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Probability models are essential in mathematical analysis of random phenomena. In these lec-
tures, we focus on Markov chains as basic models of random time evolution. Starting with
fundamental concepts in probability theory (random variables, probability distributions, etc.),
we study fundamentals on Markov chains (transition probability, recurrence, stationary distri-
butions, etc.). Moreover, we overview random walks, birth-and-death processes and Poisson
processes, and their wide applications. Background knowledge on elementary probability is
required.
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1. Probability space and random variables

2. Analytic theory of probability distributions
Independence and dependence of random variables
Limit theorems

Random walks

Markov chains

Counting processes

Use of orthogonal polynomials
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1. You will be required, at the end of January, to submit answers to the problems given during the
lectures. The details later (probably at the end of December).

2. No exceptions are made.
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(www.math.is.tohoku.ac.jfobata).
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1 Probability Spaces and Random Variables

1.1 Probability spaces
Q: sample space consisting of elementary events (or sample points).
¥ the set of events
P: probability

1.2 Kolmogorov’s axioms

Definition 1.2.1 (probability space) (Q, 7, P)

1.3 Basic Properties

Theorem 1.3.1Let A1, Ay, ... be a sequence of events.

(s

(1) If AL c Apc AgC ---,thenP( An):r!Lm P(An).

1

S5
1

D)

2) If AL o Ag o Ag > ---,thenP( An):r!im P(An).

1

=}
1]

1.4 Random variables and their probability distributions
1.4.1 Discrete random variables

A random variableX is calleddiscreteif the number of values tha{ takes is finite or countably infinite.
To be more precise, for a discrete random variabikere exist a (finite or infinite) sequence of real numbers
ai, ap, ... and corresponding nonnegative numbgrsp,, ... such that

PX=a&)=p, pi=0, Zpi=1.

In this case

px(dX) = ) pioa(dX) = ) pio(x - a)dx
i i
is called thg(probability) distributionof X. Obviously,

P@sXs<b= > p

i:a<g<b

Py

a, a, aj a



Example 1.4.1 (coin toss)We set

1, heads
X= i
0, tails.

Then
P(X=1)=np, PX=0)=q=1-p.

For a fair coin we sep = 1/2.

Example 1.4.2 (waiting time) Flip a fair coin repeatedly until we get the heads. Tebe the number of
coin tosses to get the first heads. (If the heads occurs at the first trial, wd have If the tails occurs at
the first trial and the heads at the second trial, we Hawe2, and so on.)

P(T:k):(l_p)k_lp7 k:l,2,

1.4.2 Continuous random variables

A random variableX is calledcontinuousf P(X = a) = O for all a € R. We understand intuitively that
X varies continuously.
If there exists a functiori(x) such that

b
P(asXsb):f f(x)dx a<b,
a
we say thaX admits gprobability density functionNote that

f+°° f(dx=1,  f(x) >0.

(%)

In this case,
ux(dx) = f(x)dx

is called thg(probability) distributionof X.

()

It is useful to consider thdistribution function
X
Fx(X) =P(X<X) = f fx(t)dt, x e R.

Then we have q
fx(¥) = 5 Fx(¥).

Remark 1.4.3 (1) A continuous random variable does not necessarily admit a probability density func-
tion. But many continuous random variables in practical applications admit probability density func-
tions.



(2) There is a random variable which is neither discrete nor continuous. But most random variables in
practical applications are either discrete or continuous.

Example 1.4.4 (random cut) Divide the interval [QL] (L > 0) into two segments.

(1) LetX be the coordinate of the cutting point (the length of the segment containing 0).

0, X <0,
Fx(X) =1x/L, 0<x<L, fx(X) =
1, X> L,

(2) LetM be the length of the longer segment.

0, X< L/2,
FM(X) =<(2x-L)/L, L/2<x<L, fm(X) =
1, X> L,

Example 1.4.5Let A be a randomly chosen point from the disc with raditus 0. Let X be the distance
between the cent& andA. We have

n(? - a?) 1
2 R

so the probability density function is given by

2X
f(X):{ﬁ’ OSXSR

b
Pl@<X<bh)= f2xdx O<a<b<R
a

0, otherwise

1.5 Mean values and variances

Definition 1.5.1 Themeanor expectation valuef a random variabl& is defined by

m=EVPi£mWMW@

o If Xis discrete, we have

E[X] = > api.
i
¢ If X admits a probability density functiof{x), we have

E[X] = Imxf(x)dx

[Se]

Remark 1.5.2 For a functiong(x) we have

EMW=£wﬂWMﬁ

(o)

For example,

E[X™] = j_‘m XMu(dX) (mth moment)

(o)

E[e] = f €Xu(dx)  (characteristic function)

[ee)



Definition 1.5.3 Thevarianceof a random variabl& is defined by
o? = V[X] = E[(X - E[X])’] = E[X*] - E[X]?,

or equivalently,

+00 +00 +00 2
o =viXi = [ - = [ qu(dX)—( [ m(dx)).

—00

Example 1.5.4 The mean value and variance of the waiting timantroduced in Example 1.4.2.

Example 1.5.5 The mean value and variance of the random variaklasdM introduced in Example 1.4.4.

1.6 Stochastic processes

We will study the probability models for time evolution of random phenomena. Measuring a certain
guantity of the random phenomenon at each time stef®, 1, 2, ..., we obtain a sequence of real values:

X0, X1, X2, ..., Xny o e -

Because of randomness, we consixieas a realized value of a random varialfje Here a random variable
is a variable taking severalftirent values with certain probabilities. Thus, the time evolution of a random
phenomenon is modeled by a sequence of random variables

{Xn, n=071a2’---}:{XOaX].’XZ’---,XI"I’---}a

which is called aiscrete-time stochastic proced$the measurement is performed along with continuous
time, we need aontinuous-time stochastic process

{X¢; t>0)

It is our purpose to construct stochastic processes modeling typical random phenomena and to demonstrate
their properties within the framework of modern probability theory.
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Figure 1.1: Solar spots; Nominal exchange rate (red) and fiegitive exchange rate (blue)



2 Probability Distributions

2.1 One-dimensional distributions

Fx(X) = P(X < x): distribution function

2.2 Discrete distributions
2.2.1 Bernoulli distribution

For 0< p < 1 the distribution
(1 - p)oo + po1
is calledBernoulli distribution with success probability. @his is the distribution of coin toss. The mean

value and variance are given by
m=p, o’=pl-p
2.2.2 Binomial distribution B(n, p)
For 0< p < 1 andn > 1 the distribution
"\ /n

> (k) (- "o

k=0
is called thebinomial distribution Bn, p). The quantit%E) p“(1 - p)" K is the probability thah coin tosses

with probabilitiesp for heads and| = 1 — p for tails result ink heads anah — k tails. The mean value and
variance ofB(p, n) are given by
m=np, o? =np(l-p).

0.20

0 5 10 15 20 1 23 45 6 7 8 9 10

Figure 2.1:B(20, 0.4) and geometric distribution with paramefes 0.4

2.2.3 Geometric distribution

For 0< p < 1 the distribution

(o)

D P - p)* o

k=1



is called thegeometric distribution with success probability Phis is the distribution of waiting time for
the first heads (Example 1.4.2). The mean value and variance are given by

1 > 1
m=—, o~ = -
p p
Remark 2.2.1 In some literatures, the geometric distribution with paramptisrdefined by

(o)

> p(1 - p)*si

k=0

2.2.4 Poisson distribution
For A > 0 the distribution

S

is called thePoisson distribution with parametar. The mean and variance are given by

m= A, o? = A
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Figure 2.2: Poisson distributioh= 1/2,1, 3

Problem 1 Theprobability generating functioof the Poisson distribution is defined by

R A
G@A=) pd.  pe=eli.
k=0

(1) Find a concise expression @f{2).

(2) By usingG’(1) andG” (1) find the mean value and variance of the Poisson distribution with parameter
A.

(3) Show that the probability of taking even values is greater than that of odd values, i.e.,

Zpk< Zpk

k:odd k:even

(4) [additional] Show another example of a probability generating function.



2.3 Continuous distributions and density functions
2.3.1 Uniform distribution

For a finite interval §, b],

1
—— ., a<g<x<h,
f(x)={b-a
0, otherwise

becomes a density function, which determinesuh#gorm distributionon [a, b]. The mean value and the
variance are given by

b dx a+b " b dx (b - a)?
= [ xpTa=tr =) Rpa e Tm

—_

S~
|
Q

a b X

Figure 2.3: Uniform distribution org] b]

2.3.2 Exponential distribution
Theexponential distributionwith parameten > 0 is defined by the density function

e x>0,
f(x) = ="
0, otherwise

This is a model for waiting time (continuous time). The mean value and variance are given by

1 , 1
B R T

0 X

Figure 2.4: Exponential distribution with parameter



2.3.3 Normal distribution

Form e R andsigma> 0 we may check that

1 (x — m)?
f(x) = exps -
B V2ro2 p{ 2072 }
becomes a density function. The distribution defined by the above density function is calieok i
distribution or Gaussian distributiorand denoted biN(m, o2). In particular,N(0, 1) is called thestandard
normal distributionor thestandard Gaussian distribution

0.5

0.4

-4 -3 -2 -1 0 1 2 3 4

The mean value and variance{m, o-?) arem ando?, respectively. This is verified by explicit calcu-
lation of the integrals:

= fmxexp (x =~ m)? dx=m
V2ro?2 J-w 202 -

1 i (x—m)? 2

(x— m)? exp{ - dx= o2
V2712 ‘f:m 202
Use the famous integral formula:
+00 2 ﬁ
f e_thX= 2—\/1_:, t>0,
0

which is a standard exercise of double integrals in the first year course of calculus.

Problem 2 Choose randomly a poirtfrom the disc with radius one and [Etbe the radius of the inscribed
circle with centerA.

(1) Forx = 0find the probabilityP(X < x).

(2) Find the probability density functiofx(x) of X. (Note thatx varies over all real numbers.)
(3) Calculate the mean and varianceXof

(4) Calculate the mean and variance of the area of inscribed SrelarX?.

(5) [additional] Discuss similar questions for a ball.



3 Independence and Dependence

3.1 Independent events and conditional probability

Definition 3.1.1 (Pairwise independence) (finite or infinite) sequence of evertg, Ay, . .. is calledpair-
wise independerit any pair of events\,, A, (i1 # i) verifies

P(Ai, N A;,) = P(A)P(A,).

Definition 3.1.2 (Independence)A (finite or infinite) sequence of eventg, A,, ... is calledindependent
if any choice of finitely many event& , ..., A, (i1 <i2 <--- <ip) satisfies

P(AL N A, NN AL = P(AP(AL) - - P(A,).

Example 3.1.3 Consider the trial to randomly draw a card from a deck of 52 cardsAlbet the event that
the result is an ace ariélthe event that the result is spades. TheB are independent.

Remark 3.1.4 It is allowed to consider whether the sequence of evghtd} is independent or not. If they
are independent, by definition we haRéA N A) = P(A)P(A), from whichP(A) = 0 or P(A) = 1 follows.
Notice thatP(A) = 0 does not imphA = 0 (empty event). SimilarlyP(A) = 1 does notimphA = Q (whole
event).

Definition 3.1.5 (Conditional probability) For two events\, B theconditional probability of A relative to
B (or on the hypothesis,Br for given B is defined by

P(AN B)
P(B)

Theorem 3.1.6 Let A, B be events witiP(A) > 0 andP(B) > 0. Then,
A,Bare independent & P(AB)=P(A) < P(BJA) = P(B)

P(AIB) = wheneveP(B) > 0.

3.2 Independent random variables

Definition 3.2.1 A (finite or infinite) sequence of random variablég X,, . .. is independen{resp. pair-
wise independehtf so is the sequence of evenrd;, < a1}, {X1 < ap},... foranyas,ap,--- € R.

In other words, a (finite or infinite) sequence of random variallle>, ... is independent if for any
finite Xi,, ..., X, (i1 <i2 <--- <ip) and constant numbess, ..., a,

P(Xi, <a1, X, <ag,..., X, < an) = P(Xj, <a)P(X, < a)---P(Xj, <an) (3.1)

holds. Similar assertion holds for the pairwise independence. If random varkéhl¥s ... are discrete,
(3.1) may be replaced with

Example 3.2.2 Choose at random a point from the rectan@le= {(x,y);a< x<b,c <y <d}. LetX
denote thex-coordinates of the chosen point avidhey-coordinates. Thel, Y are independent.

Problem 3 (1) An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random and
let X1 be the first digit, X, the second digit, and3 the last digit. Foi = 1,2, 3 we define an everf; by
A = {X = 1}. Show thaf{A;, Ay, Az} is pairwise independent but is not independent.

(2) Two dice are tossed. L&t be the event that the first die gives aBlbe the event that the sum is
6, andC be the event that the sum is 7. Calcul®(@®|A) andP(C|A), and study the independence among
{A,B,C}.



3.3 Bernoulli trials

This is a model of coin-toss and is the most fundamental stochastic process. A sequence of random vari-
ables (or a discrete-time stochastic procgXs) Xo, ..., X,,...} is called theBernoulli trials with success
probability p (0 < p < 1) if they are independent and have the same distribution as

By definition we have

n
P(Xl = é:l, X2 = §2a ceey Xn = fn) = ]_[ P(Xk = fk) for a” 61’627 e ,fn € {O’ 1}
k=1
In general, statistical quantity in the left-hand side is calledittiee dimensional distributioof the stochas-
tic procesgXn}. The total set of finite dimensional distributions characterizes a stochastic process.

3.4 Covariance and correlation cofficients

Recall that the mean of a random varialflés defined by

m=E00 = [ xux(es,
Theorem 3.4.1 (Linearity) For two random variableX, Y and two constant numbeasb it holds that
E(aX+ bY) = aE(X) + bE(Y).
Theorem 3.4.2 (Multiplicativity) If random variables<i, Xo, ..., X, are independent, we have
E[X1 X2 - Xn] = E[X4] - - - E[Xn]. (3.2)

Proof We first prove the assertion fofi = 14, (indicator random variable). By definitioy, ..., X,
are independent if and only if so afg, . .., An. Therefore,

E[Xl R Xn] = E[lAlr‘1~--ﬂAn] = P(Al N---N An)
= P(A1) - -- P(An) = E[Xq] - - - E[Xn].

Thus (3.2) is verified. Then, by linearity the assertion is valid Xgrtaking finitely many values (finite
linear combination of indicator random variables). Finally, for gen¥gatoming back to the definition of
Lebesgue integration, we can prove the assertion by approximation argument. |

Remark 3.4.3 HXY] = E[X]E[Y] is not a sufficient condition for the random variablesandY being
independent. It is merely a necessary condition!

Thevarianceof X is defined by
o% = V(X) = E[(X - mx)?] = E[X?] - E[X]°.

By means of the distribution(dx) of X we may write

V9= [ x-motued = [ u(an —( [ xu(dx))z.

(o)

10



Definition 3.4.4 Thecovarianceof two random variableX, Y is defined by
Cov(X,Y) = oxy = E[(X - E(X))(Y — E(Y))] = E[XY] — E[X]E[Y].

In particular,oxx = o-i becomes the variance of The correlation cogficient of two random variables
X, Y is defined by

whenevewx > 0 andoy > 0.

Definition 3.4.5 X, Y are called uncorrelated ifxy = 0. They are called positively (resp. negatively)
correlated ifoxy > 0 (resp.oxy < 0).

Theorem 3.4.6 If two random variable¥, Y are independent, they are uncorrelated.

Remark 3.4.7 The converse of Theorem 3.4.6 is not true in generalXeé a random variable satisfying
1 1
P(X:—l):P(X:l):Z, P(X:O):E

and sety = X2. Then,X,Y are not independent, batcy = 0. On the other hand, for random variabks/
taking only two values, the converse of Theorem 3.4.6 is valid (see Problem 5).

Theorem 3.4.8 (Additivity of variance) Let X1, Xa, ..., Xy be random variables, any pair of which is un-
correlated. Then ] ]

Z X¢| = Z V[Xd].

k=1

k=1
Theorem 3.4.9 -1 < pxy < 1 for two random variableX, Y with ox > 0, oy > 0.

\%

Proof Note thatE[{t(X — mx) + (Y — my)}?] > O for allt € R. |

Problem 4 Throw two dice and leL be the larger spot arfel the smaller. (If double spots, set= S.)

(1) Show the joint probability ofl(, S) by a table.
(2) Calculate the correlation cfircientp s and explain the meaning of the signaturgpf .

Problem 5 Let X andY be random variables such that
PX=a)=p;, PX=b)=qr=1-p;, P(Y=0)=p, PY=d)=q2=1-py,

wherea, b, ¢, d are constant numbers andOp; < 1, 0 < p2 < 1. Show thatX, Y are independent if and
only if oxy = 0. Explain the significance of this case. [Hint: In general, uncorrelated random variables are
not necessarily independent.]

3.5 Convolutions of probability distributions

Perhaps omitted.

11



4 Limit Theorems

4.1 Simulation of Coin Toss

Let {X,} be a Bernoulli trial with success probability2, namely, tossing a fair coin, and consider the
binomial process defined by
n
Sn= ) X
k=1

SinceS,, counts the number of heads during the firgtials,

Sy 1
T _ = X
n nkzz;l K

gives the relative frequency of heads during the firstals.
The following is just one example showing that the relative frequency of egtstends to 12. It is
our question how to describe this phenomenon mathematically. A naive formula:
Sp 1

lim = == 4.1
m — =3 (4.1)

is not acceptable. Why?
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Figure 4.1: Relative frequency of heaflg/n

4.2 Law of Large Numbers (LLN)

Theorem 4.2.1 (Weak law of large numbers)Let X1, Xo,... be identically distributed random variables
with meanm and variancer2. (This means thaX; has a finite variance.) X1, Xo, ... are uncorrelated, for

anye > 0 we have
l n
ﬁkZ:le—mZe]:O.

1< . .
We say tha% Z Xy converges tanin probability.
k=1
Remark 4.2.2 In many literatures the weak law of large numbers is stated under the assumption that
X1, Xo,... are independent. It is noticeable that the same result holds under the weaker assumption of
being uncorrelated.

lim P(
n—oo

12



Theorem 4.2.3 (Chebyshev inequality)Let X be a random variable with meamand variancer?. Then,
for anye > 0 we have

N

PIX-m>e) < Z.

2
€
Proof SetA = {|X-m| > €} and let 1, be the indicator random variable. Then we have

o? = E[(X = m)?] = E[(X = m)?1a + (X — m)?1ac]
> E[(X — m)?1a] > E[€214] = €2P(A),

where we used the obvious relatiBiiLa] = P(A). |

Proof [Theorem 4.2.1 (Weak Law of Large Numbers)] For simplicity we set

1 n
Y=Yo=" D> X
k=1
The mean value is given by
1 n
E[Y] = - kz; E[Xd =

SinceXy, Xo, ... are pairwise uncorrelated, the variance is computed by using the additive property of vari-
ance. In fact, we have

VIVl = 5

n
Z VX = = xno2 =2
pr) n

k=1

On the other hand, applying Chebyshev inequality, we have

[Y] o?
PGY-m>¢e) < — = — .
(Y -m= e =
Consequently,
r!im P(Yn—-m >¢€) =0
as desired. |

Example 4.2.4 (Coin toss)

Theorem 4.2.5 (Strong law of large numbers)Let X1, X5, ... be identically distributed random variables
with meanm. (This means thaX; has a mean but is not assumed to have a finite varianc¥;) ¥, ... are
pairwise independent, we have

In other words,

Remark 4.2.6 Kolmogorov proved the strong law of large numbers under the assumptioX{héd, . ..

are independent. In many literatures, the strong law of large numbers is stated as Kolmogorov proved. Its

proof being based on the so-called “Kolmogorov’s almost sure convergence theorem,” we cannot relax the

assumption of independence. Theorem 4.2.5 is due to N. Etemadi (1981), where the assumption is relaxed
to being pairwise independent and the proof is more elementary, see also books by Sato, by Durrett, etc.

13



4.3 Central Limit Theorem (CLT)

Theorem 4.3.1 (Central Limit Theorem) Let Z;,Z,,... be independent identically distributed (iid) ran-
dom variables with mean 0 and variance 1. Then, forxaayR it holds that

1 v I
Iim P|— » Zx<x|= —f e /2t 4.2)
e [ nkZ:; ] 27T -
In short,
=S
— » Xx — N(0,1) weakly amn — 0.
Vi

Proof is by characteristic functions (Fourier transform), see the textbooks.

Example 4.3.2 The de Moivre—Laplace theorem claims that

B(n, p) ~ N(np,np(1 - p)). (4.3)

10 20 30 40 50 60 70 80 90 100

Figure 4.2: The normal distribution whose mean and variance are the sa(E08s0.4)

This is a special case of CLT. L&Xy, Xo, ...} be a Bernoulli trials with success probabiliy Set

Xk—m
Z=20 meEXd=p 0®=VX]=pl-p)

so that{Z} are iid random variables with 0 and variance 1. Apply the central limit theorem we have (4.2).
For the left-hand side we see that

1 < 1 S X-m 1 (<
_nsz:_nZ - =U—\/ﬁ(éxk—nm].

Then (4.2) becomes
n
1 X o
lim P Xk < nm+ xoVn| = —f e /2L,
fme(Sx s )= [
Settingy = nm+ xo /n, we have
n y-nm
1 o2 1 Yo am?
P Xk <y z—f e‘”zdt:—f e 2 dt
[;l ) \/Z —o0 V2ro2 J-o

14



Thus, for a large we have
n
D" X~ N(nmno?) = N(np, np(1 - p))
k=1
On the other hand, we know thgy_, Xk obeysB(n, p), of which the mean value and variance are given by

npandnp(1- p). Consequently, for a largewe have (4.3). The approximation (4.3) means that distribution
functions are almost the same.

Problem 6 (Monte Carlo simulation) Let f(x) be a continuous function on the interva) {J and consider
the integral

f ' f(x)dx (4.4)
0

(1) LetX be a random variable obeying the uniform distribution of1]0 Give expressions of the mean
valueE[ f(X)] and variance/[ f (X)] of the random variablé (X).

(2) Letxq, Xy, ... is a sequence random numbers taken fromdJOExplain that the arithmetic mean

n

NS
k=1

is a good approximation of the integral (4.4) by means of law of large numbers and central limit
theorem.

(3) By using a computer, verify the above fact fii) = V1 — x2.

15



5 Markov Chains

5.1 Conditional Probability
For two eventd, B the conditional probability of A relative (subject) toiB defined by

P(AN B)
P(B) °

see Section 3.1. Formula (5.1) is often used in the following form:

P(AB) = wheneveP(B) > 0, (5.1
P(A N B) = P(B)P(A|B). (5.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in
computation of probability. For example, for two eveAld see Fig. 5.1.

P(BIA) ANB
PRy - A

P(BIA) AN B°

P(BIA%) A°NB
P(AC) AC

P(BYAC) > A°NB°

Figure 5.1: Tree diagram

Theorem 5.1.1 (Compound probabilities) For eventsiy, Ay, ..., A, we have
P(Ar N AN -+ N Ag) = P(A)P(A2lAg)P(AglAr N A2) - - P(AnlAa N Ag N -+ N Agg). (5.3)

Proof Straightforward by induction on. |

5.2 Markov Chains

Let S be afinite or countable set. Consider a discrete time stochastic pfdgess= 0,1, 2, ...} taking
values inS. This S is called astate spacand is not necessarily a subsetfoin general. In the following
we often meet the cases®f={0,1},S={1,2,...,NjJandS ={0,1,2,...}.

Definition 5.2.1 Let{X,; n=0,1,2,...} be a discrete time stochastic process @&e€lt is called aMarkov
processoversS if

P(Xm: j|Xn1 = |1, an = |2, ...,Xnk = |k, Xn: |) = P(Xm: J|Xn = |)
holdsforanyO< ng <mp < --- <ng<n<mandiy,io,...,iki, ] €S.

If {X1, X0, ...} are independent random variables with valueS,inbviously they form a Markov chain.
Hence the Markov property is weaker than independence.

16



Theorem 5.2.2 (multiplication rule) Let {X,} be a Markov chain 0. Then, forany<x ny <mp < --- <
ng andiy, iz, ..., ik € S we have

P(an = il’ an = i27 .. -»Xnk = Ik)
= P(an = il)P(an = i2|xn1 = il)P(Xﬂs = i3|Xn2 = IZ) e P(Xﬂk = ik|xnk,1 = ik—l)~
Definition 5.2.3 For a Markov chairiX,} overS,
P(Xnr1 = jIXn =1)

is called thetransition probabilityat timen from a state to j. If this is independent aof, the Markov chain
is calledtime homogeneous

Hereafter a Markov chain is always assumed to be time homogeneou this case théransition
probability is denoted by

pij = P(, ) = P(Xnva = j1Xn =)
and thetransition matrixis defined byP = [pjj]

Definition 5.2.4 A matrix P = [p;;] with index setS is called astochastic matrixf

pij >0 and Zpijzl.
jeS

Theorem 5.2.5 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochas-
tic matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic
matrix.

Example 5.2.6 (2-state Markov chain)A Markov chain over the state spaf@ 1} is determined by the
transition probabilities:

p(0,1)=p, p0,0)=1-p pl,0)=q plLl)=1-q

The transition matrix is defined by

o
qa 1-q
The transition diagram is as follows:
P, =P
pm:lfp ‘0 0 p,=1-¢q
p,=4q

Example 5.2.7 (3-state Markov chain)An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain ofiH, S, D} described by the following transition diagram:



The transition matrix is defined by

abo

prq
0 0 1

, a+b=1 p+q+r=21

Example 5.2.8 (Random walk oriz') The random walk ofZ? is illustrated as

q p
— &0 — 0 — 00— 00—
-3 -2 -1 0 1 2 3
The transition probabilities are given by
P, if j=i+1,
p(i.)=qa=1-p, if j=i-1
0, otherwise

The transition matrix is a two-sided infinite matrix given by

o0
o

o
O o oo
o0 oo o

Example 5.2.9 (Random walk with absorbing barriers) Let A > 0 andB > 0. The state space of a
random walk with absorbing barriersafA andBis S = {-A,-A+1,...,B—1,B}. Then the transition
probabilities are given as follows. FelA < i < B,

P, if j=i+1,
p(i,j))=1gq=1-p, if j=i-1,
0, otherwise
Fori = —Aori = B,
. 1, ifj=-A . 1, ifj=B,
- = B, = .
P(=A1) {O, otherwise P(B. J) {0, otherwise
In a matrix form we have
1 0 0 O O 0
g0 p 0 O 0
0g 0 p O 0
00 qg 0 p O
0 0 - 0 g 0 p
0O 0 - 0O 0 0 1

18



1 D D D P 1
Cea (OO IBORRO®
q q q q

Example 5.2.10 (Random walk with reflecting barriers) Let A > 0 andB > 0. The state space of a ran-
dom walk with absorbing barriers ahandBis S = {-A,-A+1,...,B-1, B}. The transition probabilities
are given as follows. ForA <i < B,

p, if j=i+1,
p(,j))=qq=1-p, ifj=i-1,
0, otherwise
Fori = -Aori = B,
i 1, if j=-A+1, i 1, ifj=B-1,
— = B’ =
P=AJ) {O, otherwise P(B. J) {O, otherwise
In a matrix form we have
01 0 0 O 0
qgqo0 p 0 O 0
0g 0 p O 0
00 qg 0 p O
00 0O g 0 p
00 0O 0 1 O
1 D p p D
q q q q 1

5.3 Distribution of a Markov Chain

Let S be a state space as before. In general, a row vecter[-- -7 ---] indexed byS is called a
distributionon S if
7>0 and Y m=1 (5.4)
ieS

For a Markov chairfX,} on S we set
an) =[--m(n) -], m(n) = P(Xq =),

which becomes a distribution d& We callz(n) the distributionof X,. In particular,z(0), the distribution
of Xp, is called thanitial distribution. We often take

7(0)=[--0210,---], where 1 occurs dth posotion

In this case the Markov chaliix,} starts from the state
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For a Markov chainX,} with a transition matrixP = [pj;] the n-step transition probabilitys defined by

Pn(i, j) = P(Ximen = jIXm = 1), i,j€Ss.

The right-hand side is independentrabecause our Markov chain is assumed to be time homogeneous.

Theorem 5.3.1 (Chapman—Kolmogorov equation)For 0< r < nwe have

pa(i, §) = > pr(i, pnr (k. ).

keS

Proof First we note the obvious identity:
pn(i. §) = PCnen = X = 1) = > P(Xmen = . Xoner = KX = ).
keS

Moreover,

. . P(X =X =Kk Xy =i P(X =K X =i
P(Xm+n:J,Xm+r:k|Xm:|): (m+n ), Amer m ) ( m+r m )

- X -
= P(Ximin = J[Ximer = K, Xm = )PXiner = KIXm = 1).

Using the Markov property, we have
I:)(Xm+n = j|xm+r =k, Xm = i) = I:)(Xm+n = j|xm+r = k)

so that
P(ern = j, Xmer = K Xm = i) = P(ern = j|Xm+r = k)P(XmH = KiXm = i)-

Finally, by the property of being time homogeneous, we come to
P(Xm+n = j, Xm+r = lem = |) = pn_r(k, J)pr(l, k)
Thus we have obtained (5.5).

Applying (5.5) repeatedly and noting thgd(i, j) = p(i, j), we obtain
pali i) = D) pliko)plke ko) -+ plka-a, ).

Ki,....kn-1€S

(5.5)

(5.6)

The right-hand side is nothing else but the multiplication of matrices, i.en-8tep transition probability
pn(i, j) is the {, j)-entry of then-power of the transition matrif. Summing up, we obtain the following

important result.
Theorem 5.3.2Form,n > 0 andi, j € S we have
P(Xmin = jIXm =1) = pa(i, J) = (Pn)ij .

Proof Immediate from Theorem 5.3.1.

Remark 5.3.3 As a result, the Chapman-Kolmogorov equation is nothing else but an entrywise expression

of the obvious relation for the transition matrix:
Pn — Pl’ Pn—r

(As usual,P® = E (identity matrix).)
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Theorem 5.3.4 We have
x(n) = x(n - 1)P, nx>1i

or equivalently,
() = > m(n-1)p; -
i
Therefore,
n(n) = x(0)P".
Proof We first note that

7j(n) = P = J) = ) P(Xn = jXa1 = )P(Xoa = 1) = > pjm(n— 1),
ieS ieS

which provest(n) = n(n — 1)P. By repeated application we have
m(n) = 7(n - 1)P = (z(n — 2)P)P = (7(n - 2)P? = - .. = 7(O)P",
as desired. ]

Example 5.3.5 (2-state Markov chain)Let {X,} be the Markov chain introduced in Example 5.2.6. The
eigenvalues of the transition matrix
P:F_p p]

qg 1-q
are 11 - p-q. These are distinct ip + g > 0. Omitting the case gb+ g =0, i.e.,p = q = 0, we assume
thatp + g > 0. By standard argument we obtain
n__L [q+pr" p-pr
 p+qlg-ag" p+qr”
Let 7(0) = [70(0) 71(0)] be the distriution ofy. Then the distribution oK is given by

, r=1-p-q.

7(n) = [PO = 0). P(Xn = 1)] = [x0(0) m1(0)]P" = n(O)P".

Problem 7 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every
election. Suppose that just before an election, 25% of the supporters of A change to support B and 20% of
the supporters of B change to support A. At the beginning, 85% of the voters support A and 15% support B.

(1) When will the party B command a majority?

(2) Find the final ratio of supporters after many elections if the same situation continues.

(3) (optional) Discuss relevant topics at your own choice.

Problem 8 Study then-step transition probability of the three-state Markov chain introduced in Example
5.2.7. Explain that every animal dies within finite time.

Problem 9 Let {X,} be a Markov chain of0, 1} given by the transition matri = [1; P 1 _pq] with the
q p
p+q p+d

initial distributionzo = | |- Calculate the following statistical quantities:
CoVv (Xmen, Xn)

E[X.], V[Xi, CoVXnin Xn) = E[XminXn] = E[XmenlE[Xnl,  0(Kimin, Xn) = XV K]
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6 Stationary Distributions

6.1 Definition and Examples

Definition 6.1.1 Let {X,} be a Markov chain of% with transition probability matriP. A distributionz on
S is calledstationary(or invariant) if
n=nP, (6.1)

or equivalently if

T :Zmpij, j€S. (6.2)
ieS

Thus, in order to find a stationary distribution of a Markov chain with a transition probability matrix
P = [pi;], we need to solve the linear system (6.1) (or equivalently (6.2)) together with the conditions:

Zm =1 andni>O0forallieS.
i

Example 6.1.2 (2-state Markov chain)Consider the transition matrix:

1-p p]
P= :
[ q 1-q

Solving the equationP = &, 7 = [ng 1], which is equivalent tqorrg — g1 = 0, together withrg + 1 = 1,
we obtain q D

o = , M =—. 6.3

p+a’ ' p+g ©-3

Thus we conclude:

() If p+qg> 0, there exists a unique stationary distribution as in (6.3).

(i) If p=qg=0,astationary distribution is not uniquely determined. In fact, any distributierirg, 1]
is stationary.

Moreover, we see from Example 5.3.5 that i@ + q < 2, or equivalently, ifr| < 1, we have

lim P = —~_[d p].
n—o0 p+q q p
Then
. . . 1 fqa pl_[ a p
fim () = im 7(O)P" = [o(0) O x |0 ol = |55 5ol

It is noteworthy that the stationary distribution is obtained as a limit distribution.

Example 6.1.3 (3-state Markov chain)We discuss the Markov cha{iX,} introduced in Example 5.2.7. If
g > 0 andb > 0, a stationary distribution is unique and givensby [0 0 1].

Example 6.1.4 (One-dimensional RW)Consider the 1-dimensional random walk with right-move proba-
bility p > 0 and left-move probabilityy = 1 — p > 0. Let [-- x(Kk) ---] be a distribution oriZ. If it is
stationary, we have

(k) = pr(k— 1) + gr(k + 1), keZ. (6.4)

(Case 1)p # g. Then a general solution to (6.4) is given by
p\“ p\“
n(K) = C11¢ + cz(a) =Ci+ cz(a) .,  kez.
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This never becomes a probability distribution for any choic€pandC,. Namely, there is no stationary
distribution.
(Case 2)p = g. In this case a general solution to (6.4) is given by

a(K) = (C1+Cok)1 = C1 +Cok, ke Z.
This never becomes a probability distribution for any choic€pandC,. Namely, there is no stationary
distribution.

Example 6.1.5 (One-dimensional RW with reflection barrier) There is a unique stationary distribution
whenp < @. In fact,

p\‘ q-p
7(0)=Cp, nk)=C|=], k=>1, where C= ——.
©=cp a®=c(?] s

If p=> q,then there is no stationary distribution.

6.2 Existence and Uniqueness
Theorem 6.2.1 A Markov chain over a finite state spaSehas a stationary distribution.

A simple proof is based on the Brouwer’s fixed-point theorem, for details see the textbooks. Note that
the stationary distribution mentioned in the above theorem is not necessarily unique.

Definition 6.2.2 We say that a statg can be reached froma statel if there exists soma@ > 0 such that
pn(i, j) > 0. By definition every statecan be reached from itself. We say that two staisd j intercom-
municateif i can be reached forrandj can be reached fromi.e., there exisin > 0 andn > 0 such that
Pn(i, J) > 0 andpm(j, i) > O.

Fori, j € S we introduce a binary relation~ j when they intercommunicate. Thenbecomes an
equivalence relation o8:

Ni~i; ((i~j=j~i; ()i~ j~k=i~k
In fact, (i) and (ii) are obvious by definition, and (iii) is verified by the Chapman-Kolmogorov equation.

Thereby the state spaé&eis classified into a disjoint set of equivalence classes. In each equivalence class
any two states intercommunicate each other.

Definition 6.2.3 A statei is calledabsorbingif p;j = 1. In particular, an absorbing state is a state which
constitutes an equivalence class by itself.

Definition 6.2.4 A Markov chain is calledrreducibleif every state can be reached from every other state,
i.e., if there is only one equivalence class of intercommunicating states.

Theorem 6.2.5 An irreducible Markov chain on a finite state sp&admits a unique stationary distribution
n = [ni]. Moreover,r; > 0 for alli € S.

In fact, the proof owes to the following two facts:

(1) For anirreducible Markov chain the following assertions are equivalent:

() it admits a stationary distribution;
(ii) every state is positive recurrent.

In this case the stationary distributians unique and given by
B 1

T EMiXo=1)
(2) Every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem 7.3.2).

i €S.

T

23



6.3 Convergence

Example 6.3.1 (2-state Markov chain)We recall Examples 5.3.5 and 6.1.2.pif+ q > 0, the distribution
of the above Markov chain converges to the unique stationary distribution. Consider the paseef 1,
i.e., the transition matrix becomes
P [o 1]
1 0

The stationary distribution is unique. But for a given initial distributid) it is not necessarily true that
n(n) converges to the stationary distribution.

Roughly speaking, we need to avoid the periodic transition in order to have the convergence to a station-
ary distribution.

Definition 6.3.2 For a state € S,
GCD{n>1; P(Xn=ilXg=1) >0}

is called theperiod of i. (When the set in the right-hand side is empty, the period is not defined.) A state
i € Sis calledaperiodicif its period is one.

Theorem 6.3.3 For an irreducible Markov chain, every state has a common period.

Theorem 6.3.4 Let 7 be a stationary distribution of an irreducible Markov chain on a finite state space (It
is unique, see Theorem 6.2.5){Ky} is aperiodic, for anyj € S we have

lim P(X = ) = .

Problem 10 Find all stationary distributions of the Markov chain determined by the transition diagram
below. Then discuss convergence of distributions.

2/3 3/4
1/3

1/2 1/3
1/2 1/4

Problem 11 Let {X,} be the Markov chain introduced in Example 5.2.7:

b q
‘@“ 1
P r

Forn=1,2,... let H, denote the probability of starting from H and terminating at D-atep. Similarly,
forn=1,2,... letS, denote the probability of starting from S and terminating at b-step.

(1) Show thafHn} and{Sy} satisfies the following linear system:

Hn = aHn_1 + bSh 1,
{” BSOSl o H =0, Si=q

Sh = pHn-1 +rSnp-1,
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(2) LetH andS denote the life times starting from the state H and S, respectively. Solving the linear
system in (1), prove the following identities for the mean life times:

N _b+p+q N _b+p
E[H]_n;an_ g E[S]_n;nsn_ bg

6.4 Page Rank

The hyperlinks amongjl websites give rise to a digraph (directed gra@dn N vertices. It is natural
to consider a Markov chain d@, which is defined by the transition matik= [pj;], where

ng ifi—j,
Pij =10, if i - jandi # j,
1, degi =0 andj =1,

where deg = |{j; i — j}| is theout-degreeofi.

There exists a stationary state but not necessarily unique. Takindj€ 1 we modify the transition matrix:

1-d
Q = [qij]. gj =dpj +e, €=— -

If 0 <d < 1, the Markov chain determined 6y has necessarily a unique stationary distribution. Choosing
a suitabled < 1, we may understand the stationary distributioa= [7(i)] as the page rank among the
websites. In real applicatiashshould not be close to 0 amb~ 0.85 is often taken.

Problem 12 Consider the page rank introduced above.

(1) Letxn(i) be the page rank of a siteShow thatr(i) satisfies the following relation

jij—i
and explain the meaning.

(2) Show more examples of the page rank and discuss the role of sites which have no hyperlinks, that is,
degi = 0 (in terms ofP = [p;j] such sites correspond to absorbing states).
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7 Topics in Markov Chains I: Recurrence

7.1 Recurrence

Definition 7.1.1 Leti € S be a state. Define tHest hitting timeor first passage tim& i by
Ti=inf{n>1; X, =i}.

If {n>1; X, =i}is an empty set, we defing = co. A statei is calledrecurrentif P(T; < oo|Xg = i) = 1.
It is calledtransientif P(T; = oo|Xg =i) > 0.

Theorem 7.1.2 A statei € S is recurrent if and only if

> i) = e
n=0

If a statei is transient, we have

T o 1
nZ:opn(l,l)<oo and nZ:;)pn(l’l)_l—P(Ti<oo|X0=i)'

Proof We first put

P, ) = PO = jiXo =i), n=0,12,...,
foli, ) = P(Ty =nXo =) = PXy # jo.... X1 # . Xn = jIXo =), n=1,2....

pn(i, j) is nothing else but thae step transition probability. On the other hariglj, j) is the probability that
the Markov chain starts frorinand reach first time aftem step. Dividing the set of sample paths frono
j in n steps according to the number of steps after which the path refbbrethe first time, we obtain

n
pn(i, j) = Z fr (@, D Pn=r(Js 1), i,bjeS, n=12.... (7.2)

r=1

We next introduce the generating functions:
Gi@=> m. )2 Fi@ =) fli. )2
n=0 n=1

In view of (7.1) we see easily that

Gij(@ = po(i, j) + Fij (2Gjj (2. (7.2)

Settingi = j in (7.2), we obtain

1

Gi(d=1+Fi(2Gi(d < Gi@@= 1-Fi(2°

On the other hand, since
Gi(D) =) m(0),  Fi@)= ) fali.i) = P(Ti < colXo = i)
n=0 n=1

we see that two conditioris; (1) = 1 andG; (1) = « are equivalent. The second statement is readily clear.
|
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7.2 Random Walks on Lattices

Example 7.2.1 (random walk onZ) Since the random walk starting from the origin O returns to it only
after even steps, for recurrence we only need to compute the sy (6f0). We start with the obvious

result: (2n)
n)!
P2n(0.0) = p'd", p+g=1

Then, using the Stirling formula: ]

n! ~ VZnn(g) (7.3)
we obtain 1

0,0) ~ —— (4pg)".

p2n(0, 0) \/ﬁ( pa)

Hence,

- <o, pP#0q,
3 p(0.0) P7e
= =00, p=0g=1/2
Consequently, one-dimensional random walk is transiemtifq, and it is recurrentip = g = 1/2.

Remark 7.2.2 Let {a,} and{b,} be sequences of positive numbers. We wajte- by, if rI]im an/bnh =1. In

this case, there exist two constant numbmrs 0 andc, > 0 such thatia, < by < ca,. Hence} ; aq
and},;’ ; by converge or diverge at the same time.

Example 7.2.3 (random walk onZ?) Obviously, the random walk starting from the origin 0 returns to it
only after even steps. Therefore, for recurrence we only need to compute the $3r(000). For two-
dimensional random walk we need to consider two directions alongxadtkis andy-axis. We see easily

that

Employing the formula for the binomial ciients:
n 2
2
(-
izo \! n
which is a good exercise for the readers, we obtain
1\ 1
P2n(0,0) = ( n) (Z) ~
Then we have .
D, Pen(0,0) = o,
n=1
which means that two-dimensional random walk is recurrent.

Example 7.2.4 (random walk onZ3) Let us consider the isotropic random walk in 3-dimension. As there
are three directions, say,y, z-axis, we have

@n! (1) @) 1\ n'n! 2n\ (1)\*" n o\
P(0.0)= ), TR (6) =W(6) i+Z i!i!j!j!k!k!:(n)(é) 2 (i!j!k!)'

i+j+k=n j+k=n i+j+k=n
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We note the following two facts. First,
n! n
Z ik =3 (7.5)

. n . n .. n
Second, the maximum valld, = max —— is attained wherag -1<i,jk<=-+1so
i+j+k=n il jIK! 3

NEACY

M
" 2an

by the Stirling formula. Then we have

2n\ (1\*" 3V3 5,
p2n(0,0)3(n)(6) 3 Mn"/zﬂ—\/?rn .

Therefore. .
Z pZn(O, 0) < OO,
n=1

which implies that the random walk is not recurrent (i.e., transient).

7.3 Positive Recurrence and Null Recurrence

If a statei is recurrent, i.e.P(T; < oo|Xp = i) = 1, themean recurrent times defined:
E(TilXo = i) = Y nP(Ti = nXo = i).
n=1
The statd is calledpositive recurrentf E(T;j|Xg = i) < oo, andnull recurrentotherwise.

Theorem 7.3.1 The states in an equivalence class are all positive recurrent, or all null recurrent, or all
transient. In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null
recurrent, or all transient.

Theorem 7.3.2 For an irreducible Markov chain on a finite state sp8cevery state is positive recurrent.

Example 7.3.3 The mean recurrent time of the one-dimensional isotropic random walk is infinity, i.e., the
one-dimensional isotropic random walk is null recurrent. The proof will be given in Se2fion

Problem 13 Let {X,} be a Markov chain described by the following transition diagram:
Py =P

D,=4q
wherep > 0 andq > 0. For a statee S letT; = inf{n > 1; X, = i} be the first hitting time ta.
(1) Calculate
P(To=1Xo=0), P(To=2Xo=0), P(To=3Xo=0), P(To=4Xo=0).
(2) FindP(To = n|Xp = 0) and calculate

(o) (o8]

Z P(To = n[Xo = 0), Z nP(To = niXo = 0).

n=1 n=1
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8 Topics in Markov Chains Il: Absorption

8.1 Absorbing States

A statei is calledabsorbingif pj = 1 andp;; = O for all j # i. Once a Markov chain hits an absorbing
state, it stays thereat forever.
Let us consider a Markov chain on a finite state sgaedth some absorbing states. We set

S=S3USp,

whereS, denotes the set of absorbing states 8athe rest. According to the above partition, the transition
matrix is written as

1 0 -.- O]
1 0 - 0
: I 0
P= 10 0:[5 T]
* *

Then N
pn _ | O _ I O
S T Sy, T
whereS; = S andS,, = S,,_1 + T"1S. To avoid inessential tediousness we assume the following condition
(C1) For anyi € Sp there existj € S; andn > 1 such that®");; > 0.

In other words, the Markov chain starting frane Sp has a positive probability of absorption. SingSe
is finite by assumption, the in (C1) is chosen independently bE Sp. Hence (C1) is equivalent to the
following

(C2) There existdN > 1 such that for any € Sg there existj € S, with (PN)ij > 0.
Lemma 8.1.1 Notations and assumptions being as above, imT" = 0.

Proof We see from the obvious relation
1= (PY)ij = D PV + ) PV
jeS j€So j€Sa

and condition (C2) that
Z(PN)” <1, ieSp.

j€So
Note that fori, j € So we have PN);j = (TN);j. We choose < 1 such that
Z(TN)” <5<1 ieSo.
j€So

Now leti € Sg andn > N. We see that

D= D T = DT M DM <6 > (T M= > (1™ M),

j€So j,keSp keSo i€So keSo j€So
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Repeating this procedure, we have

Z(Tn)ij <& Z(Tn_kN)ij < 5kZ(Pn_kN)ij <&

j€So j€So jeS

where 0< n— kN < N. Therefore,

lim > (T = 0,

j€So
from which we have lir,..(T")ij = 0 for alli, j € So. 1
Remark 8.1.2 It is shown that every staies Sy is transient.
Theorem 8.1.3Let mg = [a B] be the initial distribution (according t& = S; U Sg). Then the limit
distribution is given by

[@+BSe 0], where S, =(I-T)!S.

Proof The limit distribution is given by
lim moP" = lim o\ lim S, BT"
ﬂl—>oo 7T0 - nl—>oo[a ﬁ] Sn Tn - nl—>oo[a +'8 n 'B ]

We see from Lemma 8.1.1 that
lim gT" = 0.

nN—oo

On the other hand, sin®, = Sp_1 + T™1S we have

Sh=(+T+T2+...+T"hHs

and
(1-T)Sh=(-T"S.
Hence
lim Sy = lim (1 - DN -THS=(1-T)1s,
which shows the result. |

Example 8.1.4 Consider the Markov chain given by the transition diagram, which is a random walk with

absorbing barriers.
p p
%/*\(@
1 1
q q

The transition matrix is given by

o (I O g O 10 p
p‘[s T]’ S‘[O p]’ T‘[q 0]'
0

oo O
T O O
o O oo
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Then

_ 1 Jq pz]
So=(1-T)1s=_—
(-7 1-pq [qz p
Suppose that the initial distribution is given by = [a 8y §]. Then the limit distribution is
qy + 9% P?y + ps
a+ +
1-pq T 1-pg

In particular, if the Markov chain starts at the state 3, setting [0 0 1 0], we obtain the limit distribution

0 0

g p? ]
— 0 0],
[1 -pd 1-pg
which means that the Markov chain is absorbed in the states 1 or 2 at thq raifo

Problem 14 Following Example 8.1.4, study the Markov chain given by the following transition diagram,
wherep+q=1.

R LI O

8.2 Gambler’'s Ruin

We consider a random walk with absorbing barriers-atand B, whereA > 0 andB > 0. This is a
Markov chain on the state spaBe= {-A,—A+1,..., B - 1, B} with the transition diagram as follows:

1 p p p p 1
GONEONEONIEENBORRO®
—
q q q q
We are interested in the absorbing probability, i.e.,

R=P(X, = —Aforsomen=1,2,...) = P(U{Xn = —A}],
n=1

S = P(X, = Bforsomen=1,2,...) = P(U{Xn = B}).
n=1

Note that the events in the right-hand sides are not the unions of disjoint events.
A sample path is shown in the following picture:

B
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A key idea is to introduce a similar random walk startinkatA < k < B, which is denoted by<,(1k).
Then the original one iX, = X,(f’). Let R andSy be the probabilities that the random Wa{ﬁf) is absorbed
at—A andB, respectively. We wish to finB = Ry andS = Sp.

Lemma 8.2.1 {R«;, —A < k < B} fulfills the following difference equation:

Rc=pRu1+QqR.1, Ra=1  Rg=0. (8.1)
Similarly, {Sk;, —A < k < B} fulfills the following difference equation:

Sk = PSk+1 + QSk-1, S a=0, Sg=1 (8.2)

Theorem 8.2.2Let A > 1 andB > 1. Let{X,} be the random walk with absorbing barriers-a and B,
and with right-move probabilityp and left-move probabilitg (p + g = 1). Then the probabilities th&X,}
is absorbed at the barriers are given by

@p - @p™®
P(X, = —A for somen) = Bl_ (a/p)*+B .
A+B’ P=0a=73;
1- A
(a/ IO/LB . praq
P(X, = B for somen) = 1,_0\(Q/ p) L
A+B’ P=4=3-

In particular, the random walk is absorbed at the barriers at probability 1.

An interpretation of Theorem 8.2.2 gives the solution to gaenbler’s ruin problem Two players A
and B toss a fair coin by turns. Lé&tandB be their allotted points when the game starts. They exchange 1
point after each trial. This game is over when one of the players loses all the allotted points and the other
getsA + B points. We are interested in the probability of each player's win. For aaelD defineX, in
such a way that the allotted point of A at timés given byA + X,,. Then{X,} becomes a random walk with
absorbing barrier atA andB. It then follows from Theorem 8.2.2 that the winning probability of A and B

are given by
A B

"WEe PP TR

respectively. As a result, they are proportional to the initial allotted points. For examp@les=ifl and
B = 100, we havd’(A) = 1/101 andP(B) = 100/101, which sounds that almost no chance of A's win.

In a fair bet the recurrence is guaranteed by Thed?@nkven if one has much more losses than wins,
continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited
money. (8.3) tells thefiect of the barrier.

(8.3)

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 8.2.3 Let {X,} be the same as in Theorem 8.2.2. The expected life time of this random walk until
absorption is given by
A  A+B 1-(g/p”
a-p q-p 1-(q/p)A*B’
AB, p=Qq=

p#4

E.
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Proof Let Y be the life time of a random walk starting from the positiofi-A < k < B) attimen=0
until absorption. In other words,

Yi=min(j20; XM =-A i x¥=8)

We wish to comput&(Yp). We see by definition that

E(Y_a) = E(Yg) = 0. (8.4)

For-A < k < Bwe have -
E(Y) = ) iP(Ye= ). (8.5)

ji=1

In a similar manner as in the proof of Theorem 8.2.2 we note that
P(Yk =) = PP(Vik1 = j - 1)+ qP(Yic1 = j - 1). (8.6)
Inserting (8.6) into (8.5), we obtain

E(Y)=p) PV =j-1)+0q) jP(ca=j-1)
j=1 j=1

= PE(Yis1) + 9E(Yk-1) + 1. (8.7)

Thus, E(Yx) is the solution to the dlierence equation (8.7) with boundary condition (8.4). Thitedence
equation is solved in a standard manner and we find

A+k A+B1-(q/p™*
E(Y)={d-pP d-p1l-(a/p)B’ L
(A+K)(B-K), p=a=1.

p#0a

Settingk = 0, we obtain the result. |

If p=qg=1/2andA =1, B = 100, the expected life time 8B = 100. The gambler A is much inferior
to B in the amount of funds (as we have seen already, the probability of A's win is/jli81), however, the
expected life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps
this is because the gambler cannot quit gambling.

Problem 15 (A bold gambler) In each game a gambler wins the dollars he bets with probalm)ignd
loses with probabilityg = 1 — p. The goal of the gambler is to get 5 dollars. His strategy is to bet the
difference between 5 dollars and what he hasXgdie the amount he has just afteh bet.

(1) Analyze the Markov chaifiX,} with initial condition Xg = 1.

(2) Compare with the steady gambler discussed in this section, who bets just 1 dollar in each game.
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9 Galton-Watson Branching Processes

Consider a simplified family tree where each individual gives birthfispoing (children) and dies. The
number of @fsprings is random. We are interested in whether the family survives or not. A fundamental
model was proposed by F. Galton in 1873 and basic properties were derived by Galton and Watson in their
joint paper in the next year. The name “Galton-Watson branching process” is quite common in literatures
after their paper, but it would be more fair to refer to it as “BGW process.” In faetéb-Jules Bienayén
studied the same model independently already in 1845.

-

—
—
~<§:

9.1 Definition

Let X, be the number of individuals of thi¢h generation. ThefX,; n=0,1,2,...}becomes a discrete-
time stochasic process. We assume that the number of children born from each individual obeys a common
probability distribution and is independent of individuals and of generation. Under this assugktjon
becomes a Markov chain.

Let us find the transition probability. L& be the number of children born from an individual and set

POY=K=p, k=012....

The sequencfpo, p1, P2, . . . } describes the distribution of the number of children born from an individual.
In fact, what we need is the condition

=0 > k=1
k=0

We refer to{po, p1,...} as thegffspring distribution Let Y1, Yo,... be independent identically distributed
random variables, of which the distribution is the sam¥& aghen, we define the transition probability by

i
p(i’j)=P(Xn+1:j|xn:i):P(ZYk=j), i>1, j=0,
k=1

and
0, j=1,
1

9

p(0. j) = {
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Clearly, the state 0 is an absorbing one. The above Markov ¢Xajrover the state spadé,1,2,...} is
called theGalton-Watson branching procegsth offspring distribution{px; k=0,1,2,...}.

For simplicity we assume thafg = 1. Whenpg + p1 = 1, the famility tree is reduced to just a path
without branching so the situation is much simpler (Problem 16). We will focus on the case where

Ppo+p1<l p2<1l ..., pc<1,

In the next section on we will always assume the above conditions.

Problem 16 (One-child policy) Consider the Galton-Watson branching process witspoing distribution
satisfyingpg + p1 = 1. Calculate the probabilities

h=PX1=0), G=PXi#0,X=0), ..., gh=PX1#0,...,X-1#0,X,=0),
and find the extinction probability

P(U{Xn = O}] = P(Xn = 0 occurs for some > 1).
n=1

9.2 Generating Functions

Let {Xn} be the Galton-Watson branching process wiisring distribution{px; k = 0,1,2,...}. Let
p(i, j) = P(Xhs1 = jIXn = 1) be the transition probability. We assume tigt= 1.
Define the generating function of thé&spring distribution by

f(9 =) pes (9.1)
k=0

The series in the right-hand side convergegdox 1. We set
fo(9=s  fu(g=1(s),  fn(s) = f(fn-1(9)).

Lemma9.2.1

(o)

el e =1f(9],  i=12.... (9.2)

=0

Proof By definition,

i, )=PM+-+Yi=))= > PM=k,. . Y=k
ko= ]
k1>0....,ki >0

SinceYy, ..., Y, are independent, we have

iD= D, PMi=k)---PYi=k)= > PP

kit++ki=] ki+-+ki=]
k1>0,...,ki >0 k1>0,...,ki>0
Hence,
>pipsi=> P PkS = D P St ) s = [,
j=0 =0 ky+-—tki=] ki=0 k=0
ki>0,....k =0
which proves the assertion. |

35



Lemma 9.2.2 Let py(i, j) be then-step transition probability of the Galton-Watson branching process. We
have

0o

Dol DS =0, i=12.... (9.3)

j=0

Proof We prove the assertion by induction anFirst note thatp1(i, j) = p(i, j) and fi(s) = f(s) by
definition. Forn = 1 we need to show that

(o)

Dopl s =[], i=12..., (9.4)

=0

Which was shown in Lemma 9.2.1. Suppose that 1 and the claim (9.3) is valid up to. Using the
Chapman-Kolmogorov identity, we see that

D bl ) = > >l Kipn(k, ).
j=0 j=0 k=0

Since

D pnlk ) = [fa(9)]*
j=0

by assumption of induction, we obtain
> (i D = pli, K (9]
j=0 k=0

The right-hand side coincides with (9.4) whexis replaced byf,(s). Consequently, we come to
S pnalic DS = [F(n(O]' = [a(S)'
j=0

which proves the claim fon + 1. |

SinceXy =1,
P(Xn = J) = P(Xn = jIXo = 1) = pn(L, ).

In particular,
P(X1=]) =P(X1= jIXo=1) = pu(1,]) = p(L, }) = p; .

Theorem 9.2.3 Assume that the mean value of th&spring distribution is finite:

m= Z Kpk < oo.
k=0
Then we have

Proof Differentiating (9.1), we obtain

f'(s) = i kpes<?, 1§ < 1. (9.5)
k=0
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Lettings — 1 - 0, we have
lim f’(s)=m.
s—1-0

On the other hand, setting= 1 in (9.3), we have

D pn(L D) = fo(9) = faa(F(9). (9.6)

j=0
Differentiating both sides, we come to

fa(s) = Z ipn(L )t = £ (F(9)F'(9). (9.7)

=0
Lettings — 1 - 0, we have
LURACE ; (L)) = lim f7y(f(s) lim (9 =m lim £ ()
Therefore,
i, (9 =

which means that

(o)

EQG) = ), iPOG = 1) = ) jpa(L]) =t
=0

=0 i
1

In conclusion, the mean value of the number of individuals inniegenerationE(X,), decreases and
converges to 0 im < 1 and diverges to the infinity iih > 1, asn — co. It stays at a constantih = 1. We
are thus suggested that extinction of the family occurs whenl.

9.3 Extinction Probability

The eventX, = 0} means that the family died out until tiéh generation. So

q= P(O{Xn = 0})
n=1

is the probability of extinction of the family. Note that the events in the right-hand side is not mutually
exclusive but
X1=0c{X=0lc---c{X,=0}C....

Therefore, it holds that
g= r!im P(X, = 0). (9.8)

If g =1, this family almost surely dies out in some generatiom 4f 1, the survival probability is positive
1-qg> 0. We are interested in whethge 1 or not.

Lemma 9.3.1 Let f(s) be the generating function of thé&spring distribution, and sdt(s) = f(f,-1(9)) as
before. Then we have

gq= r!im f.(0).
Therefore g satisfies the equation:
q= f(a). (9.9)

37



Proof It follows from Lemma 9.2.2 that
fa(9) = D pa(L j)$.
j=0
Hence,
fa(0) = pn(1, 0) = P(Xn = OXo = 1) = P(X, = 0),
where the last identity is by the assumption@f= 1. The assertion is now straightforward by combining

(9.8). The second assertion follows sinde) is a continuous function on [@]. |

Lemma 9.3.2 Assume that thef€spring distribution satisfies the conditions:
Po+pr<l p2<1l ..., k<1l

Then the generating functiof(t) verifies the following properties.

(1) f(s)isincreasing,i.ef(s) < f(g)for0< s <5 < 1.

(2) f(9)is strictly convex, i.e.,if K 5 < s <1and0< 6 < 1 we have

f(os1 + (1-6)s2) < 0f(s1) + (1 - 6)f(s2).
Proof (1) is apparent since the dfieient of the power serie$(s) is hon-negative. (2) follows by

f’(s) > 0. 1
Lemma9.3.3 (1) If m< 1, we havef(s) > sfor0< s< 1.

(2) If m> 1, there exists a uniquesuch that & s< 1 andf(s) = s.
Lemma 9.3.4 f1(0) < f2(0) < --- — q.

Theorem 9.3.5 The extinction probabilityg of the Galton-Watson branching process as above coincides
with the smalless such that
s= f(9), O0<s<1l

Moreover, ifm < 1 we haveg = 1, and ifm > 1 we haveg < 1.

The Galton-Watson branching process is cafiaticritical, critical andsupercriticalif m< 1, m=1
andm > 1, respectively. The survival is determined only by the mean valogthe dfspring distribution.
The situation changes dramaticallymat 1 and, following the terminology of statistical physics, we call it
phase transition

Problem 17 Let b, p be constant numbers such that- 0, 0 < p < 1 andb + p < 1. Suppose that the
offspring distribution given by

p=bpt  k=12...,

po=1—i|0k-
k=1

(1) Find the generating functiof(s) of the dt-spring distribution.
(2) Setm =1 and findf,(s).

Problem 18 Show your own model based on the Galton-Watson branching procesmwitd.72 (this is
motivated by the total fertility rate of Japan in 2016, that is, 1.44). Then, by computer simulation or by
numerical computation, estimate the extinction probability of your model.
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10 Poisson Processes

Let T c R be an interval. A family of random variablg¢X(t); t € T} is called acontinuous time
stochastic processWe often considell = [0,1] andT = [0, ). As X(t) is a random variable for each
t € T, it has another variable € Q. When we need to explicitly refer to, we write X(t, w) or X{(w). For
fixedw € Q, the function

t— X(t, w)

is called asample patlof the stochastic proce$X(t)}. It is the central idea of stochastic processes that
a random evolution in the real world is expressed by a single sample path selected randomly from all the
possible sample paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian
motion (Wiener process). In the recent study of mathematical physics and mathematical finance, a kind
of composition of these two processes, called téeyprocess (or additive process), has received much
attention.

10.1 Heuiristic Introduction

Let us imagine that the number of objects changes as time goes on. The numbertas tmoalelled
by a random variabl&; and we wish to construct a stochastic proce§s In this caseX; takes values in
{0,1,2,...}. In general, such a stochastic process is callegLenting process

There are many dierent variations of randomness and so wide variations of counting processes. We
below consider the simple situation as follows: We focus an elzemhich occurs repeatedly at random as
time goes on. For example,

(i) alert of receiving an e-mail;

(i) telephone call received by a call center;
(iii) passengers making a queue at a bus stop;
(iv) customers visiting a shop;

(v) occurrence of defect of a machine;
(vi) traffic accident at a corner;
(vii) radiation from an atom.

Let fix a time origin ag = 0. We count the number of occurrence of the evemturing the time interval
[0,t] and denote it byX;. Letty, to,... be the time wherk occurs, see Fig. 10.1.

Figure 10.1: Recording when the evénbccurs

There are two quantities which we measure.
() The number of occurrence & up to timet, say,X;. Then{X;; t > 0} becomes a counting process.

(ii) The waiting time of thenth occurrence after then(- 1)th occurrence, say,,. HereT; is defined to
be the waiting time of the first occurrenceBffter starting the observation. Thé€R,; n=1,2,...}
is a sequence of random variables taking values, im0
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Figure 10.2: The counting process and waiting times

We will introduce heuristically a stochastic procgXs} from the viewpoint of (i). It is convenient to
start with discrete time approximation. Rix 0 and divide the time interval [@] into n small intervals. Let

t
At= -
n

be the length of the small intervals and number from the time origin in order.

We assume the following conditions on the occurrence of the dent

(1) There exists a constaat> 0 such that

P(E occurs just once in a small time interval of lengtt) = AAt + o(At),
P(E does not occur in a mall time interval of lengi) = 1 — AAt + 0o(At),
P(E occurs more than once in a small time interval of lerigth= 0(At).

(2) Occurrence oE in disjoint time intervals is independent.
Some more accounts. Let us imagine the alert of receiving an e-mail. That
P(E occurs more than once in a small time interval of lentgth= 0(At)
means that two occurrences of the evénig always separated. That
P(E occurs just once in a small time interval of lengtt) = AAt + o(At)

means that whent is small the probability of occurrence Efin a time interval is proportional to the length
of the time interval. We understand from (2) that occurrence ixfindependent of the past occurrence.
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Let Z; denote the number of occurrence of the evEnh theith time interval. Ther?s, Zs,..., Z,
become a sequence of independent random variables with an identical distribution such that

P(Z = 0) = 1 - AAt + o(At), P(Z = 1) = AAt + O(At), P(Z > 2) = o(At).
The number of occurrence & during the time interval [(X] is given by
n
>z
i=1

The lengthAt is introduced for a technical reason and is not essential in the probability model so letting
At — 0 or equivalentlyn — oo, we defineX; by

n
X; = A"tToiZ Z. (10.1)

Although the limit does require mathematical justification, we obtain heuristically a continuous time stochas-
tic procesq X}, which gives the number of occurrence of the evenip to timet. This is called &oisson
processwith parameter > 0. A Poisson process belongs to the calss of continuous time Markov chains.

Theorem 10.1.1 A Poisson processX; ; t > 0} satisfies the following properties:

(1) (counting process); takes valesin0,1,2,...};

(2) X0 =0;

(3) (monotone increasingds < X for0 < s<t;

(4) (independentincrement) if@t; <ty <--- <tk then

th - th s Xt3 - th ) ey th - th—l )

are independent;
(5) (stationarity) for O< s < t andh > 0, the distributions oK., — Xsinh andX; — X are identical;
(6) X obeys the Poisson distribution with parameter
(7) there exists a constaat> 0 such that

P(Xp = 1) = 2h + o(h), P(Xp > 2) = o(h).
Proof (1) SinceX; obeys the Poisson distribution with parametgrit takes values in non-negative
integers almost surely.

(2) Obvious by definition.
(3) Lets = mAt, t = nAt, m < n. Then we have obviously

(4) Supposé; = mAtL, ...tk = At with ng < - -+ < ng. Then we have

In other words X, — X;, is the sum ofz;’s corresponding to the small time intervals containedtint{).
Hence X, — X, , ..., X, — Xy, are the sums df;’'s and there is no comma#f) appearing in the summands.
Since{z;} are independent, so a¥g, — X, , ..., Xy — X, -

41



(5) SinceXi h— Xsih andX;— Xg are defined from the sums 8f's and the numbers of the terms coincide.
Therefore the distributions are the same.
(6) We note that

P(Z Z = k] = (E)(/lAt)k(l — A + o(Ab).
i=1

In other words X; obeys apporoximatelB(n, 1At). In view of At = t/n we letn tend to the infinity and
obtain

(a)kn(n-1)...(n—k+ 1)(1_§)”—"_ (A_t)"e_ﬁt_

P(X; = k) = lim - =

At—0 k! nk

This proves the assertion.
(7) SinceX;, obeys the Poisson distribution with parametiarwe have

PXp=0)=eM=1-ah+-.-=1-ah+o(h),
P(Xh = 1) = the ™ = Ah(1 - ah + ...) = Ah + o(h).

Therefore we have
P(Xh = 2) =1- P(Xh = 0)— P(X;, = 1) = o(h).

Remark 10.1.2 The essence of the above argument in (7) isRbissson’s law of small numbesshich
says that the binomial distributidB(n, p) is approximated by Poisson distribution with paramater np
whenn s large andp is small. The following table shows the distributionsB{fL0Q, 0.02) and the Poisson
distribution with parametet = 2.

k 0 1 2 3 4 5 6
Binomial || 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114
Poisson || 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120

Example 10.1.3 The average number of customers visiting a certain service gate is two per minute. Using
the Poisson model, calculate the following probabilities.
(1) The probability that no customer visits during the first two minutes after the gate opens.
(2) The probability that no customer visits during a time interval of two minutes.
(3) The probability that no customer visits during the first two minutes after the gate opens and that two
customers visit during the next one minute.

Let X; be the number of visitors up to timieBy assumptiortX;} is a Poisson process with parametes 2.
(1) We need to calculate(X, = 0). SinceX; obeys the Poisson distribution with parameteér=24, we

have
0

4!
P(Xe=0)=g; e*~0018

(2) Suppose that the time interval start$afThen the probability under discussion is givenR{¥,2 —
Xt, = 0). By stationarity we have

P(Xtg+2 — Xty = 0) = P(X2 = Xo = 0) = P(X2 = 0),

which coincides with (1).
(3) We need calculate the probabilB{X, = 0, X3 — X, = 2). SinceXz andXz — X, are independent,

P(X2 =0, X3 — X2 =2) = P(X2 = 0)P(X3 — X2 = 2).
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By stationarity we have
0 2

4 2
= P(X; = 0)P(X1=2) = 5; e x o> e 2 ~ 0.00496

Problem 19 Let {X;} be a Poisson process. Show that

k n-k
P(xs=k|xt=n)=(E)(§) (1-3) . k=o01...m

for 0 < s< t. Then give an intuitive explanation of the above formula.

Problem 20 How often do you receive a message through internet? Check your iPhone (or other similar
devises) and collect the data focussing on how many messages are received during one hour. Probably you
must check the records during at least 1 week (168 hours).

(1) Make up atable that shows the relative frequency of the number of received messages per one hour.

(2) Calculate the mean value and variance of the number of messages received during one hour. (If they
are close each other, your data should well fit to the Poisson distribution.)

(3) Suppose that your data obeys Poisson distribution. Using the Poisson model, find the probability that
0 messages arrive during 1 hour and 2 messages arrive during the next 2 hours.

10.2 Waiting Time

Let {X;; t > 0} be a Poisson process with parameteBy definition Xg = 0 andX; increases by one as
time passes. Recall that the Poisson process counts the number of events occurring up fitéinge set

Ti=inf{t>0; X > 1}. (10.2)

This is the waiting time for the first occurrence of the eventLet T, be the waiting time for the second
occurrence of the evelft after the first occurrence, i.e.,

To=inf{t>0; X >2}-T;.
In a similar fashion, we set
Th=inf{t>0; X >n} —Tn_1, n=23,.... (20.3)

Theorem 10.2.1Let {X;} be a Poisson process with parameteDefine the waiting timd,, by (10.2) and
(10.3). Then{T,; n=1,2,...} becomes a sequence of iid random variables, of which distribution is the
exponential distribution with parameter In particular, the waiting time for occurence of an event in the
Poisson process obeys the exponential distribution with pararheter

Proof Sett = nAt and consider the approximation by refinement of the time interval. Recall that to
each small time interval of lengtht a random variabl&; is associated. Then we know that

. . . at\"
P> 0= Jm PU2s == 20 =0)= fim (1 180 = fim 1. T =™

Therefore,

t
PTi<t)=1-et= f le*sds
0
which shows thal; obeys the exponential distribution with parameteihe distributions off 5, T3, ... are

similar. |
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Remark 10.2.2 Let {X;} be a Poisson process with parametee know thatE(X1) = A, which means

the average number of occurrence of the event during the unit time interval. Hence, it is expected that the
average waiting time between two occurrencesy is Theorem 10.2.1 says that the waiting time obeys the
exponential distribution with parameteiso its mean value is/l1. Thus, our rough consideration gives the
correct answer.

Problem 21 Let{X;} be a Poisson process with parameterhe waiting time fon occurrence of the events
is defined byS,, = T1 + T2 + --- + T, WhereTy is given in Theorem 10.2.1. Calcula®S, < t) and find
the probability density function db,. [In general S, obeys a gamma distribution.]

10.3 The Rigorous Definition of Poisson Processes

The “definition” of a Poisson process in (10.1) is intuitive and instructive for modeling random phe-
nomena. However, strictly speaking, the argument is nfiicéent to define a stochastic proces}. For
example, the probability spac@(F, P) on which{X;} is defined is not at all clear.

We need to start with the waiting tinj&,,}. First we prepare a sequence of iid random variafilgs n =
1,2,...}, of which the distribution is the exponential distribution with paramgter0. Here the probability
space Q, ¥, P) is clearly defined. Next we set

So=0, Sh=T1+---+Th, n=12...,

and fort > 0,
Xt=maxn>0; S, <t}

It is obvious that for each > 0, X; is a random variable defined on the probability spaegA(, P). In
other words{X;; t > 0} becomes a continuous time stochastic process. This is ddisdon proceswith
parameten by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 10.1.1.

10.4 Generating Function
Let {X;} be a Poisson process with parameter 0. For simplicity, we set
pn(t) = P(X; = n), t>0, n=0,1,2,....
By observing the transition we have

Pn(t + At) = AAt pnoa(t) + (1 - AAYPR(), n>1,
po(t + At) = (1 — AAt) po(t).
Letting At — 0, we have
Pat) = APn-1(t) — Apa(t), n>1,
Po(t) = —Apo(b).

The last equation is easily solved:
po(t) = e,

where the initial conditionpg(0) = P(Xo = 0) = 0 is taken into account.
Define the generating function by

oot = > pa®X".
n=0
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Then we have

(9

% = > PhX" = —apo() + ) (APn-1 (X" — Apn(t)x"}
n=0 n=1

=-1 i Pn(t)x" + /lxi pn(t)x"
n=0 n=0
= (=1 + AX) T (X 1).

Moreover,
f(0,1) = po(t) = e .

Thus,

00 n
_ (AN _ At ()" o
f(xt) = ¢ —e Z;) X
n=

from which we have

e (A"
Pn(t) = € A e

45



11 Queueing Theory

11.1 Modeling Queues

In our daily life, we observe often waiting lines or queues of customers for services. Agner Krarup
Erlang (1878-1929, Danish engineer at the Copenhagen Telephone Exchange) published in 1909 the paper
entitled: The Theory of Probabilities and Telephone Conversatiarisch opened the door to the research
field of queueing theorySuch a queue is modeled in terms of a system consisting of servers and a waiting
room. Customers arriving at the system are served at once if there is an idle server. Otherwise, the customer
waits for a vacant server in a waiting room. After being served, the customer leaves the system.

system

IO\ O -
O
OQO
o ||

customers

O=<| HBO <

departure

-~ O

arrival

In most of the qeueing models, a customer arrives at random and the service time is also random. So we
are interested in relevant statistics such as
(1) sojourn time (time of a customer staying in the system)
(2) waiting time & sojourn time - service time)
(3) the number of customers in the system

Apparently, many dterent conditions may be introduced for the queueing system. In 1953, David G.
Kendall introduced the so-callé¢bndall’'s notation

A/B/c/K/m/Z
for describing the characteristics of a queuing model, where

A: arrival process,

B: service time distribution,

c: number of servers,

K: number of places in the system (or in the waiting room),

m: calling population,

Z: queue’s discipline or priority order, e.g., FIFO (First In First Out)

The first model analyzed by Erlang in 1909 was M¢gD/1 queue in Kendall's notation, wheM means
that arrivals occur according to a Poisson process,[asthnds for deterministic (i.e., service time is not
random but constant).

Most of queueing models are classified into four categories by the behavior of customers as follows:
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() Delay models: customers wait in line until they can be served.
Example:M/M/c queue, where
() customers arrive according to a Poisson process withrate
(i) there arec servers and there is an infinite waiting space;

(iif) each customer requires an exponential service time with mgan 1
(iv) customers who upon arrival find all servers busy wait in line to be served.

(I) Loss models: customers leave the system when they find all servers busy upon arrival.
Example: Erlang’s loss mod&l/G/c/c, where
() customers arrive according to a Poisson process withirate

(i) there arec servers and the capacity of the system is limited twustomers, i.e., there is no

waiting space;
(iii) each customer requires a generally distributed service time;
(iv) customers who upon arrival find all servers busy are rejected forever.

(1) Retrial models: customers who do not find an idle server upon arrival leave the system only tem-
porarily, and try to reenter some random time later.
Example: the PalyiErlang-A queue, where
() customers arrive according to a Poisson process withirate
(i) there arec servers and there is an infinite waiting space;
(iif) each customer requires an exponential service time with mgan 1

(iv) customers who upon arrival find all servers busy wait in line to be served;
(v) customers wait in line only an exponentially distributed time with me@nfatience time).

(IV) Abandonment models: customers waiting in line will leave the system before being served after their
patience time has expired.

References
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11.2 M/M/1Queue

This is the most fundamental model, which satisfies the following conditions:

() arrivals occur according to a Poisson process with parameter
(i) service times obey an exponential distribution with parameter
(iii) arrivals of customers and service times are independent;

(i) the system contains a single server;

(iv) the size of waiting room is infinite;
(v) (FIFO = First In First Out) customers are served from the front of the queue, i.e., according to a
first-come, first-served discipline.
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Thus there are two parameters characterizindvelM/1 queue, that is, the parameter> 0 for the
Poisson arrival and the one > 0 for the exponential service. In other words, a customer arrives at the
system with average time intervallland the average service time i&d In the queuing theory is called
the mean arrival rateandu the mean service rateLet X(t) be the number of customers in the system at
timet. It is the proved thatX(t) ; t > 0} becomes a continuous time Markov chain{bn, 2, 3, ...}. In fact,
the letter “M” stands for “Markov” or “memoryless”.

Our main objective is

pn(t) = P(X(t) = niX(0) = 0),

i.e., the probabbility of findingh customers in the system at tinhe> O subject to the initial condition

X(0) = 0. Let us consider the change of the system during the small time interval At]. It is assumed

that during the small time intervalt only one event happens, namely, a new customer arrives, a customer
under service leaves the system, or nothing changes. The probabilities of these events aregivgmty

1— 1At — pAt.

e ntl ntl e
ANt LAt
n e—m— ——————>»eo N e—>»0 1
#k\. nel el e 1AL
t t+ Af t t+ At

Therefore P(X(t) = n|X(0) = 0) fulfills the following equation:

P(X(t + At) = nX(0) = 0) = P(X(t + At) = nX(t) = n— 1)P(X(t) = n - 1X(0) = 0)
+ P(X(t + At) = niX(t) = n)P(X(t) = niX(0) = 0)
+ POX(t + At) = nIX() = n+ )P(X() = n+ 1X(0) = 0)
= AAtP(X(t) = n - 1X(0) = 0)
+ (1= AAt — LADP(X(t) = nX(0) = 0)
+ uAtP(X(t) = n+ 1IX(0) = 0),
P(X(t + At) = 0[X(0) = 0) = (1 — AALP(X(t) = 0[X(0) = 0) + LAtP(X(t) = 1JX(0) = O).

Hence forpp(t) = P(X(t) = n|X(0) = 0) we have

Pa(t) = Apn-1(t) — (2 + ) Pn(t) + pPnea(t), n=12,...,
PL(t) = —Apo(t) + ppa(t). (11.1)

The initial condition is as follows:
po(0) = 1, pn(0)=0 forn> 1 (11.2)

Solving the linear systen®?®) with the initial condition £?) is not dificult with the help of linear algebra
and spectral theory. However, the explicit solution is not so simple and is omitted. We only mention that
most important characteristics are obtained from the expigt).

Here we focus on the equilibrium solution (limit transition probability), i.e.,

Pn = lim pn()
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whenever the limit exists. Since in the equilibrium the derivative of the left hand sid&®)pis(0, we have

Apn-1— A+ @)pn+upns2=0 n=1,2,...,

11.3
—ApPo + up1 = 0. (11.3)

A general solution to®?) is easily derived:

Pn =

2\
C1+C2(—) , A#Fu,
u

C1+Con, A=pu.

Sincep, gives a probability distribution, we hayw > 0 andz pn = 1. This occurs only when < u and
n=0

n
pn:(l—é)(%) , h=0,12,....
KM

This is the geometric distribution with paramefigy:.
In queuing theory, the ratio of the mean arrival ratend the mean service raies called theutilization:

we have

p=—.

M
Utilization stands for how busy the system is. It was shown above that the number of customers in the
system after long time obeys the geometric distribution with pararpetéirp < 1, the system functions
well. Otherwise, the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium
the number of customers in the system obeys the geometric distribution:

(1-p)o", n=0,12,....

In particular, the probability that the server is free is @ and the probability that the server is busy and the
customer need to wait s This is the origin of the termtilization. Note also that the mean number of the
customers in the system is given by

N A
DL et
=0 p M

Example 11.2.1 There is an ATM, where each customer arrives with average time interval 5 minutes and
spends 3 minutes in average for the service. Usinlylad/1 queue, we know some statistical characteris-
tics. We set

1= 1 1 13
5 M=z PT,75
Then the probability that the ATM isfreefm =1-p = E The probability that the ATM is busy but there
is no waiting customer is
_2.3_68
PL=5X5~ 25
Hence the probability that the ATM is busy and there is some waiting customers is
2 6 9
l—po—p1—1—§—2—5—2—5—0.36.

So, roughly speaking, a customer needs to make a queue once per three visits.
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Problem 22 M/M/1/1 queue) There is a single server and no waiting space. Customers arrive according
to the Poisson process with parameterand their service time obeys the exponential distribution with
parametey. Let Q(t) be the number of customers in the system at tinie fact,

1, serveris busy
0, serverisidle

Q(t) = {
(1) Find

po(t) = P(Q(t) = 01Q(0) = 0),
pa(t) = P(Q(t) = 11Q(0) = 0)

by solving a linear system satisfied by thqmét) and p;(t).

(2) Using the results in (1), calculate
Po = Jim po(t), p1 = Jim pa(t),
(3) Find the mean number of customers in the system in the long time limit:

lim E[QEIQ(0) = 0]

11.3 Birth-and-Death Processes

The Markov procesX(t) appearing in the/M/1 queuing model is studied more generally within the
framework ofbirth-and-death process
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