 p O --- O
00 --- g 0 p O
00 - 0 g 0 p
o 0o --- 0 0O 1 O
4.3 Distribution of a Markov Chain
Let S be a state space as before. In general, a row vectof- - - ; - - - ] indexed bysS is called adistribution
onS if
720 and Y m=1 (4.4)

ieS
For a Markov chair{X,} on S we set
an) =[---m) ---1,  m(n) = PXy =),

which becomes a distribution & We callz(n) thedistributionof X,. In particularz(0), the distribution oo,
is called thanitial distribution. We often take

7(0)=1[--0,2,0,---], where 1 occurs dtth posotion

In this case the Markov chatiiX,} starts from the state
For a Markov chairX,} with a transition matrixP = [p;;] the n-step transition probabilitys defined by

Pn(i, J) = P(Xinen = jIXm = i), i,jesS.

The right-hand side is independentrobecause our Markov chain is assumed to be time homogeneous.
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Theorem 4.3.1 (Chapman—Kolmogorov equation)For 0< r < nwe have

Pu(i, 1) = > pr(i, K)pn-r (K ). (4.5)

keS

Proof First we note the obvious identity:
Pu(i, J) = P(Xmen = JXm = 1) = > PXen = J Xmwr = KiXin = ).
keS

Moreover,

PXmin = s Xmir = K, Xm =1)  PKmer = K, X = 1)
. X -

I:)(Xm+r =k Xm = |) P(Xm = |)
= P(Xmen = jXmer = K Xm = 1))PKiner = KX = ).

P(Xmn = Js Xmer = KXm =) =

Using the Markov property, we have
P(Xmen = j1Xmer = K, X = 1) = P(Xmen = j1Ximer = K)
so that
F)(Xm+n = j, Xm+r = k|xm = |) = P(Xm+n = j|Xm+r = k)P(Xm+r = k|xm = |)
Finally, by the property of being time homogeneous, we come to
P(ern = j,xrmr = k|xm = i) = pn—r(k’ j)pr(i’ k)-
Thus we have obtained (4.5). |
Applying (4.5) repeatedly and noting thad(i, j) = p(i, j), we obtain

pai, )= > Pl ka)p(ka, ko) - plkn 1, ). (4.6)

k1 ..... kn_leS

The right-hand side is nothing else but the multiplication of matrices, i.en-gtep transition probabilitp,(i, j)
is the {, j)-entry of then-power of the transition matri¥. Summing up, we obtain the following important
result.

Theorem 4.3.2Form,n > 0 andi, j € S we have
P(er-n = j|xm = i) = pn(i» J) = (Pn)ij .

Proof Immediate from Theorem 4.3.1. |

Remark 4.3.3 As a result, the Chapman-Kolmogorov equation is nothing else but an entrywise expression of
the obvious relation for the transition matrix:

Pn — PI‘ Pn—r
(As usual P° = E (identity matrix).)

Theorem 4.3.4 We have
n(n) = n(n— 1)P, nx>1,
or equivalently,

mi(n) = ) m(n-1)p.

Therefore,
n(n) = n(0)P".
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Proof We first note that
() = P& = ) = ) P = jXaa = i)P(Xea = 1) = ) pym(n—1),
ieS ieS
which provest(n) = n(n — 1)P. By repeated application we have

(n) = 7(n = 1)P = (x(n - 2)P)P = (r(n - 2)P? = - - = n(O)P",

as desired. |

Example 4.3.5 (2-state Markov chain)Let {X,} be the Markov chain introduced in Example 4.2.6. The eigen-
values of the transition matrix
P= [1_ PP
qg 1-q
are 11 - p-g. These are distinct ip + g > 0. Omitting the case g+ q = 0, i.e.,p = q = 0, we assume that
p + q> 0. By standard argument we obtain

1

n _

S p+q
Let 7(0) = [70(0) 71(0)] be the distriution 0¥,. Then the distribution oK is given by

g+ pr" p-pr"

g-q p+gr|  (TTPG

n(n) = [P(Xn = 0), P(Xn = 1)] = [70(0) m1(0)]P" = =(0)P".

Here let us observe the limit &as— . Assume that & p+ g < 2, or equivalentlyjr| < 1. Then

lim P" = = |9 p]
oo p+qld P
and 1
- o n_ L 1ap_|1. 9 P
AIT{LH(”)—ATJOK(O)P = [m0(0) m1(0)] x p+q[q p}_ p+q p+ql
Note that
q p _|_a p
p+g9 p+q p+g p+q

This means that the distributic[%ﬂ—q p%q] is invariant under the Markov chain.

Problem 17 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every
election. Suppose that just before an election, 25% of the supporters of A change to support B and 20% of the
supporters of B change to support A. At the beginning, 85% of the voters support A and 15% support B. When
will the party B command a majority? Moreover, find the final ratio of supporters after many elections if the
same situation continues.

4.4 Stationary Distributions

Definition 4.4.1 Let {X,} be a Markov chain oi% with transition probability matriP. A distributionz onS is
calledstationary(or invariant) if
m=nP, 4.7)

or equivalently,

ﬂj:Zmpij, jeS. (4.8)

ieS
Thus, to find a stationary distribution we need to solve (4.7) (or equivalently (4.8)) together with (44). If

is a finite set, finding stationary distributions is reduced to a simple linear system.
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Example 4.4.2 (2-state Markov chain)Consider the transition matrix:
1-p p
P= .
P
Let = [mom] and supposeP = 7. Then we have

moml [V 5Py Pe| =16~ prmo + am o+ (1= ) = [0

which is equivalent to the following

pro — gy = 0.
Together with

o+ m = 1,
we obtain
o = g , 1= P >

p+q p+q
whenevem + g > 0. Indeed,

_[a »

P+0a’ p+q

is a distribution orS = {0, 1}, so it is a stationary distribution. In this case a stationary distribution is unique.
Note that the stationary distribution is obtained as a limit distribution, see Example 4.3.5. In the uninteresting
case ofp = q =0, anyr = [ng, m1] is a stationary distribution.

Example 4.4.3 (3-state Markov chain)We discuss the Markov chaifX,} introduced in Example 4.2.7. If
g > 0 andb > 0, a stationary distribution is unique and givensy [0 O 1].

Example 4.4.4 (One-dimensional RW)Consider the 1-dimensional random walk with right-move probability
p > 0 and left-move probabilitgg = 1 — p > 0. Let[--- n(K) -- -] be a distribution orz. If it is stationary, we
have

n(k) = pr(k - 1) + gn(k + 1), keZ. (4.9)

The characteristic equation of the abovffatience equation is
0=g-1+p=(q1-p-1)

so that the eigenvalues argplq.
(Case 1)p # g. Then a general solution to (4.9) is given by

p\“ p\“
ﬂ'(k):Cllk"‘CZ(a) =C1+C2(a) R keZ.

This never becomes a probability distribution for any choice&CpfandC,. Namely, there is no stationary
distribution.
(Case 2)p = g. In this case a general solution to (4.9) is given by

7(K) = (C1 + CoK)1¥ = Cy + Cok, keZ.

This never becomes a probability distribution for any choice&CpfandC,. Namely, there is no stationary
distribution.

Example 4.4.5 (One-dimensional RW with reflection barrier) There is a unique stationary distribution when

p < @. In fact,
k
2(0) = Cp, ﬂ@:c(a, k> 1,

whereC is determined in such a way thaf’ , 7(k) = 1. Namey,
q-p

C= .
202

If p > g, then there is no stationary distribution.
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Theorem 4.4.6 A Markov chain over a finite state spaBehas a stationary distribution.

A simple proof is based on the Brouwer's fixed-point theorem saying that every continuous function from
a convex compact subset of a Euclidean space to itself has a fixed point. In fact, the set of distribuSons on
is a convex compact subset of a Euclidean space and thermaprP is continuous. Note that the stationary
distribution mentioned in the above theorem is not necessarily unique.

We are going into a discussion about unique existence of a stationary distribution.

Definition 4.4.7 We say that a statpcan be reached frora state if there exists some > 0 such thap,(i, j) > O.
By definition every staté can be reached from itself. We say that two statasd j intercommunicatef i can
be reached fornj and j can be reached from i.e., there exism > 0 andn > 0 such thatp,(i, j) > 0 and
Pm(j 1) > 0.

Lemma 4.4.8 For two states, j € S we define a binomial relation~ j when they intercommunicate. Then
becomes an equivalence relation®mamely,

@ i~
(i) i~ jimpliesj ~i;
(i) If i ~jandj ~ k, theni ~ k.
Proof (i), (ii) are obvious by definition. (iii) is verified by the Chapman-Kolmogorov equation. |

Thereby the state spaéeis classified into a disjoint set of equivalence classes determined by the above
Namely, each equivalence class consists of states which intercommunicate each other.

Definition 4.4.9 A statei is calledabsorbingif

iy (b fori=i
PU- 1) = 0, otherwise

In particular, an absorbing state is a state which constitutes an equivalence class by itself.

Definition 4.4.10 A Markov chain is calledrreducibleif every state can be reached from every other state, i.e.,
if there is only one equivalence class of intercommunicating states.

Example 4.4.11 Examine the equivalence relation among the states of a Markov chain described by the follow-
ing transition diagram:

Then we have the following fundamental result.

Theorem 4.4.12 An irreducible Markov chain on a finite state spa&admits a unique stationary distribution
= [ni]. Moreover,rj > O foralli € S.
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In fact, the proof owes to the following two facts:
(1) For anirreducible Markov chain the following assertions are equivalent:

() it admits a stationary distribution;
(i) every state is positive recurrent.

In this case the stationary distributiaris unique and given by
3 1
E(TiXo=1)’

(2) Every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem 4.5.9).

ieS.

T

Finally, the distribution of a Markov chain does not necessarily converge to a stationary distribution even if
it exists uniquely.

Example 4.4.13 Consider a Markov chain determined by the transition matrix:
0 1
p= [1 O] .
We first note that there exists a unique stationary distribution. But for a given initial distribt@rit is not
necessarily true th%t lim(n) converges to the stationary distribution.

Roughly speaking, we need to avoid the periodic transition in order to have the convergence to a stationary
distribution.

Definition 4.4.14 For a state € S,
GCD{n> 1; P(X, =i|Xg =i) > 0}

is called theperiod of i. (When the set in the right-hand side is empty, the period is not defined.) A st&és
calledaperiodicif its period is one.

For an irreducible Markov chain, every state has a common period.

Theorem 4.4.15Let n be a stationary distribution of an irreducible Markov chain on a finite state space (It is
unique, see Theorem 4.4.12) {X,} is aperiodic, for anyj € S we have

r!im P(Xn=j) = 7.
Problem 18 Consider a Markov chain determined by the transition diagram below.

2/3 3/4
1/3 2/3

(1) Is the Markov chain irreducible?

(2) Find all stationary distibutions.

Problem 19 Let {X,} be a Markov chain orf0, 1} given by the transition matrie = [1_ P P ] with the

q 1-q
initial distributionzg = [g/(p + ) p/(p + g)]. Calculate the following statistical quantities:
CoV (Xmn, Xn)

B, VDX, COV i Xa) = EDXminXol = EDXmnl DG, pCmen X0) = ~ o=
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Problem 20 Let {X,} be a Markov chain described by the following transition diagram.

For a state € S, define thdfirst hitting timeor first passage time i by
Ti=infin>1; X, =1i}.
(If there exists na > 1 such thatX, = i, we defineT; = «.)

(1) Calculate
P(To=1Xo=0), P(To=2Xo=0), P(To=3X=0), P(To=4X =0)

(2) FindP(To = n|Xp = 0) and calculate
D P(To=nX=0), > nP(To=nXo = 0)
n=1 n=1

Problem 21 Let {X,} be the Markov chain introduced in Example 4.2.7:
b q
(@ <> ®
4 r

Forn=1,2,... let H, denote the probability of starting from H and terminating at D-atep. Similarly, for
n=12,... letS, denote the probability of starting from S and terminating at D-step.

(1) Show thafH,} and{S,} satisfies the following linear system:

{Hn =aHy 1+ bSyg, n>2; Hi =0, Si1=q¢

Sh = PHr-1 +ISh-1,

(2) LetH andS denote the life times starting from the state H and S, respectively. Solving the linear system
in (1), prove the following identities for the mean life times:

b+p+q

- - b+p
E[H] = > nH, = . E[S]=Y'ns, = .
; b nZ; bg

4.5 Recurrence

Definition 4.5.1 Leti € S be a state. Define tHest hitting timeor first passage time i by
Ti=inf{n>1; X, =i}.

If there exists nan > 1 such thaiX, = i, we defineT; = . A statei is calledrecurrentif P(T; < oo|Xg =1) = 1.
It is calledtransientif P(T; = co|Xy =1i) > 0.
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Theorem 4.5.2 A statei € S is recurrent if and only if

i Pni, i) = co.
n=0

Proof (basically the same as the proof of recurrence of one-dimensional random walk) We first put
pn(i, ) = PXh = jIXo=1i), n=0,1,2,...,
fa(i, J) = P(Tj = niXo = i)
=PXg# ... X1 # [ Xa =X =10), n=12....
pn(i, j) is nothing else but tha step transition probability. On the other harfgli, j) is the probability that the

Markov chain starts fronh and reachj first time aftern step. Dividing the set of sample paths frono j in n
steps according to the number of steps after which the path reaétrethe first time, we obtain

n
pn(i. j) = Z f(, Dpnr(). ),  1j€S, n=12... (4.10)
r=1

We next introduce the generating functions:
Gi(@ =) Pl N2, Fy@ = fli, )2
n=0 n=1
In view of (4.10) we see easily that

Gij(2 = po(i. J) + Fij(9Gj; (. (4.11)

Settingi = j in (4.11), we obtain
Gii(2 = 1+ Fi(9Gii (2.

Hence,
1

Gii(2 = I-FQ

On the other hand, since
Gi()= ) pali.D),  Fi(@)= ) fali,i) = P(Ti < oolXo = )
n=0 n=1
we see that two conditiors; (1) = 1 andG;i (1) = oo are equivalent. |

During the above proof we have already established the following

Theorem 4.5.3 If a statei is transient, we have

i Pa(i, i) < oo
n=0

and
1

n; PollD) = T B <o = 1)

Example 4.5.4 (random walk onZ) Obviously, the random walk starting from the origin 0 returns to it only
after even steps. Therefore, for recurrence we only need to compute the gus000). On the other hand, we
know that

@n)! .

p2n(0,0)=mpq, p+q=1,

see Chapter (3.1.1). Using the Stirling formula:
n
Nl ~ \/27rn<2) (4.12)
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we have

1 n
P2n(0, 0) ~ Ve (4pq)".

Hence, ifp # g we have

> pn(0,0) < o0,
n=0

If p:q:%,wehave

> pan(0,0) = co.
n=0

Consequently, one-dimensional random walk is transientéfq, and it is recurrent ip = q = >

Remark 4.5.5 Let {a,} and{b,} be sequences of positive numbers. We waijte- b, if

lim 21 =1,

n—o0 n

In this case, there exist two constant numtmgrs 0 andc, > 0 such that

Cian < bh < .

HenceZ an andZ b, converge or diverge at the same time.
n=1 n=1

Example 4.5.6 (random walk onz?) Obviously, the random walk starting from the origin O returns to it only
after even steps. Therefore, for recurrence we only need to compute the §4(000). For two-dimensional
random walk we need to consider two directions along witxis andy-axis. We see easily that

o0 320 (3 L4 s

i+j=n i=0

Employing the formula for the binomial céiients:

15

i=0

wich is a good exercise for the readers, we obtain
n 2 1 2n
P2n(0,0) = ( n) (Z) :
Then, by using the Stirling formula, we see that

1
p2n(0,0) ~ o

so that

> pn(0,0) = oo,
n=1

Consequently, two-dimensional random walk is recurrent.
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Example 4.5.7 (random walk onz®) Let us consider the isotropic random walk in 3-dimension. As there are
three directions, say, y, z-axis, we have

~ @y (1) @n) (1) nint - (2n\(1\" no\?
Pan(0.0) = Z ilitjljlkikt {6/ ~ nint \6) Z ilitjtjikkt — \n)\6) Z ikt )
i+j+k=n i+j+k=n i+j+k=n
We note the following two facts. First,
—— =3" (4.14)

Second, the maximum value

n
Mh= max ——
" irjeken itk

is attained wheraén -1<i,jk= g +1so

L334

My 27n

by the Stirling formula. Then we have

2n
2n)(1) 3"Mh 38 o

pzn(0,0)S(n = Nzn—ﬁ

6

Therefore. -
> Pan(0,0) <,
n=1

which implies that the random walk is not recurrent (i.e., transient).

A statei is calledrecurrentif P(T; < oo|Xg = i) = 1. In this case we are interested in the mean value
E(Ti|Xo = i) (mean recurrent time). As we have already shown (Theorem 3.2.5), the mean recurrent time of the
one-dimensional isotropic random walk is infinity although it is recurrent. In this case the state isncalled
recurrent On the other hand, E(Ti|Xo = i) < o the stata is calledpositive recurrent

Theorem 4.5.8 The states in an equivalence class are all positive recurrent, or all null recurrent, or all transient.
In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null recurrent, or all
transient.

Theorem 4.5.9 For an irreducible Markov chain on a finite state sp&cevery state is positive recurrent.
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1. Choose and answer 2 problems among No. 1-13 and 2 problems among No. 14— the last. Each is allotted
25 points. Plagiarizing is excluded from evaluation.
2. Submit to: the mailbox prepared for report submission at 1F in front of the administréine af GSIS.

3. Submission period: February 2 (Mon)- 6 (Fri), 2015.
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5 Poisson Processes

Let T c R be an interval. A family of random variabl¢X(t); t € T} is called acontinuous time stochastic
process We often consider = [0, 1] andT = [0, o). As X(t) is a random variable for eadke T, it has another
variablew € Q. When we need to explicitly refer to, we write X(t, w) or X;(w). For fixedw € Q, the function

t— X(t, w)

is called asample pattof the stochastic proce$X(t)}. It is the central idea of stochastic processes that a random
evolution in the real world is expressed by a single sample path selected randomly from all the possible sample
paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian motion
(Wiener process). In the recent study of mathematical physics and mathematical finance, a kind of composition
of these two processes, called thevly process (or additive process), has received much attention.

5.1 Heuristic Introduction

Let us imagine that the number of objects changes as time goes on. The numbertds tinoelelled by a
random variablé; and we wish to construct a stochastic prodeggs In this caseX; takes values if0, 1, 2,...}.
In general, such a stochastic process is calledumting process
There are many dierent variations of randomness and so wide variations of counting processes. We below
consider the simple situation as follows: We focus an e#enthich occurs repeatedly at random as time goes
on. For example,
(i) alert of receiving an e-mail;
(ii) telephone call received a call center;
(i) passengers making a queue at a bus stop;
(iv) customers visiting a shop;
(v) occurrence of defect of a machine;
(vi) traffic accident at a corner;
(vii) radiation from an atom.

Let fix a time origin ag = 0. We count the number of occurrence of the eemturing the time interval [(X]
and denote it byK;. Letty, to, ... be the time wher occurs, see Fig. 5.1.

Figure 5.1: Recording when the evdhbccurs

There are two quantities which we measure.

(i) The number of occurrence & up to timet, say,X;. Then{X;; t > 0} becomes a counting process.
(ii) The waiting time of then-th occurrence after then(- 1)-th occurrence, say;,. HereT; is defined to be

the waiting time of the first occurrence &f after starting the observation. Théh,; n = 1,2,...}is a
sequence of random variables taking values jrdqp

We will introduce heuristically a stochastic procg¥s} from the viewpoint of (i). It is convenient to start
with discrete time approximation. Fbx- 0 and divide the time interval [@] into n small intervals. Let

At = =
n

be the length of the small intervals and number from the time origin in order.
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We assume the following conditions on the occurrence of the évent

(1) There exists a constaat>- 0 such that

P(E occurs just once in a small time interval of lengtt) = 1At + o(At),
P(E does not occur in a mall time interval of lengil) = 1 — AAt + o(At),
P(E occurs more than once in a small time interval of lenfsth= o(At).

(2) Occurrence oE in disjoint time intervals is independent.

Some more accounts. Let us imagine the alert of receiving an e-mail. That

P(E occurs more than once in a small time interval of leryth= o(At)
means that two occurrences of the even$ always separated. That

P(E occurs just once in a small time interval of lengtt) = 1At + o(At)

means that whent is small the probability of occurrence &fin a time interval is proportional to the length of
the time interval. We understand from (2) that occurrence ixfindependent of the past occurrence.

Let Z; denote the number of occurrence of the evemt thei-th time interval. Therxy, Z,, ..., Z, become a
sequence of independent random variables with an identical distribution such that

P(Z =0)=1-AAt+0(At),  P(Z =1)=AAt+0(Al),  P(Z > 2) = o(Al).

The number of occurrence & during the time interval [(X] is given by

n
Zzi :
i=1
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The lengthAt is introduced for a technical reason and is not essential in the probability model so Adttind@

or equivalentlyn — oo, we defineX; by
n

X = lim Zzi. (5.1)

At—0

i=1

Thus{X;} is a continuous time stochastic process which gives the number of occurrence of thE apdottime
t. This is called thd?oisson proceswith parameten > 0.
We note that

P[Z Z = k] - (E)(/lm)k(l — AAY™ + o(AY).

In view of At = t/n we letn tend to the infinity and obtain

et

(A*nin-1)...(n—k+1) (1_ E)“‘k _(ak

PO =k = AlitTO k! nk n Tk

In other words X; obeys the Poisson distribution with parameter

Remark 5.1.1 The essence of the above argument isRb&sson’s law of small numbershich says that the
binomial distributionB(n, p) is approximated by Poisson distribution with parametetr np whenn is large
and p is small. The following table shows the distributionsB(fL0Q 0.02) and the Poisson distribution with
parameten = 2.

k 0 1 2 3 4 5 6
Binomial || 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114
Poisson || 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120

Theorem 5.1.2 A Poisson procesiX; ; t > 0} satisfies the following properties:

(1) (counting process); takes valesinf0,1,2,...};

(2) X0 =0;

(3) (monotone increasindys < X; for0 < s<t;

(4) (independent increment) ifOt; <ty < --- < ty, then

X, = Xiys XKeg =Xty ooy X = XKooy

are independent;
(5) (stationarity) for O< s < t andh > 0, the distributions oK, — Xsin andX; — Xs are identical,
(6) there exists a constaat> 0 such that

P(X, = 1) = ah+o(h),  P(Xn > 2) = o(h).

Proof (1) SinceX; obeys the Poisson distribution with parametgiit takes values in non-negative integers
almost surely.

(2) Obvious by definition.

(3) Lets = mAt, t = nAt, m < n. Then we have obviously

m n
%= lim 2 s I, ) 2= %,

(4) Supposé; = mAt, ..., t = ngAt with n; < --- < n. Then we have

np ny ny
Xo =X, = Im > Z - lim 3'7=lm " Z.
T Ao HZ' a0 & T Ao, !

i=ng+1
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In other words X;, — X, is the sum o’s corresponding to the small time intervals contained4rt{). Hence,
X, = Xy 5.+ Xg, — Xy, @re the sums af;’s and there is no commag) appearing in the summands. Sif@g
are independent, so akg, — X, , ..., X — Xt ;-

(5) SinceXi:h — Xsih andX; — Xs are defined from the sums @f's and the numbers of the terms coincide.
Therefore the distributions are the same.

(6) Recall thaiXy, obeys the Poisson distribution with parametkr Hence,

P(Xp=0)=eM=1-dh+---=1-h+o(h),
P(Xh = 1) = Ahe™" = Ah(1 - th+...) = Ah + o(h).

Therefore we have
P(Xn = 2) = 1 - P(Xy = 0) - P(Xy = 1) = o(h).

Example 5.1.3 The average number of customers visiting a certain service gate is two per minute. Using the
Poisson model, calculate the following probabilities.

(1) The probability that no customer visits during the first two minutes after the gate opens.
(2) The probability that no customer visits during a time interval of two minutes.

(3) The probability that no customer visits during the first two minutes after the gate opens and that two
customers visit during the next one minute.

Let X; be the number of visitors up to tinieBy assumptiortX;} is a Poisson process with parametet 2.
(1) We need to calculate(X, = 0). SinceX; obeys the Poisson distribution with parameter=24, we have

40 _4
P(X;=0)= 5 &~ 0018

(2) Suppose that the time interval start§afhen the probability under discussion is giverR{¥,+2— X, =
0). By stationarity we have

P(Xto+2 - Xto = 0) = P(Xz - Xg= 0) = P(Xz = 0),

which coincides with (1).
(3) We need calculate the probabili®X, = 0, X3 — Xz = 2). SinceX; andX3 — X, are independent,

P(Xo = 0, X3 — Xp = 2) = P(Xo = 0)P(X3 — Xz = 2).

By stationarity we have
40 22
= P(Xz = 0)P(Xy = 2) = o e x o e 2 ~ 0.00496

Problem 22 Let {X;} be a Poisson process. Show that

k n-k
P(Xs=k|Xt=n)=(E)(§) (1—§) . k=01,....n,

for 0 < s < t. Next give an intuitive explanation of the above formula.

5.2 Waiting Time

Let{X;; t > 0} be a Poisson process with parameteBy definition Xy = 0 andX; increases by one as time
passes. It is convenient to remind that the Poisson process counts the number of events occurring up to time
First we set

Ti=inf{t>=0; X > 1}. (5.2)
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This is the waiting time for the first occurrence of the event Let T, be the waiting time for the second
occurrence of the evelt after the first occurrence, i.e.,

To=inf{t>0; X >2}-T;.
In a similar fashion, we set

Ta=inf{t>0; X >n}— Ty, n=23,.... (5.3)

Theorem 5.2.1 Let {X;} be a Poisson process with parameteDefine the waiting timd, by (5.2) and (5.3).
Then,{T,; n=1,2,...} becomes a sequence of iid random variables, of which distribution is the exponential
distribution with parametet.

Proof Sett = nAt and consider the approximation by refinement of the time interval. Recall that to each
small time interval of lengtkt a random variabl@; is associated. Then we know that

P(Ty>1) = im P(Zy =+ = Zy = 0)

lim (1 - 2AL)"
fimt- 80

. At\"
lim (l - —)
At—0 n
=e

Therefore, t
PTi<t)=1-e= f 1edsg
0

which shows thal'; obeys the exponential distribution with parameter
The distributions off 5, T3, ... are similar. |

Remark 5.2.2 Let {X;} be a Poisson process with parameterWe know thatE(X;) = A, which means the
average number of occurrence of the event during the unit time interval. Hence, it is expected that the average
waiting time between two occurrences is11 Theorem 5.2.1 says that the waiting time obeys the exponential
distribution with parametet so its mean value is/. Thus, our rough consideration gives the correct answer.

Problem 23 Let {X;} be a Poisson process with parametefThe waiting time fom occurrence of the events
is defined byS,, = Ty + T, + - - + Tn, WhereT, is given in Theorem 5.2.1. Calcula®S, < t) and find the
probability density function o$,. [In general S, obeys a gamma distribution.]

5.3 The Rigorous Definition of Poisson Processes

The “definition” of a Poisson process in (5.1) is intuitive and instructive for modeling random phenomena.
However, strictly speaking, the argument is noffisient to define a stochastic procd%s}. For example, the
probability space®, 7, P) on which{X;} is defined is not at all clear.

We need to start with the waiting tim@,}. First we prepare a sequence of iid random variablgs n =
1,2,...}, of which the distribution is the exponential distribution with paramater 0. Here the probability
spaceQ, ¥, P) is clearly defined. Next we set

SOZO’ r‘I=Tl+"’+Tn, n=l,2,...,

and fort > 0,
Xi=max{n>0; S, <t}

It is obvious that for each > 0, X; is a random variable defined on the probability spaeer(, P). In other
words,{X;; t > 0} becomes a continuous time stochastic process. This is daiedon proceswith parameter
A by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 5.1.2.
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6 Queueing Theory

6.1 Modeling Queues

In our daily life, we observe often waiting lines or queues of customers for services. Agner Krarup Erlang
(1878-1929, Danish engineer at the Copenhagen Telephone Exchange) published in 1909 the papertentitled:
Theory of Probabilities and Telephone Conversatjomgich opened the door to the research fieldjofueing
theory Such a queue is modeled in terms of a system consisting of servers and a waiting room. Customers
arriving at the system are served at once if there is an idle server. Otherwise, the customer waits for a vacant
server in a waiting room. After being served, the customer leaves the system.

system

BO~_ O
o O
O=| BO = - O
OOO arrival
mo~" o ||

customers

departure

In most of the geueing models, a customer arrives at random and the service time is also random. So we are
interested in relevant statistics such as
(1) sojourn time (time of a customer staying in the system)
(2) waiting time & sojourn time - service time)
(3) the number of customers in the system
Apparently, many dferent conditions may be introduced for the queueing system. In 1953, David G. Kendall

introduced the so-calleidendall’s notation
A/B/c/K/m/Z
for describing the characteristics of a queuing model, where
A: arrival process,
B: service time distribution,
c: number of servers,
K: number of places in the system (or in the waiting room),

m: calling population,
Z: queue’s discipline or priority order, e.g., FIFO (First In First Out)

The first model analyzed by Erlang in 1909 was M¢D/1 queue in Kendall's notation, wheM means that
arrivals occur according to a Poisson process,[astands for deterministic (i.e., service time is not random but
constant).

Most of queueing models are classified into four categories by the behavior of customers as follows:

(I) Delay models: customers wait in line until they can be served.
Example:M/M/c queue, where
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(i) customers arrive according to a Poisson process withirate
(i) there arec servers and there is an infinite waiting space;
(iif) each customer requires an exponential service time with mg¢an 1
(iv) customers who upon arrival find all servers busy wait in line to be served.

(IN Loss models: customers leave the system when they find all servers busy upon arrival.
Example: Erlang’s loss mod#&ll/G/c/c, where

(i) customers arrive according to a Poisson process withirate
(ii) there arec servers and the capacity of the system is limited tmstomers, i.e., there is no waiting
space;
(iii) each customer requires a generally distributed service time;
(iv) customers who upon arrival find all servers busy are rejected forever.

(1) Retrial models: customers who do not find an idle server upon arrival leave the system only temporarily,
and try to reenter some random time later.
Example: the Palferlang-A queue, where

(i) customers arrive according to a Poisson process withlrate
(ii) there arec servers and there is an infinite waiting space;
(iii) each customer requires an exponential service time with mgan 1
(iv) customers who upon arrival find all servers busy wait in line to be served,;
(v) customers wait in line only an exponentially distributed time with me@(fatience time).

(IV) Abandonment models: customers waiting in line will leave the system before being served after their
patience time has expired.
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6.2 M/M/1Queue
This is the most fundamental model, which satisfies the following conditions:

(i) arrivals occur according to a Poisson process with parameter
(ii) service times obey an exponential distribution with parameter
(iii) arrivals of customers and service times are independent;
(i) the system contains a single server;
(iv) the size of waiting room is infinite;

(v) (FIFO= First In First Out) customers are served from the front of the queue, i.e., according to a first-come,
first-served discipline.

Thus there are two parameters characterizing/lahl/1 queue, that is, the parameter 0 for the Poisson
arrival and the ong: > O for the exponential service. In other words, a customer arrives at the system with
average time interval/i and the average service time ig1 In the queuing theory is called themean arrival
rate andu the mean service rateLet X(t) be the number of customers in the system at timi¢ is the proved
that{X(t); t > O} becomes a continuous time Markov chain{onl, 2, 3, ...}. In fact, the letter “M” stands for
“Markov” or “memoryless”.

Our main objective is

pn(t) = P(X(t) = niX(0) = 0),

i.e., the probabbility of findingn customers in the system at tihe- 0 subject to the initial conditioX(0) = 0.
Let us consider the change of the system during the small time intéyval At]. It is assumed that during the
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small time intervalAt only one event happens, namely, a new customer arrives, a customer under service leaves
the system, or nothing changes. The probabilities of these events are gixan, jpt, 1 — AAt — uAt.

o ntl ntl e
ANt UAL
n e—m— ———>»e0 N n e—»0 1
#k\. el el e ANt
t t+ Af t t+ At

Therefore P(X(t) = njX(0) = 0) fulfills the following equation:
P(X(t + At) = n|X(0) = 0) = P(X(t + At) = n|X(t) = n— 1)P(X(t) = n— 1|X(0) = 0)
+ P(X(t + At) = n|X(t) = n)P(X(t) = n|X(0) = 0)
+ P(X(t + At) = n|X(t) = n+ 1)P(X(t) = n+ 1|X(0) = 0)
= AAtP(X(t) = n— 1X(0) = 0)
+ (1 - AAt — uA)P(X(t) = njX(0) = 0)
+ uAtP(X(t) = n+ 1]X(0) = 0),
P(X(t + At) = 0X(0) = 0) = (1 — AA)P(X(t) = O]X(0) = 0) + uAtP(X(t) = 1|X(0) = 0).
Hence forpn(t) = P(X(t) = n|X(0) = 0) we have
Pa(t) = Apn-1(t) — (2 + ) pn(t) + ppnea(t), n=1,2..., 6.1)
Po(t) = —Apo(t) + upa(t). '
The initial condition is as follows:
po(0) = 1, pn(0)=0 forn> 1. (6.2)

Solving the linear system (6.1) with the initial condition (6.2) is ndtidilt with the help of linear algebra
and spectral theory. However, the explicit solution is not so simple and is omitted. We only mention that most
important characteristics are obtained from the expfigft).

Here we focus on the equilibrium solution (limit transition probability), i.e.,

Pn = lim pn(t)
whenever the limit exists. Since in the equilibrium the derivative of the left hand side of (6.1) is 0, we have

APrr— A+ @)pn+upns1=0 n=212,..., (6.3)
—APo + pup1 = 0. '

A general solution to (6.3) is easily derived:

h =

2\"
C1+C2(—) , A#EU,
u
Ci+GCon, A=u.

Sincep, gives a probability distribution, we hays > 0 andz pn = 1. This occurs only when < u and we
n=0

have N
pnz(l—il)(il) , nh=0,12....
M

7
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This is the geometric distribution with parameigy:.
In queuing theory, the ratio of the mean arrival rat@nd the mean service ratas called theutilization:

p=-.
u

Utilization stands for how busy the system is. It was shown above that the number of customers in the system
after long time obeys the geometric distribution with parametdfrp < 1, the system functions well. Otherwise,

the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium the number of customers
in the system obeys the geometric distribution:

1-p)p", n=0,12,....

In particular, the probability that the server is free is b and the probability that the server is busy and the
customer need to wait js. This is the origin of the ternutilization. Note also that the mean number of the

customers in the system is given by
- 2
D= =T
=0 P M

Example 6.2.1 There is an ATM, where each customer arrives with average time interval 5 minutes and spends
3 minutes in average for the service. UsingMfM/1 queue, we know some statistical characteristics. We set

1= 1 1 13
- 5’ M= 3’ P = U - 5 .
Then the probability that the ATM isfree =1-p = g The probability that the ATM is busy but there is no

waiting customer is

_2,3_686
PL=5%5~ 25
Hence the probability that the ATM is busy and there is some waiting customers is
2 6 9
l1-po-pr=1-g--z=--=036

So, roughly speaking, a customer needs to make a queue once per three visits.

Remark 6.2.2 The Markov proces¥(t) appearing in theM/M/1 queuing model is studied more generally
within the framework obirth-and-death process

Problem 24 M/M/1/1 queue) There is a single server and no waiting space. Customers arrive Poissol) with
servoice inu Let Q(t) be the number of customers in the system at tinie fact,

1, serveris busy
0, serverisidle

Q(t) = {
(1) Find

Po(t) = P(Q() = 01Q(0) = 0).
pa(t) = P(Q(Y) = 1Q(0) = 0)

by solving a linear system satisfied by thgs€t).

(2) Using the results in (1), calculate
Po = lim po(t), P = lim pa(0),
(3) Find the mean number of customers in the system in the long time limit:

lim E[QQ)!
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7 Galton-Watson Branching Processes

Consider a simplified family tree where each individual gives birthffspsing (children) and dies. The
number of d¢fsprings is random. We are interested in whether the family survives or not. A fundamental model
was proposed by F. Galton in 1873 and basic properties were derived by Galton and Watson in their joint paper
in the next year. The name “Galton-Watson branching process” is quite common in literatures after their paper,
but it would be more fair to refer to it as “BGW process.” In facérige-Jules Bienayistudied the same model
independently already in 1845.

—

—
—
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2. K. B. Athreya and P. E. Ney: Branching Processes, Dover 2004 (original version, Springer 1972)
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7.1 Definition

Let X, be the number of individuals of theth generation. ThefiX,; n=0,1,2,...} becomes a discrete-
time stochasic process. We assume that the number of children born from each individual obeys a common
probability distribution and is independent of individuals and of generation. Under this assupxtibecomes
a Markov chain.

Let us obtain the transition probability. L¥tbe the number of children born from an individual and set

P(Y =K) = p. k=0,1,2,....

The sequencépo, p1, P2, . . - } describes the distribution of the number of children born from an individual. In
fact, what we need is the condition

o

m=0, > p=1

k=0
We refer to{ po, p1, . . . } as theoffspring distribution LetYs, Ys, ... be independent identically distributed random
variables, of which the distribution is the sameYasThen, we define the transition probability by

i
p(i,j):P(Xn+1=j|Xn=i)=P[ZYk:j], i>1, j=0,
k=1

and
0, j>1,

p(o,j):{1 o
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Clearly, the state 0 is an absorbing one. The above Markov ¢Kgjrover the state spag8, 1,2,...} is called
the Galton-Watson branching procegsth offspring distributionpy; k=0,1,2,...}.

For simplicity we assume thaty = 1. Whenpg + p1 = 1, the famility tree is reduced to just a path without
branching so the situation is much simpler (Problem 25). We will focus on the case where

Po+pPr<l p2<l, ..., <l

In the next section on we will always assume the above conditions.

Problem 25 (One-child policy) Consider the Galton-Watson branching process wiibpoing distribution sat-
isfying po + p1 = 1. Calculate the probabilities

Q=P =0), q@=PX#0,X2=0), ..., oh=PX1#0,...,X-1#0,X,=0),

and find the extinction probability

P= (U{Xn = 0}) = P(Xn = 0 occurs for some > 1).

7.2 Generating Functions

Let {X,} be the Galton-Watson branching process wiffsgring distribution{px; k = 0,1,2,...}. Let
p(i, j) = P(Xni1 = jIXn = 1) be the transition probability. We assume that= 1.
Define the generating function of thé&spring distribution by

(9= mss (7.1)
k=0

The series in the right-hand side convergegddiox 1. We set
fo(s) =s fi(s) = f(9), fa(s) = f(fa-1(9).

Lemma7.2.1

0o

Zp(i,j)sj =[f(9]", i=12.... (7.2)

=0
Proof By definition,

Pl i) =P(Yi+-+Yi=)= > PMi=ky...Yi=k)
kptorki=
k1>0.,....ki>0

SinceYy,...,Y; are independent, we have

pi. )= >, PMi=k)--PM=k)= > pg b

Kyt +ki=] kyt-tki=]
k1>0,....ki>0 k1>0,....k>0
Hence,
dop i =D > Paps
j=0 j=0 kit-tki=]
ki1>0.....ki>0
k=0 ki=0
=[f(s)',
which proves the assertion. |
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Lemma 7.2.2 Let pq(i, j) be then-step transition probability of the Galton-Watson branching process. We have
Dl DS =), i=12.... (7.3)
=0

Proof We prove the assertion by induction an First note thatp(i, j) = p(i, j) and fi(s) = f(s) by
definition. Forn = 1 we need to show that

00

Zp(i,j)sj =[f(9), i=12..., (7.4)

j=0

Which was shown in Lemma 7.2.1. Suppose that1 and the claim (7.3) is valid up t@ Using the Chapman-
Kolmogorov identity, we see that

D Pnali, ) =7 " pli. Kipa(k, i)'
j=0 i=0 k=0
Since

PN CHERCIN
j=0

by assumption of induction, we obtain
D Poalis DS = ) pli K fa(9]
=0 k=0

The right-hand side coincides with (7.4) whexis replaced byf,(s). Consequently, we come to
S Brealis DS = [ = a9
j=0

which proves the claim fon + 1. |

SinceXy =1,
P(xn = J) = P(Xn = J|XO = l) = pn(l, J)

In particular,
P(X1=])=P(X1=jlXo=1)=pu(L, j) = p(L }) = p;.

Theorem 7.2.3 Assume that the mean value of th@spring distribution is finite:

m= Z kpc < co.
k=0
Then we have
E[Xn] = m".
Proof Differentiating (7.1), we obtain
(9= kpst  l8<l (7.5)
k=0

Lettings — 1 -0, we have
lim f'(s)=m
s—1-0

On the other hand, settirig= 1 in (7.3), we have

D paL )s! = fa(9) = faa(f(9)). (7.6)
i=0
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Differentiating both sides, we come to
fa(9) = D" ipa(L )7 = 14 (F(9)F(9). (7.7)
=0
Lettings — 1 -0, we have
Jim fi(9) = ; pa(L]) = Jim £7,(f(9) fim /(9 =m lim f; (9.
Therefore,
lim f/(s)=m",
s—1-0

which means that

E(X) = ) iPOa = J) = ) jpa(L, ) = 1.
j=0 j=0

In conclusion, the mean value of the number of individuals inrthk generationE(X,), decreases and
converges to 0 i < 1 and diverges to the infinity ih > 1, asn — . It stays at a constantih = 1. We are
thus suggested that extinction of the family occurs wimen 1.

Problem 26 Assume that the variance of théfspring distribution is finite:V[Y] = o2 < co. By similar
argument as in Theorem 7.2.3, prove that

o?m(m" - 1)

V[xn]={T’ m* L

no2, m= 1

7.3 Extinction Probability

The event{X, = 0} means that the family died out until tineth generation. So

q= P[O{xn - 0})

n=1

is the probability of extinction of the family. Note that the events in the right-hand side is not mutually exclusive
but
X1=0c{Xo=0c---c{Xp=0}c....

Therefore, it holds that
g= r!im P(X, = 0). (7.8)

If q = 1, this family almost surely dies out in some generationg K 1, the survival probability is positive
1-qg> 0. We are interested in whethge 1 or not.

Lemma 7.3.1 Let f(s) be the generating function of thefspring distribution, and sef,(s) = f(f,-1(9) as
before. Then we have
g= r!im fn(0).

Thereforeg satisfies the equation:
q= f(a). (7.9)
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Proof It follows from Lemma 7.2.2 that
fa(9) = > pulL. J)s.
=0
Hence,
fa(0) = pn(1,0) = P(X, = 0Xo = 1) = P(X, = 0),
where the last identity is by the assumptionXgf= 1. The assertion is now straightforward by combining (7.8).

The second assertion follows sintgs) is a continuous function on [@].

Lemma 7.3.2 Assume that thefEspring distribution satisfies the conditions:

Ppo+p1<l p2<1 ..., k<1l
Then the generating functiof(t) verifies the following properties.
(1) f(9)isincreasing,i.ef(s) < f(s)for0< s <5 < 1.

(2) f(9)is strictly convex, i.e.,if(k 5, < 5 <1and 0< 6 < 1 we have

f(@s1+ (1-0)s) < 0f(s1) + (1 - 0)f(s2).

Proof (1) is apparent since the diieient of the power serie(s) is non-negative. (2) follows b{”’(s) > 0.

Lemma 7.3.3 (1) If m< 1, we havef(s) > sforO< s< 1.

(2) If m> 1, there exists a uniquesuch that < s< 1 andf(s) = s.
Lemma 7.3.4 f1(0) < f2(0) < --- = 0.

Theorem 7.3.5 The extinction probabilityg of the Galton-Watson branching process as above coincides with
the smallest such that
s= f(9), 0<s<1l

Moreover, ifm < 1 we haveq = 1, and ifm > 1 we havey < 1.

The Galton-Watson branching process is caliaticritical critical and supercriticalif m < 1, m = 1 and
m > 1, respectively. The survival is determined only by the mean valw# the dfspring distribution. The
situation changes dramatically mit= 1 and, following the terminology of statistical physics, we calpliase
transition

Problem 27 Letb, p be constant numbers such that 0, 0< p < 1 andb+ p < 1. For the dfspring distribution
given by

P = bpl, k=1,2,...,
Po=1- Z Pk,
k=1

find the generating functiof(s). Moreover, settingn = 1, find f,(s).

57



8 Brownian Motion

In 1827 Robert Brown (1773-1858, Scottish botanist) observed a continuous jittery motion of small particles
spouting from pollen of the platlarkia pulchellain water under a microscope. For along period the mechanism
of this motion was unknown. In 1905 (known as the miracle year in physics) Albert Einstein published a paper
that the Brownian motion was caused by individual water molecules and was given a mathematical description
along with physical discussion. The original article is collected in A. Einstein: “Investigations on the Theory of
the Brownian Movement,” (Dover, 2011). Itis probably fair to refer to Marian Smoluchowski (1872-1917, Polish
physicist) who also gave a similar mathematical model of Brownian motion. Although his paper was published
in 1906, it is said in the exhibition at Krakow University, Poland, that his manuscript was sent to Einstein before
his work.

After the physical investigations mathematical study of Brownian motion or more general stochastic pro-
cesses started. The contributions by Norbert Wiener (1894-1964) and@&®au|1886—1971) were most essen-
tial. Thereby Brownian motion is also called tiéener processin 1940s Kiyoshi & (1915-2008, Japanese
probabilist) initiated the theory of stochastidfdrential equations which is nowadays commonly calledtiie
calculus During the last 60 years thebltcalculus has developed drastically for vast applications. It is only
a small part of the story that financial engineering withoatftirmula is impossible anddtbecame the most
famous Japanese in Wall Street.

8.1 From Random Walk to Brownian Motion

Consider one-dimensional random walk, where the random walker starts from thexotidirat timet = O,
and tosses a fair coin every short time interfl and move a very short distance eofo the right or left. Let
X(t) = X(t; At, €) be the position of the above random walker at tinze0.

It is convenient to expresX(t) by means of Bernoulli trials. Le{Z,} be a Bernoulli trial with success
probability /2, i.e.,

PZn=+1)=P(@Zn=-1)= %
Then fort = nAt we have .
X(t) = Z €Z. (8.1)
k=1
x At
{ e
0 >
We easily see from (8.1) that
n
E[X(®)] = € ) E(Z) = 0. (8:2)
k=1
n 62
_ 2 _ 2N _
VIX()] = € kz:;V(Zk) =én= -t (8.3)
Moreover, fors = mAt andt = nAt,
m n 2
Cov (X(s), X(1)) = € Z Cov(Zj,Z) = e min{m,n} = N min{s, t}. (8.4)
=1 k=1
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We are interested in the limit 8¢ — 0 ande — 0, whereas (8.3) suggests that a reasonable limit is obtained

under the condition 5

€
it (constant) (8.5)

In the following, we setr = 1 in (8.5) for simplicity. We hope to obtain a stochastic prodssas a limit of the
random walkX(t; At, €) as

B(t) = lim X(t; At, €), (8.6)
where the limit is taken in such a way thst— 0, e — 0 with €2/At — 1. We then see from (8.2)—(8.4) that
E[B(t)] =0, (8.7)
V[B(MH)] =t. (8.8)
Cov (B(9), B(t)) = min{s, t}. (8.9)
Moreover, we obtain
n 1 n
X(t; At, €) = €Zy = eVn— Z
[t 1 <
=€N\ = —= Zk
At /n ;4
€2 1 ¢
=4/— Vt— > Z. 8.10
X Wit 7 I; k (8.10)

It follows from the central limit theorem that N
1
— ) &
Vi
obeys the standard normal |a¥0, 1) in the limit. So we see from (8.10) thB{t) being the limit ofX(t; At, €),
obeys the normal law(0, t). We call{B(t)} the Brownian motion or the Wiener process.

30

20

10

-10

-20

-30

Figure 8.1: Random walk as a simulation of Brownian motion

Remark 8.1.1 The above “construction” of Brownian motion from the random walk is heuristic and instructive,
however, the important step was omitted. Namely, we did not argue that the limit of randomXgglks ¢)

exists in the sense of stochastic process. In fact, we may give rigorous proof to this point but mathematically
totally non-trivial. On the other hand, in most textbooks the Brownian motion is introduced independently of
random walk, where the argument becomes much simpler but loses the intuition of the jittery movement of
Brownian motion.
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We mention most essential propertirs of Brownian motion, where we have to accept them only with intuitive
reasonings suggested by the above “construction.”

(B1) {B(t); t = 0} forms a Gaussian system, i.e., for any finite number of time points . .., t, the random
vector B(ty), B(t2), . .., B(t,)) obeys an-dimensional normal law (may be degenerate).

(B2) E[B()] =0
(B3) Cov(B(s), B(t)) = E[B(5)B()] = min{s, t}
(B4) B(0)=0
(B5) (Continuous sample path}- B(t) is continuous almost surely.

In most literatures a stochastic process satisfying (B1)—(B5) is caBxdwanian motiorby definition. Then
we need to verify the existence of such a stochastic process. In fact, it is not fiacuyldio show (or con-
struct) a stochastic process satisfying (B1)—(B4), which is often calleglad Brownian motianThen applying

Kolmogorov's continuous version theorem we may derive (B5).
Moreover, we have

(B6) (Independent increments) for0t; < t, < --- < ty, the random variables
B(t1), B(tz) — B(t1), B(ts) — B(tz), ..., B(tn) — B(tn-1)

are independent.

(B7) {B(t)} is a Markov process. (For the precise definition of Markov process we need some advanced knowl-
edge of conditional probability.)

8.2 Stochastic Diferential Equations (SDES)

An ordinary diferential equation (ODE) is in general of the form:

%( = f(t, x), X(0) = Xo (initial condition) (8.11)
wherex = x(t) is unknown function. The ordinary flierential equation (8.11) describes ha&(t) changes in a
small time duratiom\t, namely, we have

X(t + At) — x(t) = f(t, x(t))At + o(At) (8.12)
Thereby we often write (8.11) as
dxt) = f(t, x)dt, X(0) = xo, (8.13)
or in an integral form: I
X(t) = X0 + f f(s x(s))ds (8.14)
0

We understand that (8.11), (8.13) and (8.14) are equivalent.

We know from general theory that thefldirential equation (8.11) possesses a unique solution under cer-
tain condition (e.g., Lipschitz condition) of(t, X). In other words, the movement af = x(t) is completely
determined by (8.11) together with initial condition.

We now consider the case where the movement is disturbed by random noise at each time.

noise noise noise

—i—> X(t) l X(t + At) J—»
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A noise term must be added to thefdrential equation (8.11). Starting with (8.12), we try to get a suitable
expression for
X(t + At) — x(t) = f(t, x(t))At + (noise) (8.15)

It is natural to think that noises occurring atfdrent time are independent. Since Brownian motiBft)} has
independent increment, the noise term in (8.15) being gived(tas At) — B(t), we come naturally to

X(t + At) — x(t) = f(t, x(t))At + (B(t + At) — B(t)).
More generally, allowing the noise to dependxgt) andt, we may consider:
X(t+ At) — x(t) = f(t, X(t))At + g(t, x(1))(B(t + At) — B(t)).

Since{B(t)} is a stochastic process, so{igt)}. According to our tradition, we writ(t) for x(t) from now on.
Finally, lettingAt — O we expect to obtain an expression as

dX(t) = f(t, X@®)dt+ g(t, X@®)dB(t),  X(0) = xo (initial condition) (8.16)

In the integral form we have

t t
X(t) = Xo+j; f(s ><(S))0|S+f0 (s X(s))dB(s) . (8.17)

We have thus obtained formally natural expressions (8.16) and (8.17). The former is called a stochastic
differential equation and the latter a stochastic integral equation. However, the above argument being just heristic,
we do not know whethed B(s) makes a mathematica sense. It was K thtat gave a mathematical definition of
dB(t) and constructed the theory of stochastiffedential equations. Nowadays, the theory initiated by him is
calledItd calculusand is widely accepted.

8.3 Stochastic Integrals and 16 Formula

In 1td theory we first formulate the integral equation (8.17) and then a stochdfieditial equation (8.16) is
accepted as a short-hand notation for (8.17). The second term of the right-hand side of (8.17) is a usual integral,
but the third term is a new type of integral.

In general, for a stochastic procd€Xt)} adapted to the Brownian motidB;} the stochastic integral (of Itd
type)or theltd integralis defined:

t
1) = fo G(9) dB(9).

Then{l(t)} becomes a stochastic process adapté¢8io (For adaptedness, several basic concepts in stochastoic
processes are required and so we give up to go into details.) Thus, (8.17) is an equation for finding a stochastic
procesg X(t)} adapted to the Brownian motion and satisfying (8.17).

A stochastic proced3((t)} is calledItd processdf it admits an expression as in

t t
X(t)=xo+j; F(s)ds+j;G(s)dB(s).

We often use a dierential form:
dX = Fds+ GdB

Let f(t, X) be a function an(t) an It® process. Then it is known that the composition
Y(1) = (& X(1)

is again an b process. Henc¥(t) admits an expression of the form:

t t
Y(t):yo+f Fl(s)ds+fG1(s)dB(s) or dY=F.dt+G;dB. (8.18)
0 0

The integrand$-1(s) andG;(s) are computed by the famolté formula
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Theorem 8.3.1 (I formula) Assume thatf (t, x) is C-class with respect tband C2-class with respect ta.
Then, forY(t) = f(t, X(t)) we have

dY = = (6 XE)dt+ o= (£ XOXAX + 5 =5 (L XONAX)?,

where
dX = Fdt+ GdBR and  @X)? = G%t.

Consequenthyi-; andF; in (8.18) are given by

f f 2f
Fi= TLOXO) + 5 (XO) - FO + 5 550 X0) - G

of
Fo= 50, X(1)) - G(1).
The essence ofdtformula is found in the relations:

(d)(dt) = (dB)(dt) = (dt)(dB) =0,  (dB)(dB) = dt.

8.4 Black-Scholes Model
Leta € R ando > 0 be constant numbers. We will study a stochastiedéntial equation:
dX = aXdt+ cXdB  Xo = Xo. (8.19)
If o =0, then (8.19) becomes an ordinaryteiential equation:
dx = axdt, x(0) = Xo, (8.20)

and the solution is immediately obtained:
X(t) = x0e™.

In this casex(t) increases or decreases exponentially according:a® ora < 0. There are many phenomena
modeled by (8.20), for example, in finance it stands for the amoucotinuous compoundinat timet. The
stochastic dferential equation (8.19) is formally written as

‘j'j_f =(a+o dd_tB)x (8.21)

Comparing with (8.20), we understand that the amo((it grows with an interest rate fluctuating around
As an application of the & formula, we will solve (8.19). Setting

X(t) = Y(t)e"BO, (8.22)

we immediately obtain
dX = dYe&BO 1 y e B0y (8.23)

Now applying the Id formula we obtain

d(e®0) = re"BOdB + o e780dt
2 el

hence (8.23) becomes
2
dX =dYyeBO 4 Y(o-e"B(t)dBJr % e"B(‘)dt) . (8.24)

Inserting (8.22) and (8.24) into (8.19), we obtain

2
dy &8O 4 Y(o-e"B(‘)dB + (’7 e"B(‘)dt) = aY&B0dt + oY &BOIB,
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so that
2

g
dY=(a-—]Yd
=3
The above is an ordinary fiierential equation and we know a general solution:
0_2

Y=K exp{(a - ?)t} , K: arbitrary constant

Thus, coming back to (8.22), we obtain the solution to (8.19) as follows:
0_2
X(t) = %o exp{(a - ?)t + ch(t)} . (8.25)

Definition 8.4.1 A stochastic process of the form eapé bB;), wherea, b € R are constant numbers, is called
ageometric Brownian motion

O Il Il Il Il
0 100 200 300 400 500

Figure 8.2: Simulation of geometric Brownian motion

In mathematical finance the geometric Browian motion (8.25) is the most fundamental model of the time
evolution of stock price. In such a context, (8.25) is also calledBilagk-Scholes modelThe famous option
price formula, called th8lack-Scholes formulas derived from this model (Nobel prize was awarded to Merton
and Scholes in 1997).
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