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確率モデル論 (国際高等研究教育院)

●授業科目の目的・概要及び達成目標等

確率モデルはランダム性を伴う現象の数理解析に欠かせない. 講義では,時間発展するラ
ンダム現象のモデルとしてマルコフ連鎖を扱う.確率論の基礎 (確率変数・確率分布など)
から始めて,マルコフ連鎖に関わる諸概念 (推移確率・再帰性・定常分布など)を学ぶ. 関
連して,ランダムウォーク・出生死亡過程・ポアソン過程なども取り上げて,それらの幅広
い応用を概観する.なお,学部初年級の確率統計の知識を前提とする.

Probability models are essential in mathematical analysis of random phenomena. In these lec-
tures, we focus on Markov chains as basic models of random time evolution. Starting with
fundamental concepts in probability theory (random variables, probability distributions, etc.),
we study fundamentals on Markov chains (transition probability, recurrence, stationary distri-
butions, etc.). Moreover, we overview random walks, birth-and-death processes and Poisson
processes, and their wide applications. Background knowledge on elementary probability is
required.

● Basic References

拙著：確率モデル要論,牧野書店, 2012.

The lectures will follow this book. In fact, it is written on the basis of the lectures at GSIS in
the past years. The table of contents is shown below. Some selected topics will be lectured.

1. Probability space and random variables

2. Analytic theory of probability distributions

3. Independence and dependence of random variables

4. Limit theorems

5. Random walks

6. Markov chains

7. Counting processes

8. Use of orthogonal polynomials

● Examination

1. You will be required, at the end of January, to submit answers to the problems given during the
lectures. The details later (probably at the end of December).

2. No exceptions are made.

● Résuḿe

1. A simple ŕesuḿe of each lecture is distributed in the classroom. It is also available on the website
(www.math.is.tohoku.ac.jp/˜obata).

2. There are some relevant materials thereon.

● Further Reading
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1. D. L. Minh: Applied Probability Models, Duxbury, 2001.

This is concise and friendly.

2. S. M. Ross: Introduction to Probability Models, 11th Ed. Academic Press, 2014.

This book has been read for many years since 1972. Very bulky, nealy 800 pages. The contents
overlap with those of [Minh] but are more in detail.

3. J. R. Norris: Markov Chains, Cambridge UP, 1998.

An established textbook containing various concrete examples.

4. W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, 1957.

A masterpice. This book containing many important topics covers fully our lectures. The Vol. 2 deals
with more advanced topics. The japansese translation is available.

W.フェラー (河田龍夫他訳) : 確率論とその応用 (紀伊国屋).こちらは 4分冊.

5. B. V. Gnedenko: The Theory of Probability and the Elements of Statistics, AMS Chelsea Publishing
Co., 6th ed. 1989.

6. R. Durrett: Probability: Theory and Examples, Duxbury Press, 1996.

Each of these two volumes, providing basic knowledge on probability models, covers also our lectures.

7. 志賀徳造：ルベーグ積分から確率論 (共立), 2000.

The first part is devoted to Lebesgue integration, and the second part contains topics in random walks.

8. R. B.シナジ (今野紀雄・林俊一訳)：マルコフ連鎖から格子確率モデルへ,シュプリンガー東京,
1999.

A handy introduction to Markov chains including the Galton-Watson processes and birth-and-death
processes.

9. 国沢清典 : 確率論とその応用 (岩波全書), 1982.

We aim at the level of this book.

10. 舟木直久：確率論,朝倉書店, 2004.

11. 西尾真喜子：確率論,実教出版, 1978.

More strong mathematical flavor.

12. P.ブレモー (向井久訳)：モデルで学ぶ確率入門 (新装版),シュプリンガー東京, 2004.

Contains many concrete applications. It seems, however, to be difficult to follow without the basic
knowledge of probability theory.

13. F. Spitzer: Principles of Random Walk, Springer, 2nd Ed., 1976.

14. K. L. Chung: Markov Chains, Springer, 1960.

These are classics for professionals.

15. イアン・ハッキング (石原英樹・重田園江訳)：偶然を飼いならす,木鐸社, 1999.

「この博物誌的な書物を好奇心に満ちたすべての読者に捧げる」とある.確率統計が 20世紀の
科学に中でいかに成功してきたかを科学史的な視点で論ずる.かなり興味深い.

16. イアン・ハッキング (広田すみれ・森元良太訳)：確率の出現,慶應義塾大学出版会, 2013.

17. キース・デブリン (原啓介訳)：世界を変えた手紙—パスカル、フェルマーと〈確率〉の誕生,
岩波書店, 2010.

確率論の始まりをさまざまなエピソードとともに語る.個人的にはカルダーノに大変興味がある.
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1 Probability Spaces and Random Variables

1.1 Probability spaces

Ω: sample space consisting of elementary events (or sample points).
F : the set of events
P: probability

1.2 Kolmogorov’s axioms

Definition 1.2.1 (probability space) (Ω,F ,P)

1.3 Basic Properties

Theorem 1.3.1 Let A1,A2, . . . be a sequence of events.

(1) If A1 ⊂ A2 ⊂ A3 ⊂ · · · , thenP
( ∞∪

n=1

An

)
= lim

n→∞
P(An).

(2) If A1 ⊃ A2 ⊃ A3 ⊃ · · · , thenP
( ∞∩

n=1

An

)
= lim

n→∞
P(An).

1.4 Random variables and their probability distributions

1.4.1 Discrete random variables

A random variableX is calleddiscreteif the number of values thatX takes is finite or countably infinite.
To be more precise, for a discrete random variableX there exist a (finite or infinite) sequence of real numbers
a1,a2, . . . and corresponding nonnegative numbersp1, p2, . . . such that

P(X = ai) = pi , pi ≥ 0,
∑

pi = 1.

In this case
µX(dx) =

∑
i

piδai (dx) =
∑

i

piδ(x− ai)dx

is called the(probability) distributionof X. Obviously,

P(a ≤ X ≤ b) =
∑

i:a≤ai≤b

pi

a

p
p

p

p

a a a
i

i

1 2 3
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2

3

...

...
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Example 1.4.1 (coin toss)We set

X =

1, heads,

0, tails.

Then
P(X = 1) = p, P(X = 0) = q = 1− p.

For a fair coin we setp = 1/2.

Example 1.4.2 (waiting time) Flip a fair coin repeatedly until we get the heads. LetT be the number of
coin tosses to get the first heads. (If the heads occurs at the first trial, we haveT = 1; If the tails occurs at
the first trial and the heads at the second trial, we haveT = 2, and so on.)

P(T = k) = (1− p)k−1p, k = 1,2, . . . .

1.4.2 Continuous random variables

A random variableX is calledcontinuousif P(X = a) = 0 for all a ∈ R. We understand intuitively that
X varies continuously.

If there exists a functionf (x) such that

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx, a < b,

we say thatX admits aprobability density function. Note that∫ +∞

−∞
f (x)dx= 1, f (x) ≥ 0.

In this case,
µX(dx) = f (x)dx

is called the(probability) distributionof X.

a b x

f (x)

It is useful to consider thedistribution function:

FX(x) = P(X ≤ x) =
∫ x

−∞
fX(t)dt, x ∈ R.

Then we have

fX(x) =
d
dx

FX(x).

Remark 1.4.3 (1) A continuous random variable does not necessarily admit a probability density func-
tion. But many continuous random variables in practical applications admit probability density func-
tions.
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(2) There is a random variable which is neither discrete nor continuous. But most random variables in
practical applications are either discrete or continuous.

Example 1.4.4 (random cut) Divide the interval [0, L] (L > 0) into two segments.

(1) Let X be the coordinate of the cutting point (the length of the segment containing 0).

FX(x) =


0, x < 0,

x/L, 0 ≤ x ≤ L,

1, x > L,

fX(x) =

(2) Let M be the length of the longer segment.

FM(x) =


0, x < L/2,

(2x− L)/L, L/2 ≤ x ≤ L,

1, x > L,

fM(x) =

Example 1.4.5 Let A be a randomly chosen point from the disc with radiusR > 0. Let X be the distance
between the centerO andA. We have

P(a ≤ X ≤ b) =
π(b2 − a2)
πR2

=
1
R2

∫ b

a
2xdx, 0 < a < b < R,

so the probability density function is given by

f (x) =


2x

R2
, 0 ≤ x ≤ R,

0, otherwise.

1.5 Mean values and variances

Definition 1.5.1 Themeanor expectation valueof a random variableX is defined by

m= E[X] =
∫ +∞

−∞
xµX(dx)

• If X is discrete, we have
E[X] =

∑
i

ai pi .

• If X admits a probability density functionf (x), we have

E[X] =
∫ +∞

−∞
x f(x)dx.

Remark 1.5.2 For a functionφ(x) we have

E[φ(X)] =
∫ +∞

−∞
φ(x)µ(dx).

For example,

E[Xm] =
∫ +∞

−∞
xmµ(dx) (mth moment),

E[eitX] =
∫ +∞

−∞
eitxµ(dx) (characteristic function).

3



Definition 1.5.3 Thevarianceof a random variableX is defined by

σ2 = V[X] = E[(X − E[X])2] = E[X2] − E[X]2,

or equivalently,

σ2 = V[X] =
∫ +∞

−∞
(x− E[X])2µ(dx) =

∫ +∞

−∞
x2µ(dx) −

(∫ +∞

−∞
xµ(dx)

)2

.

Example 1.5.4 The mean value and variance of the waiting timeT introduced in Example 1.4.2.

Example 1.5.5 The mean value and variance of the random variablesX andM introduced in Example 1.4.4.

1.6 Stochastic processes

We will study the probability models for time evolution of random phenomena. Measuring a certain
quantity of the random phenomenon at each time stepn = 0,1,2, . . . , we obtain a sequence of real values:

x0, x1, x2, . . . , xn, . . . .

Because of randomness, we considerxn as a realized value of a random variableXn. Here a random variable
is a variable taking several different values with certain probabilities. Thus, the time evolution of a random
phenomenon is modeled by a sequence of random variables

{Xn ; n = 0, 1, 2, . . . } = {X0,X1,X2, . . . ,Xn, . . . },

which is called adiscrete-time stochastic process. If the measurement is performed along with continuous
time, we need acontinuous-time stochastic process:

{Xt ; t ≥ 0}

It is our purpose to construct stochastic processes modeling typical random phenomena and to demonstrate
their properties within the framework of modern probability theory.

Figure 1.1: Solar spots; Nominal exchange rate (red) and real effective exchange rate (blue)
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2 Probability Distributions

2.1 One-dimensional distributions

FX(x) = P(X ≤ x): distribution function

2.2 Discrete distributions

2.2.1 Bernoulli distribution

For 0≤ p ≤ 1 the distribution
(1− p)δ0 + pδ1

is calledBernoulli distribution with success probability p. This is the distribution of coin toss. The mean
value and variance are given by

m= p, σ2 = p(1− p)

2.2.2 Binomial distribution B(n, p)

For 0≤ p ≤ 1 andn ≥ 1 the distribution

n∑
k=0

(
n
k

)
pk(1− p)n−k δk

is called thebinomial distribution B(n, p). The quantity

(
n
k

)
pk(1− p)n−k is the probability thatn coin tosses

with probabilitiesp for heads andq = 1− p for tails result ink heads andn− k tails. The mean value and
variance ofB(p, n) are given by

m= np, σ2 = np(1− p).
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Figure 2.1:B(20,0.4) and geometric distribution with parameterp = 0.4

2.2.3 Geometric distribution

For 0≤ p ≤ 1 the distribution
∞∑

k=1

p(1− p)k−1δk
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is called thegeometric distribution with success probability p. This is the distribution of waiting time for
the first heads (Example 1.4.2). The mean value and variance are given by

m=
1
p
, σ2 =

1
p2
.

Remark 2.2.1 In some literatures, the geometric distribution with parameterp is defined by

∞∑
k=0

p(1− p)kδk

2.2.4 Poisson distribution

Forλ > 0 the distribution
∞∑

k=0

e−λ
λk

k!
δk

is called thePoisson distribution with parameterλ. The mean and variance are given by

m= λ, σ2 = λ.
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Figure 2.2: Poisson distributionλ = 1/2, 1, 3

Problem 1 Theprobability generating functionof the Poisson distribution is defined by

G(z) =
∞∑

k=0

pkz
k, pk = e−λ

λk

k!
.

(1) Find a concise expression ofG(z).

(2) By usingG′(1) andG′′(1) find the mean value and variance of the Poisson distribution with parameter
λ.

(3) Show that the probability of taking even values is greater than that of odd values, i.e.,∑
k:odd

pk <
∑

k:even

pk .

(4) [additional] Show another example of a probability generating function.
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2.3 Continuous distributions and density functions

2.3.1 Uniform distribution

For a finite interval [a,b],

f (x) =


1

b− a
, a ≤ x ≤ b,

0, otherwise

becomes a density function, which determines theuniform distributionon [a, b]. The mean value and the
variance are given by

m=
∫ b

a
x

dx
b− a

=
a+ b

2
, σ2 =

∫ b

a
x2 dx

b− a
−m2 =

(b− a)2

12
.

a b x

ab

1

Figure 2.3: Uniform distribution on [a,b]

2.3.2 Exponential distribution

Theexponential distributionwith parameterλ > 0 is defined by the density function

f (x) =

λe−λx , x ≥ 0,

0, otherwise.

This is a model for waiting time (continuous time). The mean value and variance are given by

m=
1
λ
, σ2 =

1
λ2
.

0 x

λ

Figure 2.4: Exponential distribution with parameterλ
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2.3.3 Normal distribution

Form ∈ R andsigma> 0 we may check that

f (x) =
1

√
2πσ2

exp

{
− (x−m)2

2σ2

}
becomes a density function. The distribution defined by the above density function is called thenormal
distributionor Gaussian distributionand denoted byN(m, σ2). In particular,N(0, 1) is called thestandard
normal distributionor thestandard Gaussian distribution.

The mean value and variance ofN(m, σ2) arem andσ2, respectively. This is verified by explicit calcu-
lation of the integrals:

1
√

2πσ2

∫ +∞

−∞
x exp

{
− (x−m)2

2σ2

}
dx= m,

1
√

2πσ2

∫ +∞

−∞
(x−m)2 exp

{
− (x−m)2

2σ2

}
dx= σ2.

Use the famous integral formula: ∫ +∞

0
e−tx2

dx=

√
π

2
√

t
, t > 0,

which is a standard exercise of double integrals in the first year course of calculus.

Problem 2 Choose randomly a pointA from the disc with radius one and letX be the radius of the inscribed
circle with centerA.

(1) Forx ≥ 0 find the probabilityP(X ≤ x).

(2) Find the probability density functionfX(x) of X. (Note thatx varies over all real numbers.)

(3) Calculate the mean and variance ofX.

(4) Calculate the mean and variance of the area of inscribed circleS = πX2.

(5) [additional] Discuss similar questions for a ball.

A

X
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3 Independence and Dependence

3.1 Independent events and conditional probability

Definition 3.1.1 (Pairwise independence)A (finite or infinite) sequence of eventsA1,A2, . . . is calledpair-
wise independentif any pair of eventsAi1,Ai2 (i1 , i2) verifies

P(Ai1 ∩ Ai2) = P(Ai1)P(Ai2).

Definition 3.1.2 (Independence)A (finite or infinite) sequence of eventsA1,A2, . . . is calledindependent
if any choice of finitely many eventsAi1, . . . ,Ain (i1 < i2 < · · · < in) satisfies

P(Ai1 ∩ Ai2 ∩ · · · ∩ Ain) = P(Ai1)P(Ai2) · · ·P(Ain).

Example 3.1.3 Consider the trial to randomly draw a card from a deck of 52 cards. LetA be the event that
the result is an ace andB the event that the result is spades. ThenA, B are independent.

Remark 3.1.4 It is allowed to consider whether the sequence of events{A,A} is independent or not. If they
are independent, by definition we haveP(A∩ A) = P(A)P(A), from whichP(A) = 0 or P(A) = 1 follows.
Notice thatP(A) = 0 does not implyA = ∅ (empty event). Similarly,P(A) = 1 does not implyA = Ω (whole
event).

Definition 3.1.5 (Conditional probability) For two eventsA, B theconditional probability of A relative to
B (or on the hypothesis B, or for given B) is defined by

P(A|B) =
P(A∩ B)

P(B)
wheneverP(B) > 0.

Theorem 3.1.6 Let A, B be events withP(A) > 0 andP(B) > 0. Then,

A, B are independent ⇔ P(A|B) = P(A) ⇔ P(B|A) = P(B)

3.2 Independent random variables

Definition 3.2.1 A (finite or infinite) sequence of random variablesX1,X2, . . . is independent(resp. pair-
wise independent) if so is the sequence of events{X1 ≤ a1}, {X1 ≤ a2}, . . . for anya1, a2, · · · ∈ R.

In other words, a (finite or infinite) sequence of random variablesX1,X2, . . . is independent if for any
finite Xi1, . . . ,Xin (i1 < i2 < · · · < in) and constant numbersa1, . . . ,an

P(Xi1 ≤ a1 ,Xi2 ≤ a2 , . . . ,Xin ≤ an) = P(Xi1 ≤ a1)P(Xi2 ≤ a2) · · ·P(Xin ≤ an) (3.1)

holds. Similar assertion holds for the pairwise independence. If random variablesX1,X2, . . . are discrete,
(3.1) may be replaced with

P(Xi1 = a1 ,Xi2 = a2 , . . . ,Xin = an) = P(Xi1 = a1)P(Xi2 = a2) · · ·P(Xin = an).

Example 3.2.2 Choose at random a point from the rectangleΩ = {(x, y) ; a ≤ x ≤ b, c ≤ y ≤ d}. Let X
denote thex-coordinates of the chosen point andY they-coordinates. ThenX,Y are independent.

Problem 3 (1) An urn contains four balls with numbers 112, 121, 211, 222. We draw a ball at random and
let X1 be the first digit,X2 the second digit, andX3 the last digit. Fori = 1,2,3 we define an eventAi by
Ai = {Xi = 1}. Show that{A1,A2,A3} is pairwise independent but is not independent.

(2) Two dice are tossed. LetA be the event that the first die gives a 4,B be the event that the sum is
6, andC be the event that the sum is 7. CalculateP(B|A) andP(C|A), and study the independence among
{A, B,C}.
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3.3 Bernoulli trials

This is a model of coin-toss and is the most fundamental stochastic process. A sequence of random vari-
ables (or a discrete-time stochastic process){X1,X2, . . . ,Xn, . . . } is called theBernoulli trials with success
probability p (0 ≤ p ≤ 1) if they are independent and have the same distribution as

P(Xn = 1) = p, P(Xn = 0) = q = 1− p.

By definition we have

P(X1 = ξ1,X2 = ξ2, . . . ,Xn = ξn) =
n∏

k=1

P(Xk = ξk) for all ξ1, ξ2, . . . , ξn ∈ {0, 1}.

In general, statistical quantity in the left-hand side is called thefinite dimensional distributionof the stochas-
tic process{Xn}. The total set of finite dimensional distributions characterizes a stochastic process.

3.4 Covariance and correlation coefficients

Recall that the mean of a random variableX is defined by

mX = E(X) =
∫ +∞

−∞
xµX(dx).

Theorem 3.4.1 (Linearity) For two random variablesX,Y and two constant numbersa, b it holds that

E(aX+ bY) = aE(X) + bE(Y).

Theorem 3.4.2 (Multiplicativity) If random variablesX1,X2, . . . ,Xn are independent, we have

E[X1X2 · · ·Xn] = E[X1] · · ·E[Xn]. (3.2)

Proof We first prove the assertion forXk = 1Ak (indicator random variable). By definitionX1, . . . ,Xn

are independent if and only if so areA1, . . . ,An. Therefore,

E[X1 · · ·Xn] = E[1A1∩···∩An] = P(A1 ∩ · · · ∩ An)

= P(A1) · · ·P(An) = E[X1] · · ·E[Xn].

Thus (3.2) is verified. Then, by linearity the assertion is valid forXk taking finitely many values (finite
linear combination of indicator random variables). Finally, for generalXk, coming back to the definition of
Lebesgue integration, we can prove the assertion by approximation argument.

Remark 3.4.3 E[XY] = E[X]E[Y] is not a sufficient condition for the random variablesX andY being
independent. It is merely a necessary condition!

Thevarianceof X is defined by

σ2
X = V(X) = E[(X −mX)2] = E[X2] − E[X]2.

By means of the distributionµ(dx) of X we may write

V(X) =
∫ +∞

−∞
(x−mX)2µ(dx) =

∫ +∞

−∞
x2µ(dx) −

(∫ +∞

−∞
xµ(dx)

)2

.
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Definition 3.4.4 Thecovarianceof two random variablesX,Y is defined by

Cov (X,Y) = σXY = E[(X − E(X))(Y− E(Y))] = E[XY] − E[X]E[Y].

In particular,σXX = σ
2
X becomes the variance ofX. Thecorrelation coefficient of two random variables

X,Y is defined by

ρXY =
σXY

σXσY
,

wheneverσX > 0 andσY > 0.

Definition 3.4.5 X,Y are called uncorrelated ifσXY = 0. They are called positively (resp. negatively)
correlated ifσXY > 0 (resp.σXY < 0).

Theorem 3.4.6 If two random variablesX,Y are independent, they are uncorrelated.

Remark 3.4.7 The converse of Theorem 3.4.6 is not true in general. LetX be a random variable satisfying

P(X = −1) = P(X = 1) =
1
4
, P(X = 0) =

1
2

and setY = X2. Then,X,Y are not independent, butσXY = 0. On the other hand, for random variablesX,Y
taking only two values, the converse of Theorem 3.4.6 is valid (see Problem 5).

Theorem 3.4.8 (Additivity of variance) Let X1,X2, . . . ,Xn be random variables, any pair of which is un-
correlated. Then

V

 n∑
k=1

Xk

 = n∑
k=1

V[Xk].

Theorem 3.4.9−1 ≤ ρXY ≤ 1 for two random variablesX,Y with σX > 0,σY > 0.

Proof Note thatE[{t(X −mX) + (Y−mY)}2] ≥ 0 for all t ∈ R.

Problem 4 Throw two dice and letL be the larger spot andS the smaller. (If double spots, setL = S.)

(1) Show the joint probability of (L,S) by a table.

(2) Calculate the correlation coefficientρLS and explain the meaning of the signature ofρLS .

Problem 5 Let X andY be random variables such that

P(X = a) = p1, P(X = b) = q1 = 1− p1, P(Y = c) = p2, P(Y = d) = q2 = 1− p2,

wherea,b, c,d are constant numbers and 0< p1 < 1, 0 < p2 < 1. Show thatX,Y are independent if and
only if σXY = 0. Explain the significance of this case. [Hint: In general, uncorrelated random variables are
not necessarily independent.]

3.5 Convolutions of probability distributions

Perhaps omitted.
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4 Limit Theorems

4.1 Simulation of Coin Toss

Let {Xn} be a Bernoulli trial with success probability 1/2, namely, tossing a fair coin, and consider the
binomial process defined by

Sn =

n∑
k=1

Xk.

SinceSn counts the number of heads during the firstn trials,

Sn

n
=

1
n

n∑
k=1

Xk

gives the relative frequency of heads during the firstn trials.
The following is just one example showing that the relative frequency of headsSn/n tends to 1/2. It is

our question how to describe this phenomenon mathematically. A naive formula:

lim
n→∞

Sn

n
=

1
2

(4.1)

is not acceptable. Why?
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Figure 4.1: Relative frequency of headsSn/n

4.2 Law of Large Numbers (LLN)

Theorem 4.2.1 (Weak law of large numbers)Let X1,X2, . . . be identically distributed random variables
with meanm and varianceσ2. (This means thatXi has a finite variance.) IfX1,X2, . . . are uncorrelated, for
anyϵ > 0 we have

lim
n→∞

P


∣∣∣∣∣∣∣1n

n∑
k=1

Xk −m

∣∣∣∣∣∣∣ ≥ ϵ
 = 0.

We say that
1
n

n∑
k=1

Xk converges tom in probability.

Remark 4.2.2 In many literatures the weak law of large numbers is stated under the assumption that
X1,X2, . . . are independent. It is noticeable that the same result holds under the weaker assumption of
being uncorrelated.

12



Theorem 4.2.3 (Chebyshev inequality)Let X be a random variable with meanm and varianceσ2. Then,
for anyϵ > 0 we have

P(|X −m| ≥ ϵ) ≤ σ
2

ϵ2
.

Proof SetA = {|X −m| ≥ ϵ} and let 1A be the indicator random variable. Then we have

σ2 = E[(X −m)2] = E[(X −m)21A + (X −m)21Ac]

≥ E[(X −m)21A] ≥ E[ϵ21A] = ϵ2P(A),

where we used the obvious relationE[1A] = P(A).

Proof [Theorem 4.2.1 (Weak Law of Large Numbers)] For simplicity we set

Y = Yn =
1
n

n∑
k=1

Xk .

The mean value is given by

E[Y] =
1
n

n∑
k=1

E[Xk] = m.

SinceX1,X2, . . . are pairwise uncorrelated, the variance is computed by using the additive property of vari-
ance. In fact, we have

V[Y] =
1
n2

V

 n∑
k=1

Xk

 = 1
n2

n∑
k=1

V[Xk] =
1
n2
× nσ2 =

σ2

n
.

On the other hand, applying Chebyshev inequality, we have

P(|Y−m| ≥ ϵ) ≤ V[Y]
ϵ2
=
σ2

nϵ2
.

Consequently,
lim
n→∞

P(|Yn −m| ≥ ϵ) = 0,

as desired.

Example 4.2.4 (Coin toss)

Theorem 4.2.5 (Strong law of large numbers)Let X1,X2, . . . be identically distributed random variables
with meanm. (This means thatXi has a mean but is not assumed to have a finite variance.) IfX1,X2, . . . are
pairwise independent, we have

P

 lim
n→∞

1
n

n∑
k=1

Xk = m

 = 1.

In other words,

lim
n→∞

1
n

n∑
k=1

Xk = m a.s.

Remark 4.2.6 Kolmogorov proved the strong law of large numbers under the assumption thatX1,X2, . . .

are independent. In many literatures, the strong law of large numbers is stated as Kolmogorov proved. Its
proof being based on the so-called “Kolmogorov’s almost sure convergence theorem,” we cannot relax the
assumption of independence. Theorem 4.2.5 is due to N. Etemadi (1981), where the assumption is relaxed
to being pairwise independent and the proof is more elementary, see also books by Sato, by Durrett, etc.
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4.3 Central Limit Theorem (CLT)

Theorem 4.3.1 (Central Limit Theorem) Let Z1,Z2, . . . be independent identically distributed (iid) ran-
dom variables with mean 0 and variance 1. Then, for anyx ∈ R it holds that

lim
n→∞

P

 1
√

n

n∑
k=1

Zk ≤ x

 = 1
√

2π

∫ x

−∞
e−t2/2dt. (4.2)

In short,
1
√

n

n∑
k=1

Xk −→ N(0,1) weakly asn→ ∞.

Proof is by characteristic functions (Fourier transform), see the textbooks.

Example 4.3.2 The de Moivre–Laplace theorem claims that

B(n, p) ≈ N(np, np(1− p)). (4.3)

0

0.02

0.04

0.06

0.08

10 20 30 40 50 60 70 80 90 100

Figure 4.2: The normal distribution whose mean and variance are the same asB(100,0.4)

This is a special case of CLT. Let{X1,X2, . . . } be a Bernoulli trials with success probabilityp. Set

Zk =
Xk −m
σ

, m= E[Xk] = p, σ2 = V[Xk] = p(1− p)

so that{Zk} are iid random variables with 0 and variance 1. Apply the central limit theorem we have (4.2).
For the left-hand side we see that

1
√

n

n∑
k=1

Zk =
1
√

n

n∑
k=1

Xk −m
σ

=
1

σ
√

n

 n∑
k=1

Xk − nm

 .
Then (4.2) becomes

lim
n→∞

P

 n∑
k=1

Xk ≤ nm+ xσ
√

n

 = 1
√

2π

∫ x

−∞
e−t2/2dt.

Settingy = nm+ xσ
√

n, we have

P

 n∑
k=1

Xk ≤ y

 ≈ 1
√

2π

∫ y−nm
σ
√

n

−∞
e−t2/2dt =

1
√

2πσ2

∫ y

−∞
e−

(t−nm)2

2nσ2 dt
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Thus, for a largen we have
n∑

k=1

Xk ≈ N(nm,nσ2) = N(np, np(1− p))

On the other hand, we know that
∑n

k=1 Xk obeysB(n, p), of which the mean value and variance are given by
npandnp(1−p). Consequently, for a largen we have (4.3). The approximation (4.3) means that distribution
functions are almost the same.

Problem 6 (Monte Carlo simulation) Let f (x) be a continuous function on the interval [0, 1] and consider
the integral ∫ 1

0
f (x)dx. (4.4)

(1) Let X be a random variable obeying the uniform distribution on [0,1]. Give expressions of the mean
valueE[ f (X)] and varianceV[ f (X)] of the random variablef (X).

(2) Let x1, x2, . . . is a sequence random numbers taken from [0,1]. Explain that the arithmetic mean

1
n

n∑
k=1

f (xk)

is a good approximation of the integral (4.4) by means of law of large numbers and central limit
theorem.

(3) By using a computer, verify the above fact forf (x) =
√

1− x2.
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5 Markov Chains

5.1 Conditional Probability

For two eventsA, B theconditional probability of A relative (subject) to Bis defined by

P(A|B) =
P(A∩ B)

P(B)
, wheneverP(B) > 0, (5.1)

see Section 3.1. Formula (5.1) is often used in the following form:

P(A∩ B) = P(B)P(A|B). (5.2)

This is the so-called theorem on compound probabilities, giving a ground to the usage of tree diagram in
computation of probability. For example, for two eventsA, B see Fig. 5.1.

������*P(A)

HHHHHHjP(Ac)

A

Ac

������1P(B|A)

PPPPPPqP(Bc|A)

������1P(B|Ac)

PPPPPPqP(Bc|Ac)

A∩ B

A∩ Bc

Ac ∩ B

Ac ∩ Bc

Figure 5.1: Tree diagram

Theorem 5.1.1 (Compound probabilities)For eventsA1,A2, . . . ,An we have

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · ·P(An|A1 ∩ A2 ∩ · · · ∩ An−1). (5.3)

Proof Straightforward by induction onn.

5.2 Markov Chains

Let S be a finite or countable set. Consider a discrete time stochastic process{Xn ; n = 0, 1, 2, . . . } taking
values inS. This S is called astate spaceand is not necessarily a subset ofR in general. In the following
we often meet the cases ofS = {0, 1}, S = {1,2, . . . ,N} andS = {0, 1, 2, . . . }.

Definition 5.2.1 Let {Xn ; n = 0,1,2, . . . } be a discrete time stochastic process overS. It is called aMarkov
processoverS if

P(Xm = j|Xn1 = i1, Xn2 = i2, . . . ,Xnk = ik, Xn = i) = P(Xm = j|Xn = i)

holds for any 0≤ n1 < n2 < · · · < nk < n < m andi1, i2, . . . , ik, i, j ∈ S.

If {X1,X2, . . . } are independent random variables with values inS, obviously they form a Markov chain.
Hence the Markov property is weaker than independence.
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Theorem 5.2.2 (multiplication rule) Let {Xn} be a Markov chain onS. Then, for any 0≤ n1 < n2 < · · · <
nk andi1, i2, . . . , ik ∈ S we have

P(Xn1 = i1, Xn2 = i2, . . . ,Xnk = ik)

= P(Xn1 = i1)P(Xn2 = i2|Xn1 = i1)P(Xn3 = i3|Xn2 = i2) · · ·P(Xnk = ik|Xnk−1 = ik−1).

Definition 5.2.3 For a Markov chain{Xn} overS,

P(Xn+1 = j|Xn = i)

is called thetransition probabilityat timen from a statei to j. If this is independent ofn, the Markov chain
is calledtime homogeneous.

Hereafter a Markov chain is always assumed to be time homogeneous.In this case thetransition
probability is denoted by

pi j = p(i, j) = P(Xn+1 = j|Xn = i)

and thetransition matrixis defined byP = [pi j ]

Definition 5.2.4 A matrix P = [pi j ] with index setS is called astochastic matrixif

pi j ≥ 0 and
∑
j∈S

pi j = 1.

Theorem 5.2.5 The transition matrix of a Markov chain is a stochastic matrix. Conversely, given a stochas-
tic matrix we can construct a Markov chain of which the transition matrix coincides with the given stochastic
matrix.

Example 5.2.6 (2-state Markov chain)A Markov chain over the state space{0, 1} is determined by the
transition probabilities:

p(0, 1) = p, p(0, 0) = 1− p, p(1, 0) = q, p(1, 1) = 1− q.

The transition matrix is defined by [
1− p p

q 1− q

]
.

The transition diagram is as follows:

p

p

pp

 p=

 q=

 1 p=  1 q=

Example 5.2.7 (3-state Markov chain)An animal is healthy, sick or dead, and changes its state every day.
Consider a Markov chain on{H,S,D} described by the following transition diagram:

b

p

 a

 q

H S D

 r

17



The transition matrix is defined bya b 0
p r q
0 0 1

 , a+ b = 1, p+ q+ r = 1.

Example 5.2.8 (Random walk onZ1) The random walk onZ1 is illustrated as

s s s s s s s
0−1−2−3 1 2 3

�
q

-
p

The transition probabilities are given by

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.

The transition matrix is a two-sided infinite matrix given by

. . .
. . .
. . .
. . .

. . . q 0 p 0

0 q 0 p 0

0 q 0 p 0

0 q 0 p
. . .

. . .
. . .
. . .
. . .


Example 5.2.9 (Random walk with absorbing barriers) Let A > 0 and B > 0. The state space of a
random walk with absorbing barriers at−A andB is S = {−A,−A + 1, . . . , B − 1, B}. Then the transition
probabilities are given as follows. For−A < i < B,

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.

For i = −A or i = B,

p(−A, j) =

1, if j = −A,

0, otherwise,
p(B, j) =

1, if j = B,

0, otherwise.

In a matrix form we have 

1 0 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...
...
. . .

. . .
. . .

...
...

0 0 · · · q 0 p 0
0 0 · · · 0 q 0 p
0 0 · · · 0 0 0 1
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B

q

p p

q

p

q

− A

p

q

Example 5.2.10 (Random walk with reflecting barriers) Let A > 0 andB > 0. The state space of a ran-
dom walk with absorbing barriers at−A andB is S = {−A,−A+1, . . . , B−1, B}. The transition probabilities
are given as follows. For−A < i < B,

p(i, j) =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.

For i = −A or i = B,

p(−A, j) =

1, if j = −A+ 1,

0, otherwise,
p(B, j) =

1, if j = B− 1,

0, otherwise.

In a matrix form we have 

0 1 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...
...
. . .

. . .
. . .

...
...

0 0 · · · q 0 p 0
0 0 · · · 0 q 0 p
0 0 · · · 0 0 1 0



B

q

p p

q

p

q

− A

q

p

5.3 Distribution of a Markov Chain

Let S be a state space as before. In general, a row vectorπ = [· · · πi · · · ] indexed byS is called a
distributiononS if

πi ≥ 0 and
∑
i∈S
πi = 1. (5.4)

For a Markov chain{Xn} onS we set

π(n) = [· · · πi(n) · · · ], πi(n) = P(Xn = i),

which becomes a distribution onS. We callπ(n) thedistributionof Xn. In particular,π(0), the distribution
of X0, is called theinitial distribution. We often take

π(0) = [· · · 0, 1, 0, · · · ], where 1 occurs atith posotion.

In this case the Markov chain{Xn} starts from the statei.

19



For a Markov chain{Xn} with a transition matrixP = [pi j ] then-step transition probabilityis defined by

pn(i, j) = P(Xm+n = j|Xm = i), i, j ∈ S.

The right-hand side is independent ofn because our Markov chain is assumed to be time homogeneous.

Theorem 5.3.1 (Chapman–Kolmogorov equation)For 0≤ r ≤ n we have

pn(i, j) =
∑
k∈S

pr (i, k)pn−r (k, j). (5.5)

Proof First we note the obvious identity:

pn(i, j) = P(Xm+n = j|Xm = i) =
∑
k∈S

P(Xm+n = j,Xm+r = k|Xm = i).

Moreover,

P(Xm+n = j,Xm+r = k|Xm = i) =
P(Xm+n = j,Xm+r = k,Xm = i)

P(Xm+r = k,Xm = i)
× P(Xm+r = k,Xm = i)

P(Xm = i)

= P(Xm+n = j|Xm+r = k,Xm = i)P(Xm+r = k|Xm = i).

Using the Markov property, we have

P(Xm+n = j|Xm+r = k,Xm = i) = P(Xm+n = j|Xm+r = k)

so that
P(Xm+n = j,Xm+r = k|Xm = i) = P(Xm+n = j|Xm+r = k)P(Xm+r = k|Xm = i).

Finally, by the property of being time homogeneous, we come to

P(Xm+n = j,Xm+r = k|Xm = i) = pn−r (k, j)pr (i, k).

Thus we have obtained (5.5).

Applying (5.5) repeatedly and noting thatp1(i, j) = p(i, j), we obtain

pn(i, j) =
∑

k1,...,kn−1∈S
p(i, k1)p(k1, k2) · · · p(kn−1, j). (5.6)

The right-hand side is nothing else but the multiplication of matrices, i.e., then-step transition probability
pn(i, j) is the (i, j)-entry of then-power of the transition matrixP. Summing up, we obtain the following
important result.

Theorem 5.3.2 Form, n ≥ 0 andi, j ∈ S we have

P(Xm+n = j|Xm = i) = pn(i, j) = (Pn)i j .

Proof Immediate from Theorem 5.3.1.

Remark 5.3.3 As a result, the Chapman-Kolmogorov equation is nothing else but an entrywise expression
of the obvious relation for the transition matrix:

Pn = Pr Pn−r

(As usual,P0 = E (identity matrix).)
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Theorem 5.3.4 We have
π(n) = π(n− 1)P, n ≥ 1,

or equivalently,
π j(n) =

∑
i

πi(n− 1)pi j .

Therefore,
π(n) = π(0)Pn.

Proof We first note that

π j(n) = P(Xn = j) =
∑
i∈S

P(Xn = j|Xn−1 = i)P(Xn−1 = i) =
∑
i∈S

pi jπi(n− 1),

which provesπ(n) = π(n− 1)P. By repeated application we have

π(n) = π(n− 1)P = (π(n− 2)P)P = (π(n− 2)P2 = · · · = π(0)Pn,

as desired.

Example 5.3.5 (2-state Markov chain)Let {Xn} be the Markov chain introduced in Example 5.2.6. The
eigenvalues of the transition matrix

P =

[
1− p p

q 1− q

]
.

are 1, 1− p− q. These are distinct ifp+ q > 0. Omitting the case ofp+ q = 0, i.e.,p = q = 0, we assume
that p+ q > 0. By standard argument we obtain

Pn =
1

p+ q

[
q+ prn p− prn

q− qrn p+ qrn

]
, r = 1− p− q.

Let π(0) = [π0(0) π1(0)] be the distriution ofX0. Then the distribution ofXn is given by

π(n) = [P(Xn = 0) , P(Xn = 1)] = [π0(0) π1(0)]Pn = π(0)Pn.

Problem 7 There are two parties, say, A and B, and their supporters of a constant ratio exchange at every
election. Suppose that just before an election, 25% of the supporters of A change to support B and 20% of
the supporters of B change to support A. At the beginning, 85% of the voters support A and 15% support B.

(1) When will the party B command a majority?

(2) Find the final ratio of supporters after many elections if the same situation continues.

(3) (optional) Discuss relevant topics at your own choice.

Problem 8 Study then-step transition probability of the three-state Markov chain introduced in Example
5.2.7. Explain that every animal dies within finite time.

Problem 9 Let {Xn} be a Markov chain on{0, 1} given by the transition matrixP =

[
1− p p

q 1− q

]
with the

initial distributionπ0 =
[ q
p+ q

,
p

p+ q

]
. Calculate the following statistical quantities:

E[Xn], V[Xn], Cov (Xm+n,Xn) = E[Xm+nXn] − E[Xm+n]E[Xn], ρ(Xm+n,Xn) =
Cov (Xm+n,Xn)
√

V[Xm+n]V[Xn]

21



6 Stationary Distributions

6.1 Definition and Examples

Definition 6.1.1 Let {Xn} be a Markov chain onS with transition probability matrixP. A distributionπ on
S is calledstationary(or invariant) if

π = πP, (6.1)

or equivalently if
π j =

∑
i∈S
πi pi j , j ∈ S. (6.2)

Thus, in order to find a stationary distribution of a Markov chain with a transition probability matrix
P = [pi j ], we need to solve the linear system (6.1) (or equivalently (6.2)) together with the conditions:∑

i

πi = 1 andπi ≥ 0 for all i ∈ S.

Example 6.1.2 (2-state Markov chain)Consider the transition matrix:

P =

[
1− p p

q 1− q

]
.

Solving the equationπP = π, π = [π0 π1], which is equivalent topπ0 − qπ1 = 0, together withπ0 + π1 = 1,
we obtain

π0 =
q

p+ q
, π1 =

p
p+ q

. (6.3)

Thus we conclude:

(i) If p+ q > 0, there exists a unique stationary distribution as in (6.3).

(ii) If p = q = 0, a stationary distribution is not uniquely determined. In fact, any distributionπ = [π0 , π1]
is stationary.

Moreover, we see from Example 5.3.5 that if 0< p+ q < 2, or equivalently, if|r | < 1, we have

lim
n→∞

Pn =
1

p+ q

[
q p
q p

]
.

Then

lim
n→∞
π(n) = lim

n→∞
π(0)Pn = [π0(0) π1(0)] × 1

p+ q

[
q p
q p

]
=

[
q

p+ q
p

p+ q

]
.

It is noteworthy that the stationary distribution is obtained as a limit distribution.

Example 6.1.3 (3-state Markov chain)We discuss the Markov chain{Xn} introduced in Example 5.2.7. If
q > 0 andb > 0, a stationary distribution is unique and given byπ = [0 0 1].

Example 6.1.4 (One-dimensional RW)Consider the 1-dimensional random walk with right-move proba-
bility p > 0 and left-move probabilityq = 1 − p > 0. Let [· · · π(k) · · · ] be a distribution onZ. If it is
stationary, we have

π(k) = pπ(k− 1)+ qπ(k+ 1), k ∈ Z. (6.4)

(Case 1)p , q. Then a general solution to (6.4) is given by

π(k) = C11k +C2

(
p
q

)k

= C1 +C2

(
p
q

)k

, k ∈ Z.
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This never becomes a probability distribution for any choice ofC1 andC2. Namely, there is no stationary
distribution.

(Case 2)p = q. In this case a general solution to (6.4) is given by

π(k) = (C1 +C2k)1k = C1 +C2k, k ∈ Z.

This never becomes a probability distribution for any choice ofC1 andC2. Namely, there is no stationary
distribution.

Example 6.1.5 (One-dimensional RW with reflection barrier) There is a unique stationary distribution
whenp < q. In fact,

π(0) = Cp, π(k) = C

(
p
q

)k

, k ≥ 1, where C =
q− p
2pq
.

If p ≥ q, then there is no stationary distribution.

6.2 Existence and Uniqueness

Theorem 6.2.1 A Markov chain over a finite state spaceS has a stationary distribution.

A simple proof is based on the Brouwer’s fixed-point theorem, for details see the textbooks. Note that
the stationary distribution mentioned in the above theorem is not necessarily unique.

Definition 6.2.2 We say that a statej can be reached froma statei if there exists somen ≥ 0 such that
pn(i, j) > 0. By definition every statei can be reached from itself. We say that two statesi and j intercom-
municateif i can be reached formj and j can be reached fromi, i.e., there existm ≥ 0 andn ≥ 0 such that
pn(i, j) > 0 andpm( j, i) > 0.

For i, j ∈ S we introduce a binary relationi ∼ j when they intercommunicate. Then∼ becomes an
equivalence relation onS:

(i) i ∼ i; (ii) i ∼ j =⇒ j ∼ i; (iii) i ∼ j, j ∼ k =⇒ i ∼ k.

In fact, (i) and (ii) are obvious by definition, and (iii) is verified by the Chapman-Kolmogorov equation.
Thereby the state spaceS is classified into a disjoint set of equivalence classes. In each equivalence class
any two states intercommunicate each other.

Definition 6.2.3 A statei is calledabsorbingif pii = 1. In particular, an absorbing state is a state which
constitutes an equivalence class by itself.

Definition 6.2.4 A Markov chain is calledirreducible if every state can be reached from every other state,
i.e., if there is only one equivalence class of intercommunicating states.

Theorem 6.2.5 An irreducible Markov chain on a finite state spaceS admits a unique stationary distribution
π = [πi ]. Moreover,πi > 0 for all i ∈ S.

In fact, the proof owes to the following two facts:

(1) For an irreducible Markov chain the following assertions are equivalent:

(i) it admits a stationary distribution;
(ii) every state is positive recurrent.

In this case the stationary distributionπ is unique and given by

πi =
1

E(Ti |X0 = i)
, i ∈ S.

(2) Every state of an irreducible Markov chain on a finite state space is positive recurrent (Theorem 7.3.2).
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6.3 Convergence

Example 6.3.1 (2-state Markov chain)We recall Examples 5.3.5 and 6.1.2. Ifp+ q > 0, the distribution
of the above Markov chain converges to the unique stationary distribution. Consider the case ofp = q = 1,
i.e., the transition matrix becomes

P =

[
0 1
1 0

]
.

The stationary distribution is unique. But for a given initial distributionπ(0) it is not necessarily true that
π(n) converges to the stationary distribution.

Roughly speaking, we need to avoid the periodic transition in order to have the convergence to a station-
ary distribution.

Definition 6.3.2 For a statei ∈ S,

GCD{n ≥ 1 ; P(Xn = i|X0 = i) > 0}

is called theperiod of i. (When the set in the right-hand side is empty, the period is not defined.) A state
i ∈ S is calledaperiodicif its period is one.

Theorem 6.3.3 For an irreducible Markov chain, every state has a common period.

Theorem 6.3.4 Let π be a stationary distribution of an irreducible Markov chain on a finite state space (It
is unique, see Theorem 6.2.5). If{Xn} is aperiodic, for anyj ∈ S we have

lim
n→∞

P(Xn = j) = π j .

Problem 10 Find all stationary distributions of the Markov chain determined by the transition diagram
below. Then discuss convergence of distributions.

Problem 11 Let {Xn} be the Markov chain introduced in Example 5.2.7:

b

p

 a

 q

H S D

 r

For n = 1, 2, . . . let Hn denote the probability of starting from H and terminating at D atn-step. Similarly,
for n = 1,2, . . . let Sn denote the probability of starting from S and terminating at D atn-step.

(1) Show that{Hn} and{Sn} satisfies the following linear system:Hn = aHn−1 + bSn−1,

Sn = pHn−1 + rSn−1,
n ≥ 2; H1 = 0, S1 = q.

24



(2) Let H andS denote the life times starting from the state H and S, respectively. Solving the linear
system in (1), prove the following identities for the mean life times:

E[H] =
∞∑

n=1

nHn =
b+ p+ q

bq
, E[S] =

∞∑
n=1

nSn =
b+ p

bq
.

6.4 Page Rank

The hyperlinks amongN websites give rise to a digraph (directed graph)G on N vertices. It is natural
to consider a Markov chain onG, which is defined by the transition matrixP = [pi j ], where

pi j =


1

degi
if i → j,

0, if i ↛ j andi , j,

1, degi = 0 and j = i,

where degi = |{ j ; i → j}| is theout-degreeof i.

1/2

1/2

1

1

1

There exists a stationary state but not necessarily unique. Taking 0≤ d ≤ 1 we modify the transition matrix:

Q = [qi j ], qi j = dpi j + ϵ, ϵ =
1− d

N
.

If 0 ≤ d < 1, the Markov chain determined byQ has necessarily a unique stationary distribution. Choosing
a suitabled < 1, we may understand the stationary distributionπ = [π(i)] as the page rank among the
websites. In real applicationd should not be close to 0 andd ≈ 0.85 is often taken.

Problem 12 Consider the page rank introduced above.

(1) Letπ(i) be the page rank of a sitei. Show thatπ(i) satisfies the following relation

π(i) =
1− d

N
+ d

∑
j: j→i

π( j)
deg j

and explain the meaning.

(2) Show more examples of the page rank and discuss the role of sites which have no hyperlinks, that is,
degi = 0 (in terms ofP = [pi j ] such sites correspond to absorbing states).
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7 Topics in Markov Chains I: Recurrence

7.1 Recurrence

Definition 7.1.1 Let i ∈ S be a state. Define thefirst hitting timeor first passage timeto i by

Ti = inf {n ≥ 1 ; Xn = i}.

If {n ≥ 1 ; Xn = i} is an empty set, we defineTi = ∞. A statei is calledrecurrentif P(Ti < ∞|X0 = i) = 1.
It is calledtransientif P(Ti = ∞|X0 = i) > 0.

Theorem 7.1.2 A statei ∈ S is recurrent if and only if

∞∑
n=0

pn(i, i) = ∞.

If a statei is transient, we have

∞∑
n=0

pn(i, i) < ∞ and
∞∑

n=0

pn(i, i) =
1

1− P(Ti < ∞|X0 = i)
.

Proof We first put

pn(i, j) = P(Xn = j|X0 = i), n = 0,1,2, . . . ,

fn(i, j) = P(T j = n|X0 = i) = P(X1 , j, . . . ,Xn−1 , j,Xn = j|X0 = i), n = 1, 2, . . . .

pn(i, j) is nothing else but then step transition probability. On the other hand,fn(i, j) is the probability that
the Markov chain starts fromi and reachj first time aftern step. Dividing the set of sample paths fromi to
j in n steps according to the number of steps after which the path reachesj for the first time, we obtain

pn(i, j) =
n∑

r=1

fr (i, j)pn−r ( j, j), i, j ∈ S, n = 1, 2, . . . . (7.1)

We next introduce the generating functions:

Gi j (z) =
∞∑

n=0

pn(i, j)zn, Fi j (z) =
∞∑

n=1

fn(i, j)zn.

In view of (7.1) we see easily that

Gi j (z) = p0(i, j) + Fi j (z)G j j (z). (7.2)

Settingi = j in (7.2), we obtain

Gii (z) = 1+ Fii (z)Gii (z) ⇐⇒ Gii (z) =
1

1− Fii (z)
.

On the other hand, since

Gii (1) =
∞∑

n=0

pn(i, i), Fii (1) =
∞∑

n=1

fn(i, i) = P(Ti < ∞|X0 = i)

we see that two conditionsFii (1) = 1 andGii (1) = ∞ are equivalent. The second statement is readily clear.
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7.2 Random Walks on Lattices

Example 7.2.1 (random walk onZ) Since the random walk starting from the origin 0 returns to it only
after even steps, for recurrence we only need to compute the sum ofp2n(0,0). We start with the obvious
result:

p2n(0, 0) =
(2n)!
n!n!

pnqn, p+ q = 1.

Then, using the Stirling formula:

n! ∼
√

2πn
(n
e

)n
(7.3)

we obtain

p2n(0,0) ∼ 1
√
πn

(4pq)n.

Hence,
∞∑

n=0

p2n(0,0)

< ∞, p , q,

= ∞, p = q = 1/2.

Consequently, one-dimensional random walk is transient ifp , q, and it is recurrent ifp = q = 1/2.

Remark 7.2.2 Let {an} and{bn} be sequences of positive numbers. We writean ∼ bn if lim
n→∞

an/bn = 1. In

this case, there exist two constant numbersc1 > 0 andc2 > 0 such thatc1an ≤ bn ≤ c2an. Hence
∑∞

n=1 an

and
∑∞

n=1 bn converge or diverge at the same time.

Example 7.2.3 (random walk onZ2) Obviously, the random walk starting from the origin 0 returns to it
only after even steps. Therefore, for recurrence we only need to compute the sum ofp2n(0, 0). For two-
dimensional random walk we need to consider two directions along withx-axis andy-axis. We see easily
that

p2n(0, 0) =
∑

i+ j=n

(2n)!
i!i! j! j!

(
1
4

)2n

=
(2n)!
n!n!

(
1
4

)2n ∑
i+ j=n

n!n!
i!i! j! j!

=

(
2n
n

) (
1
4

)2n n∑
i=0

(
n
i

)2

.

Employing the formula for the binomial coefficients:

n∑
i=0

(
n
i

)2

=

(
2n
n

)
, (7.4)

which is a good exercise for the readers, we obtain

p2n(0,0) =

(
2n
n

)2 (
1
4

)2n

∼ 1
πn
.

Then we have
∞∑

n=1

p2n(0,0) = ∞,

which means that two-dimensional random walk is recurrent.

Example 7.2.4 (random walk onZ3) Let us consider the isotropic random walk in 3-dimension. As there
are three directions, say,x, y, z-axis, we have

p2n(0, 0) =
∑

i+ j+k=n

(2n)!
i!i! j! j!k!k!

(
1
6

)2n

=
(2n)!
n!n!

(
1
6

)2n ∑
i+ j+k=n

n!n!
i!i! j! j!k!k!

=

(
2n
n

) (
1
6

)2n ∑
i+ j+k=n

(
n!

i! j!k!

)2

.
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We note the following two facts. First, ∑
i+ j+k=n

n!
i! j!k!

= 3n. (7.5)

Second, the maximum valueMn = max
i+ j+k=n

n!
i! j!k!

is attained when
n
3
− 1 ≤ i, j, k ≤ n

3
+ 1 so

Mn ∼
3
√

3
2πn

3n

by the Stirling formula. Then we have

p2n(0,0) ≤
(
2n
n

) (
1
6

)2n

3nMn ∼
3
√

3

2π
√
π

n−3/2.

Therefore.
∞∑

n=1

p2n(0,0) < ∞,

which implies that the random walk is not recurrent (i.e., transient).

7.3 Positive Recurrence and Null Recurrence

If a statei is recurrent, i.e.,P(Ti < ∞|X0 = i) = 1, themean recurrent timeis defined:

E(Ti |X0 = i) =
∞∑

n=1

nP(Ti = n|X0 = i).

The statei is calledpositive recurrentif E(Ti |X0 = i) < ∞, andnull recurrentotherwise.

Theorem 7.3.1 The states in an equivalence class are all positive recurrent, or all null recurrent, or all
transient. In particular, for an irreducible Markov chain, the states are all positive recurrent, or all null
recurrent, or all transient.

Theorem 7.3.2 For an irreducible Markov chain on a finite state spaceS, every state is positive recurrent.

Example 7.3.3 The mean recurrent time of the one-dimensional isotropic random walk is infinity, i.e., the
one-dimensional isotropic random walk is null recurrent. The proof will be given in Section??.

Problem 13 Let {Xn} be a Markov chain described by the following transition diagram:

p

p

pp

 p=

 q=

 1 p=  1 q=

wherep > 0 andq > 0. For a statei ∈ S let Ti = inf {n ≥ 1 ; Xn = i} be the first hitting time toi.

(1) Calculate

P(T0 = 1|X0 = 0), P(T0 = 2|X0 = 0), P(T0 = 3|X0 = 0), P(T0 = 4|X0 = 0).

(2) FindP(T0 = n|X0 = 0) and calculate
∞∑

n=1

P(T0 = n|X0 = 0),
∞∑

n=1

nP(T0 = n|X0 = 0).
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8 Topics in Markov Chains II: Absorption

8.1 Absorbing States

A statei is calledabsorbingif pii = 1 andpi j = 0 for all j , i. Once a Markov chain hits an absorbing
state, it stays thereat forever.

Let us consider a Markov chain on a finite state spaceS with some absorbing states. We set

S = Sa ∪ S0 ,

whereSa denotes the set of absorbing states andS0 the rest. According to the above partition, the transition
matrix is written as

P =



1 0 · · · 0
1 0 · · · 0
. . .

...
. . .

...

1 0 · · · 0

∗ ∗


=

[
I 0
S T

]
.

Then

Pn =

[
I 0
S T

]n

=

[
I 0

Sn Tn

]
,

whereS1 = S andSn = Sn−1 + Tn−1S. To avoid inessential tediousness we assume the following condition

(C1) For anyi ∈ S0 there existj ∈ Sa andn ≥ 1 such that (Pn)i j > 0.

In other words, the Markov chain starting fromi ∈ S0 has a positive probability of absorption. SinceS
is finite by assumption, then in (C1) is chosen independently ofi ∈ S0. Hence (C1) is equivalent to the
following

(C2) There existsN ≥ 1 such that for anyi ∈ S0 there existj ∈ Sa with (PN)i j > 0.

Lemma 8.1.1 Notations and assumptions being as above, limn→∞ Tn = 0.

Proof We see from the obvious relation

1 =
∑
j∈S

(PN)i j =
∑
j∈S0

(PN)i j +
∑
j∈Sa

(PN)i j

and condition (C2) that ∑
j∈S0

(PN)i j < 1, i ∈ S0 .

Note that fori, j ∈ S0 we have (PN)i j = (TN)i j . We chooseδ < 1 such that∑
j∈S0

(TN)i j ≤ δ < 1 i ∈ S0 .

Now let i ∈ S0 andn ≥ N. We see that∑
j∈S0

(Tn)i j =
∑

j,k∈S0

(Tn−N)ik(TN)k j =
∑
k∈S0

(Tn−N)ik

∑
j∈S0

(TN)k j ≤ δ
∑
k∈S0

(Tn−N)ik = δ
∑
j∈S0

(Tn−N)i j .
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Repeating this procedure, we have∑
j∈S0

(Tn)i j ≤ δk
∑
j∈S0

(Tn−kN)i j ≤ δk
∑
j∈S

(Pn−kN)i j ≤ δk,

where 0≤ n− kN < N. Therefore,
lim
n→∞

∑
j∈S0

(Tn)i j = 0,

from which we have limn→∞(Tn)i j = 0 for all i, j ∈ S0.

Remark 8.1.2 It is shown that every statei ∈ S0 is transient.

Theorem 8.1.3 Let π0 = [α β] be the initial distribution (according toS = Sa ∪ S0). Then the limit
distribution is given by

[α + βS∞ 0], where S∞ = (I − T)−1S.

Proof The limit distribution is given by

lim
n→∞
π0Pn = lim

n→∞
[α β]

[
I 0

Sn Tn

]
= lim

n→∞
[α + βSn βT

n].

We see from Lemma 8.1.1 that
lim
n→∞
βTn = 0.

On the other hand, sinceSn = Sn−1 + Tn−1S we have

Sn = (I + T + T2 + · · · + Tn−1)S

and
(I − T)Sn = (I − Tn)S.

Hence
lim
n→∞

Sn = lim
n→∞

(I − T)−1(I − Tn)S = (I − T)−1S,

which shows the result.

Example 8.1.4 Consider the Markov chain given by the transition diagram, which is a random walk with
absorbing barriers.

q q

1

p p

1

The transition matrix is given by

P =


1 0 0 0
0 1 0 0
q 0 0 p
0 p q 0

 =
[
I 0
S T

]
, S =

[
q 0
0 p

]
, T =

[
0 p
q 0

]
.
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Then

S∞ = (I − T)−1S =
1

1− pq

[
q p2

q2 p

]
Suppose that the initial distribution is given byπ0 = [α β γ δ]. Then the limit distribution is[

α +
qγ + q2δ

1− pq
β +

p2γ + pδ
1− pq

0 0

]
.

In particular, if the Markov chain starts at the state 3, settingπ0 = [0 0 1 0], we obtain the limit distribution[
q

1− pq
p2

1− pq
0 0

]
,

which means that the Markov chain is absorbed in the states 1 or 2 at the ratioq : p2.

Problem 14 Following Example 8.1.4, study the Markov chain given by the following transition diagram,
wherep+ q = 1.

q q

1

p

q

1

pp

8.2 Gambler’s Ruin

We consider a random walk with absorbing barriers at−A andB, whereA > 0 andB > 0. This is a
Markov chain on the state spaceS = {−A,−A+ 1, . . . , B− 1, B} with the transition diagram as follows:

B

q

p p

q

p

q

− A

p

q

We are interested in the absorbing probability, i.e.,

R= P(Xn = −A for somen = 1, 2, . . . ) = P

 ∞∪
n=1

{Xn = −A}
 ,

S = P(Xn = B for somen = 1,2, . . . ) = P

 ∞∪
n=1

{Xn = B}
 .

Note that the events in the right-hand sides are not the unions of disjoint events.
A sample path is shown in the following picture:

−A

0

B

�
�
��@

@
@
@R�

��@
@
@R�

��@
@

@
@R
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A key idea is to introduce a similar random walk starting atk, −A ≤ k ≤ B, which is denoted byX(k)
n .

Then the original one isXn = X(0)
n . Let Rk andSk be the probabilities that the random walkX(k)

n is absorbed
at−A andB, respectively. We wish to findR= R0 andS = S0.

Lemma 8.2.1 {Rk ; , −A ≤ k ≤ B} fulfills the following difference equation:

Rk = pRk+1 + qRk−1 , R−A = 1, RB = 0. (8.1)

Similarly, {Sk ; , −A ≤ k ≤ B} fulfills the following difference equation:

Sk = pSk+1 + qSk−1 , S−A = 0, SB = 1. (8.2)

Theorem 8.2.2 Let A ≥ 1 andB ≥ 1. Let {Xn} be the random walk with absorbing barriers at−A andB,
and with right-move probabilityp and left-move probabilityq (p+ q = 1). Then the probabilities that{Xn}
is absorbed at the barriers are given by

P(Xn = −A for somen) =


(q/p)A − (q/p)A+B

1− (q/p)A+B
, p , q,

B
A+ B

, p = q =
1
2
,

P(Xn = B for somen) =


1− (q/p)A

1− (q/p)A+B
, p , q,

A
A+ B

, p = q =
1
2
.

In particular, the random walk is absorbed at the barriers at probability 1.

An interpretation of Theorem 8.2.2 gives the solution to thegambler’s ruin problem. Two players A
and B toss a fair coin by turns. LetA andB be their allotted points when the game starts. They exchange 1
point after each trial. This game is over when one of the players loses all the allotted points and the other
getsA + B points. We are interested in the probability of each player’s win. For eachn ≥ 0 defineXn in
such a way that the allotted point of A at timen is given byA+ Xn. Then{Xn} becomes a random walk with
absorbing barrier at−A andB. It then follows from Theorem 8.2.2 that the winning probability of A and B
are given by

P(A) =
A

A+ B
, P(B) =

B
A+ B

, (8.3)

respectively. As a result, they are proportional to the initial allotted points. For example, ifA = 1 and
B = 100, we haveP(A) = 1/101 andP(B) = 100/101, which sounds that almost no chance of A’s win.

In a fair bet the recurrence is guaranteed by Theorem??. Even if one has much more losses than wins,
continuing the game one will be back to the zero balance. However, in reality there is a barrier of limited
money. (8.3) tells the effect of the barrier.

It is also interesting to know the expectation of the number of coin tosses until the game is over.

Theorem 8.2.3 Let {Xn} be the same as in Theorem 8.2.2. The expected life time of this random walk until
absorption is given by 

A
q− p

− A+ B
q− p

1− (q/p)A

1− (q/p)A+B
, p , q,

AB, p = q =
1
2
.
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Proof Let Yk be the life time of a random walk starting from the positionk (−A ≤ k ≤ B) at timen = 0
until absorption. In other words,

Yk = min{ j ≥ 0 ; X(k)
j = −Aまたは X(k)

j = B }.

We wish to computeE(Y0). We see by definition that

E(Y−A) = E(YB) = 0. (8.4)

For−A < k < B we have

E(Yk) =
∞∑
j=1

jP(Yk = j). (8.5)

In a similar manner as in the proof of Theorem 8.2.2 we note that

P(Yk = j) = pP(Yk+1 = j − 1)+ qP(Yk−1 = j − 1). (8.6)

Inserting (8.6) into (8.5), we obtain

E(Yk) = p
∞∑
j=1

jP(Yk+1 = j − 1)+ q
∞∑
j=1

jP(Yk−1 = j − 1)

= pE(Yk+1) + qE(Yk−1) + 1. (8.7)

Thus,E(Yk) is the solution to the difference equation (8.7) with boundary condition (8.4). This difference
equation is solved in a standard manner and we find

E(Yk) =


A+ k
q− p

− A+ B
q− p

1− (q/p)A+k

1− (q/p)A+B
, p , q,

(A+ k)(B− k), p = q =
1
2
.

Settingk = 0, we obtain the result.

If p = q = 1/2 andA = 1, B = 100, the expected life time isAB= 100. The gambler A is much inferior
to B in the amount of funds (as we have seen already, the probability of A’s win is just 1/101), however, the
expected life time until the game is over is 100, which sounds longer than one expects intuitively. Perhaps
this is because the gambler cannot quit gambling.

Problem 15 (A bold gambler) In each game a gambler wins the dollars he bets with probabilityp, and
loses with probabilityq = 1 − p. The goal of the gambler is to get 5 dollars. His strategy is to bet the
difference between 5 dollars and what he has. LetXn be the amount he has just afternth bet.

q q

1

p

q

p

1

p

pq

(1) Analyze the Markov chain{Xn} with initial conditionX0 = 1.

(2) Compare with the steady gambler discussed in this section, who bets just 1 dollar in each game.
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9 Galton-Watson Branching Processes

Consider a simplified family tree where each individual gives birth to offspring (children) and dies. The
number of offsprings is random. We are interested in whether the family survives or not. A fundamental
model was proposed by F. Galton in 1873 and basic properties were derived by Galton and Watson in their
joint paper in the next year. The name “Galton-Watson branching process” is quite common in literatures
after their paper, but it would be more fair to refer to it as “BGW process.” In fact, Iréńee-Jules Bienayḿe
studied the same model independently already in 1845.

9.1 Definition

Let Xn be the number of individuals of thenth generation. Then{Xn ; n = 0, 1, 2, . . . } becomes a discrete-
time stochasic process. We assume that the number of children born from each individual obeys a common
probability distribution and is independent of individuals and of generation. Under this assupmtion{Xn}
becomes a Markov chain.

Let us find the transition probability. LetY be the number of children born from an individual and set

P(Y = k) = pk , k = 0,1,2, . . . .

The sequence{p0, p1, p2, . . . } describes the distribution of the number of children born from an individual.
In fact, what we need is the condition

pk ≥ 0,
∞∑

k=0

pk = 1.

We refer to{p0, p1, . . . } as theoffspring distribution. Let Y1,Y2, . . . be independent identically distributed
random variables, of which the distribution is the same asY. Then, we define the transition probability by

p(i, j) = P(Xn+1 = j|Xn = i) = P

 i∑
k=1

Yk = j

 , i ≥ 1, j ≥ 0,

and

p(0, j) =

0, j ≥ 1,

1, j = 0.
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Clearly, the state 0 is an absorbing one. The above Markov chain{Xn} over the state space{0, 1, 2, . . . } is
called theGalton-Watson branching processwith offspring distribution{pk ; k = 0, 1, 2, . . . }.

For simplicity we assume thatX0 = 1. Whenp0 + p1 = 1, the famility tree is reduced to just a path
without branching so the situation is much simpler (Problem 16). We will focus on the case where

p0 + p1 < 1, p2 < 1, . . . , pk < 1, . . . .

In the next section on we will always assume the above conditions.

Problem 16 (One-child policy) Consider the Galton-Watson branching process with offspring distribution
satisfyingp0 + p1 = 1. Calculate the probabilities

q1 = P(X1 = 0), q2 = P(X1 , 0,X2 = 0), . . . , qn = P(X1 , 0, . . . ,Xn−1 , 0,Xn = 0), . . .

and find the extinction probability

P

 ∞∪
n=1

{Xn = 0}
 = P(Xn = 0 occurs for somen ≥ 1).

9.2 Generating Functions

Let {Xn} be the Galton-Watson branching process with offspring distribution{pk ; k = 0,1,2, . . . }. Let
p(i, j) = P(Xn+1 = j|Xn = i) be the transition probability. We assume thatX0 = 1.

Define the generating function of the offspring distribution by

f (s) =
∞∑

k=0

pksk. (9.1)

The series in the right-hand side converges for|s| ≤ 1. We set

f0(s) = s, f1(s) = f (s), fn(s) = f ( fn−1(s)).

Lemma 9.2.1
∞∑
j=0

p(i, j)sj = [ f (s)] i , i = 1,2, . . . . (9.2)

Proof By definition,

p(i, j) = P (Y1 + · · · + Yi = j) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

P(Y1 = k1, . . . ,Yi = ki).

SinceY1, . . . ,Yi are independent, we have

p(i, j) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

P(Y1 = k1) · · ·P(Yi = ki) =
∑

k1+···+ki= j
k1≥0,...,ki≥0

pk1 · · · pki .

Hence,
∞∑
j=0

p(i, j)sj =

∞∑
j=0

∑
k1+···+ki= j
k1≥0,...,ki≥0

pk1 · · · pki s
j =

∞∑
k1=0

pk1 sk1 · · ·
∞∑

ki=0

pki s
ki = [ f (s)] i ,

which proves the assertion.
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Lemma 9.2.2 Let pn(i, j) be then-step transition probability of the Galton-Watson branching process. We
have

∞∑
j=0

pn(i, j)sj = [ fn(s)] i , i = 1, 2, . . . . (9.3)

Proof We prove the assertion by induction onn. First note thatp1(i, j) = p(i, j) and f1(s) = f (s) by
definition. Forn = 1 we need to show that

∞∑
j=0

p(i, j)sj = [ f (s)] i , i = 1, 2, . . . , (9.4)

Which was shown in Lemma 9.2.1. Suppose thatn ≥ 1 and the claim (9.3) is valid up ton. Using the
Chapman-Kolmogorov identity, we see that

∞∑
j=0

pn+1(i, j)sj =

∞∑
j=0

∞∑
k=0

p(i, k)pn(k, j)sj .

Since
∞∑
j=0

pn(k, j)sj = [ fn(s)]k

by assumption of induction, we obtain

∞∑
j=0

pn+1(i, j)sj =

∞∑
k=0

p(i, k)[ fn(s)]k.

The right-hand side coincides with (9.4) wheres is replaced byfn(s). Consequently, we come to

∞∑
j=0

pn+1(i, j)sj = [ f ( fn(s))] i = [ fn+1(s)] i ,

which proves the claim forn+ 1.

SinceX0 = 1,
P(Xn = j) = P(Xn = j|X0 = 1) = pn(1, j).

In particular,
P(X1 = j) = P(X1 = j|X0 = 1) = p1(1, j) = p(1, j) = p j .

Theorem 9.2.3 Assume that the mean value of the offspring distribution is finite:

m=
∞∑

k=0

kpk < ∞.

Then we have
E[Xn] = mn.

Proof Differentiating (9.1), we obtain

f ′(s) =
∞∑

k=0

kpksk−1, |s| < 1. (9.5)
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Letting s→ 1− 0, we have
lim

s→1−0
f ′(s) = m.

On the other hand, settingi = 1 in (9.3), we have

∞∑
j=0

pn(1, j)sj = fn(s) = fn−1( f (s)). (9.6)

Differentiating both sides, we come to

f ′n(s) =
∞∑
j=0

jpn(1, j)sj−1 = f ′n−1( f (s)) f ′(s). (9.7)

Letting s→ 1− 0, we have

lim
s→1−0

f ′n(s) =
∞∑
j=0

jpn(1, j) = lim
s→1−0

f ′n−1( f (s)) lim
s→1−0

f ′(s) = m lim
s→1−0

f ′n−1(s).

Therefore,
lim

s→1−0
f ′n(s) = mn,

which means that

E(Xn) =
∞∑
j=0

jP(Xn = j) =
∞∑
j=0

jpn(1, j) = mn.

In conclusion, the mean value of the number of individuals in thenth generation,E(Xn), decreases and
converges to 0 ifm < 1 and diverges to the infinity ifm > 1, asn→ ∞. It stays at a constant ifm = 1. We
are thus suggested that extinction of the family occurs whenm< 1.

9.3 Extinction Probability

The event{Xn = 0} means that the family died out until thenth generation. So

q = P

 ∞∪
n=1

{Xn = 0}


is the probability of extinction of the family. Note that the events in the right-hand side is not mutually
exclusive but

{X1 = 0} ⊂ {X2 = 0} ⊂ · · · ⊂ {Xn = 0} ⊂ . . . .
Therefore, it holds that

q = lim
n→∞

P(Xn = 0). (9.8)

If q = 1, this family almost surely dies out in some generation. Ifq < 1, the survival probability is positive
1− q > 0. We are interested in whetherq = 1 or not.

Lemma 9.3.1 Let f (s) be the generating function of the offspring distribution, and setfn(s) = f ( fn−1(s)) as
before. Then we have

q = lim
n→∞

fn(0).

Therefore,q satisfies the equation:
q = f (q). (9.9)
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Proof It follows from Lemma 9.2.2 that

fn(s) =
∞∑
j=0

pn(1, j)sj .

Hence,
fn(0) = pn(1, 0) = P(Xn = 0|X0 = 1) = P(Xn = 0),

where the last identity is by the assumption ofX0 = 1. The assertion is now straightforward by combining
(9.8). The second assertion follows sincef (s) is a continuous function on [0,1].

Lemma 9.3.2 Assume that the offspring distribution satisfies the conditions:

p0 + p1 < 1, p2 < 1, . . . , pk < 1, . . . .

Then the generating functionf (t) verifies the following properties.

(1) f (s) is increasing, i.e.,f (s1) ≤ f (s2) for 0 ≤ s1 ≤ s2 ≤ 1.

(2) f (s) is strictly convex, i.e., if 0≤ s1 < s2 ≤ 1 and 0< θ < 1 we have

f (θs1 + (1− θ)s2) < θ f (s1) + (1− θ) f (s2).

Proof (1) is apparent since the coefficient of the power seriesf (s) is non-negative. (2) follows by
f ′′(s) > 0.

Lemma 9.3.3 (1) If m≤ 1, we havef (s) > s for 0 ≤ s< 1.

(2) If m> 1, there exists a uniques such that 0≤ s< 1 and f (s) = s.

Lemma 9.3.4 f1(0) ≤ f2(0) ≤ · · · → q.

Theorem 9.3.5 The extinction probabilityq of the Galton-Watson branching process as above coincides
with the smallests such that

s= f (s), 0 ≤ s≤ 1.

Moreover, ifm≤ 1 we haveq = 1, and ifm> 1 we haveq < 1.

The Galton-Watson branching process is calledsubcritical, critical andsupercritical if m < 1, m = 1
andm > 1, respectively. The survival is determined only by the mean valuem of the offspring distribution.
The situation changes dramatically atm= 1 and, following the terminology of statistical physics, we call it
phase transition.

Problem 17 Let b, p be constant numbers such thatb > 0, 0 < p < 1 andb + p < 1. Suppose that the
offspring distribution given by

pk = bpk−1, k = 1, 2, . . . ,

p0 = 1−
∞∑

k=1

pk .

(1) Find the generating functionf (s) of the off-spring distribution.

(2) Setm= 1 and findfn(s).

Problem 18 Show your own model based on the Galton-Watson branching process withm = 0.72 (this is
motivated by the total fertility rate of Japan in 2016, that is, 1.44). Then, by computer simulation or by
numerical computation, estimate the extinction probability of your model.
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10 Poisson Processes

Let T ⊂ R be an interval. A family of random variables{X(t) ; t ∈ T} is called acontinuous time
stochastic process. We often considerT = [0,1] andT = [0,∞). As X(t) is a random variable for each
t ∈ T, it has another variableω ∈ Ω. When we need to explicitly refer toω, we writeX(t, ω) or Xt(ω). For
fixedω ∈ Ω, the function

t 7→ X(t, ω)

is called asample pathof the stochastic process{X(t)}. It is the central idea of stochastic processes that
a random evolution in the real world is expressed by a single sample path selected randomly from all the
possible sample paths.

The most fundamental continuous time stochastic processes are the Poisson process and the Brownian
motion (Wiener process). In the recent study of mathematical physics and mathematical finance, a kind
of composition of these two processes, called the Lévy process (or additive process), has received much
attention.

10.1 Heuristic Introduction

Let us imagine that the number of objects changes as time goes on. The number at timet is modelled
by a random variableXt and we wish to construct a stochastic process{Xt}. In this caseXt takes values in
{0, 1, 2, . . . }. In general, such a stochastic process is called acounting process.

There are many different variations of randomness and so wide variations of counting processes. We
below consider the simple situation as follows: We focus an eventE which occurs repeatedly at random as
time goes on. For example,

(i) alert of receiving an e-mail;

(ii) telephone call received by a call center;

(iii) passengers making a queue at a bus stop;

(iv) customers visiting a shop;

(v) occurrence of defect of a machine;

(vi) traffic accident at a corner;

(vii) radiation from an atom.

Let fix a time origin ast = 0. We count the number of occurrence of the eventE during the time interval
[0, t] and denote it byXt. Let t1, t2, . . . be the time whenE occurs, see Fig. 10.1.

0 t
nt t t

Figure 10.1: Recording when the eventE occurs

There are two quantities which we measure.

(i) The number of occurrence ofE up to timet, say,Xt. Then{Xt ; t ≥ 0} becomes a counting process.

(ii) The waiting time of thenth occurrence after the (n− 1)th occurrence, say,Tn . HereT1 is defined to
be the waiting time of the first occurrence ofE after starting the observation. Then{Tn ; n = 1, 2, . . . }
is a sequence of random variables taking values in [0,∞).
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nt t t

T

T

Tn

t0

X t

Figure 10.2: The counting process and waiting times

We will introduce heuristically a stochastic process{Xt} from the viewpoint of (i). It is convenient to
start with discrete time approximation. Fixt > 0 and divide the time interval [0, t] into n small intervals. Let

∆t =
t
n

be the length of the small intervals and number from the time origin in order.

-
0 t

1 2 n
-
∆t
�

We assume the following conditions on the occurrence of the eventE:

(1) There exists a constantλ > 0 such that

P(E occurs just once in a small time interval of length∆t) = λ∆t + o(∆t),

P(E does not occur in a mall time interval of length∆t) = 1− λ∆t + o(∆t),

P(E occurs more than once in a small time interval of length∆t) = o(∆t).

(2) Occurrence ofE in disjoint time intervals is independent.

Some more accounts. Let us imagine the alert of receiving an e-mail. That

P(E occurs more than once in a small time interval of length∆t) = o(∆t)

means that two occurrences of the eventE is always separated. That

P(E occurs just once in a small time interval of length∆t) = λ∆t + o(∆t)

means that when∆t is small the probability of occurrence ofE in a time interval is proportional to the length
of the time interval. We understand from (2) that occurrence ofE is independent of the past occurrence.
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Let Zi denote the number of occurrence of the eventE in the ith time interval. ThenZ1,Z2, . . . ,Zn

become a sequence of independent random variables with an identical distribution such that

P(Zi = 0) = 1− λ∆t + o(∆t), P(Zi = 1) = λ∆t + o(∆t), P(Zi ≥ 2) = o(∆t).

The number of occurrence ofE during the time interval [0, t] is given by

n∑
i=1

Zi .

The length∆t is introduced for a technical reason and is not essential in the probability model so letting
∆t → 0 or equivalentlyn→ ∞, we defineXt by

Xt = lim
∆t→0

n∑
i=1

Zi . (10.1)

Although the limit does require mathematical justification, we obtain heuristically a continuous time stochas-
tic process{Xt}, which gives the number of occurrence of the eventE up to timet. This is called aPoisson
processwith parameterλ > 0. A Poisson process belongs to the calss of continuous time Markov chains.

Theorem 10.1.1A Poisson process{Xt ; t ≥ 0} satisfies the following properties:

(1) (counting process)Xt takes vales in{0, 1, 2, . . . };
(2) X0 = 0;

(3) (monotone increasing)Xs ≤ Xt for 0 ≤ s≤ t;

(4) (independent increment) if 0≤ t1 < t2 < · · · < tk, then

Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtk − Xtk−1 ,

are independent;

(5) (stationarity) for 0≤ s< t andh ≥ 0, the distributions ofXt+h − Xs+h andXt − Xs are identical;

(6) Xt obeys the Poisson distribution with parameterλt.

(7) there exists a constantλ > 0 such that

P(Xh = 1) = λh+ o(h), P(Xh ≥ 2) = o(h).

Proof (1) SinceXt obeys the Poisson distribution with parameterλt, it takes values in non-negative
integers almost surely.

(2) Obvious by definition.
(3) Let s= m∆t, t = n∆t, m< n. Then we have obviously

Xs = lim
∆t→0

m∑
i=1

Zi ≤ lim
∆t→0

n∑
i=1

Zi = Xt .

(4) Supposet1 = n1∆t, . . . , tk = nk∆t with n1 < · · · < nk. Then we have

Xt2 − Xt1 = lim
∆t→0

n2∑
i=1

Zi − lim
∆t→0

n1∑
i=1

Zi = lim
∆t→0

n2∑
i=n1+1

Zi .

In other words,Xt2 − Xt1 is the sum ofZi ’s corresponding to the small time intervals contained in [t2, t1).
Hence,Xt2 −Xt1 , . . . ,Xtk −Xtk−1 are the sums ofZi ’s and there is no commonZi appearing in the summands.
Since{Zi} are independent, so areXt2 − Xt1 , . . . ,Xtk − Xtk−1.
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(5) SinceXt+h−Xs+h andXt−Xs are defined from the sums ofZi ’s and the numbers of the terms coincide.
Therefore the distributions are the same.

(6) We note that

P

 n∑
i=1

Zi = k

 = (
n
k

)
(λ∆t)k(1− λ∆t)n−k + o(∆t).

In other words,Xt obeys apporoximatelyB(n, λ∆t). In view of ∆t = t/n we let n tend to the infinity and
obtain

P(Xt = k) = lim
∆t→0

(λt)k

k!
n(n− 1) . . . (n− k+ 1)

nk

(
1− λt

n

)n−k

=
(λt)k

k!
e−λt .

This proves the assertion.
(7) SinceXh obeys the Poisson distribution with parameterλh, we have

P(Xh = 0) = e−λh = 1− λh+ · · · = 1− λh+ o(h),

P(Xh = 1) = λhe−λh = λh(1− λh+ . . . ) = λh+ o(h).

Therefore we have
P(Xh ≥ 2) = 1− P(Xh = 0)− P(Xh = 1) = o(h).

Remark 10.1.2 The essence of the above argument in (7) is thePoisson’s law of small numberswhich
says that the binomial distributionB(n, p) is approximated by Poisson distribution with parameterλ = np
whenn is large andp is small. The following table shows the distributions ofB(100, 0.02) and the Poisson
distribution with parameterλ = 2.

k 0 1 2 3 4 5 6 · · ·
Binomial 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114· · ·
Poisson 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120· · ·

Example 10.1.3The average number of customers visiting a certain service gate is two per minute. Using
the Poisson model, calculate the following probabilities.

(1) The probability that no customer visits during the first two minutes after the gate opens.

(2) The probability that no customer visits during a time interval of two minutes.

(3) The probability that no customer visits during the first two minutes after the gate opens and that two
customers visit during the next one minute.

Let Xt be the number of visitors up to timet. By assumption{Xt} is a Poisson process with parameterλ = 2.
(1) We need to calculateP(X2 = 0). SinceX2 obeys the Poisson distribution with parameter 2λ = 4, we

have

P(X2 = 0) =
40

0!
e−4 ≈ 0.018.

(2) Suppose that the time interval starts att0. Then the probability under discussion is given byP(Xt0+2−
Xt0 = 0). By stationarity we have

P(Xt0+2 − Xt0 = 0) = P(X2 − X0 = 0) = P(X2 = 0),

which coincides with (1).
(3) We need calculate the probabilityP(X2 = 0,X3 − X2 = 2). SinceX2 andX3 − X2 are independent,

P(X2 = 0,X3 − X2 = 2) = P(X2 = 0)P(X3 − X2 = 2).
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By stationarity we have

= P(X2 = 0)P(X1 = 2) =
40

0!
e−4 × 22

2!
e−2 ≈ 0.00496.

Problem 19 Let {Xt} be a Poisson process. Show that

P(Xs = k|Xt = n) =

(
n
k

) ( s
t

)k (
1− s

t

)n−k
, k = 0, 1, . . . ,n,

for 0 < s< t. Then give an intuitive explanation of the above formula.

Problem 20 How often do you receive a message through internet? Check your iPhone (or other similar
devises) and collect the data focussing on how many messages are received during one hour. Probably you
must check the records during at least 1 week (168 hours).

(1) Make up a table that shows the relative frequency of the number of received messages per one hour.

(2) Calculate the mean value and variance of the number of messages received during one hour. (If they
are close each other, your data should well fit to the Poisson distribution.)

(3) Suppose that your data obeys Poisson distribution. Using the Poisson model, find the probability that
0 messages arrive during 1 hour and 2 messages arrive during the next 2 hours.

10.2 Waiting Time

Let {Xt ; t ≥ 0} be a Poisson process with parameterλ. By definitionX0 = 0 andXt increases by one as
time passes. Recall that the Poisson process counts the number of events occurring up to timet. First we set

T1 = inf {t ≥ 0 ; Xt ≥ 1}. (10.2)

This is the waiting time for the first occurrence of the eventE. Let T2 be the waiting time for the second
occurrence of the eventE after the first occurrence, i.e.,

T2 = inf {t ≥ 0 ; Xt ≥ 2} − T1 .

In a similar fashion, we set

Tn = inf {t ≥ 0 ; Xt ≥ n} − Tn−1, n = 2,3, . . . . (10.3)

Theorem 10.2.1Let {Xt} be a Poisson process with parameterλ. Define the waiting timeTn by (10.2) and
(10.3). Then,{Tn ; n = 1, 2, . . . } becomes a sequence of iid random variables, of which distribution is the
exponential distribution with parameterλ. In particular, the waiting time for occurence of an event in the
Poisson process obeys the exponential distribution with parameterλ.

Proof Set t = n∆t and consider the approximation by refinement of the time interval. Recall that to
each small time interval of length∆t a random variableZi is associated. Then we know that

P(T1 > t) = lim
∆t→0

P(Z1 = · · · = Zn = 0) = lim
∆t→0

(1− λ∆t)n = lim
∆t→0

(
1− λt

n

)n

= e−λt.

Therefore,

P(T1 ≤ t) = 1− e−λt =
∫ t

0
λe−λsds,

which shows thatT1 obeys the exponential distribution with parameterλ. The distributions ofT2,T3, . . . are
similar.
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Remark 10.2.2 Let {Xt} be a Poisson process with parameterλ. We know thatE(X1) = λ, which means
the average number of occurrence of the event during the unit time interval. Hence, it is expected that the
average waiting time between two occurrences is 1/λ. Theorem 10.2.1 says that the waiting time obeys the
exponential distribution with parameterλ so its mean value is 1/λ. Thus, our rough consideration gives the
correct answer.

Problem 21 Let {Xt} be a Poisson process with parameterλ. The waiting time forn occurrence of the events
is defined bySn = T1 + T2 + · · · + Tn, whereTn is given in Theorem 10.2.1. CalculateP(S2 ≤ t) and find
the probability density function ofS2. [In general,Sn obeys a gamma distribution.]

10.3 The Rigorous Definition of Poisson Processes

The “definition” of a Poisson process in (10.1) is intuitive and instructive for modeling random phe-
nomena. However, strictly speaking, the argument is not sufficient to define a stochastic process{Xt}. For
example, the probability space (Ω,F ,P) on which{Xt} is defined is not at all clear.

We need to start with the waiting time{Tn}. First we prepare a sequence of iid random variables{Tn ; n =
1, 2, . . . }, of which the distribution is the exponential distribution with parameterλ > 0. Here the probability
space (Ω,F ,P) is clearly defined. Next we set

S0 = 0, Sn = T1 + · · · + Tn , n = 1,2, . . . ,

and fort ≥ 0,
Xt = max{n ≥ 0 ; Sn ≤ t}.

It is obvious that for eacht ≥ 0, Xt is a random variable defined on the probability space (Ω,F ,P). In
other words,{Xt ; t ≥ 0} becomes a continuous time stochastic process. This is calledPoisson processwith
parameterλ by definition.

Starting with the above definition one can prove the properties in mentioned Theorem 10.1.1.

10.4 Generating Function

Let {Xt} be a Poisson process with parameterλ > 0. For simplicity, we set

pn(t) = P(Xt = n), t ≥ 0, n = 0, 1, 2, . . . .

By observing the transition we have

pn(t + ∆t) = λ∆t pn−1(t) + (1− λ∆t)pn(t), n ≥ 1,

p0(t + ∆t) = (1− λ∆t)p0(t).

Letting∆t → 0, we have

p′n(t) = λpn−1(t) − λpn(t), n ≥ 1,

p′0(t) = −λp0(t).

The last equation is easily solved:
p0(t) = e−λt,

where the initial conditionp0(0) = P(X0 = 0) = 0 is taken into account.
Define the generating function by

f (x, t) =
∞∑

n=0

pn(t)xn.
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Then we have

∂ f
∂t
=

∞∑
n=0

p′n(t)xn = −λp0(t) +
∞∑

n=1

{
λpn−1(t)xn − λpn(t)xn}

= −λ
∞∑

n=0

pn(t)xn + λx
∞∑

n=0

pn(t)xn

= (−λ + λx) f (x, t).

Moreover,
f (0, t) = p0(t) = e−λt.

Thus,

f (x, t) = e(−λ+λx)t = e−λt
∞∑

n=0

(λt)n

n!
xn,

from which we have

pn(t) = e−λt
(λt)n

n!
.

45



11 Queueing Theory

11.1 Modeling Queues

In our daily life, we observe often waiting lines or queues of customers for services. Agner Krarup
Erlang (1878–1929, Danish engineer at the Copenhagen Telephone Exchange) published in 1909 the paper
entitled: The Theory of Probabilities and Telephone Conversations, which opened the door to the research
field of queueing theory. Such a queue is modeled in terms of a system consisting of servers and a waiting
room. Customers arriving at the system are served at once if there is an idle server. Otherwise, the customer
waits for a vacant server in a waiting room. After being served, the customer leaves the system.

system

servers waiting room

arrivaldeparture

customers

In most of the qeueing models, a customer arrives at random and the service time is also random. So we
are interested in relevant statistics such as

(1) sojourn time (time of a customer staying in the system)

(2) waiting time (= sojourn time - service time)

(3) the number of customers in the system

Apparently, many different conditions may be introduced for the queueing system. In 1953, David G.
Kendall introduced the so-calledKendall’s notation

A/B/c/K/m/Z

for describing the characteristics of a queuing model, where

A: arrival process,
B: service time distribution,
c: number of servers,
K: number of places in the system (or in the waiting room),
m: calling population,
Z: queue’s discipline or priority order, e.g., FIFO (First In First Out)

The first model analyzed by Erlang in 1909 was theM/D/1 queue in Kendall’s notation, whereM means
that arrivals occur according to a Poisson process, andD stands for deterministic (i.e., service time is not
random but constant).

Most of queueing models are classified into four categories by the behavior of customers as follows:
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(I) Delay models: customers wait in line until they can be served.

Example:M/M/c queue, where

(i) customers arrive according to a Poisson process with rateλ;

(ii) there arec servers and there is an infinite waiting space;

(iii) each customer requires an exponential service time with mean 1/µ;

(iv) customers who upon arrival find all servers busy wait in line to be served.

(II) Loss models: customers leave the system when they find all servers busy upon arrival.

Example: Erlang’s loss modelM/G/c/c, where

(i) customers arrive according to a Poisson process with rateλ;

(ii) there arec servers and the capacity of the system is limited toc customers, i.e., there is no
waiting space;

(iii) each customer requires a generally distributed service time;

(iv) customers who upon arrival find all servers busy are rejected forever.

(III) Retrial models: customers who do not find an idle server upon arrival leave the system only tem-
porarily, and try to reenter some random time later.

Example: the Palm/Erlang-A queue, where

(i) customers arrive according to a Poisson process with rateλ;

(ii) there arec servers and there is an infinite waiting space;

(iii) each customer requires an exponential service time with mean 1/µ;

(iv) customers who upon arrival find all servers busy wait in line to be served;

(v) customers wait in line only an exponentially distributed time with mean 1/θ (patience time).

(IV) Abandonment models: customers waiting in line will leave the system before being served after their
patience time has expired.
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11.2 M/M/1 Queue

This is the most fundamental model, which satisfies the following conditions:

(i) arrivals occur according to a Poisson process with parameterλ;

(ii) service times obey an exponential distribution with parameterµ;

(iii) arrivals of customers and service times are independent;

(iii) the system contains a single server;

(iv) the size of waiting room is infinite;

(v) (FIFO = First In First Out) customers are served from the front of the queue, i.e., according to a
first-come, first-served discipline.
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Thus there are two parameters characterizing anM/M/1 queue, that is, the parameterλ > 0 for the
Poisson arrival and the oneµ > 0 for the exponential service. In other words, a customer arrives at the
system with average time interval 1/λ and the average service time is 1/µ. In the queuing theoryλ is called
the mean arrival rateandµ the mean service rate. Let X(t) be the number of customers in the system at
time t. It is the proved that{X(t) ; t ≥ 0} becomes a continuous time Markov chain on{0, 1, 2, 3, ...}. In fact,
the letter “M” stands for “Markov” or “memoryless”.

Our main objective is
pn(t) = P(X(t) = n|X(0) = 0),

i.e., the probabbility of findingn customers in the system at timet > 0 subject to the initial condition
X(0) = 0. Let us consider the change of the system during the small time interval [t, t + ∆t]. It is assumed
that during the small time interval∆t only one event happens, namely, a new customer arrives, a customer
under service leaves the system, or nothing changes. The probabilities of these events are given byλ∆t, µ∆t,
1− λ∆t − µ∆t.

t t + ∆t

n n

n+1

n−1

λ∆t

µ∆t

t t + ∆t

n

λ∆t

µ∆t

n

n+1

n−1

Therefore,P(X(t) = n|X(0) = 0) fulfills the following equation:

P(X(t + ∆t) = n|X(0) = 0) = P(X(t + ∆t) = n|X(t) = n− 1)P(X(t) = n− 1|X(0) = 0)

+ P(X(t + ∆t) = n|X(t) = n)P(X(t) = n|X(0) = 0)

+ P(X(t + ∆t) = n|X(t) = n+ 1)P(X(t) = n+ 1|X(0) = 0)

= λ∆tP(X(t) = n− 1|X(0) = 0)

+ (1− λ∆t − µ∆t)P(X(t) = n|X(0) = 0)

+ µ∆tP(X(t) = n+ 1|X(0) = 0),

P(X(t + ∆t) = 0|X(0) = 0) = (1− λ∆t)P(X(t) = 0|X(0) = 0)+ µ∆tP(X(t) = 1|X(0) = 0).

Hence forpn(t) = P(X(t) = n|X(0) = 0) we have

p′n(t) = λpn−1(t) − (λ + µ)pn(t) + µpn+1(t), n = 1, 2, . . . ,
p′0(t) = −λp0(t) + µp1(t).

(11.1)

The initial condition is as follows:

p0(0) = 1, pn(0) = 0 for n ≥ 1. (11.2)

Solving the linear system (??) with the initial condition (??) is not difficult with the help of linear algebra
and spectral theory. However, the explicit solution is not so simple and is omitted. We only mention that
most important characteristics are obtained from the explicitpn(t).

Here we focus on the equilibrium solution (limit transition probability), i.e.,

pn = lim
t→∞

pn(t)
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whenever the limit exists. Since in the equilibrium the derivative of the left hand side of (??) is 0, we have

λpn−1 − (λ + µ)pn + µpn+1 = 0 n = 1,2, . . . ,
−λp0 + µp1 = 0.

(11.3)

A general solution to (??) is easily derived:

pn =

C1 +C2

(
λ

µ

)n

, λ , µ,

C1 +C2n, λ = µ.

Sincepn gives a probability distribution, we havepn ≥ 0 and
∞∑

n=0

pn = 1. This occurs only whenλ < µ and

we have

pn =

(
1− λ
µ

) (
λ

µ

)n

, n = 0,1,2, . . . .

This is the geometric distribution with parameterλ/µ.
In queuing theory, the ratio of the mean arrival rateλ and the mean service rateµ is called theutilization:

ρ =
λ

µ
.

Utilization stands for how busy the system is. It was shown above that the number of customers in the
system after long time obeys the geometric distribution with parameterρ. If ρ < 1, the system functions
well. Otherwise, the queue will continue to grow as time goes on. After long time, i.e., in the equilibrium
the number of customers in the system obeys the geometric distribution:

(1− ρ)ρn, n = 0,1,2, . . . .

In particular, the probability that the server is free is 1− ρ and the probability that the server is busy and the
customer need to wait isρ. This is the origin of the termutilization. Note also that the mean number of the
customers in the system is given by

∞∑
n=0

npn =
ρ

1− ρ =
λ

µ − λ .

Example 11.2.1There is an ATM, where each customer arrives with average time interval 5 minutes and
spends 3 minutes in average for the service. Using anM/M/1 queue, we know some statistical characteris-
tics. We set

λ =
1
5
, µ =

1
3
, ρ =

λ

µ
=

3
5
.

Then the probability that the ATM is free isp0 = 1− ρ = 2
5

. The probability that the ATM is busy but there

is no waiting customer is

p1 =
2
5
× 3

5
=

6
25
.

Hence the probability that the ATM is busy and there is some waiting customers is

1− p0 − p1 = 1− 2
5
− 6

25
=

9
25
= 0.36.

So, roughly speaking, a customer needs to make a queue once per three visits.
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Problem 22 (M/M/1/1 queue) There is a single server and no waiting space. Customers arrive according
to the Poisson process with parameterλ, and their service time obeys the exponential distribution with
parameterµ. Let Q(t) be the number of customers in the system at timet. In fact,

Q(t) =

1, server is busy,

0, server is idle,

(1) Find

p0(t) = P(Q(t) = 0|Q(0) = 0),

p1(t) = P(Q(t) = 1|Q(0) = 0)

by solving a linear system satisfied by thosep0(t) andp1(t).

(2) Using the results in (1), calculate

p̄0 = lim
t→∞

p0(t), p̄1 = lim
t→∞

p1(t),

(3) Find the mean number of customers in the system in the long time limit:

lim
t→∞

E[Q(t)|Q(0) = 0].

11.3 Birth-and-Death Processes

The Markov processX(t) appearing in theM/M/1 queuing model is studied more generally within the
framework ofbirth-and-death process.
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