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Mathematical analysis is important for the understanding of random phenomenon apperaing in var-
ious fields of natural, life and social sciences, and the probabilistic approach is essential. We start
with fundamental concepts in probability theory and learn basic tools for probabilistic models. In
particular, for the time evolution of random phenomenon we study basic properties of random walks,
Markov chains, Markov processes, and take a bird’s-eye view of their wide applications.
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Overview

0.1 Stochastic Processes

We will study the probability models for time evolution of random phenomena. Measuring a certain quantity
of the random phenomenon at each time step0, 1, 2, ..., we obtain a sequence of real values:

X07X1,X2,--~,Xn,....

Because of randomness, we consigens a realized value of a random variable Here a random variable
is a variable taking several figrent values with certain probabilities. Thus, the time evolution of a random
phenomenon is modeled by a sequence of random variables

{Xn, n:O,l,Z,u-}:{X07X1’X2,--~,Xn’~~-},

which is called aliscrete-time stochastic procedthe measurement is performed along with continuous time,
we need aontinuous-time stochastic process

{X; 1= 0}

It is our purpose to construct stochastic processes modeling typical random phenomena and to demonstrate their
properties within the framework of modern probability theory.
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Figure 1: Solar spots and exchanging rates

We hope that you will obtain basic concepts and methods through the following three subjects:

0.2 One-Dimensional Random Walk and Gambler’'s Ruin Problem

Let us consider coin tossing. We getl if the heads appears, while we get (i.e., lose+1) if the tails
appears. Le¥, be the value of the-th coin toss.

To be precise, we must say thai,} is a sequence of independent, identically distributed (iid) random vari-
ables with the common distribution

P(Z, = +1)=P(Z, = -1) = %
In short,{Z,} is called theBernoulli trials with success probability/2. Define

n
Xo =0, xn:sz n=12....
k=1

Then X, means the net income at the timgor the coordinate of a drunken walker aftesteps. The discrete
time stochastic proce$X,} is calledone-dimensional random walk



(i) law of large numbers
(ii) diffusion speed (central limit theorem)
(iii) recurrence
(iv) long leads (law of happy time)
(v) gambler’s ruin (random walk with barriers)

0.3 Markov Chains

Consider the time evolution of a random phenomenon, where sevéiereditstatesare observed at each
time stepn = 0,1,2,.... For example, for the ever-changing weather, after simplification we observe three
states: fine, cloudy, rainy. Collected data look like a sequenée@fR:

FFCRFCCEFR...

from which we may find the conditional probabiliB(X|Y) of having a weatheX just afterY. Then we come to
the transition diagram, where each arrgw- X is asigned the conditional probabiliB(X|Y).

The above diagram describes a general Markov chain over the three states because the transitions occur
between every possible pair of states. According to our purpose, we may consider variations. For example, we
may consider the following diagram for analysis of life span.




A Markov chain{X,} is a discrete-time stochastic process over a state $pacé, j,...} (always assumed
to be finite or countably infinite), which is governed by the one-step transition probability:

pij = P(Xn+l = j|xn = |)

where the right hand side is independenhdfime homogeneous). A random walk is an example of a Markov
chain. The theory of Markov chains is one of the best successful theories in probability theory for its simple
description and unexpectedly rich structure. We are interested in the following topics:

(i) stationary distribution

(i) recurrence

(iii) average life span

(iv) survival of family names (Galton-Watson tree)

(v) birth-and-death chains

0.4 Poisson Process

Let us imagine that an eveRtoccurs repeatedly at random as time goes on. For example, alert of receiving
an e-mail, passengers making a queue at a bus stop, customers visiting a shop, occurrence of defect of a machine,
radiation from an atom, etc.

10 ms

t

Figure 2: Nerve impulses

To obtain a stochastic process, we count the number of occurrence of theEegtaring the time interval
[0,1], which is denoted byX;. Then we obtain a stochastic procégXs; t > 0}. The situation is illustrated as
follows, wherety, to, . .. are the time whelft occurs.



A fundamental case is described by a Poisson process, where the event happens independently each other.
The first to check is the statistics between two consecutive occurrence of events (waiting time).

(i) Applications to queuing theory (waiting lines are modeled by a Poisson process).
(ii) A birth-and-death process as generalization.

Poisson process is one of the fundamental examples of (continuousMiank)v processesAnother is the
Brownian motion (Wiener process).

Figure 3: Two-dimensional Brownian Motion (simulation)
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1 Random Variables and Probability Distributions

1.1 Random Variables

1.1.1 Discrete random variables

A random variableX is calleddiscreteif the number of values thaX takes is finite or countably infinite.
To be more precise, for a discrete random variablaere exist a (finite or infinite) sequence of real numbers
a1, &, ... and corresponding nonnegative numbersp,, . .. such that

PX=a)=p, p=0, Zpi=1.

In this case

pux(dx) = Z Pi6a (dX) = Z pio(x — &)dx

is called the(probability) distributionof X.

Obviously,
P@a<X<b)= Z D
i;a<a<b
Py
P;
(l] Cl2 a3 al.
Example 1.1.1 (coin toss)We set
1, h
x <L gads
0, tails.

Then
P(X=1)=p, P(X=0)=qgq=1-p.

For a fair coin we sep = 1/2.

Example 1.1.2 (waiting time) Flip a fair coin repeatedly until we get the heads. Tdbe the number of coin
tosses to get the first heads. (If the heads occurs at the first trial, wa have If the tails occurs at the first trial
and the heads at the second trial, we have 2, and so on.)

P(T =K = (1-p~ip k=12,....

1.1.2 Continuous random variables

A random variableX is calledcontinuousif P(X = @) = 0 for all a € R. We understand intuitively that
varies continuously.
If there exists a functiori(X) such that

b
P(asXsb)zf f()dx a<b,
a

we say thaiX admits aprobability density functionNote that

fm f)dx=1,  f(x)>0.

00



In this case,
ux(dx) = f(x)dx

is called the(probability) distributionof X.

S (x)

a b X

It is useful to consider thdistribution function

Fx(X) = P(X<X) = fx fx(t)dt, x € R.

Then we have q
fx(X) = — Fx(X).
x(9 = 5 Fx(0)
Remark 1.1.3 (1) A continuous random variable does not necessarily admit a probability density function.
But many continuous random variables in practical applications admit probability density functions.

(2) There is arandom variable which is neither discrete nor continuous. But most random variables in practical
applications are either discrete or continuous.

Example 1.1.4 (random cut) Divide the interval [QL] (L > 0) into two segments.

(1) LetX be the coordinate of the cutting point (the length of the segment containing 0).

o, x<0;
Fx(X) =4x/L, 0<x<L;
1, x> L.
(2) LetM be the length of the longer segment.
o, X< L/2;
Fm(¥) =<¢(2x-L)/L, L/2<x<L;
1, x> L.

Example 1.1.5 Let Abe a randomly chosen point from the disc with radius 0. Let X be the distance between
the centelO andA. We have

v b
P(asXsb):%zéfzmx O<a<b<R
a

so the probability density function is given by

0, X <0,
f0=42 0<x<R

g 0sXs

0, x> R



Figure 1.1: Random choice of a point

1.1.3 Mean and variance

Definition 1.1.6 Themeanor expectation valuef a random variablX is defined by

m=epq= [ " (@)

o |f X is discrete, we have

E[X] = > ap.
i
o If X admits a probability density functiof(x), we have

E[X] = Imxf(x)dx

00

Remark 1.1.7 For a functionp(x) we have

ELe(X)] = f " o (u(d).

o

For example,

E[X™] = IM XTu(dX) (m-th moment)

00
+00

E[e™] = é*u(dx)  (characteristic function)

Definition 1.1.8 Thevarianceof a random variabl& is defined by
o? = V[X] = E[(X - E[X])’] = E[X?] - E[X]?,

or equivalently,

VXt = [ - EDu@d = [ uen - ( I Xy(dx))z.

00

Exercise 1.1.9 (see Example 1.1.Zalculate the mean and variance of the waiting time

Exercise 1.1.10Let S be the length of the shorter segment obtained by randomly cutting the intertdl [0
Calculate the mean and variancef



1.2 Discrete Distributions

1.2.1 Bernoulli distribution

For 0< p < 1 the distribution
(1 - p)do + pd1

is calledBernoulli distribution with success probability. @ his is the distribution of coin toss. The mean value
and variance are given by
m=p, o’=pl-p)

Exercise 1.2.1Let a, b be distinct real numbers. A general two-point distribution is defined by
Pda + 0ob

where 0< p <1 andp + g = 1. Determine the two-point distribution having mean 0, variance 1.

1.2.2 Binomial distribution

For 0< p < 1 andn > 1 the distribution

> (E) p(1 - p)" 6

k=0

is called thebinomial distribution Bn, p). The quantit E p“(1 - p)" ¥ is the probability thah coin tosses with

probabilitiesp for heads and) = 1 — p for tails result ink heads and — k tails.

0.08 -
0.06 -
0.04 A
0.02
10 20 30 40 50 60 70 80 90 100
B(100,0.4)

Exercise 1.2.2Verify thatm = npando? = np(1 - p) for B(n, p).

1.2.3 Geometric distribution
For 0< p < 1 the distribution

00

> (- o

k=1

is called theGeometric distribution with success probability Phis is the distribution of waiting time for the
first heads (Example 1.1.2).



1 23 45 6 78 9 10

Figure 1.2: Geometric distribution with paramefet 0.4

Exercise 1.2.3Verify thatm = % ando? = 1

P?

Remark 1.2.4 In some literatures, the geometric distribution with parampitsrdefined by

00

> p(L - p)Fo

k=0

1.2.4 Poisson distribution
For A > 0 the distribution

Z e_/l E Ok
k=0 !

is called thePoisson distribution with parametar The mean and variance are given by

m= A, ol =
0.7
A=0.5
(R E———
0.5  [J-meeeeereessnneeeee
IR — 0.4
0.3 (g 0.3
0.2 (- 0.2
0.1 0.1
0.0 0.0 .
012345 01234567 012345678910

Figure 1.3: Poisson distributioh=1/2,1,3



Problem 1 Set )

- A
G@ =) pd =i
k=0
(1) By usingG’(1) show that the mean value of the Poisson distribution with paramésagiven bym = A.

(2) By usingG” (1) show that the variance of the Poisson distribution with parametegiven byo? = A.

Zpk< Z Pk -

k:odd k:even

In other words, the probability of taking even values is greater than that of odd values.

(3) Show that

1.3 Continuous Distributions (Density Functions)
1.3.1 Uniform distribution

For a finite interval &, b],

1
——, a<x<hbh,
f(x)={b-a

0, otherwise

becomes a density function, which determinestthiéorm distributionon [a, b].

S~
|
Q

The mean value and the variance are given by

b b _a)2
r_n:fxdx:a+b, azzfxz dx _mz:(b a).
a b-a 2 a

1.3.2 Exponential distribution

Theexponential distributionvith parameten > 0 is defined by the density function

e x>0,
f(x) = ,
0, otherwise

This is a model for waiting time (continuous time).

. . 1
Exercise 1.3.1Verify thatm = 1 ando? = =.



1.3.3 Normal distribution

Form € R andsigma> 0 we may check that

1 (x—m)?
1= s |-}
becomes a density function. The distribution defined by the above density function is caltextiied distri-

bution or Gaussian distributiorand denoted byN(m, o?). In particular,N(0, 1) is called thestandard normal
distributionor thestandard Gaussian distribution

0.5

Exercise 1.3.2Differentiating both sides of the known formula:
—+00
f e ¥dx = ﬁ t>0,
0 241
find the values .
f e ¥dx n=012,....
0

Exercise 1.3.3Prove that the abové(x) is a probability density function. Then prove by integration that the
mean ismand the variance is:

— fmxex _x=mp? d
V27102 Jowe P 202 %

1 oo (x—m)?
o? = — Im (x— m)? exp{— 57 }dx

Problem 2 Choose randomly a poir from the disc with radius one and I¥tbe the radius of the inscribed
circle with centerA.

(1) Forx > 0 find the probabilityP(X < x).

(2) Find the probability density functiofk(x) of X. (Note thatx varies over all real numbers.)
(3) Calculate the mean and varianceXof

(4) Calculate the mean and variance of the area of inscribed GrelerX?.




2 Independence and Dependence

2.1 Independent Events

Definition 2.1.1 (Pairwise independence) (finite or infinite) sequence of evenfg, A,, ... is calledpairwise
independenif any pair of events\, A, (i1 # i2) verifies

P(A, N A,) = P(AL)P(A,).

Definition 2.1.2 (Independence)A (finite or infinite) sequence of evenkg, A,, . .. is calledindependenif any
choice of finitely many eventd;,, ..., A, (i1 <i2 <--- <ip) satisfies

P(A, N A, NN AL = P(A)PAL) - - P(A,).

Example 2.1.3 Consider the trial to randomly draw a card from a deck of 52 cardsAllet the event that the
result is an ace and the event that the result is spades. TheB are independent.

Example 2.1.4 An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random Xad let
be the first digit X, the second digit, an¥3 the last digit. Foi = 1,2, 3 we define an everfy; by A = {X; = 1}.
Then{As, Az, Az} is pairwise independent but is not independent.

Remark 2.1.5 It is allowed to consider whether the sequence of evehta} is independent or not. If they are
independent, by definition we have
P(AN A) = P(A)P(A).

ThenP(A) = 0 or P(A) = 1. Notice thatP(A) = 0 does not implyA = 0. Similarly, P(A) = 1 does not imply
A = Q (whole event).

Exercise 2.1.6For A we write A” for itself A or its complementary eve#. Prove the following assertions.
(1) If AandB are independent, so afé andB”.
(2) If Aq, Ap,... are independent, so afé, Aj, ...

Definition 2.1.7 (Conditional probability) For two events\, B theconditional probability of A relative to Bor
on the hypothesis,Br for given B is defined by

P(AN B)

PAB) = 55

whenevetP(B) > 0.
Theorem 2.1.8 Let A, B be events withP(A) > 0 andP(B) > 0. Then, the following assertions are equivalent:
(i) A Bareindependent;
(i) P(AIB) = P(A);
(iii) P(B|A) = P(B);



2.2 Independent Random Variables

Definition 2.2.1 A (finite or infinite) sequence of random variabl¥g X, ... is independen{resp. pairwise
independentif so is the sequence of everit§; < a3}, {X1 < a},... foranyas,ap,--- € R.

In other words, a (finite or infinite) sequence of random variallleX,, . .. is independent if for any finite
Xy, ..., X, (i1 <i2 <--- <ip) and constant numbess, ..., a,

P(Xi, < @1, X, <@,.... X, < an) = P(X, <a)P(X, < a)---P(X;, < a) (2.1)

holds. Similar assertion holds for the pairwise independence. If random varkghlés ... are discrete, (2.1)
may be replaced with

P(Xi, = a1, X, = a,..., X, = @) = P(X;, = a1)P(X;, = @) - - - P(X;, = an).

Example 2.2.2 Choose at random a point from the rectar@le: {(x,y); a< x < b, ¢ <y < d}. Let X denote
the x-coordinates of the chosen point avidhey-coordinates. ThelX, Y are independent.

Example 2.2.3 (Bernoulli trials) This is a model of coin-toss and is the most fundamental stochastic process. A
sequence of random variables (or a discrete-time stochastic pro¥esX), ..., Xn, ...} is called theBernoulli
trials with success probabilitp (0 < p < 1) if they are independent and have the same distribution as

P(X,=1)=p, PXa=0)=q=1-p.

By definition we have
n
P4 =6, X =&, Xa=&) = | [PO4=6&) forallé,é,... & €(0,1).
k=1

In general, statistical quantity in the left-hand side is calledfithiee dimensional distributionf the stochastic
procesgX,}. The total set of finite dimensional distributions characterizes a stochastic process.

2.3 Covariance and Correlation Codficient

Recall that the mean of a random variaklés defined by

=€ = [ " (@)

Theorem 2.3.1 (Linearity) For two random variableX, Y and two constant numbeasb it holds that
E(aX + bY) = aE(X) + bE(Y).
Theorem 2.3.2 (Multiplicativity) If random variables(, Xz, ..., X, are independent, we have
E[X1Xz- - Xn] = E[Xq] - - E[Xn]. (2.2)

Proof We first prove the assertion fofc = 15, (indicator random variable). By definitiod, .. ., X, are
independent if and only if so ars, . .., A,. Therefore,

E[X1--- Xn] = E[1anna] = P(AL N -0 Ap)
= P(A1) -+ P(An) = E[X4] - - - E[Xn].

Thus (2.2) is verified. Then, by linearity the assertion is validXptaking finitely many values (finite linear
combination of indicator random variables). Finally, for genetalcoming back to the definition of Lebesgue
integration, we can prove the assertion by approximation argument. |

Thevarianceof X is defined by

ok = V(X) = E[(X - mx)’] = E[X*] - E[X].



By means of the distributiop(dx) of X we may write

V9= [ x-mtuan= [ Xzﬂ(dX)—( [ Xu(dx))z.

Definition 2.3.3 Thecovarianceof two random variableX, Y is defined by
Cov(X,Y) = oxy = E[(X - E(X))(Y — E(Y))] = E[XY] — E[X]E[Y].

In particular,oxx = o-f( becomes the variance & Thecorrelation cogficient of two random variableX Y is
defined by

whenevewry > 0 andoy > 0.

Definition 2.3.4 X, Y are called uncorrelated ifxy = 0. They are called positively (resp. negatively) correlated
if oxy >0 (resp.o-xy < 0)

Theorem 2.3.5 If two random variable, Y are independent, they are uncorrelated.

Remark 2.3.6 The converse of Theorem 2.3.5 is not true in general Xs¢ a random variable satisfying
1 1
PX=-1)=PX=1)=7, P(X=0)=3

and setY = X2. Then,X, Y are not independent, buty = 0. On the other hand, for random variabksy
taking only two values, the converse of Theorem 2.3.5 is valid (see Problem 5).

Theorem 2.3.7 (Additivity of variance) Let X, Xo, ..., X, be random variables, any pair of which is uncorre-

lated. Then | |
v {Z xk} = Z V[Xd].
k=1 k=1

Theorem 2.3.8 -1 < pxy < 1 for two random variableX, Y with ox > 0,0y > 0.

Proof Note thatE[{t(X — mx) + (Y —my)}?] > O forallt € R. |

Problem 3 Throw two dice and lek be the larger spot arfd the smaller. (If double spots, set= S.) Calculate
the covariancer s and the correlation cdicientp, s . Then explain the meaning of the signaturgof .

Problem 4 Let {X,} be Bernoulli trials with success probabilipyand set
n
Sn = Z X«  So=0. (2.3)
k=1

The stochastic proce$S,} is called thebinomial process
(1) Show thatS, obeys the binomial distributioB(n, p).
(2) Find the covarianc€ov(Smin, Sm) form> 0 andn > 1.

(3) Find the correlation coeficiept form>0andn> 1.

m+n,Sm
Problem 5 Let X andY be random variables such that
PX=a)=p, PX=b)=qu=1-p1, P(Y=0=p2, PY=d)=p=1-py,

wherea, b, ¢, d are constant numbers and0p; < 1, 0 < pz < 1. Show thaiX, Y are independent ifyxy = 0.
[In general, uncorrelated random variables are not necessarily independent. Hence, the above falls into a very
particular situation.]
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3 Limit Theorems

3.1 Simulation of Coin Toss

Let {X,} be a Bernoulli trial with success probability2, namely, tossing a fair coin, and consider the
binomial process defined by
n
Sn= ) X
k=1

SinceS,, counts the number of heads during the firstials,

gives the relative frequency of heads during the firstals.
The following is just one example showing that the relative frequency of Hegahstends to 12.

0.60

1.0
0.9

I
0.8 1 .
0 \ 0.55
0.6 V\

05 W\A e 0.5 . -

0.4
0.3
0.2

0.1
0.0 0.40
0 200 400 600 800 1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.45

Figure 3.1: Relative frequency of heaBig/n

It is our aim to show this mathematically. However, we cannot accept a naive formula:

.Sy, 1
lim — = > (3.2)

n—eo N
because
1. Notice thatS,/nis a random variable taking values{id 1/n,2/n,.. ., 1}.
2. From one series of trials = (w1, w2, ... ) we obtain a sequence of relative frequencies:

Sa(w) Ss(w) Sn(w)
> g

Si(w),

3. For example, fow = (1,1,1,...), Sy/n converges to 1; Fow = (0,0,0,...), Sn/n converges to O.
Moreover, for any 0< t < 1 there existsv such thatS,/n converges td; there existsv such thatS,/n
does not converge (oscillating).

4. Namely, it is impossible to show the limit formula (3.1) &l sampleso.

Therefore, to show the empirical fact (3.1) we need spméabilistic formulation

11



3.2 Law of Large Numbers (LLN)

Theorem 3.2.1 (Weak law of large numbers)Let X3, X,, ... be identically distributed random variables with
meanm and variancer?. (This means thaX; has a finite variance.) )Xy, X, ... are uncorrelated, for arg> 0

we have
1 n
ﬁ Z Xck—m
k=1

1< : .
We say tha% Z Xk converges tan in probability.
k=1

n—oo

-

Ze)zO.

Remark 3.2.2 In many literatures the weak law of large numbers is stated under the assumptixn at . .
are independent. It is noticeable that the same result holds under the weaker assumption of being uncorrelated.

Theorem 3.2.3 (Chebyshev inequality)Let X be a random variable with meanand variancer?. Then, for

anye > 0 we have
2

PUX-m > e < Z.
€
Proof SetA = {|{X-m > €} and let ]y be the indicator random variable. Then
E[1a] = P(A).

By definition we have
o? = E[(X - m)?].

Now we calculate the right-hand side as follows:
E[(X — m)?] = E[(X — m)?1a + (X — m)?1a]
> E[(X — m)?1a]
> E[€?14] = €P(A).

Then we have
a? > €2P(A),

which proves the assertion. 1

Proof [Theorem 3.2.1 (Weak Law of Large Numbers)] For simplicity we set

The mean value is given by
1 n
E[Y] == > ElX]=m
k=1

SinceXy, X,, ... are pairwise uncorrelated, the variance is computed by using the additive property of variance.

In fact, we have
n

1 1< 1 o2
VIY]= SV Xl== ) VIXd=S 2= —.
== ; k] nz; [Xd = 5 xno? = —
On the other hand, applying Chebyshev inequality, we have
VIY] o2
PQGY-m>¢) < ——=—.
(Y-mzes-5 =7
Consequently,
Ilim P(Ya—m >¢€) =0,
as desired. |

12



Example 3.2.4 (Coin toss)

In fact, we have a stronger result.

Theorem 3.2.5 (Strong law of large numbers)Let X3, Xo, ... be identically distributed random variables with
meanm. (This means thaX; has a mean but is not assumed to have a finite varianc¥;) ¥, ... are pairwise

independent, we have
1 n
Pllim = > X¢=m|=1
(n—nx) n ; k ]

In other words,
n—co N

1
lim —Zxkzm a.s.
k=1

Remark 3.2.6 Kolmogorov proved the strong law of large numbers under the assumptioXthét, ... are
independent. In many literatures, the strong law of large numbers is stated as Kolmogorov proved. Its proof
being based on the so-called “Kolmogorov’s almost sure convergence theorem,” we cannot relax the assumption
of independence. Theorem 3.2.5 is due to N. Etemadi (1981), where the assumption is relaxed to being mutually
independent and the proof is more elementary, see also books by Sato, by Durrett, etc.

3.3 De Moivre—Laplace Theorem

We know that the binomial distributioB(n, p) is close to the normal distribution having the same mean
m = npand the variance? = np(1 - p):

B(n. p) » N(np.np(1 - p)) 3.2)

The matching becomes better for larger

0.08 -+
0.06 -
0.04 -

0.02 -

10 20 30 40 50 60 70 80 90 100
Figure 3.2: The normal distribution whose mean and variance are the sa(E08s0.4)

The approximation (3.2) means that distribution functions are almost the same: For a random @riable
obeying the binomial distributioB(n, p) we have

P(S < x) ~

X
f e M2 gqt  m=np, o2=npl-p).

00

202
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3.4 Central Limit Theorem (CLT)

Theorem 3.4.1 (Central Limit Theorem) Let Xy, Xp, ... be iid random variables with mean 0 and variance 1.
Then, for anyx € R it holds that

1 v 1 (* e
lim P| — ) X< x] = —f e /2.
n—oo [ \/ﬁ ; ,/27.1. —oo
1 n
In short, the distribution of—n Z Xk converges weakly to the standard normal distributig, 1) asn — oo.

For the proof we need the characteristic function of a distribution.

Definition 3.4.2 Thecharacteristic functiorof a random variabl& is defined by

+00

o(2) = E[¢7] = f eu(dy,  zeR.

—00

whereu(dx) is the distribution ofX. We also say thag(z) is the characteristic function gfdx).

Lemma 3.4.3 (Glivenko's theorem) Letus, uo, . . ., u be a sequence of probability distributions ande,, .. ., ¢
their characteristic functions. If lipy. ¢n(2) = ¢(2) holds for allz € R, thenu,, converges weakly tp. In other
words, lettingF, Fo, . .., F be distribution functions ofis, uo, . . . , u, we have

r!im Fn(X) = F(X)
for all continuous poink of F.

Lemma 3.4.4 Leta € C and{e,} a sequence of complex numbers converging to 0. Then we have

n—oo

lim (1+§+E) =ée?.
n n

n
Proof of Central Limit Theorem (outline) 1) Letyn(2) be the characteristic function e}— Z Xy, i.e.,

\/ﬁ k=0
on(2) = E [exp{% D xk}} . (3.3)
k=0

On the other hand, it is known that the characteristic functioN(@ 1) is given bye‘zz/2 (Exercise 3.4.6). By
virtue of Glivenko’s theorem it is gficient to show that

lim ¢n(@) = e?2  zeR. (3.4)
2) The characteristic functions o, X,, ... are identical, since they have the same distribution. We set
¢(2) = E[é].

SinceXy, X, ... are independent, we have

n . Z \n
m@=||E [eXp ] =¢l—=) - (3.5)
3) By Taylor expansion we write
g i X 1+|7xl fnxfmn(z)

14



and take the expectation

¢(%) =E[e 9] =1- % + E[R(@).

whereE[X;] = 0 andV[X;] = 1 are taken into account. Hence (3.5) becomes

22 n
en@ = (1- 2= +E[R(@]) - (3.6)
4) If we have
lim nE[Ry(2] = 0. (3.7)

applying Lemma 3.4.4, we obtain
zZ noo
. o z __2p
i ¢o(@) = lim (1 2 + E[R(@]) =~
5) We need to show (3.7). We prepare a useful inequality:

g - (1+|x+ Q)

(Try to prove!) Then we obtain

3
< min{'é |x|2} xeR. (3.8)

2
IRa(2)] < mm{ |— X1, % X1 }
and
INE[R(@)]| < E[NRy(2)]] < 14E [min{ elil/' X2, |x1|2}] (3.9)
Note that

; 4 3 2} 2
min X2, IX <X
{6«/" 1/, 1 X | Xa]

andE[|X1/?] < oo by assumption. Then, applying the Lebesgue convergence theorem we come to

mE[mm { |fl/' X2 1%, |2}] [m min{ |fl/_ Xal?, |x1|2}]

which shows (3.7). |

Remark 3.4.5 In the above proof we did not requig|X;|*] < co. If E[|X1°] < oo is satisfied, (3.7) follows
more easily without appealing to the Lebesgue convergence theorem.

Exercise 3.4.6Calculate the characteristic function of the standard normal distribution:
= f+oo g ¥ 2dx = e %12, zeR.

Remark 3.4.7 The de Moivre—Laplace theorem is just a corollary of the central limit theorem. In fact, let
21,7, ... be the Bernoulli trials with success probabiliy Define the normalization by

_ 7 —

7 k— P

T yd-p)

Thenz_l, Z_z ... become iid random variables with mean 0 and variance 1. Apply the central limit theorem, we

see that .
1 = Z-p
- Z - _
W;‘ - va(l ol \/np<1 p)z(k g

15



obeysN(0, 1) in the limit ash — . Then,

n n
Z(Zk_ p) = sz— pn
P k=1

obeysN(0,np(1 - p)), and hence

obeysN(np, np(1 — p)) for a largen.

Problem 6 (Monte Carlo simulation) Let x3, X, ... is a sequence taken randomly fromIQ Then for a con-
tinuous functionf (x) on the interval [01], the mean

LD
k=1

is considered as a good approximation of the integral

fol f(x)dx

(1) Explain the above statement by means of law of large numbers and central limit theorem.

(2) By using a computer, verify the above fact fiqix) = V1 — x2.

16



4 Random Walks

4.1 One-Dimensional Random Walks

Let us model a drunken man (random walker) walking along a straight road. Suppose that the random walker
chooses the direction (left or right) randomly at each step. Let the probability of choosing the right-mpve be
and the left-move (p > 0,9 > 0, p+ g = 1). These are assumed to be independent of the position and time.

-3 -2 -1 0 1 2 3

Let X, denote the position of the random walker at timeWe assume that the random walker sits at the
origin 0 at timen = 0, namely X, = 0. Then{X,} becomes a discrete time stochastic process, which is called the
one-dimensional random wallKo be more precise, introduce a stochastic progggsatisfying

() PZy=1)=pandP(Z,=-1)=qgq=1-pwithO< p< 1;
(i) Z1,Z,,... are independent.

We call{Z,} Bernoulli trials too. Define
n
Xo =0, xn=sz, n> 1 (4.1)
k=1

The stochastic proce$X,} is called theone-dimensional random walkith right-move probabilityp and the
left-move probabilityg =1 - p.

150

100

50

00
50

-100

150

Figure 4.1: Random walkp(= q = 1/2)

Theorem 4.1.1 X, is a random variable taking values{ian, —n+2, ..., n—2, n}. The distribution ofX, is given
by
P(X, = n—2K) = (E)p”‘qu, k=0,12....n.

17



Proof Letk=0,12,...,n. We observe that
Xn=Z1+Zp+ - +Zy=n-2k=(n-K -k

if and only if the number of's such tha®; = -1 isk, and the one such th&f = 1 isn — k. Therefore,
P(Xn=n-2k) = (E) p" koK,
as desired. 1
Theorem 4.1.2 It holds that
EXa] =(p-an.  V[Xi] =4pan

Proof Note first that
E[Z]=p-a  VI[Z4]=4pa
Then, by linearity of the expectation we have

n
E[X\] = Y E[Zd = (p-o)n.
k=1
Since{Z,} is independent, by the additivity of variance we have

VXl = )" V[ZJ = 4pan
k=1

The distribution ofX, tells us where the random walker at times found. It has fluctuation around the mean
value ( — g)n. The range ofX, grows asn — co and so does the variance. It is noticeable that the growth of
variance is promotional ta. Finally, we note that the distribution is approximated by the normal distribution
N((p — g)n, 4pgn) for a largen (de Moivre—Laplace theorem).

X

(p—q)n

0 W

N

Theorem 4.1.3 Let {X,} be the random walk as above. The covariance is

CoV(Xm, Xm+n) = E[(Xm — E[Xm])(Xmen — E[Xmin])] = 4pgm

and the correlation cdkcient is
PO Xeen) = i i) [T
WIXal WiXmn] VM
Problem 7 Let {X,} be the random walk defined by (4.1). A time pointk < n— 1 is calledturn if

Xier < X > Kipr OF Keeg > X < XKy

Find the distribution of the number of turns up to a fixed timén other words, lettindg\ be the number of turns
up to a fixed timen, find P(N = j) for j =0,1,2,....

18



4.2 Recurrence

Will a random walker return to the origin in finite time? More precisely, we are interested in the probability
that a random walker will return to the origin in finite time.

As in the previous section, lef, be the position of a random walker starting from the origin (d@.= 0)
with right-move probabilityp and left-move probability). Since the random walker returns to the origin only

after even steps, we need to calculate
R= P(U{XZn = 0}]. (4.2)

n=1
It is important to note that

{Xon = 0}

(@:

1

=}
1]

is not the sum of disjoint events.
Let pon be the probability that the random walker is found at the origin at timehat is,

3 [P 721\ W 071 | 3
pzn—P(in—O)—(n)pq = P n=12,.... (4.3)
For convenience set
Po = 1.

Note that the right hand side of (4.2) is not the sunpgf Instead, we need to consider the probability that the
random walker returns to the origin aftan &eps but not before:

Oon=P(X2#0, X4#0, ..., Xon-2#0, Xon =0) n=12....
Notice the diterence betweep;, andaggn.
Definition 4.2.1 We set
T=inf{n>1; X,=0} (4.4)

whereT = +oo for {n > 1; X, = 0} = 0. We callT thefirst hitting timeto the origin. (Strictly speakindl is
not a random variable according to our definition in Chapter 1. It is, however, commonly accepted that a random
variable takes values in-fo, +00) U {+0c0}.)

By definition we have

P(T =2n) = g2 (4.5)
and therefore, the return probability is given by
R=P(T <) =) gon. (4.6)
n=1

We will calculateP(T = 2n) andR in the next section. A general method for computing (4.6) by means of
generating functions will be studied in Chapter 6.

4.3 The Catalan Number

The Catalan number is a famous number known in combinatoricse(ieu@harles Catalan, 1814-1894).
Richard P. Stanley (MIT) collected many appearances of the Catalan numbeysxttpmath.mit.edgrstaned).

We start with the definition. Let > 1 and consider a sequeneg, €, . . ., €,) of +1, that is, an element of
{1, 1}". This sequence is calledGatalan pathif

e>0

a+e>0

e+e+--+e6-1>0
ag+e+-+e-1+e=0.

It is apparent that there is no Catalan path of odd length.
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Definition 4.3.1 The n-th Catalan numberis defined to be the number of Catalan paths of lengtlad is
denoted byC,,. For convenience we s€ = 1.

The first Catalan numbers far=0,1,2, 3, ... are
1,1,2,5,14,42 132 42914304862 1679658786 2080127429002674440)...

We will derive a concise expression for the Catalan numbers by using a graphical representation. @onsider
grid with the bottom-left corner being given the coordinatedJ0 With each sequence(e,. .., €,) consisting
of +1 we associate vectors

&=+1ou=(10) &=-1ou=(01)

and consider a polygonal line connecting
(0,0), U, Up+Up, ..., Up+Up+ -+ +Uyq, U+ Up+ -+ Uy_1 + Up
inorder. Ife; + &2 + -+ - + 4-1 + & = 0, the final vertex becomes
Up+ U+ -+ Uy1 + Uy = (N, N)

so that the obtained polygonal line is a shortest path connectjgy #0d @, n) in the grid.

Lemma 4.3.2 There is a one-to-one correspondence between the Catalan paths of leragtti the shortest
paths connecting (@) and 6, n) which do not pass the upper region of the diaggnalx.

Theorem 4.3.3 (Catalan number)
_ (2n)!
T (n+1)n’

Proof Forn = 0itis apparent by the definition & 1. Suppos@& > 1. We see from Fig. 4.3 that

C - 2n 2n '\ (2n)!
n_(n)_(n+1)_n!(n+1)!’

as desired. |

Cn n=0112...,

(m,m)

A7
LD

An alternative representation of the Catalan paths: Consider irythé&ane a polygonal line connecting the
vertices:

(050)5 (1761)9 (2’El+€2)’ LI (n_1’61+62+"'+6n—l)’ (n»61+€2+"'+fn—1+€n)

in order. Then, there is a one-to-one correspondence between the Catalan paths ofrlegthtie sample
paths of a random walk starting O at time O and returning O at timst&ying always in the half line [@0).
Therefore,

Lemma 4.3.4 Letn > 1. The number of sample paths of a random walk starting 0 at time 0 and returning O at
time 2n staying always in the half line [@0) is the Catalan numbeg,,.

20



4.4 Calculating the Return Probability

Theorem 4.4.1 Let { X} be the random walk starting from 0 with right-move probabifitgnd left-move prob-
ability g. LetT be the first hitting-time to 0. Then

an = P(T = 2n) = ZCn—l(pq)n, n= 1, 2, e
Proof Obviously, we have

qZHZP(Xz;/:O, Xa#0, ..., X002 #0, XQHZO)
=P(X1>0, Xo>0, X3>0,...,Xn2>0, Xon_1 >0, X2n=O)
+ P(X1<O, X2<0, X3<0, ...,XZn_g <O, X2n_1<0, X2n=0).

In view of Fig. 4.4 we see that
P(Xj_ > 0, X2 > O, X3 > 0, ey in_z > 0, in_j_ > 0, X2n = 0) =pX Cn_l(pQ)nfl X Q.

Then the result is immediate. |

2n-2

P/ q

0 2n

Figure 4.2: Calculating?(X; > 0, X2 >0, ..., Xon-1 > 0, Xon =0)

Remark 4.4.2 There are some noticeable relations betwgep and{dn}.

2
O2n = %} Pan-2, n>1,

Oon = 4PQPen-2— P2n,  N21
Lemma 4.4.3 The generating function of the Catalan numh@gss given by

- V1-4z

f(2) = Zan” _1 o (4.7)
n=0

Proof Problem 10. |

Theorem 4.4.4 Let R be the probability that a random walker starting from the origin returns to the origin in
finite time. Then we have
R=1-Ip-q.

Proof We know from Theorem 4.4.1 that the return probabiRtis given by
R= )" P(T =2n)= > 2C,1(pg".
n=1 n=1

Using the generating function of the Catalan numbers in Lemma 4.4.3, we obtain

e 1- JI-4pq
R=2pq )’ Co(p9)" = 2pqx SV Visap
n=0

2pq
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Sincep + g = 1 we have

Vv1-4pq= \/(p+q)2—4pq= \/(|o—q)2 =Ip-d.

which completes the proof. |

Definition 4.4.5 A random walk is calledecurrentif R = 1, otherwise it is callettansient

Theorem 4.4.6 The one-dimensional random walk is recurrent if and onlp i q = 1/2 (isotropic). It is
transient if and only ifp # .

When a random walk is recurrent, it is meaningful to consider the mean recurrent time defined by
E(T) = Z 2nP(T = 2n) = Z 2ncpn,
n=1 n=1

whereT is the first hitting time to the origin.

Theorem 4.4.7 (Null recurrence) The mean recurrent time of the isotropic, one-dimensional random walk is
infinity: E[T] = +oo.

Proof In view of Theorem 4.4.1, setting= q = 1/2, we obtain

(o) 1 n [oe] 1 n
E(T)=4) nCnfl(Z) =+ 1)Cn(z) . (4.8)
n=1 n=0
On the other hand, the generating function of the Catalan numbers is given by

- 1-+v1-4z
f(Z):ZCnan T
n=0

Then .
21@) =2) CiZ*'=1- VI-4z
n=0
and diferentiating byz, we have

2
Vi-4z

2(zf(2)) = 2i(n +1)C,2" =
n=0

Lettingz — 1/4 we have
- "
23+ 1C:(3) = fim, =+

and henc&[T] = +o as desired, see also Remark 4.4.8. |

Remark 4.4.8 Leta, > 0forn=0,1,2,... and consider the power series:

f(x) = i aX".
n=0

If the radius of convergence of the above power seriesliswe have
m109= 3
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including the case ok = co. The verification is by elementary calculus based on the following two inequalities:
N
liminf £(x) > nz:;)an, N> 1,
f(x) < Zan, x< 1
n=0

Problem 8 Find the Catalan numbe, in the following steps.

n
(1) ProvethatC, = Z C«_1Cn_k by using graphical expressions.
k=1

(2) Using (1), prove that the generating function of the Catalan nunfi{grs- Z CnZ" verifies
n=0

f2)-1=2f@2)°
(3) Findf(2.
(4) Using Taylor expansion df(2) obtained in (3), findC,.
Problem 9 Let {X,} be a random walk starting from O with right-mopend left-movey. Show that

P(X120,X2>0,...,Xon1 > 0)

n-1
=P(X1>0,X2>0,..., X0 >0) = 1—qZCk(pq)k
k=0

forn=1,2,..., whereCy is the Catalan number. Using this result, show next that
q

1--—, > q,
P(anoforallnzl)z{ p P4

0, p<a
Problem 10 (Lemma 4.4.3)(1) Using the well-known formula for binomial expansion:
1+ x* = Z (C;)x”, X <1,
n=0

prove that

2, (Zn)Z” - 2. @<;.
\n 1-4z 4
(2) LetCp, be the Catalan number given by

(2n)!
Co=nenc "T0L2
Prove that
°° 1- Vi—dz 1
20— A<

Problem 11 In themx (m+ n) grid consider a shortest path connectingd)0and M+ n, m) which do not pass
the region upper than the line connectingdDand M, m). Show that the number of such paths is given by

@2m+n)!(n+1)
mi(m+n+1)! °
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5 Topics in One-Dimensional Random Walks

5.1 The Law of Long Lead

Let us consider an isotropic random wélk,}, namely, lettingZ,} be the Bernoulli trials such that
1
P(Z,=+1)=P(Z,=-1) = >

we set .
Xo=0, Xn= Z Z.
k=1
Fig. 5.1 shows sample paths X§, X1, X, ..., X10000 We notice that these are just two examples among many
different patterns.

// " \

50

50 Ui A
0 0
5000 10000 5000 10000

50 50 V

-100 -100

Figure 5.1: Sample paths of a random walk up to time 10000

By the law of large numbers we know thal occur almost 5000 times. In fact, we see from the value of
X10000 that +1 occur 5000+ 50 times. In other words, along the polygonal line the up-move and down-move
occur almost the same times, however, the polygonal line stays more often in the upper or lower half region.

We say that a random walk stays in the positive region in the time integvat [] if X; > 0 andX,; > 0.
Similarly, we say that a random walk stays in the negative region in the time intérival 1] if X; < 0 and
Xi+1 < 0. Let

W(2k|2n), n=12..., k=0,1,...,n,

be the probability that the total time of the random walk staying in the positive region duritgj i8 2k.
Remind that in this section we only consider an isotropic random wadk § = 1/2). Forn = 1 we have

1 1 1% 1
W(2|2)—2x(§) =2 W)= ZX(E) -2
Similarly, we have

1\* 1\* 1\*
W(4|4):6><(§) , W(2|4):4><(§) ) W(0|4):6><(§) ,

6 6

6 6
W(6|6)=20><(%) , W(4|6)=12><(%) . W(26) = 12><(%) , W(0|6):20><(%) ,

For generalW(2k|2n) we have the following somehow surprisingly simple result.

Theorem 5.1.1Forn=1,2,... it holds that

W(2K2n) = (Zkk)(Z: ) Ek)(%)zn, k=0,1,....n. (5.1)
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Recall that
1

2n 2n
Pon = P(XZn = 0)—(n)(§) , n=012....
Then (5.1) becomes
W(2KI2n) = PakPzn-2k -
The proof is, however, not so simple. (In fact, a very tricky simple observation might lead to the result.) The
complete proof is found in [Feller]. As before, we set
O2n = P(T = 2n), n=12....
Observing that

1)2” 1

Oon = 2P(X1 > 0, X2 > 0,..., Xon-1 > 0, Xq = 0) = 2Cn—1(§ = o Pon2:

one can get an obvious relation:
- 7] n_kCI2
W(2ki2n) = Y = W(2k — 2r|2n - 2 =L W(2k{2n — 2r).
(|n)r;2 (2~ 2rj2n r)+;2 (2ki2n - 2r)

The assertion is then proved by inductionion.
We will find a good approximation fo/(2k|2n) whenn — . For a fixedn let Hy, be the total time that the

random walker stays in the positive region up to tinme R is convenient to consider the rat?a—” rather than
Ho, it self. As we have already obtained

=29 =wasen = (1) Y

for 0 < a < 1 we see that

bn
Hon _
P(a <2< b) = )" w(zkizn)
k=an
n

: ky(2k\(2n - 2k)/1)\2"
= kzoX[arLbn](k)W(2k|2n) = kZ::OX[ab](ﬁ)( k)( n— K )(5) ;
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wherey (X) is the indicator function of an intervé] that is, takes 1 fok € | and 0 otherwise. Using the Stirling

formula: N
i~ vam(Y now
we obtain
(Zk)( })2" 1
k/\2 Vrk
Then,

1 dx b dx
[ [
0 VX1 - X) a 1VX(1-X)
Definition 5.1.2 The probability distribution defined by the density function:
dx
aVxI =X

is called thearcsine law The distribution function is given by

O<x<1,

=

2 . 1 .
— arcsinyx = = + = arcsin(X — 1).
b/

X dt
X :fo PV () I 2

Theorem 5.1.3 The distribution of% converges weakly to the arcsine law:
IimP(asﬁsb)szL, O<a<bx<l
nee 7 20 a TVXI-%)

For example,
F(0.9) = % arcsinV0.9 ~ 0.795

Namely, during the long game, the probability that the ratio of winning time exceeds 90%H$019) ~ 0.205,
which sounds larger than one expects.

Problem 12 For the isotropic random wallp(= g = 1/2) derive the following relations.
1. P(X1 #0,X#0,...,Xon-1 # 0, Xon # 0)= pgnfOFHZ 12....
2. P(X120,X2=>0,...,Xon-1>20,Xn =0)=ponforn=1,2,....
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5.2 Gambler’'s Ruin

We introduce one-dimensional random walks with boundaries. Let us consider a random walker starting from
the origin 0 at timen = 0. Now there are barriers at the positien&andB (A > 1, B > 1). If the random walker
touches the barrier, it remains there afterward. In this sense the posi#ensdB are callecabsorbing barriers

LetZ;, Z,, ... be Bernoulli trials with success probability<Op < 1. Define a discrete time stochastic process
Xo, Xl, Xz, .. by

Xno1+2Zn, —-A<X1<B,
Xo =0, Xh=1{-A Xn-1=—A, (5-2)
B, Xn-1 = B.

This {X,} is called arandom walk with absorbing barriers

-A

We are interested in the absorbing probability, i.e.,

R=P(X, = —Aforsomen=1,2,...) = P[U{Xn = —A}],
n=1

S =P(X,=Bforsomen=1,2,...) = P(U{xn = B}].
n=1

Note that the events in the right-hand sides are not the unions of disjoint events.

A key idea is to introduce a similar random walk startingatA < k < B, which is denoted bx{. Then
the original one isX, = Xﬁ,o). Let Rx and Sk be the probabilities that the random wa{#) is absorbed atA and
B, respectively. We wish to finR = Ry andS = S,.

Lemma 5.2.1 {Ry;, —A < k < B} fulfills the following difference equation:
Rc = PRe1 + gRe-1, Ra=1, Rg = 0. (5.3)
Similarly, {Sx;, —A < k < B} fulfills the following difference equation:

Sy = pSk+1 + qSk_l , S A=0, Sg=1 (5.4)

Theorem 5.2.2Let A > 1 andB > 1. Let{X,} be the random walk with absorbing barriers-# andB, which
is defined by (5.2). Then the probabilities thA}} is absorbed at the barriers are given by

(a/p)* - (a/p)**B

, P#0
P(Xn = —Afor somen) = Bl_ (a/p)A+B .
A+B’ P=0=5.
1-(/p*
——~—=. P#0
P(X, = B for somen) = 1;(Q/p A+B .
A+B’ p=q=§-

In particular, the random walk is absorbed at the barriers at probability 1.
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An interpretation of Theorem 5.2.2 gives the solution togaenbler’s ruin problem Two players A and B
toss a fair coin by turns. Let andB be their allotted points when the game starts. They exchange 1 point after
each trial. This game is over when one of the players loses all the allotted points and the other Baisints.
We are interested in the probability of each player’s win. For eaelD defineX, in such a way that the allotted
point of A at timen is given byA + X,. Then{X,} becomes a random walk with absorbing barrier AtandB.
It then follows from Theorem 5.2.2 that the winning probability of A and B are given by

B
— P(B) = ——
A+B’ ® A+B’
respectively. As a result, they are proportional to the initial allotted points. For example;  andB = 100,
we haveP(A) = 1/101 andP(B) = 100/101, which sounds that almost no chance of A's win.
In a fair bet the recurrence is guaranteed by Theorem 4.4.6. Even if one has much more losses than wins,

continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited money.
(5.5) tells the é&ect of the barrier.

P(A) = (5.5)

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 5.2.3 Let {X,} be the same as in Theorem 5.2.2. The expected life time of this random walk until
absorption is given by
A A+B 1-(a/p*
a-p q-pl-(a/p™8’

Proof Let Yy be the life time of a random walk starting from the positiof+-A < k < B) at timen = 0 until
absorption. In other words,
Yi=min{j 2 0; X =-A 7z x¥ =B).

We wish to computé&(Yp). We see by definition that
E(Y_a) = E(Yg) = 0. (5.6)

For-A < k < Bwe have .
E(YY) = Zl iP(Yic = ). (5.7)

=

In a similar manner as in the proof of Theorem 5.2.2 we note that
P(Yk=1) = PP(Mir1 = ] - 1)+ gP(Yier = j - 1). (5.8)

Inserting (5.8) into (5.7), we obtain

E(M) =P iPMar=i-1)+0a ) P(Yer=j-1)

j=1 j=1
= PE(Yis1) + OE(Yi-1) + 1. (5.9)
Thus,E(Yy) is the solution to the diierence equation (5.9) with boundary condition (5.6). Thifedénce equa-
tion is solved in a standard manner and we find
A+k A+B 1-(g/p)*k
E(v)=4d-p d-p 1-(a/pAB’
(A+K)(B-K), p=q=

p#0,

NI

Settingk = 0, we obtain the result. |

If p=qg=1/2andA=1,B =100, the expected life time &B = 100. The gambler A is much inferior to B
in the amount of funds (as we have seen already, the probability of A's win isjli6t), however, the expected
life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps this is because
the gambler cannot quit gambling.
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Problem 13 (1) Explain about the general solutions to thfeatience equation:

Xn+2 + 8%1 + D% = C,

wherea, b, c are constant numbers.
(2) Solve the diterence equation (5.9) with boundary condition (5.6).

5.3 Variants of Boundary Conditions

There is another type of barrier calledeflecting barrier A random walk touches the reflecting barrier,
it changes the direction in the next step and continue to moveZL. &b, ... be Bernoulli trials with success
probability 0< p < 1. Consider barriers at positiorA andB, A > 1, B > 1. DefineXp, X1, X, ... by

Xn-1+2Zn, —-A<Xy1<B,
Xo=0, Xn=4-A+1  Xo1=-A (5.10)
B-1, Xp1 = B.

Then{X,} is called a random walk with reflecting barriers.

Problem 14 Let{X,; n=0,1,2,...} be an isotropic random walk on the half lif@ 1, 2, .. .} starting from the
origin 0 at timen = 0, where the origin is a reflecting barrier. FiR@X,, = 0).

As another boundary condition, we consider a random \W&lk on the half-line{0, 1, 2, ...} starting from
the origin 0 at timen = 0. When the random walker sits at ongdf2, . .. }, it moves to the right with probability
p and to the left withg = 1 — p. When it sits at 0, it moves to the right with probabilipyand stay there with
g=1- p. LetT be the first hitting time ofX,} to O, i.e.,

T=inf{n>1; X, =0}

Then we have
P(T=1)=q, P(T = 2n) = Cr_1(pq)".

Problem 15 Let{X,; n=0,1,2,...} be the random walk as above.
(1) Show thatP(T < c0) =1 forqg > 1/2 andP(T < o) = 2qfor q < 1/2.
(2) CalculateE[T].
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6 Markov Chains

Let us recall a typical property of a random walk: the next position of the walker is determined proba-
bilistically only by the present position. Namely, the next-step movement is independent of the past trajecto-
ries. As the position of the one-dimensional random walk is described in terms of the usual coordinate system
Z={--,-1,0,1,2,...}, the random walk is formulated as a discrete time stochastic pr@¢gssking values
in Z. In this sense we call astate spaceFor wider applications a state space is not necessarily a set of numbers,
but may be an arbitrary set. Keeping the typical property of the random walk and generalizing the state space,
we come to the concept darkov chain

6.1 Conditional Probability
For two event#\, B we define
P(AN B)
P(B)
wheneverP(B) > 0. We callP(A|B) the conditional probability of A relative to B is interpreted as the proba-

bility of the eventA assuming the evei occurs, see Section 2.1.
Formula (6.1) is often used in the following form:

P(AB) = (6.1)

P(AN B) = P(B)P(AB) (6.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in compu-
tation of probability. For example, for two everAsB see Fig. 6.1.

P(A) A
P(BS|A) AN B°
P(BJAC) A°N B
P(A°) AC
P(B°|A°) A°NB°

Figure 6.1: Tree diagram

Theorem 6.1.1 (Compound probabilities) For eventsiy, Ay, . .., Ay we have

P(Ar N AN -+ N Ay) = P(A)P(A2lA1)P(AglA N Ag) -+« P(AnlAL N A N -+ - N Any). (6.3)

Proof Straightforward by induction on. |

6.2 Markov Chains

Let S be a finite or countable set. Consider a discrete time stochastic prfoGess = 0,1, 2, ...} taking
values inS. This S is called astate spac@nd is not necessarily a subsetfofn general. In the following we
often meet the cases 8f={0,1},S=1{1,2,...,N}andS ={0,1,2,...}.
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Definition 6.2.1 Let {X,; n = 0,1,2,...} be a discrete time stochastic process dverlt is called aMarkov
processoversS if

P(Xn = bIXi, = a1, Xi, =a, ..., X, = a, X =a) = P(X, = b|X = a)
holds forany O< i; <ip < -+ <ix <i<nanda,ap,...,a abeS.

If {X1,Xo,...} are independent random variables with value§jrobviously they form a Markov chain.
Hence the Markov property is weaker than independence.

Example 6.2.2Letr > 1 ands > 1 such that + s= N. There areg black balls ands white balls in a box. We
pick up balls in the box one by one and 3gt= 1 if a black ball is picked up at the-th trial andX, = 0 if a
white ball is picked up at the-th trial. Then{X;, Xz, ..., Xy} IS a stochastic process. We note that

1 n-1
PXn=1X;=a, Xo=ap, ..., Xp-1 = n_1) = N_(-1) {r - ak}
=)

and

I—an-1
N-1"

forag,...,an-1 € {0, 1}. Hence{X,} is not a Markov chain. Define

P(Xn =1Xp-1 = an—l) =

which stands for the number of black balls picked up during the flitsials. We the see easily théY,} is a
Markov chain.

Definition 6.2.3 For a Markov chair{X,,} overS,
P(Xn+l = j|xn = |)

is called thetransition probabilityat timen from a state to j. If this is independent afi, the Markov chain is
calledtime homogeneousn this case we write

pij = P, ) = P(Xne1 = jIXa =)
and simply call it the transition probability. Moreover, the matrix
P=[pi]
is called theransition matrix

Obviously, we have for eadhe S,

DRl 0) =) PO = jIXe =) = 1.

jesS jeS
Taking this into account, we give the following

Definition 6.2.4 A matrix P = [p;;] with index setS is called astochastic matrixf

pij >0 and Zpij =1

jes

Theorem 6.2.5 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochastic
matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic matrix.

It is convenient to use thegansition diagramto illustrate a Markov chain. With each state we associate a
point and we draw an arrow froirto j whenp(i, j) > 0.
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Example 6.2.6 (2-state Markov chain)A Markov chain over the state spaffe 1} is determined by the transi-
tion probabilities:
pO.1)=p, p00)=1-p, p2L0=0q pll=1-q

The transition matrix is defined by

F—p p].
q 1-q
The transition diagram is as follows:
P, =P
Py=1-p ‘° G Ai=l-4q
Py=4q

Example 6.2.7 (3-state Markov chain)An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain ofiH, S, D} described by the following transition diagram:

b q
(@ <> ® )
P r
The transition matrix is defined by
a b o
p r qf, a+b=1 p+q+r=1
0 01

Example 6.2.8 (Random walk oriz') The transition probabilities are given by

P, if j=i+1,
p(,j))=49=1-p, ifj=i-1,
0, otherwise

The transition matrix is a two-sided infinite matrix given by

o
O O O

‘O oo o

Example 6.2.9 (Random walk with absorbing barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers atAandBis S = {-A,-A+1,..., B -1, B}. Then the transition probabilities are
given as follows. ForA < i < B,

P, if j=i+1,
p(,j)=49=1-p, ifj=i-1,
0, otherwise
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Fori =-Aori =B,

. 1 ifj=-A ) 1, if j=B,
— = B, = .
PC-A1) {O, otherwise P(B. 1) {0, otherwise
In a matrix form we have

1 0 0 O 0 --- 0]
qgqo0 p O O0 --- O
0O0g O p 0 --- 0
0 0 g 0 p O
00 0O g 0 p
0 O O 0 0 1

Example 6.2.10 (Random walk with reflecting barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers atAandBis S = {-A,-A+1,...,B-1, B}. The transition probabilities are given
as follows. Fo-A <i < B,

P, if j=i+1,
p(,j))=4q=1-p, ifj=i-1,
0, otherwise
Fori = -Aori =B,
. 1 ifj=-A+1, i 1, ifj=B-1,
- = B9 = .
PC-A1) {O, otherwise P(B. 1) {O, otherwise
In a matrix form we have
01 0O O 0 --- 0]
g0 p O O --- 0
0O0gqg O p O --- O
00 --- g 0 p O
00 0 g 0 p
o o --- 0 O 1 O

6.3 Distribution of a Markov Chain

Let S be a state space as before. In general, a row vectof- - - ; - - - ] indexed bysS is called adistribution

onSif
720 and Y m=1 (6.4)
ieS
For a Markov chair{X,} on S we set
an) =[---m) ---1,  m(n) = PXy =),

which becomes a distribution & We callz(n) thedistributionof X,. In particularz(0), the distribution oo,
is called thanitial distribution. We often take

7(0)=1[--0,2,0,---], where 1 occurs dtth posotion

In this case the Markov chatiiX,} starts from the state
For a Markov chairX,} with a transition matrixP = [p;;] the n-step transition probabilitys defined by

Pn(i, J) = P(Xinen = jIXm = i), i,jesS.

The right-hand side is independentrobecause our Markov chain is assumed to be time homogeneous.

33



Theorem 6.3.1 (Chapman—Kolmogorov equation)For 0< r < nwe have

Pu(i, 1) = > pr(i, K)pn-r (K ). (6.5)

keS

Proof First we note the obvious identity:
Pa(is 1) = PO = X = 1) = > PXenen = J, Xiwr = KXin = ).
keS

Moreover,

P(Xm+n = ja Xm+r = k’ Xm = I) P(Xm+r = k, Xm = |)
. X -

I:)(Xm+r =k Xm = |) P(Xm = |)
= P(Xmen = [ Xmer = K Xim = 1))PXiner = KX = 0).

P(Xmn = Js Xmer = KXm =) =

Using the Markov property, we have
P(Xmen = j1Xmer = K, X = 1) = P(Xmen = j1Ximer = K)
so that
F)(Xm+n = j, Xm+r = k|xm = |) = P(Xm+n = j|Xm+r = k)P(Xm+r = k|xm = |)
Finally, by the property of being time homogeneous, we come to
P(ern = j,xrmr = k|xm = i) = pn—r(k’ j)pr(i’ k)-
Thus we have obtained (6.5). 1
Applying (6.5) repeatedly and noting thad(i, j) = p(i, j), we obtain

pai, )= > Pl ka)p(ka, ko) - plkn 1, ). (6.6)

k1 ..... kn_leS

The right-hand side is nothing else but the multiplication of matrices, i.en-gtep transition probabilitp,(i, j)
is the {, j)-entry of then-power of the transition matri¥. Summing up, we obtain the following important
result.

Theorem 6.3.2Form,n > 0 andi, j € S we have
P(er-n = j|xm = i) = pn(i» J) = (Pn)ij .

Proof Immediate from Theorem 6.3.1. |

Remark 6.3.3 As a result, the Chapman-Kolmogorov equation is nothing else but an entrywise expression of
the obvious relation for the transition matrix:

Pn — PI‘ Pn—r
(As usual P° = E (identity matrix).)

Theorem 6.3.4 We have
n(n) = n(n— 1)P, nx>1,
or equivalently,

mi(n) = ) m(n-1)p.

Therefore,
n(n) = n(0)P".
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Proof We first note that

() = P& = ) = ) P = jXaa = i)P(Xea = 1) = ) pym(n—1),
ieS ieS
which provest(n) = n(n — 1)P. By repeated application we have

a(n) = ("= 1)P = (z(n - 2)P)P = (x(n = 2)P? = - -- = 7(0)P",

as desired. |

Example 6.3.5 (2-state Markov chain)Let {X,} be the Markov chain introduced in Example 6.2.6. The eigen-
values of the transition matrix

qg 1-q
are 11 - p-g. These are distinct ip + g > 0. Omitting the case g+ q = 0, i.e.,p = q = 0, we assume that
p + q> 0. By standard argument we obtain

Pz[l—p p

1

n—_

S p+q
Let 7(0) = [70(0) 71(0)] be the distriution 0¥,. Then the distribution oK is given by

q+pr' p-pr

q-a p+qn] TITPTG

n(n) = [P(Xn = 0), P(Xn = 1)] = [70(0) m1(0)]P" = =(0)P".

Here let us observe the limit &as— . Assume that & p+ g < 2, or equivalentlyjr| < 1. Then

jim P = = [ p]
oo p+qld P
and 1
- o n_ L 1ap_|1. 9 P
AIT{LH(”)—ATJOK(O)P = [m0(0) m1(0)] x p+q[q p}_ p+q p+ql
Note that
q p _|_a p
p+g9 p+q p+g p+q

This means that the distributic[%ﬂ—q p%q] is invariant under the Markov chain.

Problem 16 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every
election. Suppose that just before an election, 25% of the supporters of A change to support B and 20% of the
supporters of B change to support A. At the beginning, 85% of the voters support A and 15% support B. When
will the party B command a majority? Moreover, find the final ratio of supporters after many elections if the
same situation continues.
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7 Topics in Markov Chains

7.1 Stationary Distributions

Definition 7.1.1 Let {X,} be a Markov chain 0% with transition probability matriXP. A distributionz onS is
calledstationary(or invariant) if
n=nP, (7.1

or equivalently,
njzzmpij, jes. (7.2)

ieS
Thus, to find a stationary distribution we need to solve (7.1) (or equivalently (7.2)) together with (64). If
is a finite set, finding stationary distributions is reduced to a simple linear system.

Example 7.1.2 (2-state Markov chain)Consider the transition matrix:

1-p p
P= :
Sl

Letn = [mom] and supposeP = x. Then we have

1-
[7om1] q P 1Eq] =[(1 - p)mo + g1 pro + (1 = Q)ma] = [mo 7],

which is equivalent to the following

pro — gy = 0.
Together with

mo+m =1,
we obtain _q Cp
7T0 - b 7r1 - b

p+q p+q
whenevemp + q > 0. Indeed,

I D T

P+q’ p+d

is a distribution orS = {0, 1}, so it is a stationary distribution. In this case a stationary distribution is unique.
Note that the stationary distribution is obtained as a limit distribution, see Example 6.3.5. In the uninteresting
case ofp = q =0, anyr = [ng, m1] is a stationary distribution.

Example 7.1.3 (3-state Markov chain)We discuss the Markov chaifX,} introduced in Example 6.2.7. If
g > 0 andb > 0, a stationary distribution is unique and givensby [0 0 1].

Example 7.1.4 (One-dimensional RW)Consider the 1-dimensional random walk with right-move probability
p > 0 and left-move probabilitgg = 1 — p > 0. Let[-- x(K) -- -] be a distribution orZ. If it is stationary, we
have

(k) = pr(k— 1) + gr(k + 1), keZ. (7.3)

The characteristic equation of the abovfeatience equation is
0=gl-1+p=(q1-p(1-1)

so that the eigenvalues aregplq.
(Case 1)p # g. Then a general solution to (7.3) is given by

p\* p\*
#(K) = Cy1¢ *CZ(a) _Cyt cz(a)  kez
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This never becomes a probability distribution for any choice&CpfandC,. Namely, there is no stationary
distribution.
(Case 2)p = g. In this case a general solution to (7.3) is given by

(k) = (C1 + CoK)1 = Cy + Cok, keZ.

This never becomes a probability distribution for any choice&CpfandC,. Namely, there is no stationary
distribution.

Example 7.1.5 (One-dimensional RW with reflection barrier) There is a unique stationary distribution when
p < g. In fact,

k
20)=Cp, n(K) = c(g) . k>l
whereC is determined in such a way thaf’ , 7(k) = 1. Namey,

g-p

="

If p > g, then there is no stationary distribution.

Theorem 7.1.6 A Markov chain over a finite state spaSenhas a stationary distribution.

A simple proof is based on the Brouwer’s fixed-point theorem saying that every continuous function from
a convex compact subset of a Euclidean space to itself has a fixed point. In fact, the set of distribuSons on
is a convex compact subset of a Euclidean space and thermaprP is continuous. Note that the stationary
distribution mentioned in the above theorem is not necessarily unique.

We are going into a discussion about unique existence of a stationary distribution.

Definition 7.1.7 We say that a statcan be reached frora state if there exists some > 0 such thapy(i, j) > 0.
By definition every staté can be reached from itself. We say that two statasd j intercommunicatef i can
be reached fornj and j can be reached from i.e., there exism > 0 andn > 0 such thatp,(i, j) > 0 and

Pm(j,1) > 0.

Lemma 7.1.8 For two states, j € S we define a binomial relation~ j when they intercommunicate. Then
becomes an equivalence relation®mamely,

(@) i~
(i) i ~ jimpliesj ~i;
(i) If i ~jandj ~ k, theni ~ k.
Proof (i), (i) are obvious by definition. (iii) is verified by the Chapman-Kolmogorov equation. |

Thereby the state spaéeis classified into a disjoint set of equivalence classes determined by the above
Namely, each equivalence class consists of states which intercommunicate each other.

Definition 7.1.9 A statei is calledabsorbingif

i) = 1, forj=i,
P 1) = 0, otherwise

In particular, an absorbing state is a state which constitutes an equivalence class by itself.

Definition 7.1.10 A Markov chain is calledrreducibleif every state can be reached from every other state, i.e.,
if there is only one equivalence class of intercommunicating states.

Example 7.1.11 Examine the equivalence relation among the states of a Markov chain described by the follow-
ing transition diagram:
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Then we have the following fundamental result.

Theorem 7.1.12 An irreducible Markov chain on a finite state sp&&admits a unique stationary distribution
7 = [ni]. Moreover,rj > O foralli € S.

In fact, the proof owes to the following two facts:
(1) For an irreducible Markov chain the following assertions are equivalent:

(i) it admits a stationary distribution;
(i) every state is positive recurrent.

In this case the stationary distributiaris unique and given by

1

SEmRo=n

T

(2) Every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem 7.2.9).

Finally, the distribution of a Markov chain does not necessarily converge to a stationary distribution even if

it exists uniquely.
Example 7.1.13Consider a Markov chain determined by the transition matrix:
0 1
p- [1 0] |

We first note that there exists a unique stationary distribution. But for a given initial distribt@rit is not
necessarily true th%t lim(n) converges to the stationary distribution.

Roughly speaking, we need to avoid the periodic transition in order to have the convergence to a stationary

distribution.
Definition 7.1.14 For a state € S,
GCD{n> 1; P(X, =i|Xg=i) > 0}

is called theperiodof i. (When the set in the right-hand side is empty, the period is not defined.) A st&és
calledaperiodicif its period is one.

For an irreducible Markov chain, every state has a common period.
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Theorem 7.1.15Let x be a stationary distribution of an irreducible Markov chain on a finite state space (It is
unique, see Theorem 7.1.12){X,} is aperiodic, for anyj € S we have

Am P(Xn=j) =mj.
Problem 17 Consider a Markov chain determined by the transition diagram below.

2/3 3/4
1/3 2/3

(1) Is the Markov chain irreducible?

(2) Find all stationary distibutions.

Problem 18 Let {X,} be a Markov chain o0, 1} given by the transition matri® = 1; P 1E)q] with the

initial distributionzg = [q/(p + q) p/(p + g)]. Calculate the following statistical quantities:

Cov , X
E[Xn], VX, Cov(Xmin, Xn) = E[XminXn] = E[Xmin] E[Xn],  o(Xmin, Xn) = m
Problem 19 Let {X,} be a Markov chain described by the following transition diagram:
p,=p
po():lip ‘0 0 p,=1-q
p,=q

wherep > 0 andq > 0. For a stateé € S, define thdfirst hitting timeor first passage time i by
Ti=infin>1; X, =1i}.
(If there exists na > 1 such thatX, = i, we defineT; = «.)

(1) Calculate

P(To=1X=0), P(To=2Xo=0), P(To=3X=0), P(To=4Xo=0).

(2) FindP(To = n|Xp = 0) and calculate
D P(To=nX=0), > nP(To=nXo = 0)
n=1 n=1

Problem 20 Let {X,} be the Markov chain introduced in Example 6.2.7:

b q
‘3“ 1
)4 r
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Forn=1,2,... let H, denote the probability of starting from H and terminating at D-atep. Similarly, for
n=12,... letS, denote the probability of starting from S and terminating at b-step.

(1) Show thafH,} and{S,} satisfies the following linear system:

{Hn =aHy, 1 +bS, 1,

n>2; Hi1=0, Si1=q
Sh = pHp-1 +1Spg,

(2) LetH andS denote the life times starting from the state H and S, respectively. Solving the linear system
in (1), prove the following identities for the mean life times:

RS _b+p+q s _b+p
E[H]_;an_ bg E[S]_;nsn_ by

7.2 Recurrence
Definition 7.2.1 Leti € S be a state. Define tH@st hitting timeor first passage time i by
Ti=inf{n>1; X, =i}.

If there exists nan > 1 such thaiX, = i, we defineT; = co. A statei is calledrecurrentif P(T; < oo|Xg =1) = 1.
It is calledtransientif P(T; = oo|Xg = i) > 0.

Theorem 7.2.2 A statei € Sis recurrent if and only if

PNEEES
n=0
Proof (basically the same as the proof of recurrence of one-dimensional random walk) We first put
pn(i, J) = P(Xh = jIXo =1), n=0,12,...,
f(i, J) = P(Tj = niXo =)
=PXy# ... X1 # L, X0 = jIXo=1), n=12,....

pn(i, j) is nothing else but tha step transition probability. On the other harigli, j) is the probability that the
Markov chain starts fromhand reachj first time aftern step. Dividing the set of sample paths frono j in n
steps according to the number of steps after which the path reaftethe first time, we obtain

n
pn(, j) = Z £ (i, D pn=r (s 1), i,jeS, n=12.... (7.4)
r=1
We next introduce the generating functions:
Gi(@ =) pl. D2 Fi@= fli. )2
n=0 n=1

In view of (7.4) we see easily that
Gij(2 = po(i, J) + Fij (9Gj; (2) (7.5)

Settingi = j in (7.5), we obtain
Gii(2 = 1+ Fi(2Gi (2.

Hence,
1

Gi(2 = I-FQ

On the other hand, since
Gi()= ) pa(i.i),  Fi(@)= )" fuli,i) = P(T; < c0[Xp = )
n=0 n=1

we see that two conditiorfs; (1) = 1 andG;ji (1) = « are equivalent. |
During the above proof we have already established the following
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Theorem 7.2.3 If a statei is transient, we have

i Pni, i) < o0
n=0

and
1

n; PrllD) = T B <o = 1)

Example 7.2.4 (random walk onz) Obviously, the random walk starting from the origin O returns to it only
after even steps. Therefore, for recurrence we only need to compute the gux000). On the other hand, we
know that

2n)!
P2n(0.0) = % Pd". p+a=1
see Chapter (4.1.1). Using the Stirling formula:
n
nl ~ Vo (" (7.6)
e

we have 1

0,0) ~ —— (4pq)".

P2n(0, 0) ﬁ( pag)

Hence,

= <co, P#0,
P2n(0, 0)
; " =, p=q=1/2.
Consequently, one-dimensional random walk is transignt4fg, and it is recurrent ip = q = %
Remark 7.2.5 Let {a,} and{b,} be sequences of positive numbers. We waijte- b, if

.8y
lim — =1
n—oo bn

In this case, there exist two constant numhgrs 0 andc, > 0 such that,a, < b, < c,a,. Hence;”; a, and
>m4 by converge or diverge at the same time.

Example 7.2.6 (random walk onZ?) Obviously, the random walk starting from the origin 0 returns to it only
after even steps. Therefore, for recurrence we only need to compute the $4(000). For two-dimensional
random walk we need to consider two directions along witixis andy-axis. We see easily that

- 3 LI (LU 5 S

i+j=n i+j=n i=0

Employing the formula for the binomial cfiiients:

n 2
200 -(7) &
i=0
wich is a good exercise for the readers, we obtain

n 2 1 2n
P2n(0,0) = ( n) (Z) ~
Then, by using the Stirling formula, we see that
1
0,0)~ —
pZH( > ) n
so that .
> Pan(0,0) = co.
n=1

Consequently, two-dimensional random walk is recurrent.
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Example 7.2.7 (random walk onz®) Let us consider the isotropic random walk in 3-dimension. As there are
three directions, say, y, z-axis, we have

~ @y (1) @n) (1) nint - (2n\(1\" no\?
Pan(0.0) = Z ilitjljlkikt {6/ ~ nint \6) Z ilitjtjikkt — \n)\6) Z ikt )
i+j+k=n i+j+k=n i+j+k=n
We note the following two facts. First,
—— =3" (7.8)

Second, the maximum value

n
Mh= max ——
" irjeken itk

is attained wheraén -1<i,jk= g +1so

Mn ~ %3“
2mn

by the Stirling formula. Then we have

2n
2n)(1) 3"Mh 38 o

pzn(0,0)S(n = Nzn—ﬁ

6

Therefore. -
> pan(0,0) < oo,
n=1

which implies that the random walk is not recurrent (i.e., transient).

A statei is calledrecurrentif P(T; < oo|Xg = i) = 1. In this case we are interested in the mean value
E(Ti|Xo = i) (mean recurrent time). As we have already shown (Thed®@mthe mean recurrent time of the
one-dimensional isotropic random walk is infinity although it is recurrent. In this case the state isncalled
recurrent On the other hand, E(Ti|Xo = i) < o the stata is calledpositive recurrent

Theorem 7.2.8 The states in an equivalence class are all positive recurrent, or all null recurrent, or all transient.

In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null recurrent, or all
transient.

Theorem 7.2.9 For an irreducible Markov chain on a finite state sp8cevery state is positive recurrent.
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8 Poisson Processes

Let T c R be an interval. A family of random variabl¢X(t); t € T} is called acontinuous time stochastic
process We often consider = [0, 1] andT = [0, o). As X(t) is a random variable for eadke T, it has another
variablew € Q. When we need to explicitly refer to, we write X(t, w) or X;(w). For fixedw € Q, the function

t— X(t, w)

is called asample pattof the stochastic proce$X(t)}. It is the central idea of stochastic processes that a random
evolution in the real world is expressed by a single sample path selected randomly from all the possible sample
paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian motion
(Wiener process). In the recent study of mathematical physics and mathematical finance, a kind of composition
of these two processes, called thevly process (or additive process), has received much attention.

8.1 Heuristic Introduction

Let us imagine that the number of objects changes as time goes on. The numbertds tinoelelled by a
random variablé; and we wish to construct a stochastic prodeggs In this caseX; takes values if0, 1, 2,...}.
In general, such a stochastic process is calledumting process
There are many dierent variations of randomness and so wide variations of counting processes. We below
consider the simple situation as follows: We focus an e#enthich occurs repeatedly at random as time goes
on. For example,
(i) alert of receiving an e-mail;
(ii) telephone call received a call center;
(i) passengers making a queue at a bus stop;
(iv) customers visiting a shop;
(v) occurrence of defect of a machine;
(vi) traffic accident at a corner;
(vii) radiation from an atom.

Let fix a time origin ag = 0. We count the number of occurrence of the eemturing the time interval [(X]
and denote it byK;. Letty, to, ... be the time wher occurs, see Fig. 8.1.

Figure 8.1: Recording when the evdhbccurs

There are two quantities which we measure.
(i) The number of occurrence & up to timet, say,X;. Then{X;; t > 0} becomes a counting process.
(ii) The waiting time of then-th occurrence after then(- 1)-th occurrence, say;,. HereT; is defined to be

the waiting time of the first occurrence &f after starting the observation. Théh,; n = 1,2,...}is a
sequence of random variables taking values jrdqp

We will introduce heuristically a stochastic procg¥s} from the viewpoint of (i). It is convenient to start
with discrete time approximation. Fbx- 0 and divide the time interval [@] into n small intervals. Let

At = =
n

be the length of the small intervals and number from the time origin in order.
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We assume the following conditions on the occurrence of the évent

(1) There exists a constaat>- 0 such that

P(E occurs just once in a small time interval of lengtt) = 1At + o(At),
P(E does not occur in a mall time interval of lengil) = 1 — AAt + o(At),
P(E occurs more than once in a small time interval of lenfsth= o(At).

(2) Occurrence oE in disjoint time intervals is independent.

Some more accounts. Let us imagine the alert of receiving an e-mail. That

P(E occurs more than once in a small time interval of leryth= o(At)
means that two occurrences of the even$ always separated. That

P(E occurs just once in a small time interval of lengtt) = 1At + o(At)

means that whent is small the probability of occurrence &fin a time interval is proportional to the length of
the time interval. We understand from (2) that occurrence ixfindependent of the past occurrence.

Let Z; denote the number of occurrence of the evemt thei-th time interval. Therxy, Z,, ..., Z, become a
sequence of independent random variables with an identical distribution such that

P(Z =0)=1-AAt+0(At),  P(Z =1)=AAt+0(Al),  P(Z > 2) = o(Al).

The number of occurrence & during the time interval [(X] is given by

n
Zzi :
i=1
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The lengthAt is introduced for a technical reason and is not essential in the probability model so Adttind@

or equivalentlyn — oo, we defineX; by
n

X = lim Zzi. (8.1)

At—0
=1

Although the limit does require matyhematical justification, we obtain heuristically a continuous time stochastic
procesgX;}, which gives the number of occurrence of the evénip to timet. This is called &oisson process
with parameten > 0. A Poisson process belongs to the calss of continuous time Marokov chains.

Theorem 8.1.1 A Poisson procesiX; ; t > 0} satisfies the following properties:

(1) (counting process); takes valesinf0,1,2,...};

(2) X0 =0;

(3) (monotone increasindys < X; for0 < s<t;

(4) (independent increment) if&t; <t, < --- < ty, then

X, = Xiys XKeg =Xty ooy X = Xty

are independent;
(5) (stationarity) for 0< s < t andh > 0, the distributions oK, — Xsin andX; — Xs are identical,
(6) there exists a constaat> 0 such that

P(X,=1) = dh+o(h),  P(X = 2) = o(h).

(7) In that caseX; obeys the Poisson distribution with parameter

Proof (1) SinceX; obeys the Poisson distribution with parametgiit takes values in non-negative integers
almost surely.

(2) Obvious by definition.

(3) Lets = mAt, t = nAt, m < n. Then we have obviously

m n
%= lim 2 s fm ) 2= %,

(4) Supposé; = mAt, ..., t = ngAt with n; < --- < ng. Then we have

ny ny ny
X =X, = Im 3 Z - lim 37, =lm " Z.
T Ao s Z A0 £ ' A0, '

i=ng+1

In other words X;, — X, is the sum o%’s corresponding to the small time intervals containedirt{). Hence,
Xi, = Xty s -+ Xy — X, @re the sums afj’s and there is no comman appearing in the summands. Sin2g
are independent, so akg, — Xy, , ..., X — X;-
(5) SinceXi+h — Xs+h andX; — Xs are defined from the sums @f's and the numbers of the terms coincide.
Therefore the distributions are the same.
(6) Recall thafxXy, obeys the Poisson distribution with parametler Hence,
PXh=0)=e"=1-ah+---=1-ah+o(h),
P(Xn = 1) = Ahe™" = Ah(1 - th+...) = Ah + o(h).
Therefore we have
P(Xn > 2) = 1 - P(Xy = 0) — P(X, = 1) = o(h).
(7) We note that

P[zn: Z = k] = (E)(/IAt)k(l — A" 4+ o(Ab).
i=1
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In view of At = t/n we letn tend to the infinity and obtain

PO =10 = lim (A)¥n(n-1)...(n—k+1) (1— @)"-k _ @eﬂ.

k! nk n k!

This proves the assertion. |

Remark 8.1.2 The essence of the above argument in (7) isRbisson’s law of small numberghich says that
the binomial distributiorB(n, p) is approximated by Poisson distribution with paramater np whenn is large
and p is small. The following table shows the distributionsB(fL0Q,0.02) and the Poisson distribution with
parameten = 2.

k 0 1 2 3 4 5 6
Binomial || 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114
Poisson || 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120

Example 8.1.3 The average number of customers visiting a certain service gate is two per minute. Using the
Poisson model, calculate the following probabilities.

(1) The probability that no customer visits during the first two minutes after the gate opens.
(2) The probability that no customer visits during a time interval of two minutes.

(3) The probability that no customer visits during the first two minutes after the gate opens and that two
customers visit during the next one minute.

Let X; be the number of visitors up to timeBy assumptiorfX;} is a Poisson process with parametes 2.
(1) We need to calculate(X, = 0). SinceX, obeys the Poisson distribution with parameter=24, we have

P,
P(X;=0)= 5 e~ 0018

(2) Suppose that the time interval start§afhen the probability under discussion is giverR{¥,+2— X, =
0). By stationarity we have

P(Xig+2 — Xt = 0) = P(Xz — Xg = 0) = P(X; = 0),

which coincides with (1).
(3) We need calculate the probabili®X, = 0, X3 — X, = 2). SinceX,; andX3 — X, are independent,

P(Xz2 =0, X3 — Xz = 2) = P(Xz = O)P(X3 — X2 = 2).

By stationarity we have
40 22
= P(Xo = 0)P(Xy = 2) = o e x o e 2 ~ 0.00496

Problem 21 Let {X;} be a Poisson process. Show that

k n-k
P(xs=k|xt=n)=(2)(§) (-3 k=01

for 0 < s < t. Next give an intuitive explanation of the above formula.

Problem 22 The average number of arrivals of e-mails is 216 per one day. Using the Poisson model, calculate
the following probabilities.

(1) The probability that no mail arrives during 10 minutes.
(2) The probability that 4 mails arrive during 30 minutes and 8 mails arrive during the next 30 minutes.
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8.2 Waiting Time

Let {X;; t > O} be a Poisson process with parameteBy definitionXy = 0 andX; increases by one as time
passes. Recall that the Poisson process counts the number of events occurring up. teitsheve set

Ty =inf{t>0; X > 1. (8.2)

This is the waiting time for the first occurrence of the event Let T, be the waiting time for the second
occurrence of the evei after the first occurrence, i.e.,

To=infit>0; X >2}-T;.
In a similar fashion, we set

Ta=inf{t>0; X >n}— T, n=23,.... (8.3)

Theorem 8.2.1 Let {X;} be a Poisson process with parameteDefine the waiting timd, by (8.2) and (8.3).
Then,{T,; n=1,2,...} becomes a sequence of iid random variables, of which distribution is the exponential
distribution with parametei. In particular, the waiting time for occurence of an event in the Poisson process
obeys the exponential distribution with parameter

Proof Sett = nAt and consider the approximation by refinement of the time interval. Recall that to each
small time interval of lengtiAt a random variabl@; is associated. Then we know that

. . . At\"
RT3 > )= Jm Py = =20 =0)= (- asef = fim (1- ) =™

Therefore, t
PMTi<t)=1-e= f de'ds
0

which shows thafl; obeys the exponential distribution with parameterThe distributions ofT,, Ts,... are
similar. |

Remark 8.2.2 Let {X} be a Poisson process with parameterWe know thatE(X;) = A, which means the
average number of occurrence of the event during the unit time interval. Hence, it is expected that the average
waiting time between two occurrences is11 Theorem 8.2.1 says that the waiting time obeys the exponential
distribution with parametet so its mean value is/. Thus, our rough consideration gives the correct answer.

Problem 23 Let {X;} be a Poisson process with parametefThe waiting time fom occurrence of the events
is defined byS,, = Ty + T, + --- + Tn, WhereT, is given in Theorem 8.2.1. Calcula®S, < t) and find the
probability density function o$,. [In general S, obeys a gamma distribution.]

8.3 The Rigorous Definition of Poisson Processes

The “definition” of a Poisson process in (8.1) is intuitive and instructive for modeling random phenomena.
However, strictly speaking, the argument is noffisient to define a stochastic procd®s}. For example, the
probability space®, 7, P) on which{X;} is defined is not at all clear.

We need to start with the waiting timé,}. First we prepare a sequence of iid random variablgs n =
1,2,...}, of which the distribution is the exponential distribution with paramater 0. Here the probability
space Q, ¥, P) is clearly defined. Next we set

So=0, Sh=T1+---+T,, n=12,...,
and fort > 0,
Xe=max{n=0; S, <t}

It is obvious that for each > 0, X; is a random variable defined on the probability spaegr(, P). In other
words,{X;; t > 0} becomes a continuous time stochastic process. This is d&isdon proceswith parameter
A by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 8.1.1.
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9 Queueing Theory

9.1 Modeling Queues

In our daily life, we observe often waiting lines or queues of customers for services. Agner Krarup Erlang
(1878-1929, Danish engineer at the Copenhagen Telephone Exchange) published in 1909 the papertentitled:
Theory of Probabilities and Telephone Conversatjomgich opened the door to the research fieldjofueing
theory Such a queue is modeled in terms of a system consisting of servers and a waiting room. Customers
arriving at the system are served at once if there is an idle server. Otherwise, the customer waits for a vacant
server in a waiting room. After being served, the customer leaves the system.

system

BO~_ O
o O
O=| BO = - O
OOO arrival
mo~" o ||

customers

departure

In most of the geueing models, a customer arrives at random and the service time is also random. So we are
interested in relevant statistics such as
(1) sojourn time (time of a customer staying in the system)
(2) waiting time & sojourn time - service time)
(3) the number of customers in the system
Apparently, many dferent conditions may be introduced for the queueing system. In 1953, David G. Kendall

introduced the so-calleidendall’s notation
A/B/c/K/m/Z
for describing the characteristics of a queuing model, where
A: arrival process,
B: service time distribution,
c: number of servers,
K: number of places in the system (or in the waiting room),

m: calling population,
Z: queue’s discipline or priority order, e.g., FIFO (First In First Out)

The first model analyzed by Erlang in 1909 was M¢D/1 queue in Kendall's notation, wheM means that
arrivals occur according to a Poisson process,[astands for deterministic (i.e., service time is not random but
constant).

Most of queueing models are classified into four categories by the behavior of customers as follows:

(I) Delay models: customers wait in line until they can be served.
Example:M/M/c queue, where
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(i) customers arrive according to a Poisson process withirate
(i) there arec servers and there is an infinite waiting space;
(iif) each customer requires an exponential service time with mg¢an 1
(iv) customers who upon arrival find all servers busy wait in line to be served.

(IN Loss models: customers leave the system when they find all servers busy upon arrival.
Example: Erlang’s loss mod#&ll/G/c/c, where

(i) customers arrive according to a Poisson process withirate
(ii) there arec servers and the capacity of the system is limited tmstomers, i.e., there is no waiting
space;
(iii) each customer requires a generally distributed service time;
(iv) customers who upon arrival find all servers busy are rejected forever.

(1) Retrial models: customers who do not find an idle server upon arrival leave the system only temporarily,
and try to reenter some random time later.
Example: the Palferlang-A queue, where

(i) customers arrive according to a Poisson process withlrate
(ii) there arec servers and there is an infinite waiting space;
(iii) each customer requires an exponential service time with mgan 1
(iv) customers who upon arrival find all servers busy wait in line to be served,;
(v) customers wait in line only an exponentially distributed time with me@(fatience time).

(IV) Abandonment models: customers waiting in line will leave the system before being served after their
patience time has expired.
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9.2 M/M/1Queue
This is the most fundamental model, which satisfies the following conditions:

(i) arrivals occur according to a Poisson process with parameter
(ii) service times obey an exponential distribution with parameter
(iii) arrivals of customers and service times are independent;
(i) the system contains a single server;
(iv) the size of waiting room is infinite;

(v) (FIFO= First In First Out) customers are served from the front of the queue, i.e., according to a first-come,
first-served discipline.

Thus there are two parameters characterizing/lahl/1 queue, that is, the parameter 0 for the Poisson
arrival and the ong: > O for the exponential service. In other words, a customer arrives at the system with
average time interval/i and the average service time ig1 In the queuing theory is called themean arrival
rate andu the mean service rateLet X(t) be the number of customers in the system at timi¢ is the proved
that{X(t); t > O} becomes a continuous time Markov chain{onl, 2, 3, ...}. In fact, the letter “M” stands for
“Markov” or “memoryless”.

Our main objective is

pn(t) = P(X(t) = niX(0) = 0),

i.e., the probabbility of findingn customers in the system at tihe- 0 subject to the initial conditioX(0) = 0.
Let us consider the change of the system during the small time intéyval At]. It is assumed that during the
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small time intervalAt only one event happens, namely, a new customer arrives, a customer under service leaves
the system, or nothing changes. The probabilities of these events are gixan, jpt, 1 — AAt — uAt.

o ntl ntl e
ANt LAt
n e—m— >0 N n e—»0 1
#k\. el el e ANt
t t+ At t t+ At

Therefore P(X(t) = njX(0) = 0) fulfills the following equation:
P(X(t + At) = n|X(0) = 0) = P(X(t + At) = n|X(t) = n— 1)P(X(t) = n— 1|X(0) = 0)
+ P(X(t + At) = n|X(t) = n)P(X(t) = n|X(0) = 0)
+ P(X(t + At) = n|X(t) = n+ 1)P(X(t) = n+ 1|X(0) = 0)
= AAtP(X(t) = n— 1X(0) = 0)
+ (1 - AAt — uA)P(X(t) = njX(0) = 0)
+ uAtP(X(t) = n+ 1]X(0) = 0),
P(X(t + At) = 0X(0) = 0) = (1 — AA)P(X(t) = O]X(0) = 0) + uAtP(X(t) = 1|X(0) = 0).
Hence forpn(t) = P(X(t) = n|X(0) = 0) we have
Pa(t) = Apn-1(t) — (2 + ) pn(t) + ppnea(t), n=1,2..., 9.1)
Po(t) = —Apo(t) + upa(t). '
The initial condition is as follows:
po(0) = 1, pn(0)=0 forn> 1. (9.2)

Solving the linear system (9.1) with the initial condition (9.2) is ndfidilt with the help of linear algebra
and spectral theory. However, the explicit solution is not so simple and is omitted. We only mention that most
important characteristics are obtained from the expfigft).

Here we focus on the equilibrium solution (limit transition probability), i.e.,

Pn = lim pn(t)
whenever the limit exists. Since in the equilibrium the derivative of the left hand side of (9.1) is 0, we have

APrr— A+ @)pn+upns1=0 n=212,..., 9.3)
—APo + pup1 = 0. '

A general solution to (9.3) is easily derived:

h =

0\
C1+C2(—) , A#EU,
u

Ci+GCon, A=u.

Sincep, gives a probability distribution, we hays > 0 andz pn = 1. This occurs only when < u and we
n=0

have N
pnz(l—il)(il) , nh=0,12....
M

7
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This is the geometric distribution with parameigy:.
In queuing theory, the ratio of the mean arrival rat@nd the mean service ratas called theutilization:

p=-.
u

Utilization stands for how busy the system is. It was shown above that the number of customers in the system
after long time obeys the geometric distribution with parametdfrp < 1, the system functions well. Otherwise,

the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium the number of customers
in the system obeys the geometric distribution:

a-p)p", n=0,12,....

In particular, the probability that the server is free is b and the probability that the server is busy and the
customer need to wait js. This is the origin of the ternutilization. Note also that the mean number of the
customers in the system is given by

Z”WZ%ZTA'
Py P M

Example 9.2.1 There is an ATM, where each customer arrives with average time interval 5 minutes and spends
3 minutes in average for the service. UsingMyM/1 queue, we know some statistical characteristics. We set

P T S -
-5 HT3 PTLTE
Then the probability that the ATM isfreef =1-p = 3 The probability that the ATM is busy but there is no
waiting customer is

_2.3_68
PL=5%5~ 25
Hence the probability that the ATM is busy and there is some waiting customers is
2 6 9
l—po—pl—l—g—z—s—z—s—o.36.

So, roughly speaking, a customer needs to make a queue once per three visits.

Remark 9.2.2 The Markov proces(t) appearing in thaM/M/1 queuing model is studied more generally
within the framework obirth-and-death process

Problem 24 (M/M/1/1 queue) There is a single server and no waiting space. Customers arrive according to the
Poisson process with parametgrand their service time obeys the exponential distribution with parameter
Let Q(t) be the number of customers in the system at tinie fact,

1, serveris bus)
Q) = 'S DUy
0, serverisidle

(1) Find

Po(t) = P(Q(t) = 0|Q(0) = 0),
p1(t) = P(Q(t) = 1]Q(0) = 0)
by solving a linear system satisfied by thqmét) and p(t).

(2) Using the results in (1), calculate
Po = lim po(t), p1 = lim pa(1),
(3) Find the mean number of customers in the system in the long time limit:

lim E[Q(IQ(O) = 0]
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10 Brownian Motion — An Intuitive Introduction

In 1827 Robert Brown (1773-1858, Scottish botanist) observed a continuous jittery motion of small particles
spouting from pollen of the platlarkia pulchellain water under a microscope. For along period the mechanism
of this motion was unknown. In 1905 (known as the miracle year in physics) Albert Einstein published a paper
that the Brownian motion was caused by individual water molecules and was given a mathematical description
along with physical discussion. The original article is collected in A. Einstein: “Investigations on the Theory of
the Brownian Movement,” (Dover, 2011). Itis probably fair to refer to Marian Smoluchowski (1872-1917, Polish
physicist) who also gave a similar mathematical model of Brownian motion. Although his paper was published
in 1906, it is said in the exhibition at Krakow University, Poland, that his manuscript was sent to Einstein before
his work.

After the physical investigations mathematical study of Brownian motion or more general stochastic pro-
cesses started. The contributions by Norbert Wiener (1894-1964) and@&®au|1886—1971) were most essen-
tial. Thereby Brownian motion is also called tiéener processin 1940s Kiyoshi & (1915-2008, Japanese
probabilist) initiated the theory of stochastidfdrential equations which is nowadays commonly calledtiie
calculus During the last 60 years thebltcalculus has developed drastically for vast applications. It is only
a small part of the story that financial engineering withoatftirmula is impossible anddtbecame the most
famous Japanese in Wall Street.

10.1 From Random Walk to Brownian Motion

Consider one-dimensional random walk, where the random walker starts from thexosidirat timet = 0,
and tosses a fair coin every short time intergl and move a very short distance «fo the right or left. Let
X(t) = X(t; At, €) be the position of the above random walker at tine 0. It is convenient to express(t) by
means of Bernoulli trials. L€z} be a Bernoulli trial with success probability2, i.e.,

P(Zk = +1) = P(Z = -1) = %

Let n be the number of coin tosses during the unit time interval,n&t. = 1. Then we have

nt

X(t) = X(t; At €) = Z €Zy. (10.1)
k=1

x At

<>

0 t
We see easily that
nt
E[X(1)] = EZ E[z] =0, (10.2)
k=1
nt 2
_ 2 —2nt= &
VIX()] = € ;V[Zk] =ént= -t (10.3)

We are interested in the limit 2&¢ — 0 ande — 0, whereas (10.3) suggests that a reasonable limit is obtained

under the condition )

% — @ (constant) (10.4)
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In fact, a stochastic process obtained by

nt
B(t) = lim X(t; At,€) = lim > eZ, (10.5)
k=1
where the limit is taken in such a way that
E2
At—-0, €50 ——>1
At
is called theBrownian motioror theWiener processSince

X(t;At,e)-ZeZk—e\/_\/_Z \/;\/_Z Z,

k_

the Brownian motion is given by
[nt]

B(t) = lim —sz (10.6)

30

20

10

-10

-20

-30

Figure 10.1: Random walk as a simulation of Brownian motion

Remark 10.1.1 The above “construction” of Brownian motion from the random walk is heuristic and instructive.
The important step was omitted, namely, we did not argue that the limit of random X@jk, €) exists in the

sense of stochastic process. In fact, we may give rigorous proof to this point but mathematically totally non-
trivial. On the other hand, in most textbooks the Brownian motion is introduced independently of random walk,
where the argument becomes much simpler but loses the intuition of the jittery movement of Brownian motion.
(B1) B(O)=0

(B2) E[B(1)] =

(B3) Cov(B(9), B(t)) = E[B(9)B(t)] = min{s,t}, in particular,V[B(t)] = t.

In fact, (B1) and (B2) are obvious from (10.6). (B3) is derived as follows:

[ng [nt]
Cov (B(s). B(t)) = lim = ZZCov(z,,zk) = lim = m|n {Ing, [} = min{s t}.

j=1 k=1
Applying the central limit theorem to (10.6), we see tB&) ~ N(0,t). Moreover, we have
(B4) {B(t); t > 0} forms a Gaussian system, i.e., for any finite number of time points . .., t, the random
vector B(ty), B(t), . . ., B(ty)) obeys an-dimensional normal law (may be degenerate).
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(B5) (Continuous sample path}- B(t) is continuous almost surely.

In fact, (B5) follows from (B1)—(B4) by the famous continuous version theorem due to Kolmogorov. In most
literatures a stochastic process satisfying (B1)—(B5) is callBdbanian motionby definition. In this sense a
stochastic process satisfying (B1)—(B4) is often callegeak Brownian motion

Finally, we mention the following basic properties.

(B6) (Independent increments) for0t; < t, < --- < t,, the random variables
B(t1), B(tz) — B(t1), B(ts) - B(tz), ..., B(tn) — B(ta-1)

are independent.

(B7) {B(t)} is a Markov process. (For the precise definition of Markov process we need some advanced knowl-
edge of conditional probability.)

10.2 Exponential Growth

Let x, be the quantity to be measured at time= 0,1,2,.... Suppose thak, is obtained by constant
multiplication ofx,_;, that is,
Xn=A+a)X-1, n=12,..., (10.7)

wherea is a constant angy > 0 is an initial value. The diierence equation (10.7) is easily solved explicitly:
Xn = (1+a) 0. (10.8)

If a > 0, then{x,} becomes an increasing sequence, whilelif< a < 0, it becomes a decreasing sequence. In
both cases is called thegrowth rate

An anecdote of Sorori Shin Zaemon & & F|# £ %) Being asked by Hideyoshi, Shin Zaemon hoped
to receive, as a reward, grains of rice everyday for one hundred days in such a way that 1 grain today, 2 grains
on the next day, 4 grains on the next-to-next day, and in this manner, twice as many grains as on the day before.
Shin Zaemon'’s desire was accepted by Hideyoshi easily, however, after a few days Hideyoshi recognized that his
huge rice granary would become empty before the 100th day. In fact, satingandxy = 1, we see that the
total amount of the grains to be gifted to Shin Zaemon is

99
2" =210-1%127x10% ~ 28x 10°%g
n=0

(In recent years Japan’s production of rice per year is aboul® kg.) This is an example of a catastrophic
result caused by thexponential growth

We would like to derive a continuous-time model from the discrete-time one discussed abox) hetthe
quantity under consideration (e.g., population) at ttree0. Dividing the unit time interval inte small intervals
of lengthAt, we approximate(t) by the discrete-time model(t) defined by

Xar(t) = (1 + a)™xo, (10.9)

wherea = a(At) is the growth rate for the small interval of lengthandnAt = 1.

At
L lﬂ rl l l
0 1

Then the continuous-time model would be obtained by

X(t) = lim Xae(t) = lim(1 + a)"xo, (10.10)
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where the limit is taken in such a way that— o (& At — 0) with keepingnAt = 1. In order to get a
reasonable limit of (10.10), as is suggested by the formula

n
im (1+ ) = ¢,
n—o0 n
we set o
a=a(At) = aAt = o (10.112)
whereq is called thecontinuous growth rateThen we have
. a\nt
X(t) = lim (1 + ﬁ) %o = €%, (10.12)

which is the so-calleéxponential growthOf course, ife > 0 it is exponentially increasing, while if < O it is
exponentially decreasing. Note also tkét) in (10.12) obeys the éierential equation:
ax(t)

5 —0W. X0 =x, (10.13)

which shares a formal similarity with (10.7).

10.3 Exponential Growth with Fluctuation

We will generalize the discrete-time model (10.7), where the growtherst@ot a constant but is a random
variable. As a simple case we assume that the growth rate is givaa laywhere+ is chosen randomly at each
time step. To formulate the situation, lettidg, Z,, ... be independent identically distributed random variables
such that

P(Zc = +1) = P(Z« = -1) = %
we set
Xn=(1Q+a+eZ)Xn1, Xo =X (positive constant) (10.14)
The diference equation (10.14) is easily solved:
n
Xn = xol_[(1+a+ €Z,). (10.15)
k=1

Note that the mean value and the variance of the growth rate are given by

E[a+ €Z)] = a, V]a+ €eZ,] = €%

0 T
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Figure 10.2: Exponential growth with growth rate- 0.1 + 0.04 anda = +0.05
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10.4 Geometric Brownian Motion

We follow the argument in Section 10.2. LXf(t) be the discrete-time model corresponding to the small
time intervalAt. The growth rate is taken to be

alAt + €Zy.

where the first term is already suggested by the argument in Section 10.1,ewhite be specified. It then
follows from (10.15) that

nt

Xat(t) = Xo ]_[ (1 + aAt + €Z)).
k=1

We first calculate the mean value Xf;(t):
nt nt
E[Xa()] = E[xo []@+aat+ ezk)] = %o | | El1+aAt+eZ] = xo(1+ aA)™,
k=1 k=1

where we used the independencé£f. Hence we have
lim E[Xar(t)] = x0€™.

We next consider the variance. We start with
nt
EXu(®7] = 3§ [ | EL(L + @At + 2] = X3((1 + Aty + )™,
k=1

In view of nAt = 1 we obtain
. . 2 2 n
lim E(Xx()2) = xZlim (1 + F" + % +é

Therefore, in order to obtain a reasonable limit we set

Then we have ,
lim E[X(t)?] = x3el?e+ot

and
lim V[ Xar(t)] = lim E[Xa:(t)2] — lim E[Xa(t)]? = 332N _ x2e2et = x2e?t(et — 1),

Thus it is reasonable to assume that the growth rate during the small time inteskajuld be of the form:
alAt + o VAL Zy, (10.16)

wherea € R ando > 0 are constant. We note that the fluctuation of the growth rate is proportionAito
Having specified the growth rate as in (10.16), we come back to the continuous model. The discrete-time
approximation is given by

nt
Xat(t) = Xo ]—[ (1+ aAt + o VAL Zy). (10.17)
k=1
We are interested in the limKX(t) = lim Xx(t). We see from (10.17) that
X (t) nt
log 2282 = Z log(1+ At + o VAL Z,). (10.18)
k=1

Using the Taylor expansion ¢dg(1 + x) and noting thazlf =1 (Z = +1), we have
log(1+ aAt + o VAt Z) ~ (eAt + o VAL Z) — %(a’At + o VAt Z)?

0.2
z(a—?)At+O"/EZk.
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Then (10.18) becomes

Iong(t)z(a—o-—z)t+a\/ﬁiZk (10.19)
% 5 2 . .
Recall that
nt 1 nt
Bi=lim VAt Y z =lim — Y 7., t>0,
N—oo g N—oo \/ﬁ ;
is theBrownian motionsee Section 10.1. Then we see from (10.19) that
. X 2
ImlogL(t) = (a— %)t+o-B[,
and consequently,
2
X(t) = %o exp{(a - %)t + o-Bt} . (10.20)

Definition 10.4.1 A stochastic process of the form €ap+ 0By} is called ageometric Brownian motian

Definition 10.4.2 The probability distribution 0&”% with Z ~ N(0, 1) is called thdog-normal distribution The
density function ok’ is given by

-1 _ 2
X exp{ (Iogzx) } x>0,
f(x) = 2n02 20

0, x<0.

06

04 H

02

Figure 10.3: Log-normal distributiorr(= 1)

Remark 10.4.3 The geometric Brownian motion is called tBéack—Scholes mod@ Mathematical Finance.

It models the time series of stock price and is the basis of the so-called Black—Scholes formula for the price of
European-style options, which appeared first in the paper by Fischer Black and Myron Scholes in 1973. Later
Robert C. Merton published a paper expanding the mathematical understanding of the options pricing model, and
coined the term Black—Scholes options pricing model. Merton and Scholes received the 1997 Nobel Memorial
Prize in Economic Sciences for their work. Though ineligible for the prize because of his death in 1995, Black
was mentioned as a contributor by the Swedish Academy.
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11 Galton-Watson Branching Processes

Consider a simplified family tree where each individual gives birthffspsing (children) and dies. The
number of d¢fsprings is random. We are interested in whether the family survives or not. A fundamental model
was proposed by F. Galton in 1873 and basic properties were derived by Galton and Watson in their joint paper
in the next year. The name “Galton-Watson branching process” is quite common in literatures after their paper,
but it would be more fair to refer to it as “BGW process.” In facérige-Jules Bienayistudied the same model
independently already in 1845.

—

—
—
<§:

1. R.B.v ¥ (B - BREE—FR): ~ /L2 7EEN D FHERET L~ 27 ) 0 —HUE, 2001.
2. K. B. Athreya and P. E. Ney: Branching Processes, Dover 2004 (original version, Springer 1972)
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11.1 Definition

Let X, be the number of individuals of theth generation. ThefiX,; n=0,1,2,...} becomes a discrete-
time stochasic process. We assume that the number of children born from each individual obeys a common
probability distribution and is independent of individuals and of generation. Under this assupxtibecomes
a Markov chain.

Let us obtain the transition probability. L¥tbe the number of children born from an individual and set

P(Y =K) = p. k=0,1,2,....

The sequencépo, p1, P2, . . - } describes the distribution of the number of children born from an individual. In
fact, what we need is the condition

o

m=0, > p=1

k=0
We refer to{ po, p1, . . . } as theoffspring distribution LetYs, Ys, ... be independent identically distributed random
variables, of which the distribution is the sameYasThen, we define the transition probability by

i
p(i,j):P(Xn+1=j|Xn=i)=P[ZYk:j], i>1, j=0,
k=1

and
0, j>1,

p(o,j):{1 o

58



Clearly, the state 0 is an absorbing one. The above Markov ¢Kgjrover the state spag8, 1,2,...} is called
the Galton-Watson branching procegsth offspring distributionpy; k=0,1,2,...}.

For simplicity we assume thaty = 1. Whenpg + p1 = 1, the famility tree is reduced to just a path without
branching so the situation is much simpler (Problem 25). We will focus on the case where

Po+pPr<l p2<l, ..., <l

In the next section on we will always assume the above conditions.

Problem 25 (One-child policy) Consider the Galton-Watson branching process wiibpoing distribution sat-
isfying po + p1 = 1. Calculate the probabilities

Q=P =0), q@=PX#0,X2=0), ..., oh=PX1#0,...,X-1#0,X,=0),

and find the extinction probability

P= (U{Xn = 0}) = P(Xn = 0 occurs for some > 1).

11.2 Generating Functions

Let {X,} be the Galton-Watson branching process wiffsgring distribution{px; k = 0,1,2,...}. Let
p(i, j) = P(Xn1 = jIXn = 1) be the transition probability. We assume that= 1
Define the generating function of thé&spring distribution by

(9= mss (11.1)
k=0

The series in the right-hand side convergegddiox 1. We set
fo(s) =s fi(s) = 1(9), fa(s) = f(fa-1(9).
Lemmal1l.2.1
el g =19, i=12.... (11.2)

=0
Proof By definition,

Pl i) =P(Yi+-+Yi=)= > PMi=ky...Yi=k)
kptorki=
k1>0.,....ki>0

SinceYy,...,Y; are independent, we have

pi. )= >, PMi=k)--PM=k)= > pg b

Kyt +ki=] kyt-tki=]
k1>0,....ki>0 k1>0,....k>0
Hence,
Z PpS=Y Y pums
j=0 ky+--+ki=
ks >0,.. K>o
DI TEWT
ki=0 k=0
=[f(s)',
which proves the assertion. |
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Lemma 11.2.2 Let pu(i, j) be then-step transition probability of the Galton-Watson branching process. We have
Dlpnli s =[f(s]',  i=12.... (11.3)
=0

Proof We prove the assertion by induction an First note thatp(i, j) = p(i, j) and fi(s) = f(s) by
definition. Forn = 1 we need to show that

00

Zp(i,j)sj =[f(9, i=12..., (11.4)

j=0

Which was shown in Lemma 11.2.1. Suppose that 1 and the claim (11.3) is valid up te. Using the
Chapman-Kolmogorov identity, we see that

D Pnali, ) =7 " pli. Kipa(k, i)'
j=0 i=0 k=0
Since

PN CHERCIN
j=0

by assumption of induction, we obtain

k=0

D Poalis DS = ) pli K fa(9]
j=0
The right-hand side coincides with (11.4) wheris replaced byf,(s). Consequently, we come to
S rali. D = [ = [faa(9]'
j=0

which proves the claim fon + 1. |

SinceXy =1,
P(xn = J) = P(Xn = J|XO = l) = pn(l, J)

In particular,
P(X1=])=P(X1=jlXo=1)=pu(L, j) = p(L }) = p;.

Theorem 11.2.3 Assume that the mean value of thi&spring distribution is finite:

m= Z kpc < co.
k=0
Then we have
E[Xn] = m".

Proof Differentiating (11.1), we obtain
(9= kpst  l8<l (11.5)
k=0
Lettings — 1 -0, we have
lim f'(s)=m
s—1-0

On the other hand, settirig= 1 in (11.3), we have

D paL )s! = fa(9) = faa(f(9)). (11.6)
j=0
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Differentiating both sides, we come to
fa(9) = D" ipa(L )7 = 14 (F(9)F(9). (11.7)
=0
Lettings — 1 -0, we have
Jfim fi(9) = ; jpa(L ) = lim i 4(F(9) lim (8 =m lim_f;_ ().
Therefore,
lim f/(s)=m",
s—1-0

which means that

E(X) = ) iPOa = J) = ) jpa(L, ) = 1.
j=0 j=0

In conclusion, the mean value of the number of individuals inrthk generationE(X,), decreases and
converges to 0 i < 1 and diverges to the infinity ih > 1, asn — . It stays at a constantih = 1. We are
thus suggested that extinction of the family occurs wimen 1.

Problem 26 Assume that the variance of théfspring distribution is finite:V[Y] = o2 < co. By similar
argument as in Theorem 11.2.3, prove that

o?m(m" - 1)

V[xn]={T’ m* L

no2, m= 1

11.3 Extinction Probability

The event{X, = 0} means that the family died out until tineth generation. So

q= P[O{xn = 0})

n=1

is the probability of extinction of the family. Note that the events in the right-hand side is not mutually exclusive
but
X1=0c{Xo=0c---c{Xp=0}c....

Therefore, it holds that
g= r!im P(X, = 0). (11.8)

If q = 1, this family almost surely dies out in some generationg K 1, the survival probability is positive
1-qg> 0. We are interested in whethge 1 or not.

Lemma 11.3.1 Let f(s) be the generating function of thdfspring distribution, and set,(s) = f(f-1(9) as
before. Then we have
g= r!im fn(0).

Thereforeg satisfies the equation:
q= f(a). (11.9)
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Proof It follows from Lemma 11.2.2 that
fa(9) = > pulL. J)s.
=0
Hence,
fa(0) = pn(1,0) = P(X, = 0Xo = 1) = P(X, = 0),
where the last identity is by the assumptiorXgf= 1. The assertion is now straightforward by combining (11.8).

The second assertion follows sintgs) is a continuous function on [@].

Lemma 11.3.2 Assume that thefspring distribution satisfies the conditions:

Ppo+p1<l p2<1 ..., k<1l
Then the generating functiof(t) verifies the following properties.
(1) f(9)isincreasing,i.ef(s) < f(s)for0< s <5 < 1.

(2) f(9)is strictly convex, i.e.,if(k 5, < 5 <1and 0< 6 < 1 we have

f(@s1+ (1-0)s) < 0f(s) + (1 - 0)f(s2).

Proof (1) is apparent since the diieient of the power serie(s) is non-negative. (2) follows b{”’(s) > 0.

Lemma 11.3.3 (1) If m< 1, we havef(s) > sforO0< s< 1.

(2) If m> 1, there exists a uniquesuch that 6< s< 1 andf(s) = s.
Lemma 11.3.4 f1(0) < f2(0) < --- — q.

Theorem 11.3.5The extinction probability of the Galton-Watson branching process as above coincides with
the smalless such that
s= f(9), 0<s<1l

Moreover, ifm < 1 we haveq = 1, and ifm > 1 we havey < 1.

The Galton-Watson branching process is callaticritical critical and supercriticalif m < 1, m = 1 and
m > 1, respectively. The survival is determined only by the mean valw# the dfspring distribution. The
situation changes dramatically mit= 1 and, following the terminology of statistical physics, we calpliase
transition

Problem 27 Letb, p be constant numbers such that 0, 0< p < 1 andb+ p < 1. For the dfspring distribution
given by

P = bpl, k=1,2,...,
Po=1- Z Pk,
k=1

find the generating functiof(s). Moreover, settingn = 1, find f,(s).
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Probabilistic Models - Applied Analysis
Preparing Reports

1. You are requested to show mathematical answers of the proposed problems.

2. It is not supposed to solve the problems without seeking any references. Rather you are suggested to
thouroughly study the problems with proper references.

3. ltis also encouraged to discuss with your collegues. However, a copy report will be excluded from mark-
ing. You must know the essentialfiirence between discussing with collegues and copying results.

4. Seeking similar problems in some websites or books, you might copy the answer. Posting a question in
websites, you might expect someone to answer. The proposed problems are original in the sense that they
are not cited directly from any references; however, being elementary and fundamental, similar problems
are easily created by experts.

5. Understanding the above situation, each problem is marked out of 25 points.

Appraisal standard

Example: Two dice are rolled. Lef be the sum of the slots, aidthe product. Calculate the
correlation cofficient of X, Y.

A typical answer would be as follows.

(1) Describe the joint probabilit(X = x, Y = y).

(2) Calculate the marginal distributions and obtain the tabl€{@r = x) andP(Y =y).

(3) With the above tables calcula®&X], E[X?], V[X], E[Y], E[Y?], V[Y], E[XY] and then

Cov(X.Y)
Cov(X,Y) = E[XY] - E[X]E[Y], XY) = ——
ov(X,Y) = E[XY] - E[X]E[Y] p(XY) VI VI

1. Clearing the above level, 20 points will be given.

2. If there is a wrong calculation or if the explanation is ndfisient, some points will be deducted. If the
outline is acceptable, 10 or 15 points will be given.

3. Onthe contrary, if there is an essential error or unlogical explanation withfiitient understanding basic
concepts, the point will reduced nearly to zero.

To get the full score 25 points, you must add some selling points.

1. An elegant calculation. In the above example, lettiigZ, be the slots of two dice and calculate the
statistics by means of = Z; + Z, andY = Z;7,.

2. Your own consideration on the problem. In the above example,
(a) Compare the result with realistic correlation §méents found in real data. In this case the source of

data must be referred to.

(b) Generalize or extend the problem. For example, discuss what happens if the ditédcas. Cal-
culation for a few concretBl is also acceptable.

(c) Discuss similar problems when rolliigdice.

(d) The slots of rolled dice is discrete random variables. How about a continuous random variable? For
example, discuss a similar problem for randomly chosen two numbers in the interdjal [0
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