
1 Random Variables and Probability Distributions

1.1 Random Variables
1.1.1 Discrete random variables

A random variableX is calleddiscreteif the number of values thatX takes is finite or countably infinite.
To be more precise, for a discrete random variableX there exist a (finite or infinite) sequence of real numbers
a1,a2, . . . and corresponding nonnegative numbersp1, p2, . . . such that

P(X = ai) = pi , pi ≥ 0,
∑

pi = 1.

In this case
µX(dx) =

∑
i

piδai (dx) =
∑

i

piδ(x− ai)dx

is called the(probability) distributionof X. Obviously,

P(a ≤ X ≤ b) =
∑

i:a≤ai≤b

pi
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Example 1.1.1 (coin toss)We set

X =

1, heads,

0, tails.

Then
P(X = 1) = p, P(X = 0) = q = 1− p.

For a fair coin we setp = 1/2.

Example 1.1.2 (waiting time) Flip a fair coin repeatedly until we get the heads. LetT be the number of coin
tosses to get the first heads. (If the heads occurs at the first trial, we haveT = 1; If the tails occurs at the first trial
and the heads at the second trial, we haveT = 2, and so on.)

P(T = k) = (1− p)k−1p, k = 1,2, . . . .

1.1.2 Continuous random variables

A random variableX is calledcontinuousif P(X = a) = 0 for all a ∈ R. We understand intuitively thatX
varies continuously.

If there exists a functionf (x) such that

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx, a < b,

we say thatX admits aprobability density function. Note that∫ +∞

−∞
f (x)dx= 1, f (x) ≥ 0.
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In this case,
µX(dx) = f (x)dx

is called the(probability) distributionof X.

a b x

f (x)

It is useful to consider thedistribution function:

FX(x) = P(X ≤ x) =
∫ x

−∞
fX(t)dt, x ∈ R.

Then we have

fX(x) =
d
dx

FX(x).

Remark 1.1.3 (1) A continuous random variable does not necessarily admit a probability density function.
But many continuous random variables in practical applications admit probability density functions.

(2) There is a random variable which is neither discrete nor continuous. But most random variables in practical
applications are either discrete or continuous.

Example 1.1.4 (random cut) Divide the interval [0, L] (L > 0) into two segments.

(1) Let X be the coordinate of the cutting point (the length of the segment containing 0).

FX(x) =


0, x < 0;

x/L, 0 ≤ x ≤ L;

1, x > L.

(2) Let M be the length of the longer segment.

FM(x) =


0, x < L/2;

(2x− L)/L, L/2 ≤ x ≤ L;

1, x > L.

Example 1.1.5 Let A be a randomly chosen point from the disc with radiusR> 0. LetX be the distance between
the centerO andA. We have

P(a ≤ X ≤ b) =
π(b2 − a2)
πR2

=
1
R2

∫ b

a
2xdx, 0 < a < b < R,

so the probability density function is given by

f (x) =


0, x ≤ 0,

2x
R2
, 0 ≤ x ≤ R,

0, x > R.
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Figure 1.1: Random choice of a point

1.1.3 Mean and variance

Definition 1.1.6 Themeanor expectation valueof a random variableX is defined by

m= E[X] =
∫ +∞

−∞
xµX(dx)

• If X is discrete, we have
E[X] =

∑
i

ai pi .

• If X admits a probability density functionf (x), we have

E[X] =
∫ +∞

−∞
x f(x)dx.

Remark 1.1.7 For a functionφ(x) we have

E[φ(X)] =
∫ +∞

−∞
φ(x)µ(dx).

For example,

E[Xm] =
∫ +∞

−∞
xmµ(dx) (mth moment),

E[eitX] =
∫ +∞

−∞
eitxµ(dx) (characteristic function).

Definition 1.1.8 Thevarianceof a random variableX is defined by

σ2 = V[X] = E[(X − E[X])2] = E[X2] − E[X]2,

or equivalently,

σ2 = V[X] =
∫ +∞

−∞
(x− E[X])2µ(dx) =

∫ +∞

−∞
x2µ(dx) −

(∫ +∞

−∞
xµ(dx)

)2

.

Exercise 1.1.9 (see Example 1.1.2)Calculate the mean and variance of the waiting timeT.

Exercise 1.1.10Let S be the length of the shorter segment obtained by randomly cutting the interval [0, L].
Calculate the mean and variance ofS.
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1.2 Discrete Distributions
1.2.1 Bernoulli distribution

For 0≤ p ≤ 1 the distribution
(1− p)δ0 + pδ1

is calledBernoulli distribution with success probability p. This is the distribution of coin toss. The mean value
and variance are given by

m= p, σ2 = p(1− p)

Exercise 1.2.1Let a,b be distinct real numbers. A general two-point distribution is defined by

pδa + qδb ,

where 0≤ p ≤ 1 andp+ q = 1. Determine the two-point distribution having mean 0, variance 1.

1.2.2 Binomial distribution

For 0≤ p ≤ 1 andn ≥ 1 the distribution

n∑
k=0

(
n
k

)
pk(1− p)n−k δk

is called thebinomial distribution B(n, p). The quantity

(
n
k

)
pk(1− p)n−k is the probability thatn coin tosses with

probabilitiesp for heads andq = 1− p for tails result ink heads andn− k tails.
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B(100,0.4)

Exercise 1.2.2Verify thatm= npandσ2 = np(1− p) for B(n, p).

1.2.3 Geometric distribution

For 0≤ p ≤ 1 the distribution
∞∑

k=1

p(1− p)k−1δk

is called thegeometric distribution with success probability p. This is the distribution of waiting time for the first
heads (Example 1.1.2).

Exercise 1.2.3Verify thatm=
1
p

andσ2 =
1
p2
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Figure 1.2: Geometric distribution with parameterp = 0.4

Remark 1.2.4 In some literatures, the geometric distribution with parameterp is defined by

∞∑
k=0

p(1− p)kδk

1.2.4 Poisson distribution

Forλ > 0 the distribution
∞∑

k=0

e−λ
λk

k!
δk

is called thePoisson distribution with parameterλ. The mean and variance are given by

m= λ, σ2 = λ.
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Figure 1.3: Poisson distributionλ = 1/2,1,3

Problem 1 Theprobability generating functionof the Poisson distribution is defined by

G(z) =
∞∑

k=0

pkz
k, pk = e−λ

λk

k!
.
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(1) Find a concise expression ofG(z).

(2) By usingG′(1) andG′′(1) find the mean value and the variance of the Poisson distribution with parameter
λ.

(3) Show that ∑
k:odd

pk <
∑

k:even

pk .

In other words, the probability of taking even values is greater than that of odd values.

(4) Discuss relevant topics.

1.3 Continuous Distributions (Density Functions)
1.3.1 Uniform distribution

For a finite interval [a,b],

f (x) =


1

b− a
, a ≤ x ≤ b,

0, otherwise

becomes a density function, which determines theuniform distributionon [a,b].

a b x

ab

1

The mean value and the variance are given by

m=
∫ b

a
x

dx
b− a

=
a+ b

2
, σ2 =

∫ b

a
x2 dx

b− a
−m2 =

(b− a)2

12
.

1.3.2 Exponential distribution

Theexponential distributionwith parameterλ > 0 is defined by the density function

f (x) =

λe−λx , x ≥ 0,

0, otherwise.

This is a model for waiting time (continuous time).

0 x

λ

Exercise 1.3.1Verify thatm=
1
λ

andσ2 =
1
λ2

.
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1.3.3 Normal distribution

Form ∈ R andsigma> 0 we may check that

f (x) =
1

√
2πσ2

exp

{
− (x−m)2

2σ2

}
becomes a density function. The distribution defined by the above density function is called thenormal distri-
bution or Gaussian distributionand denoted byN(m, σ2). In particular,N(0,1) is called thestandard normal
distributionor thestandard Gaussian distribution.

Exercise 1.3.2Differentiating both sides of the known formula:∫ +∞

0
e−tx2

dx=

√
π

2
√

t
, t > 0,

find the values ∫ +∞

0
x2ne−x2

dx, n = 0,1,2, . . . .

Exercise 1.3.3Prove that the abovef (x) is a probability density function. Then prove by integration that the
mean ismand the variance isσ2:

m=
1

√
2πσ2

∫ +∞

−∞
x exp

{
− (x−m)2

2σ2

}
dx,

σ2 =
1

√
2πσ2

∫ +∞

−∞
(x−m)2 exp

{
− (x−m)2

2σ2

}
dx

Problem 2 Choose randomly a pointA from the disc with radius one and letX be the radius of the inscribed
circle with centerA.

(1) Forx ≥ 0 find the probabilityP(X ≤ x).

(2) Find the probability density functionfX(x) of X. (Note thatx varies over all real numbers.)

(3) Calculate the mean and variance ofX.

(4) Calculate the mean and variance of the area of inscribed circleS = πX2.

(5) Discuss similar questions for a ball.

A

X
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2 Independence and Dependence

2.1 Independent Events
Definition 2.1.1 (Pairwise independence)A (finite or infinite) sequence of eventsA1,A2, . . . is calledpairwise
independentif any pair of eventsAi1,Ai2 (i1 , i2) verifies

P(Ai1 ∩ Ai2) = P(Ai1)P(Ai2).

Definition 2.1.2 (Independence)A (finite or infinite) sequence of eventsA1,A2, . . . is calledindependentif any
choice of finitely many eventsAi1, . . . ,Ain (i1 < i2 < · · · < in) satisfies

P(Ai1 ∩ Ai2 ∩ · · · ∩ Ain) = P(Ai1)P(Ai2) · · ·P(Ain).

Example 2.1.3 Consider the trial to randomly draw a card from a deck of 52 cards. LetA be the event that the
result is an ace andB the event that the result is spades. ThenA, B are independent.

Problem 3 An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random and letX1

be the first digit,X2 the second digit, andX3 the last digit. Fori = 1, 2,3 we define an eventAi by Ai = {Xi = 1}.
Show that{A1,A2,A3} is pairwise independent but is not independent.

Remark 2.1.4 It is allowed to consider whether the sequence of events{A,A} is independent or not. If they are
independent, by definition we have

P(A∩ A) = P(A)P(A).

ThenP(A) = 0 or P(A) = 1. Notice thatP(A) = 0 does not implyA = ∅ (empty event). Similarly,P(A) = 1 does
not imply A = Ω (whole event).

Exercise 2.1.5For A we writeA# for itself A or its complementary eventAc. Prove the following assertions.

(1) If A andB are independent, so areA# andB#.

(2) If A1,A2, . . . are independent, so areA#
1,A

#
2, . . . .

Definition 2.1.6 (Conditional probability) For two eventsA, B theconditional probability of A relative to B(or
on the hypothesis B, or for given B) is defined by

P(A|B) =
P(A∩ B)

P(B)

wheneverP(B) > 0.

Theorem 2.1.7 Let A, B be events withP(A) > 0 andP(B) > 0. Then, the following assertions are equivalent:

(i) A, B are independent;

(ii) P(A|B) = P(A);

(iii) P(B|A) = P(B);
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2.2 Independent Random Variables
Definition 2.2.1 A (finite or infinite) sequence of random variablesX1,X2, . . . is independent(resp. pairwise
independent) if so is the sequence of events{X1 ≤ a1}, {X1 ≤ a2}, . . . for anya1,a2, · · · ∈ R.

In other words, a (finite or infinite) sequence of random variablesX1,X2, . . . is independent if for any finite
Xi1, . . . ,Xin (i1 < i2 < · · · < in) and constant numbersa1, . . . ,an

P(Xi1 ≤ a1 ,Xi2 ≤ a2 , . . . ,Xin ≤ an) = P(Xi1 ≤ a1)P(Xi2 ≤ a2) · · ·P(Xin ≤ an) (2.1)

holds. Similar assertion holds for the pairwise independence. If random variablesX1,X2, . . . are discrete, (2.1)
may be replaced with

P(Xi1 = a1 ,Xi2 = a2 , . . . ,Xin = an) = P(Xi1 = a1)P(Xi2 = a2) · · ·P(Xin = an).

Example 2.2.2 Choose at random a point from the rectangleΩ = {(x, y) ; a ≤ x ≤ b, c ≤ y ≤ d}. Let X denote
thex-coordinates of the chosen point andY they-coordinates. ThenX,Y are independent.

Example 2.2.3 (Bernoulli trials) This is a model of coin-toss and is the most fundamental stochastic process. A
sequence of random variables (or a discrete-time stochastic process){X1,X2, . . . ,Xn, . . . } is called theBernoulli
trials with success probabilityp (0 ≤ p ≤ 1) if they are independent and have the same distribution as

P(Xn = 1) = p, P(Xn = 0) = q = 1− p.

By definition we have

P(X1 = ξ1,X2 = ξ2, . . . ,Xn = ξn) =
n∏

k=1

P(Xk = ξk) for all ξ1, ξ2, . . . , ξn ∈ {0,1}.

In general, statistical quantity in the left-hand side is called thefinite dimensional distributionof the stochastic
process{Xn}. The total set of finite dimensional distributions characterizes a stochastic process.

2.3 Covariance and Correlation Coefficient
Recall that the mean of a random variableX is defined by

mX = E(X) =
∫ +∞

−∞
xµX(dx).

Theorem 2.3.1 (Linearity) For two random variablesX,Y and two constant numbersa,b it holds that

E(aX+ bY) = aE(X) + bE(Y).

Theorem 2.3.2 (Multiplicativity) If random variablesX1,X2, . . . ,Xn are independent, we have

E[X1X2 · · ·Xn] = E[X1] · · ·E[Xn]. (2.2)

Proof We first prove the assertion forXk = 1Ak (indicator random variable). By definitionX1, . . . ,Xn are
independent if and only if so areA1, . . . ,An. Therefore,

E[X1 · · ·Xn] = E[1A1∩···∩An] = P(A1 ∩ · · · ∩ An)

= P(A1) · · ·P(An) = E[X1] · · ·E[Xn].

Thus (2.2) is verified. Then, by linearity the assertion is valid forXk taking finitely many values (finite linear
combination of indicator random variables). Finally, for generalXk, coming back to the definition of Lebesgue
integration, we can prove the assertion by approximation argument.
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Remark 2.3.3 E[XY] = E[X]E[Y] is not a sufficient condition for the random variablesX andY being indepen-
dent. It is merely a necessary condition!

Thevarianceof X is defined by

σ2
X = V(X) = E[(X −mX)2] = E[X2] − E[X]2.

By means of the distributionµ(dx) of X we may write

V(X) =
∫ +∞

−∞
(x−mX)2µ(dx) =

∫ +∞

−∞
x2µ(dx) −

(∫ +∞

−∞
xµ(dx)

)2

.

Definition 2.3.4 Thecovarianceof two random variablesX,Y is defined by

Cov (X,Y) = σXY = E[(X − E(X))(Y− E(Y))] = E[XY] − E[X]E[Y].

In particular,σXX = σ
2
X becomes the variance ofX. Thecorrelation coefficientof two random variablesX,Y is

defined by

ρXY =
σXY

σXσY
,

wheneverσX > 0 andσY > 0.

Definition 2.3.5 X,Y are called uncorrelated ifσXY = 0. They are called positively (resp. negatively) correlated
if σXY > 0 (resp.σXY < 0).

Theorem 2.3.6 If two random variablesX,Y are independent, they are uncorrelated.

Remark 2.3.7 The converse of Theorem 2.3.6 is not true in general. LetX be a random variable satisfying

P(X = −1) = P(X = 1) =
1
4
, P(X = 0) =

1
2

and setY = X2. Then,X,Y are not independent, butσXY = 0. On the other hand, for random variablesX,Y
taking only two values, the converse of Theorem 2.3.6 is valid (see Problem 5).

Theorem 2.3.8 (Additivity of variance) Let X1,X2, . . . ,Xn be random variables, any pair of which is uncorre-
lated. Then

V

 n∑
k=1

Xk

 = n∑
k=1

V[Xk].

Theorem 2.3.9−1 ≤ ρXY ≤ 1 for two random variablesX,Y with σX > 0,σY > 0.

Proof Note thatE[{t(X −mX) + (Y−mY)}2] ≥ 0 for all t ∈ R.

Problem 4 Throw two dice and letL be the larger spot andS the smaller. (If double spots, setL = S.)

(1) Show the joint probability of (L,S) by a table.

(2) Calculate the correlation coefficientρLS and explain the meaning of the signature ofρLS .

Problem 5 Let X andY be random variables such that

P(X = a) = p1, P(X = b) = q1 = 1− p1, P(Y = c) = p2, P(Y = d) = q2 = 1− p2,

wherea,b, c,d are constant numbers and 0< p1 < 1, 0 < p2 < 1. Show thatX,Y are independent ifσXY = 0.
[Notice: In general, uncorrelated random variables are not necessarily independent. Hence, the situation in this
problem falls into a very particular one.]
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3 Markov Chains

3.1 Conditional Probability
For two eventsA, B we define

P(A|B) =
P(A∩ B)

P(B)
(3.1)

wheneverP(B) > 0. We callP(A|B) theconditional probability of A relative to BIt is interpreted as the proba-
bility of the eventA assuming the eventB occurs, see Section 2.1.

Formula (3.1) is often used in the following form:

P(A∩ B) = P(B)P(A|B) (3.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in compu-
tation of probability. For example, for two eventsA, B see Fig. 3.1.

������*P(A)

HHHHHHjP(Ac)

A

Ac

������1P(B|A)

PPPPPPqP(Bc|A)

������1P(B|Ac)

PPPPPPqP(Bc|Ac)

A∩ B

A∩ Bc

Ac ∩ B

Ac ∩ Bc

Figure 3.1: Tree diagram

Theorem 3.1.1 (Compound probabilities)For eventsA1,A2, . . . ,An we have

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · ·P(An|A1 ∩ A2 ∩ · · · ∩ An−1). (3.3)

Proof Straightforward by induction onn.

3.2 Markov Chains
Let S be a finite or countable set. Consider a discrete time stochastic process{Xn ; n = 0,1,2, . . . } taking

values inS. This S is called astate spaceand is not necessarily a subset ofR in general. In the following we
often meet the cases ofS = {0,1}, S = {1,2, . . . ,N} andS = {0,1,2, . . . }.

Definition 3.2.1 Let {Xn ; n = 0,1,2, . . . } be a discrete time stochastic process overS. It is called aMarkov
processoverS if

P(Xn = b|Xi1 = a1, Xi2 = a2, . . . ,Xik = ak, Xi = a) = P(Xn = b|Xi = a)

holds for any 0≤ i1 < i2 < · · · < ik < i < n anda1,a2, . . . ,ak,a,b ∈ S.

If {X1,X2, . . . } are independent random variables with values inS, obviously they form a Markov chain.
Hence the Markov property is weaker than independence.
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Example 3.2.2 Let r ≥ 1 ands ≥ 1 such thatr + s = N. There arer black balls ands white balls in a box. We
pick up balls in the box one by one and setXn = 1 if a black ball is picked up at thenth trial andXn = 0 if a white
ball is picked up at thenth trial. Then{X1,X2, . . . ,XN} is a stochastic process. We note that

P(Xn = 1|X1 = a1, X2 = a2, . . . ,Xn−1 = an−1) =
1

N − (n− 1)

r − n−1∑
k=1

ak

 (3.4)

and
P(Xn = 1|Xn−1 = an−1) =

r − an−1

N − 1
, (3.5)

for a1, . . . ,an−1 ∈ {0,1}. Hence{Xn} is not a Markov chain.

Problem 6 We keep the notations and assumptions in Example 3.2.2.

(1) Prove (3.4) and (3.5).

(2) LetYn be the number of black balls picked up during the firstn trials, i.e.,

Yn =

n∑
k=1

Xk .

Show that{Yn} is a Markov chain.

Definition 3.2.3 For a Markov chain{Xn} overS,

P(Xn+1 = j|Xn = i)

is called thetransition probabilityat timen from a statei to j. If this is independent ofn, the Markov chain is
calledtime homogeneous. In this case we write

pi j = p(i, j) = P(Xn+1 = j|Xn = i)

and simply call it the transition probability. Moreover, the matrix

P = [pi j ]

is called thetransition matrix.

Obviously, we have for eachi ∈ S,∑
j∈S

p(i, j) =
∑
j∈S

P(Xn+1 = j|Xn = i) = 1.

Taking this into account, we give the following

Definition 3.2.4 A matrix P = [pi j ] with index setS is called astochastic matrixif

pi j ≥ 0 and
∑
j∈S

pi j = 1.

Theorem 3.2.5 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochastic
matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic matrix.

It is convenient to use thetransition diagramto illustrate a Markov chain. With each state we associate a
point and we draw an arrow fromi to j whenp(i, j) > 0.
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Example 3.2.6 (2-state Markov chain)A Markov chain over the state space{0,1} is determined by the transi-
tion probabilities:

p(0,1) = p, p(0,0) = 1− p, p(1,0) = q, p(1,1) = 1− q.

The transition matrix is defined by [
1− p p

q 1− q

]
.

The transition diagram is as follows:

p

p

pp

 p=

 q=

 1 p=  1 q=

Example 3.2.7 (3-state Markov chain)An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain on{H,S,D} described by the following transition diagram:

b

p

 a

 q

H S D

 r

The transition matrix is defined bya b 0
p r q
0 0 1

 , a+ b = 1, p+ q+ r = 1.

Example 3.2.8 (Random walk onZ1) The random walk onZ1 is illustrated as

s s s s s s s
0−1−2−3 1 2 3

�
q

-
p

The transition probabilities are given by

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.

The transition matrix is a two-sided infinite matrix given by

. . .
. . .

. . .
. . .

. . . q 0 p 0

0 q 0 p 0

0 q 0 p 0

0 q 0 p
. . .

. . .
. . .

. . .
. . .
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Example 3.2.9 (Random walk with absorbing barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers at−A andB is S = {−A,−A+ 1, . . . , B− 1, B}. Then the transition probabilities are
given as follows. For−A < i < B,

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.

For i = −A or i = B,

p(−A, j) =

1, if j = −A,

0, otherwise,
p(B, j) =

1, if j = B,

0, otherwise.

In a matrix form we have 

1 0 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...
...
. . .

. . .
. . .

...
...

0 0 · · · q 0 p 0
0 0 · · · 0 q 0 p
0 0 · · · 0 0 0 1



B

q

p p

q

p

q

− A

p

q

Example 3.2.10 (Random walk with reflecting barriers) Let A > 0 andB > 0. The state space of a random
walk with absorbing barriers at−A andB is S = {−A,−A+1, . . . , B−1, B}. The transition probabilities are given
as follows. For−A < i < B,

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.

For i = −A or i = B,

p(−A, j) =

1, if j = −A+ 1,

0, otherwise,
p(B, j) =

1, if j = B− 1,

0, otherwise.

In a matrix form we have 

0 1 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...
...
. . .

. . .
. . .

...
...

0 0 · · · q 0 p 0
0 0 · · · 0 q 0 p
0 0 · · · 0 0 1 0



B

q

p p

q

p

q

− A

q

p
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3.3 Distribution of a Markov Chain
Let S be a state space as before. In general, a row vectorπ = [· · · πi · · · ] indexed byS is called adistribution

onS if
πi ≥ 0 and

∑
i∈S
πi = 1. (3.6)

For a Markov chain{Xn} onS we set

π(n) = [· · · πi(n) · · · ], πi(n) = P(Xn = i),

which becomes a distribution onS. We callπ(n) thedistributionof Xn. In particular,π(0), the distribution ofX0,
is called theinitial distribution. We often take

π(0) = [· · · 0,1,0, · · · ], where 1 occurs atith posotion.

In this case the Markov chain{Xn} starts from the statei.
For a Markov chain{Xn} with a transition matrixP = [pi j ] then-step transition probabilityis defined by

pn(i, j) = P(Xm+n = j|Xm = i), i, j ∈ S.

The right-hand side is independent ofn because our Markov chain is assumed to be time homogeneous.

Theorem 3.3.1 (Chapman–Kolmogorov equation)For 0≤ r ≤ n we have

pn(i, j) =
∑
k∈S

pr (i, k)pn−r (k, j). (3.7)

Proof First we note the obvious identity:

pn(i, j) = P(Xm+n = j|Xm = i) =
∑
k∈S

P(Xm+n = j,Xm+r = k|Xm = i).

Moreover,

P(Xm+n = j,Xm+r = k|Xm = i) =
P(Xm+n = j,Xm+r = k,Xm = i)

P(Xm+r = k,Xm = i)
× P(Xm+r = k,Xm = i)

P(Xm = i)

= P(Xm+n = j|Xm+r = k,Xm = i)P(Xm+r = k|Xm = i).

Using the Markov property, we have

P(Xm+n = j|Xm+r = k,Xm = i) = P(Xm+n = j|Xm+r = k)

so that
P(Xm+n = j,Xm+r = k|Xm = i) = P(Xm+n = j|Xm+r = k)P(Xm+r = k|Xm = i).

Finally, by the property of being time homogeneous, we come to

P(Xm+n = j,Xm+r = k|Xm = i) = pn−r (k, j)pr (i, k).

Thus we have obtained (3.7).

Applying (3.7) repeatedly and noting thatp1(i, j) = p(i, j), we obtain

pn(i, j) =
∑

k1,...,kn−1∈S
p(i, k1)p(k1, k2) · · · p(kn−1, j). (3.8)

The right-hand side is nothing else but the multiplication of matrices, i.e., then-step transition probabilitypn(i, j)
is the (i, j)-entry of then-power of the transition matrixP. Summing up, we obtain the following important
result.
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Theorem 3.3.2 Form,n ≥ 0 andi, j ∈ S we have

P(Xm+n = j|Xm = i) = pn(i, j) = (Pn)i j .

Proof Immediate from Theorem 3.3.1.

Remark 3.3.3 As a result, the Chapman-Kolmogorov equation is nothing else but an entrywise expression of
the obvious relation for the transition matrix:

Pn = Pr Pn−r

(As usual,P0 = E (identity matrix).)

Theorem 3.3.4 We have
π(n) = π(n− 1)P, n ≥ 1,

or equivalently,
π j(n) =

∑
i

πi(n− 1)pi j .

Therefore,
π(n) = π(0)Pn.

Proof We first note that

π j(n) = P(Xn = j) =
∑
i∈S

P(Xn = j|Xn−1 = i)P(Xn−1 = i) =
∑
i∈S

pi jπi(n− 1),

which provesπ(n) = π(n− 1)P. By repeated application we have

π(n) = π(n− 1)P = (π(n− 2)P)P = (π(n− 2)P2 = · · · = π(0)Pn,

as desired.

Example 3.3.5 (2-state Markov chain)Let {Xn} be the Markov chain introduced in Example 3.2.6. The eigen-
values of the transition matrix

P =

[
1− p p

q 1− q

]
.

are 1,1− p− q. These are distinct ifp+ q > 0. Omitting the case ofp+ q = 0, i.e.,p = q = 0, we assume that
p+ q > 0. By standard argument we obtain

Pn =
1

p+ q

[
q+ prn p− prn

q− qrn p+ qrn

]
, r = 1− p− q.

Let π(0) = [π0(0) π1(0)] be the distriution ofX0. Then the distribution ofXn is given by

π(n) = [P(Xn = 0) , P(Xn = 1)] = [π0(0) π1(0)]Pn = π(0)Pn.

Problem 7 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every
election. Suppose that just before an election, 25% of the supporters of A change to support B and 20% of the
supporters of B change to support A. At the beginning, 85% of the voters support A and 15% support B.

(1) When will the party B command a majority?

(2) Find the final ratio of supporters after many elections if the same situation continues.

(3) Discuss relevant topics.

Problem 8 Let {Xn} be a Markov chain on{0,1} given by the transition matrixP =

[
1− p p

q 1− q

]
with the

initial distributionπ0 =
[ q
p+ q

,
p

p+ q

]
. Calculate the following statistical quantities:

E[Xn], V[Xn], Cov (Xm+n,Xn) = E[Xm+nXn] − E[Xm+n]E[Xn], ρ(Xm+n,Xn) =
Cov (Xm+n,Xn)
√

V[Xm+n]V[Xn]
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4 Stationary Distributions

4.1 Definition and Examples
Definition 4.1.1 Let {Xn} be a Markov chain onS with transition probability matrixP. A distributionπ on S is
calledstationary(or invariant) if

π = πP, (4.1)

or equivalently,
π j =

∑
i∈S
πi pi j , j ∈ S. (4.2)

Thus, to find a stationary distribution we need to solve (4.1) (or equivalently (4.2)) together with (3.6). IfS
is a finite set, finding stationary distributions is reduced to a simple linear system.

Example 4.1.2 (2-state Markov chain)Consider the transition matrix:

P =

[
1− p p

q 1− q

]
.

Let π = [π0 π1] and supposeπP = π. Then we have

[π0 π1]

[
1− p p

q 1− q

]
= [(1 − p)π0 + qπ1 pπ0 + (1− q)π1] = [π0 π1],

which is equivalent to the following
pπ0 − qπ1 = 0.

Together withπ0 + π1 = 1, we obtain

π0 =
q

p+ q
, π1 =

p
p+ q

,

wheneverp+ q > 0. Indeed,π0 ≥ 0 andπ1 ≥ 0, so this is a stationary distribution.

The following properties are noteworthy:

(i) If p+ q > 0, a stationary distribution is unique.

(ii) If p = q = 0, the stationary distribution is not uniquely determined. In fact, any distributionπ = [π0 , π1] is
stationary.

Moreover, we see from Example 3.3.5 that if 0< p+ q < 2, or equivalently, if|r | < 1, we have

lim
n→∞

Pn =
1

p+ q

[
q p
q p

]
.

Then

lim
n→∞
π(n) = lim

n→∞
π(0)Pn = [π0(0) π1(0)] × 1

p+ q

[
q p
q p

]
=

[
q

p+ q
p

p+ q

]
.

Thus we get the stationary distribution as a limit distribution.

Example 4.1.3 (3-state Markov chain)We discuss the Markov chain{Xn} introduced in Example 3.2.7. If
q > 0 andb > 0, a stationary distribution is unique and given byπ = [0 0 1].

Example 4.1.4 (One-dimensional RW)Consider the 1-dimensional random walk with right-move probability
p > 0 and left-move probabilityq = 1 − p > 0. Let [· · · π(k) · · · ] be a distribution onZ. If it is stationary, we
have

π(k) = pπ(k− 1)+ qπ(k+ 1), k ∈ Z. (4.3)
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The characteristic equation of the above difference equation is

0 = qλ2 − λ + p = (qλ − p)(λ − 1)

so that the eigenvalues are 1, p/q.
(Case 1)p , q. Then a general solution to (4.3) is given by

π(k) = C11k +C2

(
p
q

)k

= C1 +C2

(
p
q

)k

, k ∈ Z.

This never becomes a probability distribution for any choice ofC1 and C2. Namely, there is no stationary
distribution.

(Case 2)p = q. In this case a general solution to (4.3) is given by

π(k) = (C1 +C2k)1k = C1 +C2k, k ∈ Z.

This never becomes a probability distribution for any choice ofC1 and C2. Namely, there is no stationary
distribution.

Example 4.1.5 (One-dimensional RW with reflection barrier) There is a unique stationary distribution when
p < q. In fact,

π(0) = Cp, π(k) = C

(
p
q

)k

, k ≥ 1,

whereC is determined in such a way that
∑∞

k=0 π(k) = 1. Namey,

C =
q− p
2pq
.

If p ≥ q, then there is no stationary distribution.

On stationary distributions of a Markov chain we question:

(1) Is there a stationary distribution?

(2) If yes, is it unique? If not, how to classify?

(3) Does the distributions of a Markov chain converge to a stationary distribution?

4.2 Existence
Theorem 4.2.1 A Markov chain over a finite state spaceS has a stationary distribution.

A simple proof is based on the Brouwer’s fixed-point theorem saying that every continuous function from
a convex compact subset of a Euclidean space to itself has a fixed point. In fact, the set of distributions onS
is a convex compact subset of a Euclidean space and the mapπ 7→ πP is continuous. Note that the stationary
distribution mentioned in the above theorem is not necessarily unique.

Definition 4.2.2 We say that a statej can be reached froma statei if there exists somen ≥ 0 such thatpn(i, j) > 0.
By definition every statei can be reached from itself. We say that two statesi and j intercommunicateif i can
be reached formj and j can be reached fromi, i.e., there existm ≥ 0 andn ≥ 0 such thatpn(i, j) > 0 and
pm( j, i) > 0.

For i, j ∈ S we introduce a binary relationi ∼ j when they intercommunicate. Then∼ becomes an equivalence
relation onS:

(i) i ∼ i; (ii) i ∼ j =⇒ j ∼ i; (iii) i ∼ j, j ∼ k =⇒ i ∼ k.

In fact, (i) and (ii) are obvious by definition, and (iii) is verified by the Chapman-Kolmogorov equation. Thereby
the state spaceS is classified into a disjoint set of equivalence classes. In each equivalence class any two states
intercommunicate each other.
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Definition 4.2.3 A state i is calledabsorbingif pii = 1. In particular, an absorbing state is a state which
constitutes an equivalence class by itself.

Definition 4.2.4 A Markov chain is calledirreducible if every state can be reached from every other state, i.e.,
if there is only one equivalence class of intercommunicating states.

Theorem 4.2.5 An irreducible Markov chain on a finite state spaceS admits a unique stationary distribution
π = [πi ]. Moreover,πi > 0 for all i ∈ S.

In fact, the proof owes to the following two facts:

(1) For an irreducible Markov chain the following assertions are equivalent:

(i) it admits a stationary distribution;
(ii) every state is positive recurrent.

In this case the stationary distributionπ is unique and given by

πi =
1

E(Ti |X0 = i)
, i ∈ S.

(2) Every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem 5.1.8).

4.3 Convergence
Example 4.3.1 (2-state Markov chain)We recall Examples 3.3.5 and 4.1.2. Ifp + q > 0, the distribution of
the above Markov chain converges to the unique stationary distribution. Consider the case ofp = q = 1, i.e., the
transition matrix becomes

P =

[
0 1
1 0

]
.

The stationary distribution is unique. But for a given initial distributionπ(0) it is not necessarily true thatπ(n)
converges to the stationary distribution.

Roughly speaking, we need to avoid the periodic transition in order to have the convergence to a stationary
distribution.

Definition 4.3.2 For a statei ∈ S,

GCD{n ≥ 1 ; P(Xn = i|X0 = i) > 0}

is called theperiodof i. (When the set in the right-hand side is empty, the period is not defined.) A statei ∈ S is
calledaperiodicif its period is one.

Theorem 4.3.3 For an irreducible Markov chain, every state has a common period.

Theorem 4.3.4 Let π be a stationary distribution of an irreducible Markov chain on a finite state space (It is
unique, see Theorem 4.2.5). If{Xn} is aperiodic, for anyj ∈ S we have

lim
n→∞

P(Xn = j) = π j .

Example 4.3.5 (page rank)The hyperlinks amongN websites give rise to a digraph (directed graph)G on N
vertices. It is natural to consider a Markov chain onG, which is defined by the transition matrixP = [pi j ], where

pi j =


1

degi
if i → j,

0, if i ↛ j andi , j,

1, degi = 0 and j = i,

where degi = |{ j ; i → j}| is theout-degreeof i.
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1

1

1

There exists a stationary state but not necessarily unique. Taking 0≤ d ≤ 1 we modify the transition matrix:

Q = [qi j ], qi j = dpi j + ϵ, ϵ =
1− d

N
.

If 0 ≤ d < 1, the Markov chain determined byQ has necessarily a unique stationary distribution. Choosing a
suitabled < 1, we may understand the stationary distributionπ = [π(i)] as the page rank among the websites.

Problem 9 Consider the page rank introduced in Example 4.3.5.

(1) Letπ(i) be the page rank of a sitei. Show thatπ(i) satisfies the following relation

π(i) =
1− d

N
+ d

∑
j: j→i

π( j)
deg j

and explain the meaning.

(2) Show more examples of the page rank and discuss the role of sites which have no hyperlinks, that is,
degi = 0 (in terms ofP = [pi j ] such sites correspond to absorbing states).

Problem 10 Find all stationary distributions of the Markov chain determined by the transition diagram below.
Then discuss convergence of distributions.

Problem 11 Let {Xn} be the Markov chain introduced in Example 3.2.7:

b

p

 a

 q

H S D

 r

For n = 1, 2, . . . let Hn denote the probability of starting from H and terminating at D atn-step. Similarly, for
n = 1,2, . . . let Sn denote the probability of starting from S and terminating at D atn-step.

(1) Show that{Hn} and{Sn} satisfies the following linear system:Hn = aHn−1 + bSn−1,

Sn = pHn−1 + rSn−1,
n ≥ 2; H1 = 0, S1 = q.

(2) Let H andS denote the life times starting from the state H and S, respectively. Solving the linear system
in (1), prove the following identities for the mean life times:

E[H] =
∞∑

n=1

nHn =
b+ p+ q

bq
, E[S] =

∞∑
n=1

nSn =
b+ p

bq
.
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5 Topics in Markov Chains

5.1 Recurrence
Definition 5.1.1 Let i ∈ S be a state. Define thefirst hitting timeor first passage timeto i by

Ti = inf {n ≥ 1 ; Xn = i}.

If there exists non ≥ 1 such thatXn = i, we defineTi = ∞. A statei is calledrecurrentif P(Ti < ∞|X0 = i) = 1.
It is calledtransientif P(Ti = ∞|X0 = i) > 0.

Theorem 5.1.2 A statei ∈ S is recurrent if and only if

∞∑
n=0

pn(i, i) = ∞.

If a statei is transient, we have

∞∑
n=0

pn(i, i) < ∞ and
∞∑

n=0

pn(i, i) =
1

1− P(Ti < ∞|X0 = i)
.

Proof We first put

pn(i, j) = P(Xn = j|X0 = i), n = 0,1,2, . . . ,

fn(i, j) = P(T j = n|X0 = i) = P(X1 , j, . . . ,Xn−1 , j,Xn = j|X0 = i), n = 1,2, . . . .

pn(i, j) is nothing else but then step transition probability. On the other hand,fn(i, j) is the probability that the
Markov chain starts fromi and reachj first time aftern step. Dividing the set of sample paths fromi to j in n
steps according to the number of steps after which the path reachesj for the first time, we obtain

pn(i, j) =
n∑

r=1

fr (i, j)pn−r ( j, j), i, j ∈ S, n = 1,2, . . . . (5.1)

We next introduce the generating functions:

Gi j (z) =
∞∑

n=0

pn(i, j)zn, Fi j (z) =
∞∑

n=1

fn(i, j)zn.

In view of (5.1) we see easily that
Gi j (z) = p0(i, j) + Fi j (z)G j j (z). (5.2)

Settingi = j in (5.2), we obtain

Gii (z) = 1+ Fii (z)Gii (z) ⇐⇒ Gii (z) =
1

1− Fii (z)
.

On the other hand, since

Gii (1) =
∞∑

n=0

pn(i, i), Fii (1) =
∞∑

n=1

fn(i, i) = P(Ti < ∞|X0 = i)

we see that two conditionsFii (1) = 1 andGii (1) = ∞ are equivalent. The second statement is readily clear.
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Example 5.1.3 (random walk onZ) Since the random walk starting from the origin 0 returns to it only after
even steps, for recurrence we only need to compute the sum ofp2n(0,0). We start with the obvious result:

p2n(0,0) =
(2n)!
n!n!

pnqn, p+ q = 1.

Then, using the Stirling formula:

n! ∼
√

2πn
(n
e

)n
(5.3)

we obtain

p2n(0,0) ∼ 1
√
πn

(4pq)n.

Hence,
∞∑

n=0

p2n(0,0)

< ∞, p , q,

= ∞, p = q = 1/2.

Consequently, one-dimensional random walk is transient ifp , q, and it is recurrent ifp = q =
1
2

.

Remark 5.1.4 Let {an} and{bn} be sequences of positive numbers. We writean ∼ bn if

lim
n→∞

an

bn
= 1.

In this case, there exist two constant numbersc1 > 0 andc2 > 0 such thatc1an ≤ bn ≤ c2an. Hence
∑∞

n=1 an and∑∞
n=1 bn converge or diverge at the same time.

Example 5.1.5 (random walk onZ2) Obviously, the random walk starting from the origin 0 returns to it only
after even steps. Therefore, for recurrence we only need to compute the sum ofp2n(0,0). For two-dimensional
random walk we need to consider two directions along withx-axis andy-axis. We see easily that

p2n(0,0) =
∑

i+ j=n

(2n)!
i!i! j! j!

(
1
4

)2n

=
(2n)!
n!n!

(
1
4

)2n ∑
i+ j=n

n!n!
i!i! j! j!

=

(
2n
n

) (
1
4

)2n n∑
i=0

(
n
i

)2

.

Employing the formula for the binomial coefficients:

n∑
i=0

(
n
i

)2

=

(
2n
n

)
, (5.4)

which is a good exercise for the readers, we obtain

p2n(0,0) =

(
2n
n

)2 (
1
4

)2n

.

Then, by using the Stirling formula, we see that

p2n(0,0) ∼ 1
πn

so that
∞∑

n=1

p2n(0,0) = ∞.

Consequently, two-dimensional random walk is recurrent.

Example 5.1.6 (random walk onZ3) Let us consider the isotropic random walk in 3-dimension. As there are
three directions, say,x, y, z-axis, we have

p2n(0,0) =
∑

i+ j+k=n

(2n)!
i!i! j! j!k!k!

(
1
6

)2n

=
(2n)!
n!n!

(
1
6

)2n ∑
i+ j+k=n

n!n!
i!i! j! j!k!k!

=

(
2n
n

) (
1
6

)2n ∑
i+ j+k=n

(
n!

i! j!k!

)2

.
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We note the following two facts. First, ∑
i+ j+k=n

n!
i! j!k!

= 3n. (5.5)

Second, the maximum value

Mn = max
i+ j+k=n

n!
i! j!k!

is attained when
n
3
− 1 ≤ i, j, k ≤ n

3
+ 1 so

Mn ∼
3
√

3
2πn

3n

by the Stirling formula. Then we have

p2n(0,0) ≤
(
2n
n

) (
1
6

)2n

3nMn ∼
3
√

3

2π
√
π

n−3/2.

Therefore.
∞∑

n=1

p2n(0,0) < ∞,

which implies that the random walk is not recurrent (i.e., transient).

If a statei is recurrent, i.e.,P(Ti < ∞|X0 = i) = 1, themean recurrent timeis defined:

E(Ti |X0 = i) =
∞∑

n=1

nP(Ti = n|X0 = i).

The statei is calledpositive recurrentif E(Ti |X0 = i) < ∞, andnull recurrentotherwise.

Theorem 5.1.7 The states in an equivalence class are all positive recurrent, or all null recurrent, or all transient.
In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null recurrent, or all
transient.

Theorem 5.1.8 For an irreducible Markov chain on a finite state spaceS, every state is positive recurrent.

Example 5.1.9 The mean recurrent time of the one-dimensional isotropic random walk is infinity, i.e., the one-
dimensional isotropic random walk is null recurrent. The proof will be given in Section??.

Problem 12 Let {Xn} be a Markov chain described by the following transition diagram:

p

p

pp

 p=

 q=

 1 p=  1 q=

wherep > 0 andq > 0. For a statei ∈ S let Ti be the first hitting time toi defined by

Ti = inf {n ≥ 1 ; Xn = i}.

(1) Calculate

P(T0 = 1|X0 = 0), P(T0 = 2|X0 = 0), P(T0 = 3|X0 = 0), P(T0 = 4|X0 = 0).

(2) FindP(T0 = n|X0 = 0) and calculate

∞∑
n=1

P(T0 = n|X0 = 0),
∞∑

n=1

nP(T0 = n|X0 = 0).
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5.2 Absorption
A statei is calledabsorbingif pii = 1 andpi j = 0 for all j , i. Once a Markov chain hits an absorbing state,

it stays thereat forever.
Let us consider a Markov chain on a finite state spaceS with some absorbing states. We set

S = Sa ∪ S0 ,

whereSa denotes the set of absorbing states andS0 the rest. According to the above partition, the transition
matrix is written as

P =



1 0 · · · 0
1 0 · · · 0
. . .

...
. . .

...
1 0 · · · 0

∗ ∗


=

[
I 0
S T

]
.

Then

Pn =

[
I 0
S T

]n

=

[
I 0

Sn Tn

]
,

whereS1 = S andSn = Sn−1 + Tn−1S. To avoid inessential tediousness we assume the following condition

(C1) For anyi ∈ S0 there existj ∈ Sa andn ≥ 1 such that (Pn)i j > 0.

In other words, the Markov chain starting fromi ∈ S0 has a positive probability of absorption. SinceS is finite
by assumption, then in (C1) is chosen independently ofi ∈ S0. Hence (C1) is equivalent to the following

(C2) There existsN ≥ 1 such that for anyi ∈ S0 there existj ∈ Sa with (PN)i j > 0.

Lemma 5.2.1 Notations and assumptions being as above, limn→∞ Tn = 0.

Proof We see from the obvious relation

1 =
∑
j∈S

(PN)i j =
∑
j∈S0

(PN)i j +
∑
j∈Sa

(PN)i j

and condition (C2) that ∑
j∈S0

(PN)i j < 1, i ∈ S0 .

Note that fori, j ∈ S0 we have (PN)i j = (TN)i j . We chooseδ < 1 such that∑
j∈S0

(TN)i j ≤ δ < 1 i ∈ S0 .

Now let i ∈ S0 andn ≥ N. We see that∑
j∈S0

(Tn)i j =
∑
j,k∈S0

(Tn−N)ik(TN)k j =
∑
k∈S0

(Tn−N)ik

∑
j∈S0

(TN)k j ≤ δ
∑
k∈S0

(Tn−N)ik = δ
∑
j∈S0

(Tn−N)i j .

Repeating this procedure, we have∑
j∈S0

(Tn)i j ≤ δk
∑
j∈S0

(Tn−kN)i j ≤ δk
∑
j∈S

(Pn−kN)i j ≤ δk,

where 0≤ n− kN < N. Therefore,
lim
n→∞

∑
j∈S0

(Tn)i j = 0,

from which we have limn→∞(Tn)i j = 0 for all i, j ∈ S0.
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Remark 5.2.2 It is shown that every statei ∈ S0 is transient.

Theorem 5.2.3 Let π0 = [α β] be the initial distribution (according toS = Sa ∪ S0). Then the limit distribution
is given by

[α + βS∞ 0], where S∞ = (I − T)−1S.

Proof The limit distribution is given by

lim
n→∞
π0Pn = lim

n→∞
[α β]

[
I 0

Sn Tn

]
= lim

n→∞
[α + βSn βT

n].

We see from Lemma 5.2.1 that
lim
n→∞
βTn = 0.

On the other hand, sinceSn = Sn−1 + Tn−1S we have

Sn = (I + T + T2 + · · · + Tn−1)S

and
(I − T)Sn = (I − Tn)S.

Hence
lim
n→∞

Sn = lim
n→∞

(I − T)−1(I − Tn)S = (I − T)−1S,

which shows the result.

Example 5.2.4 Consider the Markov chain given by the transition diagram, which is a random walk with ab-
sorbing barriers.

q q

1

p p

1

The transition matrix is given by

P =


1 0 0 0
0 1 0 0
q 0 0 p
0 p q 0

 =
[
I 0
S T

]
, S =

[
q 0
0 p

]
, T =

[
0 p
q 0

]
.

Then

S∞ = (I − T)−1S =
1

1− pq

[
q p2

q2 p

]
Suppose that the initial distribution is given byπ0 = [α β γ δ]. Then the limit distribution is[

α +
qγ + q2δ

1− pq
β +

p2γ + pδ
1− pq

0 0

]
.

In particular, if the Markov chain starts at the state 3, settingπ0 = [0 0 1 0], we obtain the limit distribution[
q

1− pq
p2

1− pq
0 0

]
,

which means that the Markov chain is absorbed in the states 1 or 2 at the ratioq : p2.
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Problem 13 Following Example 5.2.4, study the Markov chain given by the following transition diagram, where
p+ q = 1.

q q

1

p

q

1

pp

5.3 Gambler’s Ruin
We consider a random walk with absorbing barriers at−A andB, whereA > 0 andB > 0. This is a Markov

chain on the state spaceS = {−A,−A+ 1, . . . , B− 1, B} with the transition diagram as follows:

B

q

p p

q

p

q

− A

p

q

We are interested in the absorbing probability, i.e.,

R= P(Xn = −A for somen = 1,2, . . . ) = P

 ∞∪
n=1

{Xn = −A}
 ,

S = P(Xn = B for somen = 1,2, . . . ) = P

 ∞∪
n=1

{Xn = B}
 .

Note that the events in the right-hand sides are not the unions of disjoint events.
A sample path is shown in the following picture:

−A

0

B

�
�
��@

@
@
@R�

��@
@
@R�

��@
@

@
@R

A key idea is to introduce a similar random walk starting atk, −A ≤ k ≤ B, which is denoted byX(k)
n . Then

the original one isXn = X(0)
n . Let Rk andSk be the probabilities that the random walkX(k)

n is absorbed at−A and
B, respectively. We wish to findR= R0 andS = S0.

Lemma 5.3.1 {Rk ; , −A ≤ k ≤ B} fulfills the following difference equation:

Rk = pRk+1 + qRk−1 , R−A = 1, RB = 0. (5.6)

Similarly, {Sk ; , −A ≤ k ≤ B} fulfills the following difference equation:

Sk = pSk+1 + qSk−1 , S−A = 0, SB = 1. (5.7)
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Theorem 5.3.2 Let A ≥ 1 andB ≥ 1. Let{Xn} be the random walk with absorbing barriers at−A andB, and with
right-move probabilityp and left-move probabilityq (p+ q = 1). Then the probabilities that{Xn} is absorbed at
the barriers are given by

P(Xn = −A for somen) =


(q/p)A − (q/p)A+B

1− (q/p)A+B
, p , q,

B
A+ B

, p = q =
1
2
,

P(Xn = B for somen) =


1− (q/p)A

1− (q/p)A+B
, p , q,

A
A+ B

, p = q =
1
2
.

In particular, the random walk is absorbed at the barriers at probability 1.

An interpretation of Theorem 5.3.2 gives the solution to thegambler’s ruin problem. Two players A and B
toss a fair coin by turns. LetA andB be their allotted points when the game starts. They exchange 1 point after
each trial. This game is over when one of the players loses all the allotted points and the other getsA+ B points.
We are interested in the probability of each player’s win. For eachn ≥ 0 defineXn in such a way that the allotted
point of A at timen is given byA+ Xn. Then{Xn} becomes a random walk with absorbing barrier at−A andB.
It then follows from Theorem 5.3.2 that the winning probability of A and B are given by

P(A) =
A

A+ B
, P(B) =

B
A+ B

, (5.8)

respectively. As a result, they are proportional to the initial allotted points. For example, ifA = 1 andB = 100,
we haveP(A) = 1/101 andP(B) = 100/101, which sounds that almost no chance of A’s win.

In a fair bet the recurrence is guaranteed by Theorem 6.1.11. Even if one has much more losses than wins,
continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited money.
(5.8) tells the effect of the barrier.

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 5.3.3 Let {Xn} be the same as in Theorem 5.3.2. The expected life time of this random walk until
absorption is given by 

A
q− p

− A+ B
q− p

1− (q/p)A

1− (q/p)A+B
, p , q,

AB, p = q =
1
2
.

Proof Let Yk be the life time of a random walk starting from the positionk (−A ≤ k ≤ B) at timen = 0 until
absorption. In other words,

Yk = min{ j ≥ 0 ; X(k)
j = −Aまたは X(k)

j = B }.
We wish to computeE(Y0). We see by definition that

E(Y−A) = E(YB) = 0. (5.9)

For−A < k < B we have

E(Yk) =
∞∑
j=1

jP(Yk = j). (5.10)

In a similar manner as in the proof of Theorem 5.3.2 we note that

P(Yk = j) = pP(Yk+1 = j − 1)+ qP(Yk−1 = j − 1). (5.11)

Inserting (5.11) into (5.10), we obtain

E(Yk) = p
∞∑
j=1

jP(Yk+1 = j − 1)+ q
∞∑
j=1

jP(Yk−1 = j − 1)

= pE(Yk+1) + qE(Yk−1) + 1. (5.12)
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Thus, E(Yk) is the solution to the difference equation (5.12) with boundary condition (5.9). This difference
equation is solved in a standard manner and we find

E(Yk) =


A+ k
q− p

− A+ B
q− p

1− (q/p)A+k

1− (q/p)A+B
, p , q,

(A+ k)(B− k), p = q =
1
2
.

Settingk = 0, we obtain the result.

If p = q = 1/2 andA = 1, B = 100, the expected life time isAB= 100. The gambler A is much inferior to B
in the amount of funds (as we have seen already, the probability of A’s win is just 1/101), however, the expected
life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps this is because
the gambler cannot quit gambling.

Problem 14 (A bold gambler) In each game a gambler wins the dollars he bets with probabilityp, and loses
with probability q = 1 − p. The goal of the gambler is to get 5 dollars. His strategy is to bet the difference
between 5 dollars and what he has. LetXn be the amount he has just afternth bet.

q q

1

p

q

p

1

p

pq

(1) Analyze the Markov chain{Xn} with initial conditionX0 = 1.

(2) Compare with the steady gambler discussed in this section, who bets just 1 dollar in each game.
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6 Topics in Random Walks

6.1 The Catalan Number
The Catalan number is a famous number known in combinatorics (Eugène Charles Catalan, 1814–1894).

Richard P. Stanley (MIT) collected many appearances of the Catalan numbers (R. P. Stanley: “Catalan Numbers,”
Cambridge University Press, 2015; http://www-math.mit.edu/ rstan/ec/).

We start with the definition. Letn ≥ 1 and consider a sequence (ϵ1, ϵ2, . . . , ϵn) of ±1, that is, an element of
{−1,1}n. This sequence is called aCatalan pathif

ϵ1 ≥ 0

ϵ1 + ϵ2 ≥ 0

· · ·
ϵ1 + ϵ2 + · · · + ϵn−1 ≥ 0

ϵ1 + ϵ2 + · · · + ϵn−1 + ϵn = 0.

It is apparent that there is no Catalan path of odd length.

Definition 6.1.1 The nth Catalan numberis defined to be the number of Catalan paths of length 2n and is
denoted byCn. For convenience we setC0 = 1.

The first Catalan numbers forn = 0,1,2,3, ... are

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440, ...

We will derive a concise expression for the Catalan numbers by using a graphical representation. Considern× n
grid with the bottom-left corner being given the coordinate (0,0). With each sequence (ϵ1, ϵ2, . . . , ϵn) consisting
of ±1 we associate vectors

ϵk = +1↔ uk = (1,0) ϵk = −1↔ uk = (0,1)

and consider a polygonal line connecting

(0,0), u1, u1 + u2, . . . , u1 + u2 + · · · + un−1, u1 + u2 + · · · + un−1 + un

in order. Ifϵ1 + ϵ2 + · · · + ϵn−1 + ϵn = 0, the final vertex becomes

u1 + u2 + · · · + un−1 + un = (n,n)

so that the obtained polygonal line is a shortest path connecting (0,0) and (n,n) in the grid.

Lemma 6.1.2 There is a one-to-one correspondence between the Catalan paths of length 2n and the shortest
paths connecting (0,0) and (n,n) which do not pass the upper region of the diagonaly = x.

Theorem 6.1.3 (Catalan number)

Cn =
(2n)!

(n+ 1)!n!
, n = 0,1,2, . . . ,

Proof Forn = 0 it is apparent by the definition 0!= 1. Supposen ≥ 1. We see from Fig. 6.1 that

Cn =

(
2n
n

)
−

(
2n

n+ 1

)
=

(2n)!
n!(n+ 1)!

,

as desired.
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An alternative representation of the Catalan paths: Consider in thexy-plane a polygonal line connecting the
vertices:

(0,0), (1, ϵ1), (2, ϵ1 + ϵ2), . . . , (n− 1, ϵ1 + ϵ2 + · · · + ϵn−1), (n, ϵ1 + ϵ2 + · · · + ϵn−1 + ϵn)

in order. Then, there is a one-to-one correspondence between the Catalan paths of length 2n and the sample
paths of a random walk starting 0 at time 0 and returning 0 at time 2n staying always in the half line [0,+∞).
Therefore,

Lemma 6.1.4 Let n ≥ 1. The number of sample paths of a random walk starting 0 at time 0 and returning 0 at
time 2n staying always in the half line [0,+∞) is the Catalan numberCn.

Let {Xn} be a random walk onZ with right-move probabilityp and left-move probabilityq = 1 − p. We
assume that the random walk starts at the origin, i.e.,X0 = 0. Since the random walker returns to the origin only
after even steps, the return probability is given by

R= P

 ∞∪
n=1

{X2n = 0}
 . (6.1)

It is important to note that
∪∞

n=1{X2n = 0} is not the sum of disjoint events.
Let p2n be the probability that the random walker is found at the origin at time 2n, that is,

p2n = P(X2n = 0) =

(
2n
n

)
pnqn =

(2n)!
n!n!

pnqn, n = 1, 2, . . . . (6.2)

For convenience set
p0 = 1.

Note that the right hand side of (6.1) is not the sum ofp2n. Instead, we need to consider the probability that the
random walker returns to the origin after 2n steps but not before:

q2n = P(X2 , 0, X4 , 0, . . . ,X2n−2 , 0, X2n = 0) n = 1,2, . . . .

Notice the essential difference betweenp2n andq2n.

Definition 6.1.5 We set
T = inf {n ≥ 1 ; Xn = 0}, (6.3)

whereT = +∞ for {n ≥ 1 ; Xn = 0} = ∅. We callT thefirst hitting timeto the origin. (Strictly speaking,T is
not a random variable according to our definition in Chapter 1. It is, however, commonly accepted that a random
variable takes values in (−∞,+∞) ∪ {±∞}.)
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By definition we have
P(T = 2n) = q2n (6.4)

and therefore, the return probability is given by

R= P(T < ∞) =
∞∑

n=1

q2n. (6.5)

We will calculateP(T = 2n) and therebyR.

Theorem 6.1.6 Let {Xn} be the random walk starting from 0 with right-move probabilityp and left-move prob-
ability q. Let T be the first hitting-time to 0. Then

q2n = P(T = 2n) = 2Cn−1(pq)n, n = 1,2, . . . .

Proof Obviously, we have

q2n = P(X2 , 0, X4 , 0, . . . ,X2n−2 , 0, X2n = 0)

= P(X1 > 0, X2 > 0, X3 > 0, . . . ,X2n−2 > 0, X2n−1 > 0, X2n = 0)

+ P(X1 < 0, X2 < 0, X3 < 0, . . . ,X2n−2 < 0, X2n−1 < 0, X2n = 0).

In view of Fig. 6.1 we see that

P(X1 > 0, X2 > 0, X3 > 0, . . . ,X2n−2 > 0, X2n−1 > 0, X2n = 0) = p×Cn−1(pq)n−1 × q.

Then the result is immediate.

p q

0 2n

2n-2

Figure 6.1: CalculatingP(X1 > 0, X2 > 0, . . . ,X2n−1 > 0, X2n = 0)

Remark 6.1.7 There are some noticeable relations between{p2n} and{q2n}.

q2n =
2pq
n

p2n−2 , n ≥ 1,

q2n = 4pqp2n−2 − p2n , n ≥ 1.

Lemma 6.1.8 The generating function of the Catalan numbersCn is given by

f (z) =
∞∑

n=0

Cnzn =
1−
√

1− 4z
2z

. (6.6)

Proof Problem 17.

Theorem 6.1.9 Let R be the probability that a random walker starting from the origin returns to the origin in
finite time. Then we have

R= 1− |p− q|.
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Proof We know from Theorem 6.1.6 that the return probabilityR is given by

R=
∞∑

n=1

P(T = 2n) =
∞∑

n=1

2Cn−1(pq)n.

Using the generating function of the Catalan numbers in Lemma 6.1.8, we obtain

R= 2pq
∞∑

n=0

Cn(pq)n = 2pq×
1−

√
1− 4pq

2pq
= 1−

√
1− 4pq.

Sincep+ q = 1 we have √
1− 4pq=

√
(p+ q)2 − 4pq=

√
(p− q)2 = |p− q|,

which completes the proof.

Definition 6.1.10 A random walk is calledrecurrentif R= 1, otherwise it is calledtransient.

Theorem 6.1.11The one-dimensional random walk is recurrent if and only ifp = q = 1/2 (isotropic). It is
transient if and only ifp , q.

When a random walk is recurrent, it is meaningful to consider the mean recurrent time defined by

E(T) =
∞∑

n=1

2nP(T = 2n) =
∞∑

n=1

2nq2n,

whereT is the first hitting time to the origin.

Theorem 6.1.12 (Null recurrence)The mean recurrent time of the isotropic, one-dimensional random walk is
infinity: E[T] = +∞.

Proof In view of Theorem 6.1.6, settingp = q = 1/2, we obtain

E(T) = 4
∞∑

n=1

nCn−1

(1
4

)n

=

∞∑
n=0

(n+ 1)Cn

(1
4

)n

. (6.7)

On the other hand, the generating function of the Catalan numbers is given by

f (z) =
∞∑

n=0

Cnzn =
1−
√

1− 4z
2z

.

Then

2z f(z) = 2
∞∑

n=0

Cnzn+1 = 1−
√

1− 4z

and differentiating byz, we have

2(z f(z))′ = 2
∞∑

n=0

(n+ 1)Cnzn =
2

√
1− 4z

.

Lettingz→ 1/4 we have

2
∞∑

n=0

(n+ 1)Cn

(1
4

)n

= lim
z↑1/4
= +∞,

and henceE[T] = +∞ as desired, see also Remark 6.1.13.
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Remark 6.1.13 Let an ≥ 0 for n = 0,1,2, . . . and consider the power series:

f (x) =
∞∑

n=0

anxn .

If the radius of convergence of the above power series is≥ 1, we have

lim
x→1−0

f (x) =
∞∑

n=0

an

including the case of∞ = ∞. The verification is by elementary calculus based on the following two inequalities:

lim inf
x→1−0

f (x) ≥
N∑

n=0

an , N ≥ 1,

f (x) ≤
∞∑

n=0

an , x < 1.

Problem 15 Find the Catalan numbersCn in the following steps.

(1) Prove thatCn =

n∑
k=1

Ck−1Cn−k by using graphical expressions.

(2) Using (1), prove that the generating function of the Catalan numbersf (z) =
∞∑

n=0

Cnzn verifies

f (z) − 1 = z{ f (z)}2.

(3) Find f (z).

(4) Using Taylor expansion off (z) obtained in (3), findCn.

Problem 16 Let {Xn} be a random walk starting from 0 with right-movep and left-moveq. Show that

P(X1 ≥ 0,X2 ≥ 0, . . . ,X2n−1 ≥ 0)

= P(X1 ≥ 0,X2 ≥ 0, . . . ,X2n ≥ 0) = 1− q
n−1∑
k=0

Ck(pq)k

for n = 1,2, . . . , whereCk is the Catalan number. Using this result, show next that

P (Xn ≥ 0 for all n ≥ 1) =

1− q
p
, p > q,

0, p ≤ q.

Problem 17 (Lemma 6.1.8)(1) Using the well-known formula for binomial expansion:

(1+ x)α =
∞∑

n=0

(
α

n

)
xn, |x| < 1,

prove that
∞∑

n=0

(
2n
n

)
zn =

1
√

1− 4z
, |z| < 1

4
.

(2) LetCn be the Catalan number given by

Cn =
(2n)!

n!(n+ 1)!
, n = 0,1,2, . . . .

Prove that
∞∑

n=0

Cnzn =
1−
√

1− 4z
2z

, |z| < 1
4
.
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Problem 18 In them× (m+ n) grid consider a shortest path connecting (0,0) and (m+ n,m) which do not pass
the region upper than the line connecting (0,0) and (m,m). Show that the number of such paths is given by

(2m+ n)!(n+ 1)
m!(m+ n+ 1)!

.

6.2 The Law of Long Lead
Let us consider an isotropic random walk{Xn}, namely, letting{Zn} be the Bernoulli trials such that

P(Zn = +1) = P(Zn = −1) =
1
2
,

we set

X0 = 0, Xn =

n∑
k=1

Zk .

Fig. 6.2 shows sample paths ofX0,X1,X2, . . . ,X10000. We notice that these are just two examples among many
different patterns.

Figure 6.2: Sample paths of a random walk up to time 10000

By the law of large numbers we know that±1 occur almost 5000 times during 10000 coin toss. In fact, it
follows from the de Moivre–Laplace theorem (more generally, central limit theorem) that

1
√

n

n∑
k=1

Zk

obeysN(0,1) in the limit asn → ∞. Hence for a largen we have approximatelyXn ∼ N(0,n). For example,
P(|Xn| ≤ 2

√
n) ≈ 95.4% for a largen, soX10000 lies in the interval±200 at probability 95.4%. In this case±1

occurs 5000±100 times. In other words, along the polygonal line the up-move and down-move occur almost the
same times, however, the polygonal line stays more often in the upper or lower half region.

We say that a random walk stays in the positive region in the time interval [i, i + 1] if Xi ≥ 0 andXi+1 ≥ 0.
Similarly, we say that a random walk stays in the negative region in the time interval [i, i + 1] if Xi ≤ 0 and
Xi+1 ≤ 0. Let

W(2k|2n), n = 1,2, . . . , k = 0,1, . . . , n,

be the probability that the total time of the random walk staying in the positive region during [0,2n] is 2k.
Remind that in this section we only consider an isotropic random walk (p = q = 1/2). Forn = 1 we have

W(2|2) = 2×
(
1
2

)2

=
1
2
, W(0|2) = 2×

(
1
2

)2

=
1
2
.

Similarly, we have

W(4|4) = 6×
(
1
2

)4

, W(2|4) = 4×
(
1
2

)4

, W(0|4) = 6×
(
1
2

)4

,

W(6|6) = 20×
(
1
2

)6

, W(4|6) = 12×
(
1
2

)6

, W(2|6) = 12×
(
1
2

)6

, W(0|6) = 20×
(
1
2

)6

,
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For generalW(2k|2n) we have the following somehow surprisingly simple result.

0

2 4 6

Theorem 6.2.1 Forn = 1,2, . . . it holds that

W(2k|2n) =

(
2k
k

)(
2n− 2k
n− k

)(1
2

)2n

, k = 0,1, . . . , n, (6.8)

or equivalently,
W(2k|2n) = p2kp2n−2k . (6.9)

That (6.8) and (6.9) are equivalent follows immediately from

p2n ≡ P(X2n = 0) =

(
2n
n

)(1
2

)2n

, n = 0,1,2, . . . .

The proof of Theorem 6.2.1 is, however, not so simple as is expected by a nice expression (6.9). One would
expect a very tricky simple observation leading the result. The complete proof is found in [Feller]. As before,
we set

q2n = P(T = 2n), n = 1,2, . . . .

Observing that

q2n = 2P(X1 > 0,X2 > 0, . . . ,X2n−1 > 0,X2n = 0) = 2Cn−1

(1
2

)2n

=
1
2n

p2n−2 ,

one can get an obvious relation:

W(2k|2n) =
k∑

r=1

q2r

2
W(2k− 2r |2n− 2r) +

n−k∑
r=1

q2r

2
W(2k|2n− 2r).

The assertion is then proved by induction onk,n.
We will find a good approximation forW(2k|2n) whenn→ ∞. For a fixedn let H2n be the total time that the

random walker stays in the positive region up to time 2n. It is convenient to consider the ratio
H2n

2n
rather than

H2n it self. As we have already obtained

P(H2n = 2k) =W(2k|2n) =

(
2k
k

)(
2n− 2k
n− k

)(1
2

)2n

,
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for 0 < a < 1 we see that

P
(
a ≤ H2n

2n
≤ b

)
=

bn∑
k=an

W(2k|2n)

=

n∑
k=0

χ[an,bn](k)W(2k|2n) =
n∑

k=0

χ[a,b]

(k
n

)(2k
k

)(
2n− 2k
n− k

)(1
2

)2n

,

whereχI (x) is the indicator function of an intervalI , that is, takes 1 forx ∈ I and 0 otherwise. Using the Stirling
formula:

n! ∼
√

2πn
(n
e

)n

, asn→ ∞,

we obtain (
2k
k

)(1
2

)2k

∼ 1
√
πk
.

Then,

P
(
a ≤ H2n

2n
≤ b

)
∼

n∑
k=0

χ[a,b]

(k
n

) 1

π
√

k(n− k)
=

n∑
k=0

χ[a,b]

(k
n

) 1

π
√

k
n(1− k

n)

1
n

→
∫ 1

0
χ[a,b](x)

dx

π
√

x(1− x)
=

∫ b

a

dx

π
√

x(1− x)
.

Definition 6.2.2 The probability distribution defined by the density function:

dx

π
√

x(1− x)
. 0 < x < 1,

is called thearcsine law. The distribution function is given by

F(x) =
∫ x

0

dt

π
√

t(1− t)
=

2
π

arcsin
√

x =
1
2
+

1
π

arcsin(2x− 1).

Theorem 6.2.3 The distribution of
H2n

2n
converges weakly to the arcsine law:

lim
n→∞

P
(
a ≤ H2n

2n
≤ b

)
=

∫ b

a

dx

π
√

x(1− x)
, 0 ≤ a < b ≤ 1.

For example,

F(0.9) =
2
π

arcsin
√

0.9 ≈ 0.795.

Namely, during many ganes the probability that the ratio of winning time (or happy time) exceeds 90% is 1−
F(0.9) ≈ 0.205, which would be much larger than one expects by intuition.
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7 Galton-Watson Branching Processes

Consider a simplified family tree where each individual gives birth to offspring (children) and dies. The
number of offsprings is random. We are interested in whether the family survives or not. A fundamental model
was proposed by F. Galton in 1873 and basic properties were derived by Galton and Watson in their joint paper
in the next year. The name “Galton-Watson branching process” is quite common in literatures after their paper,
but it would be more fair to refer to it as “BGW process.” In fact, Iréńee-Jules Bienayḿe studied the same model
independently already in 1845.
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7.1 Definition
Let Xn be the number of individuals of thenth generation. Then{Xn ; n = 0,1,2, . . . } becomes a discrete-time

stochasic process. We assume that the number of children born from each individual obeys a common probability
distribution and is independent of individuals and of generation. Under this assupmtion{Xn} becomes a Markov
chain.

Let us obtain the transition probability. LetY be the number of children born from an individual and set

P(Y = k) = pk , k = 0,1,2, . . . .

The sequence{p0, p1, p2, . . . } describes the distribution of the number of children born from an individual. In
fact, what we need is the condition

pk ≥ 0,
∞∑

k=0

pk = 1.

We refer to{p0, p1, . . . } as theoffspring distribution. LetY1,Y2, . . . be independent identically distributed random
variables, of which the distribution is the same asY. Then, we define the transition probability by

p(i, j) = P(Xn+1 = j|Xn = i) = P

 i∑
k=1

Yk = j

 , i ≥ 1, j ≥ 0,

and

p(0, j) =

0, j ≥ 1,

1, j = 0.
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Clearly, the state 0 is an absorbing one. The above Markov chain{Xn} over the state space{0,1,2, . . . } is called
theGalton-Watson branching processwith offspring distribution{pk ; k = 0,1, 2, . . . }.

For simplicity we assume thatX0 = 1. Whenp0 + p1 = 1, the famility tree is reduced to just a path without
branching so the situation is much simpler (Problem 19). We will focus on the case where

p0 + p1 < 1, p2 < 1, . . . , pk < 1, . . . .

In the next section on we will always assume the above conditions.

Problem 19 (One-child policy) Consider the Galton-Watson branching process with offspring distribution sat-
isfying p0 + p1 = 1. Calculate the probabilities

q1 = P(X1 = 0), q2 = P(X1 , 0,X2 = 0), . . . , qn = P(X1 , 0, . . . ,Xn−1 , 0,Xn = 0), . . .

and find the extinction probability

P =

 ∞∪
n=1

{Xn = 0}
 = P(Xn = 0 occurs for somen ≥ 1).

7.2 Generating Functions
Let {Xn} be the Galton-Watson branching process with offspring distribution{pk ; k = 0,1,2, . . . }. Let

p(i, j) = P(Xn+1 = j|Xn = i) be the transition probability. We assume thatX0 = 1.
Define the generating function of the offspring distribution by

f (s) =
∞∑

k=0

pksk. (7.1)

The series in the right-hand side converges for|s| ≤ 1. We set

f0(s) = s, f1(s) = f (s), fn(s) = f ( fn−1(s)).

Lemma 7.2.1
∞∑
j=0

p(i, j)sj = [ f (s)] i , i = 1,2, . . . . (7.2)

Proof By definition,

p(i, j) = P (Y1 + · · · + Yi = j) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

P(Y1 = k1, . . . ,Yi = ki).

SinceY1, . . . ,Yi are independent, we have

p(i, j) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

P(Y1 = k1) · · ·P(Yi = ki) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

pk1 · · · pki .

Hence,

∞∑
j=0

p(i, j)sj =

∞∑
j=0

∑
k1+···+ki= j
k1≥0,...,ki≥0

pk1 · · · pki s
j

=

∞∑
k1=0

pk1 sk1 · · ·
∞∑

ki=0

pki s
ki

= [ f (s)] i ,

which proves the assertion.
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Lemma 7.2.2 Let pn(i, j) be then-step transition probability of the Galton-Watson branching process. We have

∞∑
j=0

pn(i, j)sj = [ fn(s)] i , i = 1,2, . . . . (7.3)

Proof We prove the assertion by induction onn. First note thatp1(i, j) = p(i, j) and f1(s) = f (s) by
definition. Forn = 1 we need to show that

∞∑
j=0

p(i, j)sj = [ f (s)] i , i = 1,2, . . . , (7.4)

Which was shown in Lemma 7.2.1. Suppose thatn ≥ 1 and the claim (7.3) is valid up ton. Using the Chapman-
Kolmogorov identity, we see that

∞∑
j=0

pn+1(i, j)sj =

∞∑
j=0

∞∑
k=0

p(i, k)pn(k, j)sj .

Since
∞∑
j=0

pn(k, j)sj = [ fn(s)]k

by assumption of induction, we obtain

∞∑
j=0

pn+1(i, j)sj =

∞∑
k=0

p(i, k)[ fn(s)]k.

The right-hand side coincides with (7.4) wheres is replaced byfn(s). Consequently, we come to

∞∑
j=0

pn+1(i, j)sj = [ f ( fn(s))] i = [ fn+1(s)] i ,

which proves the claim forn+ 1.

SinceX0 = 1,
P(Xn = j) = P(Xn = j|X0 = 1) = pn(1, j).

In particular,
P(X1 = j) = P(X1 = j|X0 = 1) = p1(1, j) = p(1, j) = p j .

Theorem 7.2.3 Assume that the mean value of the offspring distribution is finite:

m=
∞∑

k=0

kpk < ∞.

Then we have
E[Xn] = mn.

Proof Differentiating (7.1), we obtain

f ′(s) =
∞∑

k=0

kpksk−1, |s| < 1. (7.5)

Letting s→ 1− 0, we have
lim

s→1−0
f ′(s) = m.

On the other hand, settingi = 1 in (7.3), we have

∞∑
j=0

pn(1, j)sj = fn(s) = fn−1( f (s)). (7.6)
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Differentiating both sides, we come to

f ′n(s) =
∞∑
j=0

jpn(1, j)sj−1 = f ′n−1( f (s)) f ′(s). (7.7)

Letting s→ 1− 0, we have

lim
s→1−0

f ′n(s) =
∞∑
j=0

jpn(1, j) = lim
s→1−0

f ′n−1( f (s)) lim
s→1−0

f ′(s) = m lim
s→1−0

f ′n−1(s).

Therefore,
lim

s→1−0
f ′n(s) = mn,

which means that

E(Xn) =
∞∑
j=0

jP(Xn = j) =
∞∑
j=0

jpn(1, j) = mn.

In conclusion, the mean value of the number of individuals in thenth generation,E(Xn), decreases and
converges to 0 ifm < 1 and diverges to the infinity ifm > 1, asn→ ∞. It stays at a constant ifm = 1. We are
thus suggested that extinction of the family occurs whenm< 1.

Problem 20 Assume that the variance of the offspring distribution is finite:V[Y] = σ2 < ∞. By similar
argument as in Theorem 7.2.3, prove that

V[Xn] =


σ2mn−1(mn − 1)

m− 1
, m, 1,

nσ2, m= 1.

7.3 Extinction Probability
The event{Xn = 0} means that the family died out until thenth generation. So

q = P

 ∞∪
n=1

{Xn = 0}


is the probability of extinction of the family. Note that the events in the right-hand side is not mutually exclusive
but

{X1 = 0} ⊂ {X2 = 0} ⊂ · · · ⊂ {Xn = 0} ⊂ . . . .
Therefore, it holds that

q = lim
n→∞

P(Xn = 0). (7.8)

If q = 1, this family almost surely dies out in some generation. Ifq < 1, the survival probability is positive
1− q > 0. We are interested in whetherq = 1 or not.

Lemma 7.3.1 Let f (s) be the generating function of the offspring distribution, and setfn(s) = f ( fn−1(s)) as
before. Then we have

q = lim
n→∞

fn(0).

Therefore,q satisfies the equation:
q = f (q). (7.9)
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Proof It follows from Lemma 7.2.2 that

fn(s) =
∞∑
j=0

pn(1, j)sj .

Hence,
fn(0) = pn(1,0) = P(Xn = 0|X0 = 1) = P(Xn = 0),

where the last identity is by the assumption ofX0 = 1. The assertion is now straightforward by combining (7.8).
The second assertion follows sincef (s) is a continuous function on [0,1].

Lemma 7.3.2 Assume that the offspring distribution satisfies the conditions:

p0 + p1 < 1, p2 < 1, . . . , pk < 1, . . . .

Then the generating functionf (t) verifies the following properties.

(1) f (s) is increasing, i.e.,f (s1) ≤ f (s2) for 0 ≤ s1 ≤ s2 ≤ 1.

(2) f (s) is strictly convex, i.e., if 0≤ s1 < s2 ≤ 1 and 0< θ < 1 we have

f (θs1 + (1− θ)s2) < θ f (s1) + (1− θ) f (s2).

Proof (1) is apparent since the coefficient of the power seriesf (s) is non-negative. (2) follows byf ′′(s) > 0.

Lemma 7.3.3 (1) If m≤ 1, we havef (s) > s for 0 ≤ s< 1.

(2) If m> 1, there exists a uniques such that 0≤ s< 1 and f (s) = s.

Lemma 7.3.4 f1(0) ≤ f2(0) ≤ · · · → q.

Theorem 7.3.5 The extinction probabilityq of the Galton-Watson branching process as above coincides with
the smallests such that

s= f (s), 0 ≤ s≤ 1.

Moreover, ifm≤ 1 we haveq = 1, and ifm> 1 we haveq < 1.

The Galton-Watson branching process is calledsubcritical, critical andsupercritical if m < 1, m = 1 and
m > 1, respectively. The survival is determined only by the mean valuem of the offspring distribution. The
situation changes dramatically atm = 1 and, following the terminology of statistical physics, we call itphase
transition.

Problem 21 Let b, p be constant numbers such thatb > 0, 0< p < 1 andb+p < 1. For the offspring distribution
given by

pk = bpk−1, k = 1,2, . . . ,

p0 = 1−
∞∑

k=1

pk,

find the generating functionf (s). Moreover, settingm= 1, find fn(s).
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8 Poisson Processes

Let T ⊂ R be an interval. A family of random variables{X(t) ; t ∈ T} is called acontinuous time stochastic
process. We often considerT = [0,1] andT = [0,∞). As X(t) is a random variable for eacht ∈ T, it has another
variableω ∈ Ω. When we need to explicitly refer toω, we writeX(t, ω) or Xt(ω). For fixedω ∈ Ω, the function

t 7→ X(t, ω)

is called asample pathof the stochastic process{X(t)}. It is the central idea of stochastic processes that a random
evolution in the real world is expressed by a single sample path selected randomly from all the possible sample
paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian motion
(Wiener process). In the recent study of mathematical physics and mathematical finance, a kind of composition
of these two processes, called the Lévy process (or additive process), has received much attention.

8.1 Heuristic Introduction
Let us imagine that the number of objects changes as time goes on. The number at timet is modelled by a

random variableXt and we wish to construct a stochastic process{Xt}. In this caseXt takes values in{0,1, 2, . . . }.
In general, such a stochastic process is called acounting process.

There are many different variations of randomness and so wide variations of counting processes. We below
consider the simple situation as follows: We focus an eventE which occurs repeatedly at random as time goes
on. For example,

(i) alert of receiving an e-mail;

(ii) telephone call received a call center;

(iii) passengers making a queue at a bus stop;

(iv) customers visiting a shop;

(v) occurrence of defect of a machine;

(vi) traffic accident at a corner;

(vii) radiation from an atom.

Let fix a time origin ast = 0. We count the number of occurrence of the eventE during the time interval [0, t]
and denote it byXt. Let t1, t2, . . . be the time whenE occurs, see Fig. 8.1.

0 t
nt t t

Figure 8.1: Recording when the eventE occurs

There are two quantities which we measure.

(i) The number of occurrence ofE up to timet, say,Xt. Then{Xt ; t ≥ 0} becomes a counting process.

(ii) The waiting time of thenth occurrence after the (n − 1)th occurrence, say,Tn . HereT1 is defined to be
the waiting time of the first occurrence ofE after starting the observation. Then{Tn ; n = 1,2, . . . } is a
sequence of random variables taking values in [0,∞).

We will introduce heuristically a stochastic process{Xt} from the viewpoint of (i). It is convenient to start
with discrete time approximation. Fixt > 0 and divide the time interval [0, t] into n small intervals. Let

∆t =
t
n

be the length of the small intervals and number from the time origin in order.
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Figure 8.2: The counting process and waiting times
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We assume the following conditions on the occurrence of the eventE:

(1) There exists a constantλ > 0 such that

P(E occurs just once in a small time interval of length∆t) = λ∆t + o(∆t),

P(E does not occur in a mall time interval of length∆t) = 1− λ∆t + o(∆t),

P(E occurs more than once in a small time interval of length∆t) = o(∆t).

(2) Occurrence ofE in disjoint time intervals is independent.

Some more accounts. Let us imagine the alert of receiving an e-mail. That

P(E occurs more than once in a small time interval of length∆t) = o(∆t)

means that two occurrences of the eventE is always separated. That

P(E occurs just once in a small time interval of length∆t) = λ∆t + o(∆t)

means that when∆t is small the probability of occurrence ofE in a time interval is proportional to the length of
the time interval. We understand from (2) that occurrence ofE is independent of the past occurrence.

Let Zi denote the number of occurrence of the eventE in the ith time interval. ThenZ1,Z2, . . . ,Zn become a
sequence of independent random variables with an identical distribution such that

P(Zi = 0) = 1− λ∆t + o(∆t), P(Zi = 1) = λ∆t + o(∆t), P(Zi ≥ 2) = o(∆t).

The number of occurrence ofE during the time interval [0, t] is given by

n∑
i=1

Zi .
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The length∆t is introduced for a technical reason and is not essential in the probability model so letting∆t → 0
or equivalentlyn→ ∞, we defineXt by

Xt = lim
∆t→0

n∑
i=1

Zi . (8.1)

Although the limit does require matyhematical justification, we obtain heuristically a continuous time stochastic
process{Xt}, which gives the number of occurrence of the eventE up to timet. This is called aPoisson process
with parameterλ > 0. A Poisson process belongs to the calss of continuous time Marokov chains.

Theorem 8.1.1 A Poisson process{Xt ; t ≥ 0} satisfies the following properties:

(1) (counting process)Xt takes vales in{0,1,2, . . . };
(2) X0 = 0;

(3) (monotone increasing)Xs ≤ Xt for 0 ≤ s≤ t;

(4) (independent increment) if 0≤ t1 < t2 < · · · < tk, then

Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtk − Xtk−1 ,

are independent;

(5) (stationarity) for 0≤ s< t andh ≥ 0, the distributions ofXt+h − Xs+h andXt − Xs are identical;

(6) there exists a constantλ > 0 such that

P(Xh = 1) = λh+ o(h), P(Xh ≥ 2) = o(h).

(7) In that caseXt obeys the Poisson distribution with parameterλt.

Proof (1) SinceXt obeys the Poisson distribution with parameterλt, it takes values in non-negative integers
almost surely.

(2) Obvious by definition.
(3) Let s= m∆t, t = n∆t, m< n. Then we have obviously

Xs = lim
∆t→0

m∑
i=1

Zi ≤ lim
∆t→0

n∑
i=1

Zi = Xt .

(4) Supposet1 = n1∆t, . . . , tk = nk∆t with n1 < · · · < nk. Then we have

Xt2 − Xt1 = lim
∆t→0

n2∑
i=1

Zi − lim
∆t→0

n1∑
i=1

Zi = lim
∆t→0

n2∑
i=n1+1

Zi .

In other words,Xt2 − Xt1 is the sum ofZi ’s corresponding to the small time intervals contained in [t2, t1). Hence,
Xt2 − Xt1 , . . . ,Xtk − Xtk−1 are the sums ofZi ’s and there is no commonZi appearing in the summands. Since{Zi}
are independent, so areXt2 − Xt1 , . . . ,Xtk − Xtk−1.

(5) SinceXt+h − Xs+h andXt − Xs are defined from the sums ofZi ’s and the numbers of the terms coincide.
Therefore the distributions are the same.

(6) Recall thatXh obeys the Poisson distribution with parameterλh. Hence,

P(Xh = 0) = e−λh = 1− λh+ · · · = 1− λh+ o(h),

P(Xh = 1) = λhe−λh = λh(1− λh+ . . . ) = λh+ o(h).

Therefore we have
P(Xh ≥ 2) = 1− P(Xh = 0)− P(Xh = 1) = o(h).

(7) We note that

P

 n∑
i=1

Zi = k

 = (
n
k

)
(λ∆t)k(1− λ∆t)n−k + o(∆t).
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In view of∆t = t/n we letn tend to the infinity and obtain

P(Xt = k) = lim
∆t→0

(λt)k

k!
n(n− 1) . . . (n− k+ 1)

nk

(
1− λt

n

)n−k

=
(λt)k

k!
e−λt .

This proves the assertion.

Remark 8.1.2 The essence of the above argument in (7) is thePoisson’s law of small numberswhich says that
the binomial distributionB(n, p) is approximated by Poisson distribution with parameterλ = np whenn is large
and p is small. The following table shows the distributions ofB(100,0.02) and the Poisson distribution with
parameterλ = 2.

k 0 1 2 3 4 5 6 · · ·
Binomial 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114· · ·
Poisson 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120· · ·

Example 8.1.3 The average number of customers visiting a certain service gate is two per minute. Using the
Poisson model, calculate the following probabilities.

(1) The probability that no customer visits during the first two minutes after the gate opens.

(2) The probability that no customer visits during a time interval of two minutes.

(3) The probability that no customer visits during the first two minutes after the gate opens and that two
customers visit during the next one minute.

Let Xt be the number of visitors up to timet. By assumption{Xt} is a Poisson process with parameterλ = 2.
(1) We need to calculateP(X2 = 0). SinceX2 obeys the Poisson distribution with parameter 2λ = 4, we have

P(X2 = 0) =
40

0!
e−4 ≈ 0.018.

(2) Suppose that the time interval starts att0. Then the probability under discussion is given byP(Xt0+2−Xt0 =

0). By stationarity we have

P(Xt0+2 − Xt0 = 0) = P(X2 − X0 = 0) = P(X2 = 0),

which coincides with (1).
(3) We need calculate the probabilityP(X2 = 0,X3 − X2 = 2). SinceX2 andX3 − X2 are independent,

P(X2 = 0,X3 − X2 = 2) = P(X2 = 0)P(X3 − X2 = 2).

By stationarity we have

= P(X2 = 0)P(X1 = 2) =
40

0!
e−4 × 22

2!
e−2 ≈ 0.00496.

Problem 22 Let {Xt} be a Poisson process. Show that

P(Xs = k|Xt = n) =

(
n
k

) ( s
t

)k (
1− s

t

)n−k
, k = 0,1, . . . ,n,

for 0 < s< t. Next give an intuitive explanation of the above formula.

Problem 23 The average number of arrivals of e-mails is 216 per one day. Using the Poisson model, calculate
the following probabilities.

(1) The probability that no mail arrives during 10 minutes.

(2) The probability that 4 mails arrive during 30 minutes and 8 mails arrive during the next 30 minutes.
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8.2 Waiting Time
Let {Xt ; t ≥ 0} be a Poisson process with parameterλ. By definitionX0 = 0 andXt increases by one as time

passes. Recall that the Poisson process counts the number of events occurring up to timet. First we set

T1 = inf {t ≥ 0 ; Xt ≥ 1}. (8.2)

This is the waiting time for the first occurrence of the eventE. Let T2 be the waiting time for the second
occurrence of the eventE after the first occurrence, i.e.,

T2 = inf {t ≥ 0 ; Xt ≥ 2} − T1 .

In a similar fashion, we set

Tn = inf {t ≥ 0 ; Xt ≥ n} − Tn−1, n = 2,3, . . . . (8.3)

Theorem 8.2.1 Let {Xt} be a Poisson process with parameterλ. Define the waiting timeTn by (8.2) and (8.3).
Then,{Tn ; n = 1,2, . . . } becomes a sequence of iid random variables, of which distribution is the exponential
distribution with parameterλ. In particular, the waiting time for occurence of an event in the Poisson process
obeys the exponential distribution with parameterλ.

Proof Sett = n∆t and consider the approximation by refinement of the time interval. Recall that to each
small time interval of length∆t a random variableZi is associated. Then we know that

P(T1 > t) = lim
∆t→0

P(Z1 = · · · = Zn = 0) = lim
∆t→0

(1− λ∆t)n = lim
∆t→0

(
1− λt

n

)n

= e−λt.

Therefore,

P(T1 ≤ t) = 1− e−λt =
∫ t

0
λe−λsds,

which shows thatT1 obeys the exponential distribution with parameterλ. The distributions ofT2,T3, . . . are
similar.

Remark 8.2.2 Let {Xt} be a Poisson process with parameterλ. We know thatE(X1) = λ, which means the
average number of occurrence of the event during the unit time interval. Hence, it is expected that the average
waiting time between two occurrences is 1/λ. Theorem 8.2.1 says that the waiting time obeys the exponential
distribution with parameterλ so its mean value is 1/λ. Thus, our rough consideration gives the correct answer.

Problem 24 Let {Xt} be a Poisson process with parameterλ. The waiting time forn occurrence of the events
is defined bySn = T1 + T2 + · · · + Tn, whereTn is given in Theorem 8.2.1. CalculateP(S2 ≤ t) and find the
probability density function ofS2. [In general,Sn obeys a gamma distribution.]

8.3 The Rigorous Definition of Poisson Processes
The “definition” of a Poisson process in (8.1) is intuitive and instructive for modeling random phenomena.

However, strictly speaking, the argument is not sufficient to define a stochastic process{Xt}. For example, the
probability space (Ω,F ,P) on which{Xt} is defined is not at all clear.

We need to start with the waiting time{Tn}. First we prepare a sequence of iid random variables{Tn ; n =
1,2, . . . }, of which the distribution is the exponential distribution with parameterλ > 0. Here the probability
space (Ω,F ,P) is clearly defined. Next we set

S0 = 0, Sn = T1 + · · · + Tn , n = 1,2, . . . ,

and fort ≥ 0,
Xt = max{n ≥ 0 ; Sn ≤ t}.

It is obvious that for eacht ≥ 0, Xt is a random variable defined on the probability space (Ω,F ,P). In other
words,{Xt ; t ≥ 0} becomes a continuous time stochastic process. This is calledPoisson processwith parameter
λ by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 8.1.1.
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9 Queueing Theory

9.1 Modeling Queues
In our daily life, we observe often waiting lines or queues of customers for services. Agner Krarup Erlang

(1878–1929, Danish engineer at the Copenhagen Telephone Exchange) published in 1909 the paper entitled:The
Theory of Probabilities and Telephone Conversations, which opened the door to the research field ofqueueing
theory. Such a queue is modeled in terms of a system consisting of servers and a waiting room. Customers
arriving at the system are served at once if there is an idle server. Otherwise, the customer waits for a vacant
server in a waiting room. After being served, the customer leaves the system.

system

servers waiting room

arrivaldeparture

customers

In most of the qeueing models, a customer arrives at random and the service time is also random. So we are
interested in relevant statistics such as

(1) sojourn time (time of a customer staying in the system)

(2) waiting time (= sojourn time - service time)

(3) the number of customers in the system

Apparently, many different conditions may be introduced for the queueing system. In 1953, David G. Kendall
introduced the so-calledKendall’s notation

A/B/c/K/m/Z

for describing the characteristics of a queuing model, where

A: arrival process,
B: service time distribution,
c: number of servers,
K: number of places in the system (or in the waiting room),
m: calling population,
Z: queue’s discipline or priority order, e.g., FIFO (First In First Out)

The first model analyzed by Erlang in 1909 was theM/D/1 queue in Kendall’s notation, whereM means that
arrivals occur according to a Poisson process, andD stands for deterministic (i.e., service time is not random but
constant).

Most of queueing models are classified into four categories by the behavior of customers as follows:

(I) Delay models: customers wait in line until they can be served.

Example:M/M/c queue, where
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(i) customers arrive according to a Poisson process with rateλ;
(ii) there arec servers and there is an infinite waiting space;

(iii) each customer requires an exponential service time with mean 1/µ;
(iv) customers who upon arrival find all servers busy wait in line to be served.

(II) Loss models: customers leave the system when they find all servers busy upon arrival.

Example: Erlang’s loss modelM/G/c/c, where

(i) customers arrive according to a Poisson process with rateλ;
(ii) there arec servers and the capacity of the system is limited toc customers, i.e., there is no waiting

space;
(iii) each customer requires a generally distributed service time;
(iv) customers who upon arrival find all servers busy are rejected forever.

(III) Retrial models: customers who do not find an idle server upon arrival leave the system only temporarily,
and try to reenter some random time later.

Example: the Palm/Erlang-A queue, where

(i) customers arrive according to a Poisson process with rateλ;
(ii) there arec servers and there is an infinite waiting space;

(iii) each customer requires an exponential service time with mean 1/µ;
(iv) customers who upon arrival find all servers busy wait in line to be served;
(v) customers wait in line only an exponentially distributed time with mean 1/θ (patience time).

(IV) Abandonment models: customers waiting in line will leave the system before being served after their
patience time has expired.
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9.2 M/M/1 Queue
This is the most fundamental model, which satisfies the following conditions:

(i) arrivals occur according to a Poisson process with parameterλ;

(ii) service times obey an exponential distribution with parameterµ;

(iii) arrivals of customers and service times are independent;

(iii) the system contains a single server;

(iv) the size of waiting room is infinite;

(v) (FIFO= First In First Out) customers are served from the front of the queue, i.e., according to a first-come,
first-served discipline.

Thus there are two parameters characterizing anM/M/1 queue, that is, the parameterλ > 0 for the Poisson
arrival and the oneµ > 0 for the exponential service. In other words, a customer arrives at the system with
average time interval 1/λ and the average service time is 1/µ. In the queuing theoryλ is called themean arrival
rate andµ themean service rate. Let X(t) be the number of customers in the system at timet. It is the proved
that {X(t) ; t ≥ 0} becomes a continuous time Markov chain on{0, 1,2,3, ...}. In fact, the letter “M” stands for
“Markov” or “memoryless”.

Our main objective is
pn(t) = P(X(t) = n|X(0) = 0),

i.e., the probabbility of findingn customers in the system at timet > 0 subject to the initial conditionX(0) = 0.
Let us consider the change of the system during the small time interval [t, t + ∆t]. It is assumed that during the
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small time interval∆t only one event happens, namely, a new customer arrives, a customer under service leaves
the system, or nothing changes. The probabilities of these events are given byλ∆t, µ∆t, 1− λ∆t − µ∆t.

t t + ∆t

n n

n+1

n−1

λ∆t

µ∆t

t t + ∆t

n

λ∆t

µ∆t

n

n+1

n−1

Therefore,P(X(t) = n|X(0) = 0) fulfills the following equation:

P(X(t + ∆t) = n|X(0) = 0) = P(X(t + ∆t) = n|X(t) = n− 1)P(X(t) = n− 1|X(0) = 0)

+ P(X(t + ∆t) = n|X(t) = n)P(X(t) = n|X(0) = 0)

+ P(X(t + ∆t) = n|X(t) = n+ 1)P(X(t) = n+ 1|X(0) = 0)

= λ∆tP(X(t) = n− 1|X(0) = 0)

+ (1− λ∆t − µ∆t)P(X(t) = n|X(0) = 0)

+ µ∆tP(X(t) = n+ 1|X(0) = 0),

P(X(t + ∆t) = 0|X(0) = 0) = (1− λ∆t)P(X(t) = 0|X(0) = 0)+ µ∆tP(X(t) = 1|X(0) = 0).

Hence forpn(t) = P(X(t) = n|X(0) = 0) we have

p′n(t) = λpn−1(t) − (λ + µ)pn(t) + µpn+1(t), n = 1,2, . . . ,
p′0(t) = −λp0(t) + µp1(t).

(9.1)

The initial condition is as follows:

p0(0) = 1, pn(0) = 0 for n ≥ 1. (9.2)

Solving the linear system (9.1) with the initial condition (9.2) is not difficult with the help of linear algebra
and spectral theory. However, the explicit solution is not so simple and is omitted. We only mention that most
important characteristics are obtained from the explicitpn(t).

Here we focus on the equilibrium solution (limit transition probability), i.e.,

pn = lim
t→∞

pn(t)

whenever the limit exists. Since in the equilibrium the derivative of the left hand side of (9.1) is 0, we have

λpn−1 − (λ + µ)pn + µpn+1 = 0 n = 1,2, . . . ,
−λp0 + µp1 = 0.

(9.3)

A general solution to (9.3) is easily derived:

pn =

C1 +C2

(
λ

µ

)n

, λ , µ,

C1 +C2n, λ = µ.

Sincepn gives a probability distribution, we havepn ≥ 0 and
∞∑

n=0

pn = 1. This occurs only whenλ < µ and we

have

pn =

(
1− λ
µ

) (
λ

µ

)n

, n = 0, 1,2, . . . .
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This is the geometric distribution with parameterλ/µ.
In queuing theory, the ratio of the mean arrival rateλ and the mean service rateµ is called theutilization:

ρ =
λ

µ
.

Utilization stands for how busy the system is. It was shown above that the number of customers in the system
after long time obeys the geometric distribution with parameterρ. If ρ < 1, the system functions well. Otherwise,
the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium the number of customers
in the system obeys the geometric distribution:

(1− ρ)ρn, n = 0,1,2, . . . .

In particular, the probability that the server is free is 1− ρ and the probability that the server is busy and the
customer need to wait isρ. This is the origin of the termutilization. Note also that the mean number of the
customers in the system is given by

∞∑
n=0

npn =
ρ

1− ρ =
λ

µ − λ .

Example 9.2.1 There is an ATM, where each customer arrives with average time interval 5 minutes and spends
3 minutes in average for the service. Using anM/M/1 queue, we know some statistical characteristics. We set

λ =
1
5
, µ =

1
3
, ρ =

λ

µ
=

3
5
.

Then the probability that the ATM is free isp0 = 1− ρ = 2
5

. The probability that the ATM is busy but there is no

waiting customer is

p1 =
2
5
× 3

5
=

6
25
.

Hence the probability that the ATM is busy and there is some waiting customers is

1− p0 − p1 = 1− 2
5
− 6

25
=

9
25
= 0.36.

So, roughly speaking, a customer needs to make a queue once per three visits.

Remark 9.2.2 The Markov processX(t) appearing in theM/M/1 queuing model is studied more generally
within the framework ofbirth-and-death process.

Problem 25 (M/M/1/1 queue) There is a single server and no waiting space. Customers arrive according to the
Poisson process with parameterλ, and their service time obeys the exponential distribution with parameterµ.
Let Q(t) be the number of customers in the system at timet. In fact,

Q(t) =

1, server is busy,

0, server is idle,

(1) Find

p0(t) = P(Q(t) = 0|Q(0) = 0),

p1(t) = P(Q(t) = 1|Q(0) = 0)

by solving a linear system satisfied by thosep0(t) andp1(t).

(2) Using the results in (1), calculate

p̄0 = lim
t→∞

p0(t), p̄1 = lim
t→∞

p1(t),

(3) Find the mean number of customers in the system in the long time limit:

lim
t→∞

E[Q(t)|Q(0) = 0].
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