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Lecture 1

Probability Distributions



1. Statistical analysis

/ Real World/System
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2. Random variables

A random variable X varies

over a domain in the real line

with certain tendency (probability)
of occurrence of its values.

X

e discrete random variable

aﬂ

e continuous random variable

J )




3. Probability distributions I: Discrete case

* range of values {a4, a,, ..., a,, ... }

* distribution by a sum of point masses p

P(X:an):pn: pn= 0, zpnzl | |
n

* mean value a,
m = my = E[X] = ) anpy

e variance "
0% = 0} = V[X] = E[(X — m)?] Z(an - m)? py



3. Probability distributions Il: Continuous case

* range of values I € R = (—o0, +0)

e distribution by a density function

fx(x) =0, J fx()dx =1

* mean value ¢ ’ .
+00 b
m=my = E[X] = f xfx(x)dx Pla<X <b) = j fx(x)dx
— a
e variance

+00 d
ot = af =VIX] =El(X -] = | -mPf@dx | @)= 7 PA <)

= E[X?] —m? = J+oox2fx(x)dx — m?



3. Probability distributions: A list

Discrete distributions

variance

binomial distribution B(n,p) np np(1l —p)
Bernoulli distribution B(1,p) p p(1—p)
geometric distribution with parameter p 1/p 1/p*
Poisson distribution with parameter A Po(A) A A

Continuous distributions

uniform distribution on [a,b] (a+b)/2 (b —a)?/12
exponential distribution with parameter A 1/A 1/2?
normal (or Gaussian) distribution N (m, g%) m o2
chi-square distribution y2 n 2n
t-distribution t, 0 n/(n— 2)
F-distribution F(m,n) = E* n/(n—2) 3,’;2(;m_+2§2;n22 "




4. Normal distribution N(m, 04)

30

30

1 (x —m)?
fx) = V2mo? =P {_ 20° }
* mean value m = j+ooxf(x)dx

+ 00

* variance g% = f (x —m)?f(x)dx

11



5. Central Limit Theorem (CLT)

Z1,25,, 2y, :independent identically distributed (iid) random variables
mean value = m, variance = g2

Consider the sum:

- mean value

r_ Sn=Zl+Z2+“°+Zn=ZZk n
fe=1 \ E[S,] = Z E[Z,] = mn

Zl Zz Z3 Z4 coe ZTL k=1

CLT S,—mn ~ N(0,nc?) holdsasn — o

* Accumulation of small fluctuation gives rise to a normal distribution.

12



6. An example of data

Two sets of numerical data are shown in the following table.
- dried weight of plants grown under two conditions

Is there any significant difference? Details Later

4.81

4.17

4.41

3.59

5.87

3.83

6.03

4.98

4.90

5.75

5.36

3.48

4.69

4.44

4.89

4.71

5.48

4.32

5.15

6.34

4.17

3.05

5.18

4.01

6.11

4.10

5.17

3.57

5.33

5.59

4.66

5.58

3.66

4.50

3.90

4.61

5.62

4.53

6.05

5.14

[Dobson] Exercise 2.1
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X, ¢ k th output

X : k th data

just one of the
possible values of X,

A biological
system

Outcome

By empirical knowledge X
is often assumed to obey
a normal distribution

[see also CLT].

X ~N(m,o0%)

14

°* noise
* fluctuation




/. Sample distributions |: Sample mean

X1,X5,X3,+, Xy : random samples
(iid random variable)

sample mean .
7= S x
=~ ,
k=1

Theorem If X;,~N(m, c?), then we have

PROOF: (1) If X and Y are independent,

and 5
X ~ N(mX’ O-X)

YNN(mY)O-I;)
then
X +Y ~N(my + my,0f + 0¢)

(2) If X ~ N(my, 0%) and a is a real constant,
then

aX ~ N(amy, a®c?)

Check the details!

15



/. Sample distributions Il: Unbiased variance

X1, X2, X3,++, Xy : random samples Theorem If X;,~N(m, c?), then we have

unbiased variance N -1
N 2 Uz ~ XI%/—l
1 o
U? = —— Z X — X)*
TG
=t Here & _4 is the chi-square distribution of
Theorem If X;, X, X3, -+, Xy are iid N — 1 degrees of freedom.
random variable with mean m and
variance o2, we have * Sum of squares appears in many contexts.
— N
E[X] =m, E[U?] = ¢? _
> (X = X
Check the details! k=1

16



7. Sample distributions Ill: y2-distribution

1 n_, _x
fa(x) = 2) X2 e z (x =0)

2n/2r (5

mean value m=n
variance 0% =2n
This is defined to be the

distribution of

n
2%
k=1

where Z;, are iid and ~ N(0,1)

0.5 |

0.4

0.3

0.2

0.1




/. Sample distributions IV: t-distribution

X1, X, X3,++, Xy : random samples Theorem If X, ~N(m, c?), then we have
sample mean 7 —m
N ~ ty_
1 u/ NN !
X — N 2 Xk
=1 where ty_4 is the t-distribution of N — 1 degrees
unbiased variance of freedom.
N Cf:
uz = (X — X)? 7
CN-1 4T X N< “2> <E> L™ NG
k= ~ m)_ ~ )
' N o /NN

Check the details! 18



/. Sample distributions IV: t,,-distribution

t,,-distribution of n degrees of freedom 04 -
L3 N(0,1)
r (n + 1) _n+1 03
2 . A
fn(t) — n < + _>
n n 0.2 -
Jn T (2)

0.1 -

* Fat tail - compare with N(0,1) 0 ”
4 -2 0 2

e t, > N(0,1) asn —» o
 t, = N(0,1) forn = 30 in practice



8. Random vectors

population . Samp“n.g "
 measuring d quantities for each sample
o o ® o y ';51'
. o x = :z —[x1 X - xg|T
» _x.d_

one sample < one d dimensional vector

» This sampling is modelled by d dimensional random vector

x=|%2|=x, X, - X7

20



9. An example of 2-dim data

Mid-Heights of Parents (x) F. Galton:

in hereditary stature,
Anthropological Miscellanea
(1886)

below 645 655 665 675 685 69.5 705 715 725 above| sum | Regressiontowards mediocrity

ANTHROPOLOGICAL MISCELLANEA.

TLEGRESRION forwerds MuDToCRITY &0 HEREDITARY SrTaTURE.
By Fraxons Gaures, FR.8, &o

[Wrrs Prares IX awp X))

Tms memoir contains the data upon which the remarks on the Law
of Regression were founded, that I made in my Presidential Address
B0 Section IL, uf Aberdeen. That address, which will appear in
duc course in the Journal of the British Association, has already
besn published in * Nature,” SBceptember 84th, I reproduce here
the portion of it which bears mpon regression, togather with some
amplifieation where hrevity bad rendered it obseuze, sud Thave added
copies of $he disgrans suspended at the meeting, witheut which the
letterpress s necessavily difficult to follow. My object is to place
beyond donbst the existence of a simple and far-resching law that
governs the hereditary transimission of, I believe, every one of fihoxe
simple qualities which ail possess, though in usequal degrees. I
once before ventured to draw altention to this luw on [ar wore
stendor avidence than I now possess.

1% is s0me years since ] made an extensive series of exporimoents
on the produre of soeds of difforent size but of the same species.
They yiclded results that seemed very noteworthy, snd 1 nsed them
as the basis of a lectnre before the Royal Ingitution ou February
Yth, 1877, 1% appesred from these experiments that the offspring
did not tond to ble their parent seeds in size, but to be always
more mediogre thun they-—to be smaller thun the pavents, if 1he
purents were lurge; Lo be larger than the parents, 3f the parents
wore very small. The point of convergence was considernbly helow
tho average sive of tho seeds contained in the large bagtul I bought
at a nursery garden, out of which I selected those that wers sown,
and 1 had some rozson to believe that the size of the sewd towards
which the praduce converged was similar to that of an avernge
seed taken ontof hods of self-planted specimens.

The esperiments showed further that the mean filial regression
towards mediverity was dirently proportional 1o the parentsl devia-
tion from it.  This curions resnlt was based oo se many planlings,
conducted for me by friends living in various parts ol the country,
from Nairn in the noveh to Cornwall in the sonth, during one, twa,
or even threc gemerations of the plants, vhat I could entertaln no
doubt of the trath of my conelusions. The exuel ratio of repression
remuined & littlo donbrful, owing to variable influcnees ; therefore
I did not attempt to deflne it But as it seoms & pity thal ne

1

Heights of Adult Children (y)

w |
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10. Joint probability distributions

For a d dimensional random vector X =

the joint distribution is the most fundamental.

(1) For discrete random variables: P(X; = a{,X, = ay,+, Xz = ay)

(2) For continuous random variables we use the joint density function:
a; raz aq

P(X; <ay, X, <ay, -, Xqg <ag) = f f j fx1, 22,0, %) dxqdx, - dxg
—o0o0 Y—o00 —00

22



10. Joint probability distributions: An example

X1 X = maximal slot
Measurement X = [ ], .
Y1I"'Y = minimal slot

Rolling two dices

’69

2-dimensional random vector

joint distribution

i1 | 2 3 4 5 6
1/36| 0 0 0 0 0
2/36 | 1/36 | © 0 0 0
2/36 | 2/36 | 1/36 | © 0 0
2/36 | 2/36 | 2/36 | 1/36 | 0 0
2/36 | 2/36 | 2/36 | 2/36 | 1/36 | ©
2/36 | 2/36 | 2/36 | 2/36 | 2/36 | 1/36

23



N(m,X)

Details Later

5
&
A8
4
4R
AR50
AR
LOREEXO0M
RN,
433@..33333*9

« 2-dimensional case N(m, )

a?)

10. Joint probability distributions

* 1-dimensional case N(m,

f(x)

24



Joint distribution of 2-dimensional discrete random vector X = [);]

11. Marginal distributions

P(X =a,Y =b;) =p;

X Y by bj by
aq P11 P1j P1in
a; | Pia Pij Pin
am Pm1 pmj Pmn

25



11. Marginal distributions

Joint distribution of 2-dimensional discrete random vector X = [);]

P(XZ ai,Y=bj) :pij

o | by b; b, sum
Ay | P11 P1j P1in
a; | Pia Pij Pin

Am Pm1 pmj Pmn

n
P(X =aqa;) = ZP(X =aq,Y =b;)
j=1

Marginal distribution

26



11.

Marginal distributions

Joint distribution of 2-dimensional discrete random vector X = [);]

P(X=al-,Y=bj) =pij

by

n
P(X=a;) = EP(X = a;,Y = by)
j=1
Marginal distribution

m
P(Y =b;) = ZP(X =qa,Y =b;)
=1

27



12. Conditional distributions

Discrete case

Marginal distribution of Y
P(Y=b;)= ) P(X=a;,Y = b))
2

Conditional distribution

P(X = a;,Y = b;)

P(X=a;|Y=b) = (7 =5)

Conditional expectation

E[X|Y = b;| = ZaiP(X =q; |Y = b))

l

sum

P(Y = b))

Marginal distribution of Y

28




Exercise 1 (5min)

Suppose that the joint distribution of
(X,Y) is given by the following table:

(1) Find the marginal distributions.

1/116 1/216 Z 2 (2) Calculate E[X] and V[X].
1/16 | 2/16 | 0 | 1/16 (3) Find P(X = 2|Y = 1).
2/16 | 2/16 | 0 | 1/16 (4) Find P(Y = 2|X = 3).
1/16 | 1/16 | 2/16 | 1/16 (5) Find E[Y|X = 3].




14. Covariance and correlation coefficient

Y x—mX
Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y] o
y ©
pX,Y) = =— CHEN S
JVIX1WJVIY] Ox0y
Normalization of a random variable:
o _X-EX]_X-m "
- V[X] o CORMIULA: Check the details!
E[f]=0, V[X]=1 p(X,Y) = E[XY] = Cov(X,¥) = p(X, V)

30



Exercise 2 (10min)

Suppose that the joint distribution of
(X,Y) is given by the following table:

N1 2 3 4
1 |1/16 | 1/16 | © 0
2 |1/16|2/16 | 0 | 1/16
3 |2/16|2/16| 0 | 1/16
4 |1/16| 1/16 | 2/16 | 1/16

(1) Calculate Cov(X,Y).
(2) Calculate p(X,Y).



15. Independent random variables

A set of random variables X4, X5, ---, X,, is called independent if

n
P(Xl Sal,Xz Saz,“',XnSan) :HP(XR Sak) (*)
k=1
If X1, X5, -+, X,, are discrete random variables, (*) is equivalent to
n
P(Xl — aliXZ — aZ)"';X‘n — an) — HP(XR — ak)
k=1
If X1, X5, -+, X,, are continuous random variables, (*) is equivalent to

n
le,Xz,---,Xn (X1, X2, Xp) = 1_[ ka (xx)
k=1

32



FORMULA: For any random variables X and Y, we have
(1) E[aX + bY] = aE[X] + DE[Y]

(2) V[aX + bY] = a?V[X] + b?V[Y] + 2abCov(X,Y) Check the details!

PROOF (1) We deal with discrete random variables. For continuous case we need only to replace the joint
probability by joint density function.

E[aX + bY] =ZZP(aX+bY=Z) =Zz Z P(X =xY =y) =Z(ax+by)P(X=x,Y=y)
X,y

Z Z ax+by=z

= aZxP(X =x,Y=y)+ beP(X =x,Y = y) =aE[X] + bE|Y]
X,y X,y

(2) By definition,

V[aX + bY] = E[(aX + bY)?] — E[aX + bY]?
= a? E[X?] + 2abE[XY] + b?E[Y?] — a?E[X]? — 2abE[X]E[Y] — b2E[Y]?
= a?V[X] + b?V[Y] + 2abCov(X,Y)

33



16. Uncorrelated random variables

Theorem If X and Y are independent, they are uncorrelated, i.e., Cov(X,Y) = 0.
Remark The converse assertion is not true in general.

Lemma If X and Y are independent, then E[XY] = E[X]E[Y].

PROOF We consider the discrete case. The continuous case is similar.

E[XY] =ZZP(XY=Z) =§:z 7 PX=xY=y) =2xyP(X=x,Y=y)

z zZ  Xy=z X,y

= 2 xP(X = x)ZyP(Y = y) =E[X]E[Y]
y

X

Check the details!

PROOF of Theorem
Only need to apply Lemma to the definition Cov(X,Y) = E[XY]| — E|X]E[Y].

34



Submission of reports for evaluation

v During my lectures you will be given 10 Problems.

v' Choose 3 problems at your own taste and write up a short report.

v' Submission deadline: November 5 (Mon), 2018.
v' Way of submission: (a) directly hand to Prof Obata
or (b) send in PDF by e-mail to obata@tohoku.ac.jp
or (c) bring to the secretary on 6F GSIS and ask her politely.
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Problem 1

Suppose that the joint distribution of
(X,Y) is given by the following table:

N1 2 3 4 5 6
1 |1/36| 0 0 0 0 0
2 |2/36|1/36| 0 0 0 0
3 |2/36|2/36|1/36| O 0 0
4 |2/36]2/36|2/36|1/36| 0 0
5 |2/36|2/36|2/36 | 2/36 | 1/36 | O
6 |2/36|2/36 | 2/36 | 2/36 | 2/36 | 1/36

(1) Find the marginal distributions.

(2) Calculate E[X] and V[X].

(3) Calculate Cov(X,Y) and p(X,Y).

(4) Find P(X = 4]Y = 2).

(5) Find E[X|Y = 2].

(6) [challenge] Since E[X|Y=k] (k =
1,2,:--,6) may be considered as a
function of Y, it is a random variable,
denoted by E[X|Y] and called the

conditional expectation. Examine that
E[E[X|Y]]=E[X].



Problem 2

Four cards are drawn from a deck (of 52 cards). Let X be the number of aces
and Y the number of kings that show.

(1) Show the joint distribution of (X, Y), and marginal distributions of X and Y.
(2) Find the mean values E[X] and E[Y].

(3) Find the variances V[X] and V[Y].

(4) Find the covariance Cov(X,Y) and correlation coefficient p(X,Y).

(5) Find E[X|Y = 1]

» Answer by the ratios of integers, do not use decimal expressions.



Problem 3

Let X, Y be random variables taking just two values, say,

PX=a)=p, PAX=b)=1-p
PY=c)=q  P¥=d)=1—gq
0<p<l, 0<qg<l1

Show that X and Y are independent if and only if Cov(X,Y) = 0.

Note: ‘only if’ part is straightforward (see also the general theorem in Section 16).
The point here is to show ‘if’ part.



Problem 4

(1) Show the histogram of each group.
(2) Calculate the mean value and unbiased variance of each group.
(3) Judge by hypothesis testing whether these groups are random samples

>

from the normal population N(4.82,0.04)=N(4.82,0.2%)?
If you are not familiar with the hypothesis testing, study it on this occasion!

4.81

4.17

4.41

3.59

5.87

3.83

6.03

4.98

4.90

5.75

5.36

3.48

4.69

4.44

4.89

4.71

5.48

4.32

5.15

6.34

4.17

3.05

5.18

4.01

6.11

4.10

5.17

3.57

5.33

5.59

4.66

5.58

3.66

4.50

3.90

4.61

5.62

4.53

6.05

5.14
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