1 Random Variables and Probability Distributions

1.1 Random Variables

1.1.1 Discrete random variables

A random variableX is calleddiscreteif the number of values thaX takes is finite or countably infinite.
To be more precise, for a discrete random variablaere exist a (finite or infinite) sequence of real numbers
a1, &, ... and corresponding nonnegative numbersp,, . .. such that

PX=a)=p, p=0, Zpi=1.

In this case

px(@) = > pida(dX) = ) po(x—a)dx
i i
is called the(probability) distributionof X. Obviously,

P@<X<b= > p

i;a<a<b
Py
b;
a a; as a;
Example 1.1.1 (coin toss)We set
1, head
X = -ads
0, tails.

Then
P(X=1)=np, P(X=0)=qgq=1-p.

For a fair coin we sep = 1/2.

Example 1.1.2 (waiting time) Flip a fair coin repeatedly until we get the heads. Tebe the number of coin
tosses to get the first heads. (If the heads occurs at the first trial, wa have If the tails occurs at the first trial
and the heads at the second trial, we have 2, and so on.)

P(T =K = (1-p~ip, k=12,....

1.1.2 Continuous random variables

A random variableX is calledcontinuousf P(X = a) = O for all a € R. We understand intuitively that
varies continuously.
If there exists a functiori(x) such that

b
P(asXsb)zf f(x)dx a<b,
a
we say thaiX admits aprobability density functionNote that

fm fdx=1,  f(x)>0.

00



In this case,
ux(dx) = f(x)dx

is called the(probability) distributionof X.

()

a b X

It is useful to consider thdistribution function
X
Fx(X) = P(X < X) = f fu(dt,  xeR.

Then we have q
fx(x) = Ix Fx(X).

Remark 1.1.3 (1) A continuous random variable does not necessarily admit a probability density function.
But many continuous random variables in practical applications admit probability density functions.

(2) There is arandom variable which is neither discrete nor continuous. But most random variables in practical
applications are either discrete or continuous.

Example 1.1.4 (random cut) Divide the interval [QL] (L > 0) into two segments.

(1) LetX be the coordinate of the cutting point (the length of the segment containing 0).

o, X < 0;
Fx(X) ={x/L, 0<x<L;
1, x> L.
(2) LetM be the length of the longer segment.
0, X< L/2;
Fu(¥) =¢(2x-L)/L, L/2<x<L;
1, x> L.

Example 1.1.5 Let Abe a randomly chosen point from the disc with radius 0. LetX be the distance between
the cente© andA. We have

> 2 b
P(angb):%:%f 2xdx ~ 0<a<b<R
a

so the probability density function is given by
0, xX<0,
f0=12 o0<x<R
= < X<
0, X>R



Figure 1.1: Random choice of a point

1.1.3 Mean and variance

Definition 1.1.6 Themeanor expectation valuef a random variablX is defined by

m=epq= [ " (@)

o |f X is discrete, we have

E[X] = > ap.
i
o If X admits a probability density functiof(x), we have

E[X] = Imxf(x)dx

00

Remark 1.1.7 For a functionp(x) we have

ELe(X)] = f " o (u(d).

o

For example,

E[X™] = IM XTu(dX) (mth moment)

oo

+00
E[e™] = f é*u(dx)  (characteristic function)

00

Definition 1.1.8 Thevarianceof a random variabl& is defined by
o? = V[X] = E[(X - E[X])’] = E[X?] - E[X]?,

or equivalently,

VXt = [ - EDu@d = [ uen - ( I Xy(dx))z.

00

Exercise 1.1.9 (see Example 1.1.Zalculate the mean and variance of the waiting time

Exercise 1.1.10Let S be the length of the shorter segment obtained by randomly cutting the intertdl [0
Calculate the mean and variancef



1.2 Discrete Distributions

1.2.1 Bernoulli distribution

For 0< p < 1 the distribution
(1 - p)do + pd1

is calledBernoulli distribution with success probability. @ his is the distribution of coin toss. The mean value
and variance are given by
m=p, o’=pl-p)

Exercise 1.2.1Let a, b be distinct real numbers. A general two-point distribution is defined by

pda + Qdb »

where 0< p < 1 andp + g = 1. Determine the two-point distribution having mean 0, variance 1.

1.2.2 Binomial distribution

For 0< p < 1 andn > 1 the distribution

Zn: (E) P - p)"* o

k=0

is called thebinomial distribution Bn, p). The quantit E p“(1 - p)" ¥ is the probability thah coin tosses with

probabilitiesp for heads and) = 1 — p for tails result ink heads and — k tails.
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Exercise 1.2.2Verify thatm = npando? = np(1 - p) for B(n, p).

1.2.3 Geometric distribution
For 0< p < 1 the distribution

> - o

k=1
is called thegeometric distribution with success probability This is the distribution of waiting time for the first
heads (Example 1.1.2).

. . 1 1
Exercise 1.2.3Verify thatm = o ando? = =

P
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Figure 1.2: Geometric distribution with paramefet 0.4

Remark 1.2.4 In some literatures, the geometric distribution with parampterdefined by

00

> p(L- p)o
k=0
1.2.4 Poisson distribution
For A > 0 the distribution . )
Z e % 5
k=0

is called thePoisson distribution with parameter The mean and variance are given by

m= A, o? =

0.7
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Figure 1.3: Poisson distributioh= 1/2,1,3

Problem 1 The probability generating functioof the Poisson distribution is defined by

[ ~ /lk
G@ =) pd. =i
k=0 ’



(1) Find a concise expression@{z).

(2) By usingG’(1) andG” (1) find the mean value and the variance of the Poisson distribution with parameter
A

(3) Show that

Zpk< Z P -

k:odd k:even

In other words, the probability of taking even values is greater than that of odd values.

(4) Discuss relevant topics.

1.3 Continuous Distributions (Density Functions)
1.3.1 Uniform distribution

For a finite interval &, b],
1
f(x)={b-a’
0, otherwise

<x<b,

becomes a density function, which determinesuthiéorm distributionon [a, b].

—_

=
|
Q

The mean value and the variance are given by

® dx a+b ) b, dx (b—a)?
m‘faxﬁ‘T’ O‘-faxm‘”‘z— 12 -

1.3.2 Exponential distribution

Theexponential distributionvith parameten > 0 is defined by the density function

e x>0,
f(x) = ,
o, otherwise

This is a model for waiting time (continuous time).

. . 1
Exercise 1.3.1Verify thatm = 2 ando? = .



1.3.3 Normal distribution

Form € R andsigma> 0 we may check that

1 (x—m)?
V2ro2 EXp{— 202 }

becomes a density function. The distribution defined by the above density function is caltestrfed distri-
bution or Gaussian distributiorand denoted byN(m, ¢?). In particular,N(0, 1) is called thestandard normal
distributionor thestandard Gaussian distribution

f(x) =

0.5

Exercise 1.3.2Differentiating both sides of the known formula:
+00
f e™¥dx= ﬁ t>0,
0 24/t
find the values .
f X2e X dx n=0,12,....
0

Exercise 1.3.3Prove that the abové(x) is a probability density function. Then prove by integration that the
mean ismand the variance is?:

m= ! fmxex _(x—m)2 d
V2702 Jowe P 202 %

1 +00 _ 2
o? = o Iw (x - m)? exp{—(xzo_r;) } dx

Problem 2 Choose randomly a poir& from the disc with radius one and |¥tbe the radius of the inscribed
circle with centelA.

(1) Forx > 0 find the probabilityP(X < x).

(2) Find the probability density functiofk(x) of X. (Note thatx varies over all real numbers.)
(3) Calculate the mean and varianceXof

(4) Calculate the mean and variance of the area of inscribed GrelerX?.

(5) Discuss similar questions for a ball.




2 Independence and Dependence

2.1 Independent Events

Definition 2.1.1 (Pairwise independence) (finite or infinite) sequence of evenfg, A,, ... is calledpairwise
independenif any pair of events\, A, (i1 # i2) verifies

P(A, N A,) = P(AL)P(A,).

Definition 2.1.2 (Independence)A (finite or infinite) sequence of evenkg, A,, . .. is calledindependenif any
choice of finitely many eventd;,, ..., A, (i1 <i2 <--- <ip) satisfies

P(A, N A, NN AL = P(A)PAL) - - P(A,).

Example 2.1.3 Consider the trial to randomly draw a card from a deck of 52 cardsAllet the event that the
result is an ace and the event that the result is spades. TheB are independent.

Problem 3 An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random ad let
be the first digit X, the second digit, an¥3 the last digit. Foi = 1,2, 3 we define an everfy; by A = {X; = 1}.
Show thatfAq, Ay, Az} is pairwise independent but is not independent.

Remark 2.1.4 It is allowed to consider whether the sequence of evehta} is independent or not. If they are
independent, by definition we have
P(AN A) = P(A)P(A).

ThenP(A) = 0 or P(A) = 1. Notice thatP(A) = 0 does not imphA = 0 (empty event). SimilarlyP(A) = 1 does
not imply A = Q (whole event).

Exercise 2.1.5For A we write A” for itself A or its complementary eve#€. Prove the following assertions.
(1) If AandB are independent, so afé andB”.
(2) If Aq, Ap,... are independent, so afé, Aj, ...

Definition 2.1.6 (Conditional probability) For two events\, B theconditional probability of A relative to Bor
on the hypothesis,Br for given B is defined by

P(AN B)

P(AB) = 55

whenevetP(B) > 0.
Theorem 2.1.7 Let A, B be events withP(A) > 0 andP(B) > 0. Then, the following assertions are equivalent:
(i) A Bareindependent;
(i) P(AIB) = P(A);
(iii) P(B|A) = P(B);



2.2 Independent Random Variables

Definition 2.2.1 A (finite or infinite) sequence of random variabl¥g X, ... is independen{resp. pairwise
independentif so is the sequence of everit§; < a3}, {X1 < a},... foranyas,ap,--- € R.

In other words, a (finite or infinite) sequence of random variallleX,, . .. is independent if for any finite
Xiys.. s X, (i1 <i2 < --- <ip) and constant numbess, . .., a,

P(Xi, <a1, X, <a,.... X, <an) = P(X, <a)P(X, <a) - P(X, <a) (2.1)

holds. Similar assertion holds for the pairwise independence. If random varkblés ... are discrete, (2.1)
may be replaced with

P(Xi, = a1, X, =ag,..., X, = an) = P(Xi, = a1)P(X;, = ap) - - - P(X;, = an).

Example 2.2.2 Choose at random a point from the rectar@le: {(x,y); a< x < b, c <y < d}. Let X denote
the x-coordinates of the chosen point avidhe y-coordinates. Thel, Y are independent.

Example 2.2.3 (Bernoulli trials) This is a model of coin-toss and is the most fundamental stochastic process. A
sequence of random variables (or a discrete-time stochastic proxesX), ..., Xy, ...} is called theBernoulli
trials with success probabilitp (0 < p < 1) if they are independent and have the same distribution as

P(X,=1)=p, PXa=0)=q=1-p.

By definition we have

Pa=é1,X% =6, Xo=6) = [ [P =8&)  forall&n,6,... 60 €(0,1).

k=1

In general, statistical quantity in the left-hand side is calledfitiiee dimensional distributionf the stochastic
procesgX,}. The total set of finite dimensional distributions characterizes a stochastic process.

2.3 Covariance and Correlation Codficient

Recall that the mean of a random varialflés defined by
+00
me=E0) = [ (.

Theorem 2.3.1 (Linearity) For two random variableX, Y and two constant numbeasb it holds that
E(aX + bY) = aE(X) + bE(Y).
Theorem 2.3.2 (Multiplicativity) If random variables(y, Xo, ..., X, are independent, we have

E[X1Xz -+ Xl = E[Xq] - - E[Xq]. (2.2)

Proof We first prove the assertion fofx = 15, (indicator random variable). By definitiod, .. ., X, are
independent if and only if so ars, .. ., A,. Therefore,

E[Xl e Xn] = E[lAlﬂmﬂA”] = P(Al N---N AH)
=P(A1)--- P(A,) = E[X4] - - E[X].
Thus (2.2) is verified. Then, by linearity the assertion is validXptaking finitely many values (finite linear

combination of indicator random variables). Finally, for genefalcoming back to the definition of Lebesgue
integration, we can prove the assertion by approximation argument. |



Remark 2.3.3 HXY] = E[X]E[Y] is not a stificient condition for the random variabl¥sandY being indepen-
dent. It is merely a necessary condition!

Thevarianceof X is defined by
0% = V(X) = E[(X - m)*] = E[X*] - E[X]*.

By means of the distributiop(dx) of X we may write

+00 +00 +00 2
V09 = [ x-motun = [ x%(dx)—( [ Xﬂ(dx))-

Definition 2.3.4 Thecovarianceof two random variable¥, Y is defined by
Cov(X,Y) = oxy = E[(X - E(X))(Y — E(Y))] = E[XY] — E[X]E[Y].

In particular,oxx = o-i becomes the variance #f Thecorrelation cogficient of two random variableX, Y is
defined by

whenevewry > 0 andoy > 0.

Definition 2.3.5 X, Y are called uncorrelatedifxy = 0. They are called positively (resp. negatively) correlated
if oxy >0 (resp.o'xy < 0)

Theorem 2.3.6 If two random variable¥, Y are independent, they are uncorrelated.

Remark 2.3.7 The converse of Theorem 2.3.6 is not true in general Xe¢ a random variable satisfying
1 1
P(X:—l):P(X:l):Z, P(X=O)=§

and setY = X2, Then,X,Y are not independent, butcy = 0. On the other hand, for random variabksy
taking only two values, the converse of Theorem 2.3.6 is valid (see Problem 5).

Theorem 2.3.8 (Additivity of variance) Let X, Xo, ..., X, be random variables, any pair of which is uncorre-

lated. Then | |
v {Z xk} = Z V[Xd].
k=1 k=1

Theorem 2.3.9 -1 < pxy < 1 for two random variableX, Y with ox > 0,0y > 0.

Proof Note thatE[{t(X — my) + (Y —my)}?] > O for allt € R. |

Problem 4 Throw two dice and leL be the larger spot ar the smaller. (If double spots, set= S.)
(1) Show the joint probability ofl(, S) by a table.
(2) Calculate the correlation cfigientp s and explain the meaning of the signatureof .
Problem 5 Let X andY be random variables such that
PX=a)=p. PX=b=aqm=1-p, PY=c)=p PY=d)=0=1-p,

wherea, b, ¢, d are constant numbers and0p; < 1, 0< p; < 1. Show thaiX, Y are independent if-xy = 0.
[Notice: In general, uncorrelated random variables are not necessarily independent. Hence, the situation in this
problem falls into a very particular one.]

10



3 Markov Chains

3.1 Conditional Probability
For two eventsA, B we define
P(AN B)
P(B)
wheneverP(B) > 0. We callP(A|B) the conditional probability of A relative to B is interpreted as the proba-

bility of the eventA assuming the ever8 occurs, see Section 2.1.
Formula (3.1) is often used in the following form:

P(AIB) = (3.1)

P(AnN B) = P(B)P(AIB) (3.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in compu-
tation of probability. For example, for two everAsB see Fig. 3.1.

P(A) A
P(B°|A) AN B¢
P(BIA%) A°N B
P(A) A
P(B°|A%) AN B°

Figure 3.1: Tree diagram

Theorem 3.1.1 (Compound probabilities) For events?y, Ao, . .., A, we have
P(Arn AN -+ N An) = P(A)P(A2lA1)P(AglA N Ag) - - P(AnlAL N AN -+ - N Anca). (3.3)

Proof Straightforward by induction on. |

3.2 Markov Chains

Let S be a finite or countable set. Consider a discrete time stochastic pfoGess = 0,1, 2,...} taking
values inS. ThisS is called astate spaceand is not necessarily a subsetfofn general. In the following we
often meet the cases 8f={0,1},S=1{1,2,...,N}andS ={0,1,2,...}.

Definition 3.2.1 Let {X,; n = 0,1,2,...} be a discrete time stochastic process dverlt is called aMarkov
procesoversS if

PXn=DbIX, = a1, Xi, =ap, ..., X, =&, Xi =a) = P(Xp = b|X; = a)
holds forany O< i; <ip <--- <ix <i<nanda,ay,...,a abesS.

If {X1,Xo,...} are independent random variables with value§jrobviously they form a Markov chain.
Hence the Markov property is weaker than independence.

11



Example 3.2.2Letr > 1 ands > 1 such that + s= N. There areg black balls ands white balls in a box. We
pick up balls in the box one by one and 3gt= 1 if a black ball is picked up at theth trial andX,, = 0 if a white
ball is picked up at theth trial. Then{Xy, X5, ..., Xy} is a stochastic process. We note that

1 n-1
PXn=1UX1 =@y, Xo=ap, ..., Xn-1 = @p-1) = N=(n=1) {r - ak} (3.4)
k=1

and
I—an-1

N-1"~

P(Xn =1Xh 1= an—l) = (3-5)

foray,...,an-1 € {0, 1}. Hence{X,} is not a Markov chain.
Problem 6 We keep the notations and assumptions in Example 3.2.2.
(1) Prove (3.4) and (3.5).
(2) LetY, be the number of black balls picked up during the firstals, i.e.,

Ynsz:Xk.

Show that{Y,} is a Markov chain.

Definition 3.2.3 For a Markov chair{X,} overS,
P(Xn+1 = j|xn = i)

is called thetransition probabilityat timen from a state to j. If this is independent afi, the Markov chain is
calledtime homogeneousn this case we write

pij = P(0, J) = P(Xne1 = jIXn = 1)
and simply call it the transition probability. Moreover, the matrix
P=[pil
is called theransition matrix

Obviously, we have for eadhe S,

DRl 0) = D PG = jiXe=i) = 1.

jes jeS
Taking this into account, we give the following

Definition 3.2.4 A matrix P = [p;;] with index setS is called astochastic matrixf

pij >0 and Zpij =1

jeS

Theorem 3.2.5 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochastic
matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic matrix.

It is convenient to use thieansition diagramto illustrate a Markov chain. With each state we associate a
point and we draw an arrow froito j whenp(i, j) > 0.

12



Example 3.2.6 (2-state Markov chain)A Markov chain over the state spaffe 1} is determined by the transi-
tion probabilities:
p(0.1)=p. p(0.0)=1-p, p(1.0)=0q plLl)=1-q

The transition matrix is defined by

[1— p P ]
g 1-9
The transition diagram is as follows:
p()l p
e (3 e
Py=4q

Example 3.2.7 (3-state Markov chain)An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain ofiH, S, D} described by the following transition diagram:

b q
(@ <> ® )
P r
The transition matrix is defined by
a b o
p r qi, a+b=1 p+q+r=1
0 0 1

Example 3.2.8 (Random walk oriz') The random walk ofZ* is illustrated as

-3 -2 -1 0 1 2 3

The transition probabilities are given by

P, if j=i+1,
Pl ) ={a=1-p. fj=i-1,
0, otherwise

The transition matrix is a two-sided infinite matrix given by

o

o o oo

‘o ow o
o
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Example 3.2.9 (Random walk with absorbing barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers atAandBis S = {-A,-A+ 1,...,B -1, B}. Then the transition probabilities are
given as follows. ForA < i < B,

P, if j=i+1,
p(,j))=4q=1-p, ifj=i-1,
0, otherwise
Fori=-Aori =B,
. 1, if j=-A ) 1, if j=B,
-Aj) = B,j) = .
PC-A.1) {O, otherwise P(B. 1) {O, otherwise
In a matrix form we have
1 0 0 O 0 --- 0]
qgq o0 p O O --- O
0gqg 0 p O --- O
0o 0 - qg 0 p O
00 0O g 0 p
0 0 - O 0O o0 1
1 D D p p 1
G2ENONEONIETNEOERO®
q q q q

Example 3.2.10 (Random walk with reflecting barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers atAandBis S = {-A,-A+1,...,B-1, B}. The transition probabilities are given
as follows. Fo-A < i < B,

P, if j=i+1,
p(i.j))=ya=1-p, ifj=i-1
0, otherwise
Fori = —-Aori =B,
. 1, if j=-A+1, ) 1, ifj=B-1,
- = B9 = .
P(-A 1) {O, otherwise P(B. 1) {O, otherwise
In a matrix form we have
0 1 0 0 O 0]
g0 p 0 O 0
0qg 0 p O 0
0o 0 - g 0 p O
0 0 - 0O g 0 p
0O 0 - 0O 0 1 O
1 D b D D
q q q q 1

14



3.3 Distribution of a Markov Chain

Lgt S be a state space as before. In general, a row vectof- - - 7 - - - ] indexed byS is called adistribution
onst 7 >0 and Z’Ti =1 (3.6)
ieS
For a Markov chair{X,} on S we set
a(n) =[--- m(n) ---],  7i(n) = P(Xq =),

which becomes a distribution & We callz(n) thedistributionof X. In particular(0), the distribution ofXg,
is called thdnitial distribution. We often take

7(0)=[---0,1,0,---1, where 1 occurs ath posotion

In this case the Markov chatiiX,} starts from the state
For a Markov chair{X,} with a transition matrixP = [p;;] the n-step transition probabilitys defined by

pn(i, J) = I:)(ern = j|Xm = i), I, J €S
The right-hand side is independentrobecause our Markov chain is assumed to be time homogeneous.

Theorem 3.3.1 (Chapman—Kolmogorov equation)For 0< r < nwe have

Pa(i, 1) = D pr(i K)pnr (K ). 3.7

keS

Proof First we note the obvious identity:
Pai ) = P(nen = §1Xn = 1) = D Pmen = Js Xaner = KiXen = 1),
keS
Moreover,

. . P(Xmin = ), Xmir = K X =1 P(Xmir = K, X =i
P = X = 0y =1) = P LT =0 B =)
m+r — N /Am — m —

= P(Xmin = 1 Xmer = K, X = D)PXier = KX = ).

Using the Markov property, we have
P(xrmn = J|xrmr =k Xm= i) = P(Xmm = j|xrmr = k)

so that
F)(Xm+n = j,xm+r = k|Xm = i) = P(Xm+n = j|Xm+r = k)P(Xm+r = I(|Xm = i)~

Finally, by the property of being time homogeneous, we come to
P(Xm+n = j7 ><m+r = k|Xm = |) = pn—r(ka J)pr(h k)
Thus we have obtained (3.7). |
Applying (3.7) repeatedly and noting thad(i, j) = p(i, j), we obtain

pai )= > plik)p(ka ko) plka-a, §). (3.8)

k1 ,,,,, kn_1€S

The right-hand side is nothing else but the multiplication of matrices, i.en-gtep transition probabilitp,(i, j)
is the {, j)-entry of then-power of the transition matri¥. Summing up, we obtain the following important
result.

15



Theorem 3.3.2Form,n > 0 andi, j € S we have
P(er-n = j|xm = i) = pn(i» J) = (Pn)ij .

Proof Immediate from Theorem 3.3.1. |

Remark 3.3.3 As a result, the Chapman-Kolmogorov equation is nothing else but an entrywise expression of
the obvious relation for the transition matrix:

Pn — Pr Pn—r
(As usual P° = E (identity matrix).)
Theorem 3.3.4 We have
x(n) = n(n— 1)P, n>1,
or equivalently,

mi(n) = > m(n - 1)py.

Therefore,
x(n) = 7(0)P".

Proof We first note that
7i(n) = P = ) = Y P = X0 1 = )P(Xe1 =1) = ) pymi(n - 1),
ieS ieS
which provesrt(n) = n(n — 1)P. By repeated application we have
n(n) = 2(n = 1)P = (n(n — 2)P)P = (n(n — 2)P? = - .. = n(0)P",

as desired. 1

Example 3.3.5 (2-state Markov chain)Let {X,} be the Markov chain introduced in Example 3.2.6. The eigen-
values of the transition matrix
P= [1_ PP
q 1-q
are 11 - p-g. These are distinct ip + g > 0. Omitting the case g + q = 0, i.e.,p = q = 0, we assume that
p + q> 0. By standard argument we obtain

n_ 1 [q+pr" p-pr
q-aqr" p+ar’

) r=1-p-gq

- p+q
Let 7(0) = [m0(0) 71(0)] be the distriution 0fXy. Then the distribution oX, is given by
x(n) = [P(X, = 0), P(Xy = 1)] = [0(0) 71(0)]P" = n(0)P".
Problem 7 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every

election. Suppose that just before an election, 25% of the supporters of A change to support B and 20% of the
supporters of B change to support A. At the beginning, 85% of the voters support A and 15% support B.

(1) When will the party B command a majority?
(2) Find the final ratio of supporters after many elections if the same situation continues.

(3) Discuss relevant topics.

Problem 8 Let {X,} be a Markov chain or0, 1} given by the transition matrie = [1; P 1fq} with the

initial distributionzro = [ —— , —°—|]. Calculate the following statistical quantities:
p+q’ p+q
CoVv Xmyn, X
E[X]. V[X]. CoVXmen Xn) = E[XmenXn] = E[Xmsn] E[Xn],  p(Kinens Xn) = COV K Xo)
VXl VIXn]
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4 Stationary Distributions

4.1 Definition and Examples

Definition 4.1.1 Let {X,} be a Markov chain 0% with transition probability matrixP. A distributionz onS is
calledstationary(or invariant) if
n=nP, 4.1)

or equivalently,
=) mPj,  j€S. (4.2)

ieS
Thus, to find a stationary distribution we need to solve (4.1) (or equivalently (4.2)) together with (36). If
is a finite set, finding stationary distributions is reduced to a simple linear system.

Example 4.1.2 (2-state Markov chain)Consider the transition matrix:

1-p p

P= .

P

Let = [mgm] and suppos&P = 7. Then we have
1-p p|_i_ _ -
[7o 1] q 1-g|- [(L - p)mo + gra pro + (1 — O)ma] = [mo 1],
which is equivalent to the following
pro — gy = 0.

Together withrg + 71 = 1, we obtain
= q N ﬂl = p )
p+q p+q
whenevemp + g > 0. Indeedsrp > 0 andr; > 0O, so this is a stationary distribution.

o

The following properties are noteworthy:

() If p+q> 0, astationary distribution is unique.

(ii) If p=q=0,the stationary distribution is not uniquely determined. In fact, any distributiefirg , 1] is
stationary.

Moreover, we see from Example 3.3.5 that & + g < 2, or equivalently, ifr| < 1, we have

T — p}.
n—oo p+qld9 P
Then 1
. | . a pl_[_a _p
| = lim ©(0)P" = [0(0) 71(0 . .
am, () = Jim #(O)P" = [7o(0) ms( )]Xp+q[q p] P+q p+q

Thus we get the stationary distribution as a limit distribution.

Example 4.1.3 (3-state Markov chain)We discuss the Markov chaifX,} introduced in Example 3.2.7. If
g > 0 andb > 0, a stationary distribution is unique and givensby [0 O 1].

Example 4.1.4 (One-dimensional RW)Consider the 1-dimensional random walk with right-move probability
p > 0 and left-move probabilitgg = 1 — p > 0. Let[-- n(K) -- -] be a distribution orZ. If it is stationary, we
have

n(k) = pr(k - 1) + gn(k + 1), keZ. (4.3)
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The characteristic equation of the abov&eatience equation is
0=q*~A+p=(a1-p)(-1)

so that the eigenvalues argplq.
(Case 1)p # g. Then a general solution to (4.3) is given by

k k
n(k)=C11k+C2(g) =C1+C2(g) . kez

This never becomes a probability distribution for any choiceCofand C,. Namely, there is no stationary
distribution.
(Case 2)p = g. In this case a general solution to (4.3) is given by

(k) = (C1 + CoK)1 = Cy + Cok, keZ.

This never becomes a probability distribution for any choice&CofandC,. Namely, there is no stationary
distribution.

Example 4.1.5 (One-dimensional RW with reflection barrier) There is a unique stationary distribution when
p < g. In fact,

k
2(0) = Cp, n(k):C(g), k> 1,

whereC is determined in such a way thag’ , 7(k) = 1. Namey,

q-p
C=—.
2pq

If p > g, then there is no stationary distribution.
On stationary distributions of a Markov chain we question:
(1) Is there a stationary distribution?

(2) Ifyes, is it unique? If not, how to classify?
(3) Does the distributions of a Markov chain converge to a stationary distribution?

4.2 Existence
Theorem 4.2.1 A Markov chain over a finite state spaBenhas a stationary distribution.

A simple proof is based on the Brouwer’s fixed-point theorem saying that every continuous function from
a convex compact subset of a Euclidean space to itself has a fixed point. In fact, the set of distribuSons on
is a convex compact subset of a Euclidean space and thermaprP is continuous. Note that the stationary
distribution mentioned in the above theorem is not necessarily unique.

Definition 4.2.2 We say that a statpcan be reached frora state if there exists some > 0 such thap,(i, j) > O.
By definition every staté can be reached from itself. We say that two statasd j intercommunicatef i can
be reached fornj and j can be reached from i.e., there exism > 0 andn > 0 such thatp,(i, j) > 0 and
pm(j, I) > 0

Fori, j € Swe introduce a binary relatidn~ j when they intercommunicate. Therbecomes an equivalence
relation onS:

QW)i~i; (i)i~j=j~i; (i)i~]j~k=i~k

In fact, (i) and (ii) are obvious by definition, and (iii) is verified by the Chapman-Kolmogorov equation. Thereby
the state spacs is classified into a disjoint set of equivalence classes. In each equivalence class any two states
intercommunicate each other.
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Definition 4.2.3 A statei is calledabsorbingif p; = 1. In particular, an absorbing state is a state which
constitutes an equivalence class by itself.

Definition 4.2.4 A Markov chain is calledrreducibleif every state can be reached from every other state, i.e.,
if there is only one equivalence class of intercommunicating states.

Theorem 4.2.5 An irreducible Markov chain on a finite state sp&@dmits a unique stationary distribution
7 = [ni]. Moreover,rj > O foralli € S.

In fact, the proof owes to the following two facts:
(1) For an irreducible Markov chain the following assertions are equivalent:

(i) it admits a stationary distribution;
(i) every state is positive recurrent.

In this case the stationary distributianis unique and given by

_ 1
T EMiIXo=10)’

(2) Every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem 5.1.8).

ieS.

T

4.3 Convergence

Example 4.3.1 (2-state Markov chain)We recall Examples 3.3.5 and 4.1.2. @& q > 0, the distribution of
the above Markov chain converges to the unique stationary distribution. Consider the paseef 1, i.e., the
transition matrix becomes
P [0 1]
1 o

The stationary distribution is unique. But for a given initial distributid) it is not necessarily true tha{n)
converges to the stationary distribution.

Roughly speaking, we need to avoid the periodic transition in order to have the convergence to a stationary
distribution.

Definition 4.3.2 For a staté € S,
GCD{n> 1; P(X, =i|Xg =i) > 0}

is called theperiodof i. (When the set in the right-hand side is empty, the period is not defined.) A &t&és
calledaperiodicif its period is one.

Theorem 4.3.3 For an irreducible Markov chain, every state has a common period.

Theorem 4.3.4 Let = be a stationary distribution of an irreducible Markov chain on a finite state space (It is
unique, see Theorem 4.2.5).{K,} is aperiodic, for anyj € S we have

lim P(OXy = ) = ;.

Example 4.3.5 (page rank) The hyperlinks amongl websites give rise to a digraph (directed gra@hyn N
vertices. It is natural to consider a Markov chain@ywhich is defined by the transition matix= [p;;], where

ng ifi = ],
Pii =90, if i -» jandi # |,
1, degi = 0andj =1,

where deg = |{j; i — j}| is theout-degreeof i.
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1/2
(3) " (®)
OanO. AN ORRO. !
O (@
There exists a stationary state but not necessarily unique. Taking € 1 we modify the transition matrix:

1-d
Q = [q;]. gj =dpj +e, €= -

If 0 < d < 1, the Markov chain determined l§y has necessarily a unique stationary distribution. Choosing a
suitabled < 1, we may understand the stationary distributioa [n(i)] as the page rank among the websites.

Problem 9 Consider the page rank introduced in Example 4.3.5.

(1) Letx(i) be the page rank of a siteShow thatr(i) satisfies the following relation
L 1-d 7(j)
(i) = = +d Z 22

and explain the meaning.

(2) Show more examples of the page rank and discuss the role of sites which have no hyperlinks, that is,
degi = 0 (in terms ofP = [p;;] such sites correspond to absorbing states).

Problem 10 Find all stationary distributions of the Markov chain determined by the transition diagram below.
Then discuss convergence of distributions.

2/3 3/4

Problem 11 Let {X,} be the Markov chain introduced in Example 3.2.7:
b q
@ 9‘ ® )
p r

Forn =1,2,... let Hy denote the probability of starting from H and terminating at D-atep. Similarly, for
n=12,... letS, denote the probability of starting from S and terminating at b-step.

(1) Show thafH,} and{S,} satisfies the following linear system:

Hn = aHn -1 + bS,_1,
{” LEPSRL s H =0, Si=q

Sh = pHnr-1 + ISh-q,

(2) LetH andS denote the life times starting from the state H and S, respectively. Solving the linear system
in (1), prove the following identities for the mean life times:

B = _b+p+q B = _b+p
E[H]_;an_ g E[S]_;nsn_ by
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5 Topics in Markov Chains

5.1 Recurrence
Definition 5.1.1 Leti € S be a state. Define tH@st hitting timeor first passage time i by

T =inf(n>1; X, =i}.

If there exists na > 1 such thaX, = i, we defineT; = co. A statei is calledrecurrentif P(T; < oo|Xp = i) = 1.
It is calledtransientif P(T; = co|Xy = i) > 0.

Theorem 5.1.2 A statei € S is recurrent if and only if

S i) = e
n=0

If a statei is transient, we have

> > 1
;pn(|,|)<oo and ;pﬂ(l’l)zl—P(Ti<oo|Xo=i)'

Proof We first put
pn(i, ) = P(Xh = jIXo =1i), n=0,1,2,...,
(i, ) =P(T=nXo=0)=PXy # j,.... %01 # [ Xa = jIXo=1i), n=12,....

pn(i, j) is nothing else but tha step transition probability. On the other hariglj, j) is the probability that the
Markov chain starts fronh and reachj first time aftern step. Dividing the set of sample paths frono j in n
steps according to the number of steps after which the path reaftrethe first time, we obtain

n

Pn(i, J) = Z fr@. DPnr(i ). 1,j€S, n=12.... (5.1)

r=1

We next introduce the generating functions:
Gi(@ =) Pl N2, Fy@ = fli. )2
n=0 n=1
In view of (5.1) we see easily that
Gij(2 = po(i, J) + Fij (AGjj (2). (5.2)

Settingi = j in (5.2), we obtain

1

Gi@=1+F@Gid = G@=1Fr

On the other hand, since
Gi(1)= > Pl Fi(L)= D fali,i) = P(Ti < colXo = i)
n=0 n=1

we see that two conditiorfs; (1) = 1 andG;; (1) = co are equivalent. The second statement is readily clearll
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Example 5.1.3 (random walk onZ) Since the random walk starting from the origin O returns to it only after
even steps, for recurrence we only need to compute the syon (@ 0). We start with the obvious result:

2n)!
P2n(0, 0) = % pla, p+g=1
Then, using the Stirling formula:
n
N~ vorn (2 (5.3)
e

we obtain 1

0,0) ~ —— (4pq)".

P2n(0,0) ﬁ( pa)

Hence,

> <o, P#0,
0,0
;pz”( ) {: o, p=q=1/2

)

Consequently, one-dimensional random walk is transignt4fg, and it is recurrent ip = q = >

Remark 5.1.4 Let {a,} and{b,} be sequences of positive numbers. We waijte- b, if

lim 20— 1.

n—oo n
In this case, there exist two constant numhagrs 0 andc, > 0 such that,a, < b, < c,a,. Hence); ; a, and
Ym1 bn converge or diverge at the same time.

Example 5.1.5 (random walk onZ?) Obviously, the random walk starting from the origin O returns to it only
after even steps. Therefore, for recurrence we only need to compute the §ui000). For two-dimensional
random walk we need to consider two directions along witixis andy-axis. We see easily that

Pn(0.0)= u(|2|Tl);l (%)Z” = %(%)Zni;ni!?!!ﬂlj! B (Zr]n)(%)z”g(?)z

i+j=n

Employing the formula for the binomial céiesients:

112

which is a good exercise for the readers, we obtain
on 2 1 2n
Then, by using the Stirling formula, we see that
1
p2n(o’ 0) ~
an

so that

> pan(0,0) = 0.
n=1
Consequently, two-dimensional random walk is recurrent.

Example 5.1.6 (random walk onz3) Let us consider the isotropic random walk in 3-dimension. As there are
three directions, say, y, z-axis, we have

i+j+k=n i+j+k=n
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We note the following two facts. First,
—— =3" (5.5)

Second, the maximum value

n
Mp = max ——
"7 irjeken ik

is attained Wheraén -1<i,j,k< g +1so

_3V34

My 27n

by the Stirling formula. Then we have

2n\ (1\*" 3V3 4,

Therefore. .
> pan(0,0) < o0,
n=1
which implies that the random walk is not recurrent (i.e., transient).

If a statei is recurrent, i.e.P(T; < oo|Xp = i) = 1, themean recurrent timés defined:
E(TiXo =) = > nP(Ti = nXo = ).
n=1

The stata is calledpositive recurrentf E(Ti|Xo = i) < oo, andnull recurrentotherwise.

Theorem 5.1.7 The states in an equivalence class are all positive recurrent, or all null recurrent, or all transient.
In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null recurrent, or all
transient.

Theorem 5.1.8 For an irreducible Markov chain on a finite state sp8cevery state is positive recurrent.

Example 5.1.9 The mean recurrent time of the one-dimensional isotropic random walk is infinity, i.e., the one-
dimensional isotropic random walk is null recurrent. The proof will be given in Se@tfon

Problem 12 Let {X,} be a Markov chain described by the following transition diagram:

b, =p

wherep > 0 andg > 0. For a staté € S let T; be the first hitting time td defined by
Ti=inf{n>1; X, =i}.
(1) Calculate
P(To=1Xo=0), P(To=2X=0), P(To=3Xo=0), P(To=4Xo=0).
(2) FindP(To = n|Xp = 0) and calculate

00

Z P(To = n[Xp = 0), Z NP(To = n|Xo = 0).
=1

n=1
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5.2 Absorption

A statei is calledabsorbingif p; = 1 andp;; = O for all j # i. Once a Markov chain hits an absorbing state,
it stays thereat forever.
Let us consider a Markov chain on a finite state sgagéth some absorbing states. We set

S=5,U%,

whereS, denotes the set of absorbing states &gdhe rest. According to the above partition, the transition
matrix is written as

1 0 --- O
1 0O --- 0
I 0
P= 1 0 Oz[s T]
* ES
Then N
pn _ I 0 _ | 0
S T S, T

whereS; = S andS,, = S,_1 + T™!S. To avoid inessential tediousness we assume the following condition
(C1) Foranyi € Sp there existj € Sy andn > 1 such that"); > 0.

In other words, the Markov chain starting frane Sy has a positive probability of absorption. Sirges finite
by assumption, thain (C1) is chosen independently iof So. Hence (C1) is equivalent to the following

(C2) There existN > 1 such that for any € S there existj € S, with (PN);; > 0.
Lemma 5.2.1 Notations and assumptions being as above, li;iT" = 0.

Proof We see from the obvious relation
1= (Y= > (PY) + D (P
jeS j€So j€Sa

and condition (C2) that
PV <1l ieS.

i€So
Note that fori, j € So we have PN);; = (TN);;. We choose& < 1 such that
Z(TN)”- <6<l ieSo.
j€So
Now leti € Sp andn > N. We see that
D= D M= DT M D TG <6 ) (T M =0 > (T,
j€So j,keSo keSo j€So keSo j€So

Repeating this procedure, we have

Z(Tn)ij <54 Z(Tn_kN)ij < 5KZ(Pn_kN)ij < 5k,

j€So j€So jesS
where 0< n— kN < N. Therefore, )
lim jeZSO(T )ij =0,
from which we have lim.,..(T");; = 0 for alli, j € So. |
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Remark 5.2.2 It is shown that every staies Sy is transient.

Theorem 5.2.3 Let g = [a B] be the initial distribution (according t6 = S, U Sp). Then the limit distribution
is given by
[@ + S 0], where S, =(1-T)!s.

Proof The limit distribution is given by
lim 7oP" = i S Sy BT"
im 7oP" = Jimfa fl|g, | = fmle+ S AT')

We see from Lemma 5.2.1 that
lim gT" = 0.

n—oo

On the other hand, sin&®, = S,_1 + T™ 1S we have

Sh=(+T+T?+...+T"Hs

and
(I -T)Sh=(-T"S.
Hence
lim S, = lim( -T) (1 -TNS=(-T)!s,
nN—oo n—oo
which shows the result. |

Example 5.2.4 Consider the Markov chain given by the transition diagram, which is a random walk with ab-

sorbing barriers.
p p
(o W
q q

The transition matrix is given by

o (1 O 19 0 10 p
p‘[S T}’ S‘[O p}’ T‘[q 0]‘
0

Qo O
O O oo

0
1
0
p
Then

1-pgla® P
Suppose that the initial distribution is given hy = [a 87y 6]. Then the limit distribution is

Sw = (1 —T)-lszL[q pz]

qy + g6 PPy + pé
a+ +
1-pq " 1-pg
In particular, if the Markov chain starts at the state 3, setting [0 0 1 0], we obtain the limit distribution
q p? ]
— 0 0|,
[1 -pg 1-pq

09

which means that the Markov chain is absorbed in the states 1 or 2 at the raifo
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Problem 13 Following Example 5.2.4, study the Markov chain given by the following transition diagram, where
p+qg=1.

R LI O

5.3 Gambler’'s Ruin

We consider a random walk with absorbing barriers Atand B, whereA > 0 andB > 0. This is a Markov
chain on the state spae= {-A,-A+1,..., B - 1, B} with the transition diagram as follows:

1 D D D p 1
o O O OEROW
—
q q q q
We are interested in the absorbing probability, i.e.,

R=P(X,=—-Aforsomen=12,...) = P[ {Xn = —A}],

n=1
S =P(X, = Bforsomen=1,2,...) = P(U{xn = B}].
n=1

Note that the events in the right-hand sides are not the unions of disjoint events.
A sample path is shown in the following picture:

-A

A key idea is to introduce a similar random walk startingatA < k < B, which is denoted bx®. Then
the original one isX, = X{. Let R, andS, be the probabilities that the random wadf’ is absorbed atA and
B, respectively. We wish to finR = Ry andS = S,.

Lemma 5.3.1 {Ry;, —A < k < B} fulfills the following difference equation:
R« = pPRa1 + gRe1, Ra=1, Rg =0. (5.6)
Similarly, {Sx;, —A < k < B} fulfills the following difference equation:

Sk = PSks1 + 0Sk-1, S_A=0, Sg=1 (5.7)

26



Theorem 5.3.2Let A > 1 andB > 1. Let{X;} be the random walk with absorbing barriers-@&andB, and with
right-move probabilityp and left-move probabilitg (p + g = 1). Then the probabilities théX} is absorbed at
the barriers are given by

(a/p)* - (a/p)**®

. P#0q,
P(Xn = —Afor somen) = Bl_ (a/p)A+B .
A+B’ P=a=5.
1-(a/p?
, P#0q
P(X, = Bfor somen) = { 1 '—A(Q/IO)A+B
A+B’ p=4=3-

In particular, the random walk is absorbed at the barriers at probability 1.

An interpretation of Theorem 5.3.2 gives the solution toghenbler’s ruin problem Two players A and B
toss a fair coin by turns. LeA andB be their allotted points when the game starts. They exchange 1 point after
each trial. This game is over when one of the players loses all the allotted points and the other Baisints.
We are interested in the probability of each player’s win. For eaelD defineX, in such a way that the allotted
point of A at timen is given byA + X,,. Then{X,} becomes a random walk with absorbing barrier AtandB.
It then follows from Theorem 5.3.2 that the winning probability of A and B are given by

A B
A+B’ I:>(B)_A+B’
respectively. As a result, they are proportional to the initial allotted points. For example;  andB = 100,
we haveP(A) = 1/101 andP(B) = 100/101, which sounds that almost no chance of A's win.

In a fair bet the recurrence is guaranteed by Theorem 6.1.11. Even if one has much more losses than wins,
continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited money.
(5.8) tells the &ect of the barrier.

P(A) = (5.8)

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 5.3.3 Let {X,,} be the same as in Theorem 5.3.2. The expected life time of this random walk until
absorption is given by
A A+B 1-(gq/p)”
q-p d-p 1l-(a/pAB’ L

AB, p=q:§.

Proof Let Yy be the life time of a random walk starting from the positiofr-A < k < B) at timen = O until
absorption. In other words,
Yi=min{j > 0; X9 =-A %7k X =B).

We wish to computé&(Yp). We see by definition that
E(Y_a) = E(Yg) = 0. (5.9)

P#q

For—-A < k < Bwe have .
E(Y) = > jP(Yic= ). (5.10)
j=1
In a similar manner as in the proof of Theorem 5.3.2 we note that
P(Yk=]) = pPP(Vkr1 = J = 1)+ qP(Yier = j - 1). (5.11)
Inserting (5.11) into (5.10), we obtain

E(V)=p) iPMei=j-1)+q) PMca=j-1)
j=1

j =1
= PE(Yk+1) + QE(Yk-1) + 1. (5.12)
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Thus, E(Yy) is the solution to the dierence equation (5.12) with boundary condition (5.9). Thikedénce
equation is solved in a standard manner and we find

A+k A+B1-(q/p™* 0%
E(Yo=4{9-P d-pl-(a/p)*®t’ ’
(A+K)(B-K), pP=q=

NI

Settingk = 0, we obtain the result. |

If p=qg=1/2andA =1, B =100, the expected life time KB = 100. The gambler A is much inferior to B
in the amount of funds (as we have seen already, the probability of A's win isju8iL}, however, the expected
life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps this is because
the gambler cannot quit gambling.

Problem 14 (A bold gambler) In each game a gambler wins the dollars he bets with probalplignd loses
with probabilityq = 1 — p. The goal of the gambler is to get 5 dollars. His strategy is to bet tfierdihce
between 5 dollars and what he has. Kgthe the amount he has just afteh bet.

q p p p

(B g ¥ d 3 B

q q q P

(1) Analyze the Markov chaifiX,} with initial condition Xy = 1.

(2) Compare with the steady gambler discussed in this section, who bets just 1 dollar in each game.
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6 Topics in Random Walks

6.1 The Catalan Number

The Catalan number is a famous number known in combinatoricse(ieug@harles Catalan, 1814-1894).
Richard P. Stanley (MIT) collected many appearances of the Catalan numbers (R. P. Stanley: “Catalan Numbers,
Cambridge University Press, 2015; httpww-math.mit.edyrstanedq).

We start with the definition. Let > 1 and consider a sequeneg, ¢, . .., €,) of 1, that is, an element of
{—1, 1}". This sequence is calledGatalan pathf

e >0

e+e>0
et+e+--+e-1=>0
a+e+--+e-1+6=0.
It is apparent that there is no Catalan path of odd length.

Definition 6.1.1 The nth Catalan numbeiis defined to be the number of Catalan paths of lengtraizd is
denoted byC,,. For convenience we s€; = 1.

The first Catalan numbers for=0,1,2, 3, ... are
1,1,2,5,14, 42 132 429 14304862 1679658786 208012 7429002674440(...

We will derive a concise expression for the Catalan numbers by using a graphical representation. Gonsider
grid with the bottom-left corner being given the coordinatg§0 With each sequence;(es, . . ., ) consisting
of +1 we associate vectors

ek:+1<—>uk:(1,0) ek:—1<—>uk:(0,1)

and consider a polygonal line connecting
(0,0), U, Up+Up, ..., Up+Up+ -+ Uy, U + Uz + -+ - + Up_1 + Up
inorder. Ife; + &2 + -+ - + -1 + & = 0, the final vertex becomes
U+ Up+ -+ Upg + Uy = (N, N)
so that the obtained polygonal line is a shortest path connectjiy &dd 6, n) in the grid.

Lemma 6.1.2 There is a one-to-one correspondence between the Catalan paths of leragtti the shortest
paths connecting (@) and (, n) which do not pass the upper region of the diaggnalx.

Theorem 6.1.3 (Catalan number)

(2n)!

Cn= mrom

n=0,12,...,

Proof Forn = 0itis apparent by the definition & 1. Suppos@& > 1. We see from Fig. 6.1 that

Co- 2n 2n)  (2n)!
n_(n)_(n+1)_n!(n+1)!’

as desired. |
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(m,m)

>

An alternative representation of the Catalan paths: Consider irythéane a polygonal line connecting the
vertices:

(0,0), (L&), Qer+e),....Nn-La+e+ -+e-1), (e +e+ -+ 61+ 6)

in order. Then, there is a one-to-one correspondence between the Catalan paths ofrlergthtz sample
paths of a random walk starting O at time O and returning O at timst&ying always in the half line [@0).
Therefore,

Lemma 6.1.4 Letn > 1. The number of sample paths of a random walk starting 0 at time 0 and returning O at
time 2n staying always in the half line [@-c0) is the Catalan numbeg,,.

Let {X,} be a random walk o with right-move probabilityp and left-move probabilityg = 1 — p. We
assume that the random walk starts at the origin,Xg= 0. Since the random walker returns to the origin only
after even steps, the return probability is given by

R= P(O{th = 0}]. (6.1)
n=1

It is important to note that);”,{Xon = 0} is not the sum of disjoint events.
Let pon be the probability that the random walker is found at the origin at timehat is,

_ L [2n 3 @n)! .. B
p2n_P(X2n_O)—(n)p”q”—mpq, n=12,.... (6.2)
For convenience set
po =1

Note that the right hand side of (6.1) is not the sunpgf Instead, we need to consider the probability that the
random walker returns to the origin aftan &eps but not before:

Qn=P(X2#0, X4#0,....Xn2#0, Xon=0) n=12...
Notice the essential flerence betweep,, andggn.

Definition 6.1.5 We set
T=inf{n>1; X, =0}, (6.3)

whereT = +co for {n > 1; X, = 0} = 0. We callT thefirst hitting timeto the origin. (Strictly speakindl is
not a random variable according to our definition in Chapter 1. It is, however, commonly accepted that a random
variable takes values in-fo, +00) U {£o0}.)
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By definition we have
P(T =2n) = gz (6.4)

and therefore, the return probability is given by

00

R=P(T < ) = Z Oon- (6.5)

n=1

We will calculateP(T = 2n) and therebyR.

Theorem 6.1.6 Let {X,} be the random walk starting from 0 with right-move probabifitand left-move prob-
ability g. Let T be the first hitting-time to 0. Then

Oon = P(T = 2n) = 2C,_1(pq)", n=12,....
Proof Obviously, we have

Oon=P(Xo#0, X4#0, ..., Xn2#0, Xon =0)
= P(X1>O, X2>0, X3>0, ...,X2n_2>0, X2n_1>0, X2n=0)
+P(X1<0, X<0, X3<0,...,%Xn2<0, Xon-1 <0, Xon =0).

In view of Fig. 6.1 we see that
P(X]_ >0, Xo0>0, X3>0,...,X02>0, Xon_1 >0, X5 = 0) =pX Cn_l(pC])n_l X Q.

Then the result is immediate. |

2n-2

Figure 6.1: Calculating?(X; > 0, X >0, ..., Xon-1 > 0, Xon = 0)

Remark 6.1.7 There are some noticeable relations betwiger and{qzn}.

2
O2n = %:I P2n-2, nx1,

O2on = 4P Pn-2 — Pon s n>1
Lemma 6.1.8 The generating function of the Catalan numb@gss given by

1-4z

(o] 1_
f(2 = C'= —X——
é 2z

(6.6)
Proof Problem 17. |

Theorem 6.1.9 Let R be the probability that a random walker starting from the origin returns to the origin in
finite time. Then we have
R=1-Ip-ql
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Proof We know from Theorem 6.1.6 that the return probabiRtis given by

R= 2 P(T = 2n) = gzcn_l(DQ)W

Using the generating function of the Catalan numbers in Lemma 6.1.8, we obtain

S 1- JI—4pg
R=2pq. Co(pa)" = 2pax —% " = 1 I~ 4pg.

n=0 2pq

Sincep + g = 1 we have

V1-4pg= \/(p+q)2—4pq= \/(|0—q)2 =lp-dl

which completes the proof. |

Definition 6.1.10 A random walk is calledecurrentif R = 1, otherwise it is callettransient

Theorem 6.1.11The one-dimensional random walk is recurrent if and onlp i q = 1/2 (isotropic). It is
transient if and only ifp # q.

When a random walk is recurrent, it is meaningful to consider the mean recurrent time defined by
E(T) = > 2nP(T =2n) = " 2ncpn,
n=1 n=1

whereT is the first hitting time to the origin.

Theorem 6.1.12 (Null recurrence) The mean recurrent time of the isotropic, one-dimensional random walk is
infinity: E[T] = +oo.

Proof In view of Theorem 6.1.6, setting= q = 1/2, we obtain

(&) 1 n (o) 1 n
EM)=4) nCn_l(Z) =Mn+ 1)C”(Z) : 6.7)
n=1 n=0
On the other hand, the generating function of the Catalan numbers is given by

S 1-Vi=4
Q)= Co?'= TZ
n=0

Then .
2z1(2) = ZZan"*l =1-+V1-4z
n=0
and diferentiating byz, we have

2
1-4z

2(2f(2) = 2i(n +1)Cn?" =
n=0

Lettingz — 1/4 we have
> 1y\" .
2;)(n + 1)Cn(Z) = lim, = +eo

and henc&[T] = +oo as desired, see also Remark 6.1.13. |
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Remark 6.1.13 Leta, > 0forn=10,1,2,... and consider the power series:

f(x) = i aX".
n=0

If the radius of convergence of the above power seriesliswe have

-3 a

including the case ok = . The verification is by elementary calculus based on the following two inequalities:
N
liminf f(x) > N>1
x—1-0 ( ) - ;) an, -7

f(x)sZan, x< 1
n=0

Problem 15 Find the Catalan numbeg, in the following steps.

n
(1) Prove thatC, = Z C«_1Cn_k by using graphical expressions.
k=1

(2) Using (1), prove that the generating function of the Catalan nunt§grs- Z C,Z" verifies
n=0

f(2) - 1=2Zf@)>%

(3) Find f(2).
(4) Using Taylor expansion df(2) obtained in (3), findC,.

Problem 16 Let {X,} be a random walk starting from 0 with right-mopeand left-movey. Show that

P(X120,X2>0,..., %01 >0)
n-1
= P(Xl > O,Xz > O,...,in > O): 1_qZCk(DQ)k
k=0
forn=1,2,..., whereCy is the Catalan number. Using this result, show next that

1_9’ p>q’
PXp=0foralln>1) = p

0, p<q

Problem 17 (Lemma 6.1.8)(1) Using the well-known formula for binomial expansion:

00

@+x7=> (C;)x”, X <1,

n=0
prove that
Z(Zn)z“ - < %.
—\n 1-4z
(2) LetCp be the Catalan number given by
(2! B
Cn—m, n—0,1,2,....
Prove that
= 1-v1-4z 1
Q.G =———. <3
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Problem 18 In them x (m+ n) grid consider a shortest path connectingd)0and -+ n, m) which do not pass
the region upper than the line connectingdDand m, m). Show that the number of such paths is given by

2m+n)l(n+1)
mi(m+n+1)!

6.2 The Law of Long Lead

Let us consider an isotropic random wél,}, namely, lettingZ,} be the Bernoulli trials such that

o

P(Zy = +1) = P(Zy = -1) =

NI =

we set n
Xo=0, X,= Z Z.
k=1

Fig. 6.2 shows sample paths X§, X1, X, ..., Xi0000 We notice that these are just two examples among many
different patterns.

150 150
50 50 A w
0 W 0 ! A

5000 10000 5000 10000

50 50 V

-100 100

EJ

Figure 6.2: Sample paths of a random walk up to time 10000

By the law of large numbers we know thal occur almost 5000 times during 10000 coin toss. In fact, it
follows from the de Moivre—Laplace theorem (more generally, central limit theorem) that

1 n

P
obeysN(0, 1) in the limit asn — oo. Hence for a large we have approximatel), ~ N(0,n). For example,
P(Xnl £ 24/n) =~ 95.4% for a largen, so Xigooo lies in the intervak-200 at probability 951%. In this case:1
occurs 500@: 100 times. In other words, along the polygonal line the up-move and down-move occur almost the
same times, however, the polygonal line stays more often in the upper or lower half region.

We say that a random walk stays in the positive region in the time intagvad L] if X > 0 andX;,; > O.
Similarly, we say that a random walk stays in the negative region in the time intérval 1] if X; < 0 and
Xi;1 <0. Let
W(2k|2n), n=12..., k=01,...,n,

be the probability that the total time of the random walk staying in the positive region durigj j8 2k.
Remind that in this section we only consider an isotropic random wadk q§ = 1/2). Forn = 1 we have

1% 1 1% 1
W(2]2) = 2 x (E) =5 W(0|2) = 2 x (5) =5

Similarly, we have
4

W(4/4) = 6x(%)4, W(214) = 4x(%) . W(0l4) = GX(%)A,

1\° 1\° 1\° 1\°
W(6|6)=20><(§) , W(4|6)=12><(§) . W(26) = 12><(§) , W(0|6)=20><(§) ,
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For generalW(2k|2n) we have the following somehow surprisingly simple result.

2 4 6
Theorem 6.2.1Forn=1,2,... it holds that
2k\(2n — 2k\/ 1\
W(2k|2n)_(k)( . )(5) . k=01...n (6.8)
or equivalently,
WI(2K|2n) = PaxPzn-2k - (6.9)

That (6.8) and (6.9) are equivalent follows immediately from

2n
Do = P(Xon = 0) = (Zn”)(%) . n=012....

The proof of Theorem 6.2.1 is, however, not so simple as is expected by a nice expression (6.9). One would
expect a very tricky simple observation leading the result. The complete proof is found in [Feller]. As before,
we set

Ozn = P(T = 2n), n=12,....

Observing that

1)2” 1

Gon = 2P(Xe > 0, X5 > 0,..., Xon1 > O, Xon = 0) = zcn_l(E = = P2,

one can get an obvious relation:
X 02 S 02
W(2k2n) = » L W(2k - 2r]2n -2 = W(2k|2n - 2r).
(@Kin) = D 75 WAk —2r2n =20 + ), 5 Wiakian 20

The assertion is then proved by inductionion.
We will find a good approximation fa/(2k|2n) whenn — . For a fixedn let Hy, be the total time that the

random walker stays in the positive region up to tinme R is convenient to consider the rat+8f]—” rather than
Ho, it self. As we have already obtained

v 2N
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for 0 < a < 1 we see that

P(a < % < b) = i W(2k|2n)

k=an

= ;X[an,bn] (KW(2K[2n) = ;X[ab](lﬁ()(ik)(Zz } ik)(%)z

wherey (X) is the indicator function of an interva] that is, takes 1 fok € | and 0 otherwise. Using the Stirling

formula: .
n' ~ VZnn(g) s asn — oo,
we obtain
2K (})2" 1
k/\2 K
Then,
Hon . k 1
P<a§ - = b) ~ X[a.b](_) ZX[ab]( ) -
2n — n k(l ) n

1 dx
X = .
- fo Xian () = fa n\/ix(l— %)
Definition 6.2.2 The probability distribution defined by the density function:
dx

e O<x<1,
7VX(1-X)
is called thearcsine law The distribution function is given by
f = arcsinyx = }+} arcsin(x - 1).
\/t(l T 2
4 |
3 4
2
1
0 1

o H :
Theorem 6.2.3 The distribution 01‘—2nn converges weakly to the arcsine law:

IlmP(a<—<b <a<b<l

M=
For example,
2 .
F(0.9) = - arcsinvV0.9 ~ 0.795

Namely, during many ganes the probability that the ratio of winning time (or happy time) exceeds 90% is 1
F(0.9) = 0.205, which would be much larger than one expects by intuition.
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7 Galton-Watson Branching Processes

Consider a simplified family tree where each individual gives birthffspsing (children) and dies. The
number of d¢fsprings is random. We are interested in whether the family survives or not. A fundamental model
was proposed by F. Galton in 1873 and basic properties were derived by Galton and Watson in their joint paper
in the next year. The name “Galton-Watson branching process” is quite common in literatures after their paper,
but it would be more fair to refer to it as “BGW process.” In facérige-Jules Bienayistudied the same model
independently already in 1845.

—

—
—
<§:

1. R.B.F Y (S - M2 —3R): L3 7 HHD SR FHEERE TV, & a7 v —H, 2001.
2. K. B. Athreya and P. E. Ney: Branching Processes, Dover 2004 (original version, Springer 1972)

References

7.1 Definition

Let X, be the number of individuals of thth generation. ThefX,; n=0,1,2,...} becomes a discrete-time
stochasic process. We assume that the number of children born from each individual obeys a common probability
distribution and is independent of individuals and of generation. Under this assugditjdrecomes a Markov
chain.

Let us obtain the transition probability. L¥tbe the number of children born from an individual and set

P(Y =K) = p. k=0,1,2,....

The sequencépo, p1, P2, . . - } describes the distribution of the number of children born from an individual. In
fact, what we need is the condition

o

m=0, > p=1

k=0
We refer tof{ po, p1, . . . } as theoffspring distribution LetYs, Ys, ... be independent identically distributed random
variables, of which the distribution is the sameYasThen, we define the transition probability by

i
p(i,j):P(Xn+1=j|Xn=i)=P[ZYk:j], i>1, =0,
k=1

and
0, j>1,

p(o,j):{1 o
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Clearly, the state 0 is an absorbing one. The above Markov ¢Kgjrover the state spag8, 1,2,...} is called
the Galton-Watson branching procegsth offspring distributionpy; k=0,1,2,...}.

For simplicity we assume thaty = 1. Whenpg + p1 = 1, the famility tree is reduced to just a path without
branching so the situation is much simpler (Problem 19). We will focus on the case where

Po+pPr<l p2<l, ..., <l

In the next section on we will always assume the above conditions.

Problem 19 (One-child policy) Consider the Galton-Watson branching process wiibpoing distribution sat-
isfying po + p1 = 1. Calculate the probabilities

Q=P =0), q@=PX#0,X2=0), ..., oh=PX1#0,...,X-1#0,X,=0),

and find the extinction probability

P= (U{Xn = 0}) = P(Xn = 0 occurs for some > 1).

7.2 Generating Functions

Let {X,} be the Galton-Watson branching process wiffsgring distribution{px; k = 0,1,2,...}. Let
p(i, j) = P(Xni1 = jIXn = 1) be the transition probability. We assume that= 1.
Define the generating function of thé&spring distribution by

(9= mss (7.1)
k=0

The series in the right-hand side convergegddiox 1. We set
fo(s) =s fi(s) = f(9), fa(s) = f(fa-1(9).

Lemma7.2.1

0o

Zp(i,j)sj =[f(9]", i=12.... (7.2)

=0
Proof By definition,

Pl i) =P(Yi+-+Yi=)= > PMi=ky...Yi=k)
kptorki=
k1>0.,....ki>0

SinceYy,...,Y; are independent, we have

pi. )= >, PMi=k)--PM=k)= > pg b

Kyt +ki=] kyt-tki=]
k1>0,....ki>0 k1>0,....k>0
Hence,
dop i =D > Paps
j=0 j=0 kit-tki=]
ki1>0.....ki>0
k=0 ki=0
=[f(s)',
which proves the assertion. |
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Lemma 7.2.2 Let pq(i, j) be then-step transition probability of the Galton-Watson branching process. We have
Dl DS =), i=12.... (7.3)
=0

Proof We prove the assertion by induction an First note thatp(i, j) = p(i, j) and fi(s) = f(s) by
definition. Forn = 1 we need to show that

00

Zp(i,j)sj =[f(9), i=12..., (7.4)

j=0

Which was shown in Lemma 7.2.1. Suppose that1 and the claim (7.3) is valid up t@ Using the Chapman-
Kolmogorov identity, we see that

D Pnali, ) =7 " pli. Kipa(k, i)'
j=0 i=0 k=0
Since

PN CHERCIN
j=0

by assumption of induction, we obtain
D Poalis DS = ) pli K fa(9]
=0 k=0

The right-hand side coincides with (7.4) whexis replaced byf,(s). Consequently, we come to
S Brealis DS = [ = a9
j=0

which proves the claim fon + 1. |

SinceXy =1,
P(xn = J) = P(Xn = J|XO = l) = pn(l, J)

In particular,
P(X1=])=P(X1=jlXo=1)=pu(L, j) = p(L }) = p;.

Theorem 7.2.3 Assume that the mean value of th@spring distribution is finite:

m= Z kpc < co.
k=0
Then we have
E[Xn] = m".
Proof Differentiating (7.1), we obtain
(9= kpst  l8<l (7.5)
k=0

Lettings — 1 -0, we have
lim f'(s)=m
s—1-0

On the other hand, settirig= 1 in (7.3), we have

D paL )s! = fa(9) = faa(f(9)). (7.6)
i=0
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Differentiating both sides, we come to
fa(9) = D" ipa(L )7 = 14 (F(9)F(9). (7.7)
=0
Lettings — 1 -0, we have
Jim fi(9) = ; pa(L]) = Jim £7,(f(9) fim /(9 =m lim f; (9.
Therefore,
lim f/(s)=m",
s—1-0

which means that

E(X) = ) iPOa = J) = ) jpa(L, ) = 1.
j=0 j=0

In conclusion, the mean value of the number of individuals inrtilegenerationE(X,), decreases and
converges to 0 i < 1 and diverges to the infinity ih > 1, asn — . It stays at a constantih = 1. We are
thus suggested that extinction of the family occurs wimen 1.

Problem 20 Assume that the variance of théfspring distribution is finite:V[Y] = 02 < co. By similar
argument as in Theorem 7.2.3, prove that

o?m(m" - 1)

V[xn]={T’ m* L

no2, m= 1

7.3 Extinction Probability

The event{X, = 0} means that the family died out until tinéh generation. So

q= P[O{xn - 0})

n=1

is the probability of extinction of the family. Note that the events in the right-hand side is not mutually exclusive
but
X1=0c{Xo=0c---c{Xp=0}c....

Therefore, it holds that
g= r!im P(X, = 0). (7.8)

If q = 1, this family almost surely dies out in some generationg K 1, the survival probability is positive
1-qg> 0. We are interested in whethge 1 or not.

Lemma 7.3.1 Let f(s) be the generating function of thefspring distribution, and sef,(s) = f(f,-1(9) as
before. Then we have
g= r!im fn(0).

Thereforeg satisfies the equation:
q= f(a). (7.9)
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Proof It follows from Lemma 7.2.2 that
fa(9) = > pulL. J)s.
=0
Hence,
fa(0) = pn(1,0) = P(X, = 0Xo = 1) = P(X, = 0),
where the last identity is by the assumptionXgf= 1. The assertion is now straightforward by combining (7.8).

The second assertion follows sintgs) is a continuous function on [@].

Lemma 7.3.2 Assume that thefEspring distribution satisfies the conditions:

Ppo+p1<l p2<1 ..., k<1l
Then the generating functiof(t) verifies the following properties.
(1) f(9)isincreasing,i.ef(s) < f(s)for0< s <5 < 1.

(2) f(9)is strictly convex, i.e.,if(k 5, < 5 <1and 0< 6 < 1 we have

f(@s1+ (1-0)s) < 0f(s1) + (1 - 0)f(s2).

Proof (1) is apparent since the diieient of the power serie(s) is non-negative. (2) follows b{”’(s) > 0.

Lemma 7.3.3 (1) If m< 1, we havef(s) > sforO< s< 1.

(2) If m> 1, there exists a uniquesuch that < s< 1 andf(s) = s.
Lemma 7.3.4 f1(0) < f2(0) < --- = 0.

Theorem 7.3.5 The extinction probabilityg of the Galton-Watson branching process as above coincides with
the smallest such that
s= f(9), 0<s<1l

Moreover, ifm < 1 we haveq = 1, and ifm > 1 we havey < 1.

The Galton-Watson branching process is caliaticritical critical and supercriticalif m < 1, m = 1 and
m > 1, respectively. The survival is determined only by the mean valw# the dfspring distribution. The
situation changes dramatically mit= 1 and, following the terminology of statistical physics, we calpliase
transition

Problem 21 Leth, pbe constant numbers such that 0, 0< p < 1 andb+ p < 1. For the dfspring distribution
given by

P = bpl, k=1,2,...,
Po=1- Z Pk,
k=1

find the generating functiof(s). Moreover, settingn = 1, find f,(s).
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8 Poisson Processes

Let T c R be an interval. A family of random variabl¢X(t); t € T} is called acontinuous time stochastic
process We often consider = [0, 1] andT = [0, o). As X(t) is a random variable for eadke T, it has another
variablew € Q. When we need to explicitly refer to, we write X(t, w) or X;(w). For fixedw € Q, the function

t— X(t, w)

is called asample pattof the stochastic proce$X(t)}. It is the central idea of stochastic processes that a random
evolution in the real world is expressed by a single sample path selected randomly from all the possible sample
paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian motion
(Wiener process). In the recent study of mathematical physics and mathematical finance, a kind of composition
of these two processes, called thevly process (or additive process), has received much attention.

8.1 Heuristic Introduction

Let us imagine that the number of objects changes as time goes on. The numbertds tinoelelled by a
random variablé; and we wish to construct a stochastic prodeggs In this caseX; takes values if0, 1, 2,...}.
In general, such a stochastic process is calledumting process
There are many dierent variations of randomness and so wide variations of counting processes. We below
consider the simple situation as follows: We focus an e#enthich occurs repeatedly at random as time goes
on. For example,
(i) alert of receiving an e-mail;
(ii) telephone call received a call center;
(i) passengers making a queue at a bus stop;
(iv) customers visiting a shop;
(v) occurrence of defect of a machine;
(vi) traffic accident at a corner;
(vii) radiation from an atom.

Let fix a time origin ag = 0. We count the number of occurrence of the eemturing the time interval [(X]
and denote it byK;. Letty, to, ... be the time wher occurs, see Fig. 8.1.

Figure 8.1: Recording when the evdhbccurs

There are two quantities which we measure.
(i) The number of occurrence & up to timet, say,X;. Then{X;; t > 0} becomes a counting process.
(ii) The waiting time of thenth occurrence after then(~ 1)th occurrence, sayi,. HereT; is defined to be

the waiting time of the first occurrence &f after starting the observation. Théh,; n = 1,2,...}is a
sequence of random variables taking values jrdqp

We will introduce heuristically a stochastic procg¥s} from the viewpoint of (i). It is convenient to start
with discrete time approximation. Fbx> 0 and divide the time interval [@] into n small intervals. Let

At = =
n

be the length of the small intervals and number from the time origin in order.
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We assume the following conditions on the occurrence of the évent

(1) There exists a constaat>- 0 such that

P(E occurs just once in a small time interval of lengtt) = 1At + o(At),
P(E does not occur in a mall time interval of lengil) = 1 — AAt + o(At),
P(E occurs more than once in a small time interval of lenfsth= o(At).

(2) Occurrence oE in disjoint time intervals is independent.

Some more accounts. Let us imagine the alert of receiving an e-mail. That

P(E occurs more than once in a small time interval of leryth= o(At)
means that two occurrences of the even$ always separated. That

P(E occurs just once in a small time interval of lengtt) = 1At + o(At)

means that whent is small the probability of occurrence &fin a time interval is proportional to the length of
the time interval. We understand from (2) that occurrence ixfindependent of the past occurrence.

Let Z; denote the number of occurrence of the evein theith time interval. Therzy, 7o, ..., Z, become a
sequence of independent random variables with an identical distribution such that

P(Z =0)=1-AAt+0(At),  P(Z =1)=AAt+0(At),  P(Z > 2) = o(Al).

The number of occurrence & during the time interval [(X] is given by

n
Zzi :
i=1
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The lengthAt is introduced for a technical reason and is not essential in the probability model so Adttind@

or equivalentlyn — oo, we defineX; by
n

X = lim Zzi. (8.1)

At—0
=1

Although the limit does require matyhematical justification, we obtain heuristically a continuous time stochastic
procesgX;}, which gives the number of occurrence of the evénip to timet. This is called &oisson process
with parameten > 0. A Poisson process belongs to the calss of continuous time Marokov chains.

Theorem 8.1.1 A Poisson procesiX; ; t > 0} satisfies the following properties:

(1) (counting process); takes valesinf0,1,2,...};

(2) X0 =0;

(3) (monotone increasindys < X; for0 < s<t;

(4) (independent increment) if&t; <t, < --- < ty, then

X, = Xiys XKeg =Xty ooy X = Xty

are independent;
(5) (stationarity) for 0< s < t andh > 0, the distributions oK, — Xsin andX; — Xs are identical,
(6) there exists a constaat> 0 such that

P(X,=1) = dh+o(h),  P(X = 2) = o(h).

(7) In that caseX; obeys the Poisson distribution with parameter

Proof (1) SinceX; obeys the Poisson distribution with parametgiit takes values in non-negative integers
almost surely.

(2) Obvious by definition.

(3) Lets = mAt, t = nAt, m < n. Then we have obviously

m n
%= lim 2 s fm ) 2= %,

(4) Supposé; = mAt, ..., t = ngAt with n; < --- < ng. Then we have

ny ny ny
X =X, = Im 3 Z - lim 37, =lm " Z.
T Ao s Z A0 £ ' A0, '

i=ng+1

In other words X;, — X, is the sum o%’s corresponding to the small time intervals containedirt{). Hence,
Xi, = Xty s -+ Xy — X, @re the sums afj’s and there is no comman appearing in the summands. Sin2g
are independent, so akg, — Xy, , ..., X — X;-
(5) SinceXi+h — Xs+h andX; — Xs are defined from the sums @f's and the numbers of the terms coincide.
Therefore the distributions are the same.
(6) Recall thafxXy, obeys the Poisson distribution with parametler Hence,
PXh=0)=e"=1-ah+---=1-ah+o(h),
P(Xn = 1) = Ahe™" = Ah(1 - th+...) = Ah + o(h).
Therefore we have
P(Xn > 2) = 1 - P(Xy = 0) — P(X, = 1) = o(h).
(7) We note that

P[zn: Z = k] = (E)(/IAt)k(l — A" 4+ o(Ab).
i=1
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In view of At = t/n we letn tend to the infinity and obtain

PO% =10 = i,

(A< nin-1)...(n—k+1) A"k
" = (1-5) =5

This proves the assertion. |

Remark 8.1.2 The essence of the above argument in (7) isRbisson’s law of small numberghich says that
the binomial distributiorB(n, p) is approximated by Poisson distribution with paramater np whenn is large
and p is small. The following table shows the distributionsB(fL0Q,0.02) and the Poisson distribution with
parameten = 2.

k 0 1 2 3 4 5 6
Binomial || 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114
Poisson || 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120

Example 8.1.3 The average number of customers visiting a certain service gate is two per minute. Using the
Poisson model, calculate the following probabilities.

(1) The probability that no customer visits during the first two minutes after the gate opens.
(2) The probability that no customer visits during a time interval of two minutes.

(3) The probability that no customer visits during the first two minutes after the gate opens and that two
customers visit during the next one minute.

Let X; be the number of visitors up to timeBy assumptiorfX;} is a Poisson process with parametes 2.
(1) We need to calculate(X, = 0). SinceX, obeys the Poisson distribution with parameter=24, we have

P,
P(X;=0)= 5 e~ 0018

(2) Suppose that the time interval start§afhen the probability under discussion is giverR{¥,+2— X, =
0). By stationarity we have

P(Xig+2 — Xt = 0) = P(Xz — Xg = 0) = P(X; = 0),

which coincides with (1).
(3) We need calculate the probabili®X, = 0, X3 — X, = 2). SinceX,; andX3 — X, are independent,

P(Xo = 0, X3 — Xo = 2) = P(Xz = 0)P(X5 — X = 2).

By stationarity we have
40 22
= P(Xo = 0)P(Xy = 2) = o e x o e 2 ~ 0.00496

Problem 22 Let {X;} be a Poisson process. Show that

k n-k
P(xs=k|xt=n)=(2)(§) (-3 k=01

for 0 < s < t. Next give an intuitive explanation of the above formula.

Problem 23 The average number of arrivals of e-mails is 216 per one day. Using the Poisson model, calculate
the following probabilities.

(1) The probability that no mail arrives during 10 minutes.
(2) The probability that 4 mails arrive during 30 minutes and 8 mails arrive during the next 30 minutes.
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8.2 Waiting Time

Let {X;; t > O} be a Poisson process with parameteBy definitionXy = 0 andX; increases by one as time
passes. Recall that the Poisson process counts the number of events occurring up. teitsheve set

Ty =inf{t>0; X > 1. (8.2)

This is the waiting time for the first occurrence of the event Let T, be the waiting time for the second
occurrence of the evei after the first occurrence, i.e.,

To=infit>0; X >2}-T;.
In a similar fashion, we set

Ta=inf{t>0; X >n}— T, n=23,.... (8.3)

Theorem 8.2.1 Let {X;} be a Poisson process with parameteDefine the waiting timd, by (8.2) and (8.3).
Then,{T,; n=1,2,...} becomes a sequence of iid random variables, of which distribution is the exponential
distribution with parametei. In particular, the waiting time for occurence of an event in the Poisson process
obeys the exponential distribution with parameter

Proof Sett = nAt and consider the approximation by refinement of the time interval. Recall that to each
small time interval of lengtiAt a random variabl@; is associated. Then we know that

. . . At\"
P(Ty>0) = im P(Zy =+ = Z, = 0) = fim (1- A" = AntTO(l— F) —eht,

Therefore, t
PMTi<t)=1-e= f de'ds
0

which shows thafl; obeys the exponential distribution with parameterThe distributions ofT,, Ts,... are
similar. |

Remark 8.2.2 Let {X} be a Poisson process with parameterWe know thatE(X;) = A, which means the
average number of occurrence of the event during the unit time interval. Hence, it is expected that the average
waiting time between two occurrences is11 Theorem 8.2.1 says that the waiting time obeys the exponential
distribution with parametet so its mean value is/. Thus, our rough consideration gives the correct answer.

Problem 24 Let {X;} be a Poisson process with parametefThe waiting time fom occurrence of the events
is defined byS,, = Ty + T, + --- + Tn, WhereT, is given in Theorem 8.2.1. Calcula®S, < t) and find the
probability density function o$,. [In general S, obeys a gamma distribution.]

8.3 The Rigorous Definition of Poisson Processes

The “definition” of a Poisson process in (8.1) is intuitive and instructive for modeling random phenomena.
However, strictly speaking, the argument is noffisient to define a stochastic procd®s}. For example, the
probability space®, 7, P) on which{X;} is defined is not at all clear.

We need to start with the waiting timé,}. First we prepare a sequence of iid random variablgs n =
1,2,...}, of which the distribution is the exponential distribution with paramater 0. Here the probability
space Q, ¥, P) is clearly defined. Next we set

So=0, Sh=T1+---+T,, n=12,...,
and fort > 0,
Xe=max{n=0; S, <t}

It is obvious that for each > 0, X; is a random variable defined on the probability spaegr(, P). In other
words,{X;; t > 0} becomes a continuous time stochastic process. This is d&isdon proceswith parameter
A by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 8.1.1.
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9 Queueing Theory

9.1 Modeling Queues

In our daily life, we observe often waiting lines or queues of customers for services. Agner Krarup Erlang
(1878-1929, Danish engineer at the Copenhagen Telephone Exchange) published in 1909 the papertentitled:
Theory of Probabilities and Telephone Conversatjomgich opened the door to the research fieldjofueing
theory Such a queue is modeled in terms of a system consisting of servers and a waiting room. Customers
arriving at the system are served at once if there is an idle server. Otherwise, the customer waits for a vacant
server in a waiting room. After being served, the customer leaves the system.

system

BO~_ O
o O
O=| BO = - O
OOO arrival
mo~" o ||

customers

departure

In most of the geueing models, a customer arrives at random and the service time is also random. So we are
interested in relevant statistics such as
(1) sojourn time (time of a customer staying in the system)
(2) waiting time & sojourn time - service time)
(3) the number of customers in the system
Apparently, many dferent conditions may be introduced for the queueing system. In 1953, David G. Kendall

introduced the so-calleidendall’s notation
A/B/c/K/m/Z
for describing the characteristics of a queuing model, where
A: arrival process,
B: service time distribution,
c: number of servers,
K: number of places in the system (or in the waiting room),

m: calling population,
Z: queue’s discipline or priority order, e.g., FIFO (First In First Out)

The first model analyzed by Erlang in 1909 was M¢D/1 queue in Kendall's notation, wheM means that
arrivals occur according to a Poisson process,[astands for deterministic (i.e., service time is not random but
constant).

Most of queueing models are classified into four categories by the behavior of customers as follows:

(I) Delay models: customers wait in line until they can be served.
Example:M/M/c queue, where
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(i) customers arrive according to a Poisson process withirate
(i) there arec servers and there is an infinite waiting space;
(iif) each customer requires an exponential service time with mg¢an 1
(iv) customers who upon arrival find all servers busy wait in line to be served.

(IN Loss models: customers leave the system when they find all servers busy upon arrival.
Example: Erlang’s loss mod#&ll/G/c/c, where

(i) customers arrive according to a Poisson process withirate
(ii) there arec servers and the capacity of the system is limited tmstomers, i.e., there is no waiting
space;
(iii) each customer requires a generally distributed service time;
(iv) customers who upon arrival find all servers busy are rejected forever.

(1) Retrial models: customers who do not find an idle server upon arrival leave the system only temporarily,
and try to reenter some random time later.
Example: the Palferlang-A queue, where

(i) customers arrive according to a Poisson process withlrate
(ii) there arec servers and there is an infinite waiting space;
(iii) each customer requires an exponential service time with mgan 1
(iv) customers who upon arrival find all servers busy wait in line to be served,;
(v) customers wait in line only an exponentially distributed time with me@(fatience time).

(IV) Abandonment models: customers waiting in line will leave the system before being served after their
patience time has expired.
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9.2 M/M/1Queue
This is the most fundamental model, which satisfies the following conditions:

(i) arrivals occur according to a Poisson process with parameter
(ii) service times obey an exponential distribution with parameter
(iii) arrivals of customers and service times are independent;
(i) the system contains a single server;
(iv) the size of waiting room is infinite;

(v) (FIFO= First In First Out) customers are served from the front of the queue, i.e., according to a first-come,
first-served discipline.

Thus there are two parameters characterizing/lahl/1 queue, that is, the parameter 0 for the Poisson
arrival and the ong: > O for the exponential service. In other words, a customer arrives at the system with
average time interval/i and the average service time ig1 In the queuing theory is called themean arrival
rate andu the mean service rateLet X(t) be the number of customers in the system at timi¢ is the proved
that{X(t); t > O} becomes a continuous time Markov chain{onl, 2, 3, ...}. In fact, the letter “M” stands for
“Markov” or “memoryless”.

Our main objective is

pn(t) = P(X(t) = niX(0) = 0),

i.e., the probabbility of findingn customers in the system at tihe- 0 subject to the initial conditioX(0) = 0.
Let us consider the change of the system during the small time intéyval At]. It is assumed that during the
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small time intervalAt only one event happens, namely, a new customer arrives, a customer under service leaves
the system, or nothing changes. The probabilities of these events are gixan, jpt, 1 — AAt — uAt.

o ntl ntl e
ANt UAL
n e—m— ———>»e0 N n e—»0 1
#k\. el el e ANt
t t+ Af t t+ At

Therefore P(X(t) = njX(0) = 0) fulfills the following equation:
P(X(t + At) = n|X(0) = 0) = P(X(t + At) = n|X(t) = n— 1)P(X(t) = n— 1|X(0) = 0)
+ P(X(t + At) = n|X(t) = n)P(X(t) = n|X(0) = 0)
+ P(X(t + At) = n|X(t) = n+ 1)P(X(t) = n+ 1|X(0) = 0)
= AAtP(X(t) = n— 1X(0) = 0)
+ (1 - AAt — uA)P(X(t) = njX(0) = 0)
+ uAtP(X(t) = n+ 1]X(0) = 0),
P(X(t + At) = 0X(0) = 0) = (1 — AA)P(X(t) = O]X(0) = 0) + uAtP(X(t) = 1|X(0) = 0).
Hence forpn(t) = P(X(t) = n|X(0) = 0) we have
Pa(t) = Apn-1(t) — (2 + ) pn(t) + ppnea(t), n=1,2..., 9.1)
Po(t) = —Apo(t) + upa(t). '
The initial condition is as follows:
po(0) = 1, pn(0)=0 forn> 1. (9.2)

Solving the linear system (9.1) with the initial condition (9.2) is ndfidilt with the help of linear algebra
and spectral theory. However, the explicit solution is not so simple and is omitted. We only mention that most
important characteristics are obtained from the expfigft).

Here we focus on the equilibrium solution (limit transition probability), i.e.,

Pn = lim pn(t)
whenever the limit exists. Since in the equilibrium the derivative of the left hand side of (9.1) is 0, we have

APrr— A+ @)pn+upns1=0 n=212,..., 9.3)
—APo + pup1 = 0. '

A general solution to (9.3) is easily derived:

h =

2\"
C1+C2(—) , A#EU,
u
Ci+GCon, A=u.

Sincep, gives a probability distribution, we hays > 0 andz pn = 1. This occurs only when < u and we
n=0

have N
pnz(l—il)(il) , nh=0,12....
M

7
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This is the geometric distribution with parameigy:.
In queuing theory, the ratio of the mean arrival rat@nd the mean service ratas called theutilization:

p=-—.

u
Utilization stands for how busy the system is. It was shown above that the number of customers in the system
after long time obeys the geometric distribution with parametéfrp < 1, the system functions well. Otherwise,
the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium the number of customers
in the system obeys the geometric distribution:

a-p)p", n=0,12,....

In particular, the probability that the server is free is b and the probability that the server is busy and the
customer need to wait jg. This is the origin of the ternutilization. Note also that the mean number of the
customers in the system is given by

= A
Z”FF%:TA'
=0 P M

Example 9.2.1 There is an ATM, where each customer arrives with average time interval 5 minutes and spends
3 minutes in average for the service. UsingMyM/1 queue, we know some statistical characteristics. We set

PO S R -
-5 HT3 PTLTE
Then the probability that the ATM isfreefs =1-p = 3 The probability that the ATM is busy but there is no
waiting customer is
_2.3_6
PL=5%5~ 25
Hence the probability that the ATM is busy and there is some waiting customers is
2 6 9
1—p0—p1—1—§—z__’—2—5—0.36.

So, roughly speaking, a customer needs to make a queue once per three visits.

Remark 9.2.2 The Markov proces¥(t) appearing in thevi/M/1 queuing model is studied more generally
within the framework obirth-and-death process

Problem 25 (M/M/1/1 queue) There is a single server and no waiting space. Customers arrive according to the
Poisson process with parameterand their service time obeys the exponential distribution with parameter
Let Q(t) be the number of customers in the system at tinie fact,

1, serveris busy
0, serverisidle

Q®={
(1) Find

Po(t) = P(Q(t) = 01Q(0) = 0),
pa(t) = P(Q(t) = 11Q(0) = 0)
by solving a linear system satisfied by thqiét) and p(t).

(2) Using the results in (1), calculate
Po = lim po(t), P = lim p(t),
(3) Find the mean number of customers in the system in the long time limit:

lim E[QOIQ(0) = 0]
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