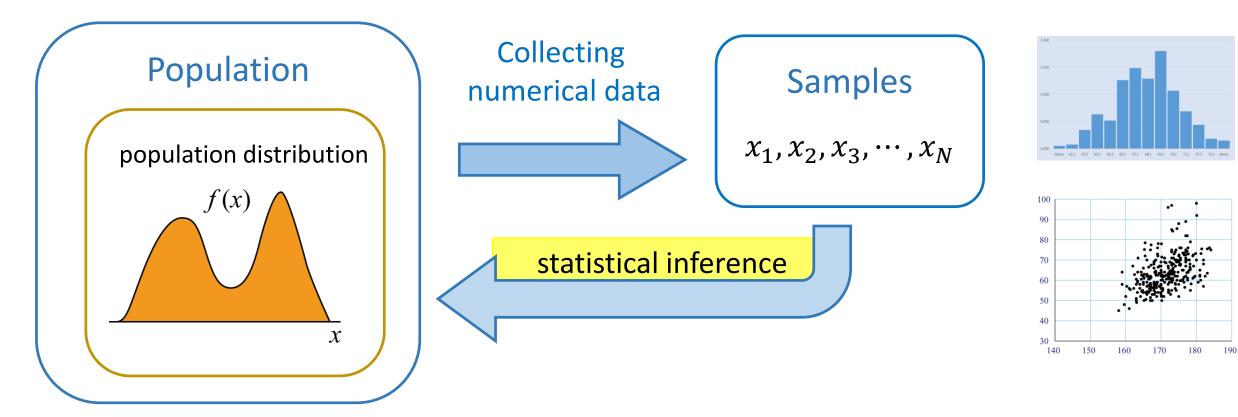
Lecture 2

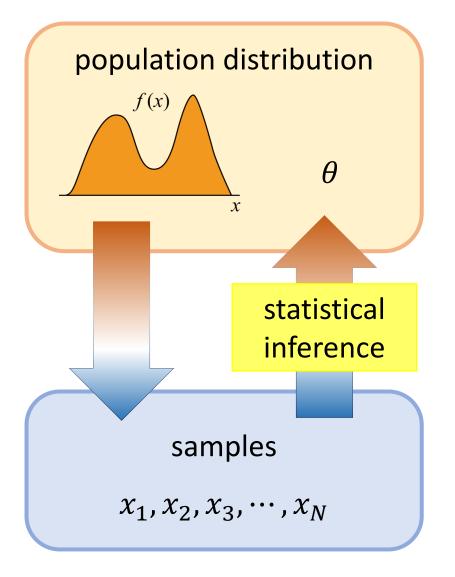
Statistical Inference

1. Basic problem of statistical inference



- ✓ The population distribution is our ultimate target.
- ✓ However, it is not reasonable to discuss the full information about it.
- \checkmark We will estimate some parameters of the population distribution,
 - e.g., mean value, variance, maximal value, correlation coefficient,

2. Point estimates of population parameters



 θ : a parameter of the population distribution

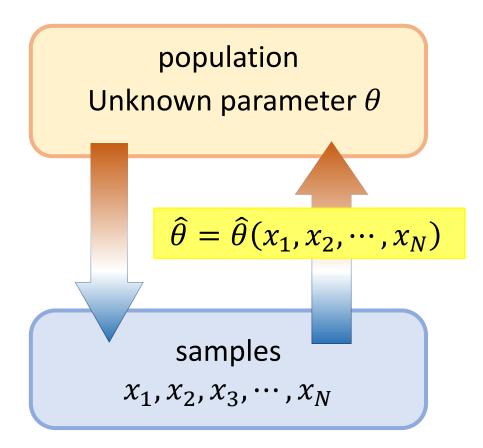
We wish to find a function

$$\hat{\theta} = f(x_1, x_2, x_3, \cdots, x_N)$$

such that $\hat{\theta}$ is a *reasonable estimate* of the unknown parameter θ

We need to measure the difference between θ and $\hat{\theta}$

3. Unbiased estimates



As usual, we adopt random sampling with replacement

- ✓ Sample data $x_1, x_2, x_3, \dots, x_N$ are definite values once a sampling is performed.
- ✓ However, they vary with each sampling though the population remains the same.
- ✓ Moreover, because each sample x_i is a result of random sampling, it is modeled by a random variable X_i obeying the population distribution.
- ✓ Thus, the sample data $x_1, x_2, x_3, \dots, x_N$ are considered as realized values of the *independent random variables* $X_1, X_2, X_3, \dots, X_N$

✓ Therefore, $\hat{\theta}$ should be considered as a random variable $\hat{\theta} = \hat{\theta}(X_1, X_2, \cdots, X_N)$.

Definition $\hat{\theta} = \hat{\theta}(X_1, X_2, \cdots, X_N)$ is called an unbiased estimator of θ if $\mathbf{E}[\hat{\theta}] = \theta$.

4. Sample mean and unbiased variance

For random samples $X_1, X_2, X_3, \dots, X_N$ the *sample mean* is defined by

$$\bar{X} = \frac{1}{N} \sum_{k=1}^{N} X_k$$

The *unbiased variance* is defined by

$$U^{2} = \frac{1}{N-1} \sum_{k=1}^{N} (X_{k} - \bar{X})^{2}$$

Theorem The sample mean \overline{X} is an unbiased estimator of the mean value of the population:

$$\mathbf{E}[\bar{X}] = m$$

where *m* is the mean value of the population.

Theorem The unbiased variance U^2 is an unbiased estimator of the variance of the population:

 $\mathbf{E}[U^2] = \sigma^2$ where σ^2 is the variance of the population.

5. Better estimates

Let $X_1, X_2, X_3, \dots, X_N$ be random samples.

1. We have seen that the sample mean

$$\bar{X} = \frac{1}{N} \sum_{k=1}^{N} X_k$$

is an unbiased estimator: $\mathbf{E}[\overline{X}] = m$.

2. The weighted mean

$$\widehat{m} = \sum_{k=1}^{n} a_k X_k$$
, $\sum_{k=1}^{N} a_k = 1$

is also an unbiased estimator.

In fact,

$$\mathbf{E}[\widehat{m}] = \sum_{k=1}^{N} a_k \mathbf{E}[X_k] = m$$

3. Which is better?

Definition Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ , i.e., $\mathbf{E}[\hat{\theta}_1] = \mathbf{E}[\hat{\theta}_2] = \theta$. We say that $\hat{\theta}_1$ is better than $\hat{\theta}_2$ if $\mathbf{E}[(\hat{\theta}_1 - \theta)^2] \le \mathbf{E}[(\hat{\theta}_2 - \theta)^2].$

In general, $\mathbf{E}\left[\left(\hat{\theta} - \theta\right)^2\right] = \mathbf{V}\left[\hat{\theta}\right]$ is called the *mean squared error*.

6. Sample mean is better than weighted mean

For the weighted mean $\widehat{m} = \sum_{k=1}^{n} a_k X_k$ we compute the mean squared error: $\mathbf{E}[(\widehat{m} - m)^2]$.

First note that

$$\widehat{m}^2 = \sum_{j=1}^n a_j X_j \sum_{k=1}^n a_k X_k$$
$$= \sum_{j \neq k} a_j a_k X_j X_k + \sum_{k=1}^n a_k^2 X_k^2$$

and

$$\mathbf{E}[\widehat{m}^2] = \sum_{j \neq k} a_j a_k \mathbf{E}[X_j X_k] + \sum_{k=1}^n a_k^2 \mathbf{E}[X_k^2]$$
$$= \sum_{j \neq k} a_j a_k \mathbf{E}[X_j] \mathbf{E}[X_k] + \sum_{k=1}^n a_k^2 (\sigma^2 + m^2)$$

$$= \sum_{j \neq k} a_j a_k m^2 + \sum_{k=1}^n a_k^2 (\sigma^2 + m^2)$$

= $m^2 \sum_{j,k=1}^n a_j a_k + \sigma^2 \sum_{k=1}^n a_k^2 = m^2 + \sigma^2 \sum_{k=1}^n a_k^2$

20

Hence

$$\begin{aligned} \mathbf{E}[(\widehat{m} - m)^2] &= \mathbf{E}[\widehat{m}^2] - m^2 = \sigma^2 \sum_{k=1}^n a_k^2 \\ &= \sigma^2 \left\{ \sum_{k=1}^n \left(a_k - \frac{1}{n} \right)^2 + \frac{2}{n} \sum_{k=1}^n a_k - n \times \frac{1}{n^2} \right\} \\ &= \sigma^2 \sum_{k=1}^n \left(a_k - \frac{1}{n} \right)^2 + \frac{\sigma^2}{n} \end{aligned}$$

This attains minimum when $a_k = 1/n$ (sample mean).

Exercise 3 (5 min)

A coin is tossed N times and then we obtain samples

$$X_1, X_2, X_3, \cdots, X_N$$
 where $X_k = \begin{cases} 1, & \text{if heads} \\ 0, & \text{if tails} \end{cases}$

Find an unbiased estimator of the probability that a head occurs.

Exercise 4 (10 min)

A coin is tossed until a head occurs $K (\geq 2)$ times. Let N be the total number of tosses.

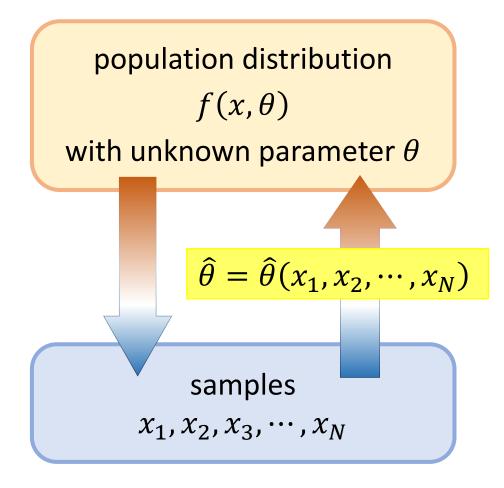
Show that $\hat{p} = \frac{K-1}{N-1}$ is an unbiased estimator of the probability that a head occurs.

[Hint]
$$\sum_{n=0}^{\infty} {\binom{n+k}{n}} x^n = \frac{1}{(1-x)^{k+1}}$$

7. Maximum likelihood estimates

- It is desired to use the best unbiased estimator.
- The best unbiased estimators are known for many concrete cases, however, it is not straightforward to obtain the best unbiased estimator in general.
- Then the maximum likelihood method is employed because
 - ✓ the maximum likelihood estimator is rather easily derived;
 - \checkmark and in many cases it is the best unbiased estimator.

8. Formulation



Examples:

(1) Binomial population – opinion poll, etc. The population distribution is the Bernoulli distribution B(1, p), so the unknown parameter is p.

- (2) Poisson population counting rare events
 The population distribution Po(λ) contains just
 one unknown parameter λ.
 (3) Normal population Population consisting of
 - individuals sharing a lot of small fluctuations The normal distribution $N(m, \sigma^2)$ contains two unknown parameters m and σ^2 .

9. Likelihood functions

Let $f(x, \theta)$ be the population distribution, where θ is unknown.

The *likelihood function* is defined by

$$L(x_1, x_2, \cdots, x_N; \theta) = \prod_{k=1}^N f(x_k, \theta)$$

Basic idea:

- Given a set of sample data x₁, x₂, …, x_N, we determine the value θ which maximizes L(x₁, x₂, …, x_N; θ).
- Roughly, we presume that the occurring event (the data x_1, x_2, \dots, x_N) is the one that have the highest probability among many other candidates.

The maximum value of *L* is found by solving $\frac{\partial L}{\partial \theta} = 0.$

Such a value $\theta = \hat{\theta}$ is called the *maximum likelihood estimator*.

It is often more convenient to consider the *log-likelihood function*:

$$\log L(x_1, x_2, \cdots, x_N; \theta) = \sum_{k=1}^{N} \log f(x_k, \theta)$$

N T

Then

$$\frac{\partial \log L}{\partial \theta} = \sum_{k=1}^{N} \frac{\partial}{\partial \theta} \log f(x_k, \theta).$$

Example: Binomial population

We consider

$$f(x,p) = \begin{cases} p, & \text{if } x = 1 \\ 1-p, & \text{if } x = 0 \end{cases} = p^x (1-p)^{1-x}$$

where p is unknown and to be estimated.

The likelihood function is defined by

$$L(x_1, x_2, \cdots, x_N; p) = \prod_{k=1}^N f(x_k, p) = \prod_{k=1}^N p^{x_k} (1-p)^{1-x_k}$$

The log-likelihood function is defined by

$$\log L = \sum_{k=1}^{N} \{x_k \log p + (1 - x_k) \log(1 - p)\}$$

Then we have

$$\frac{\partial}{\partial p} \log L = \sum_{k=1}^{N} \left\{ x_k \frac{1}{p} + (1 - x_k) \frac{-1}{1 - p} \right\}$$
$$= \sum_{k=1}^{N} \frac{x_k - p}{p(1 - p)}$$
and solving $\frac{\partial}{\partial p} \log L = 0$, we obtain the maximum likelihood

estimator:

$$\hat{p} = \frac{1}{N} \sum_{k=1}^{N} x_k$$

Ν

which is known as the sample mean and is an unbiased estimator too. $\frac{12}{12}$

A number is chosen randomly from the interval [0, a], where a > 0 is unknown constant. We obtain N samples

$$X_1, X_2, X_3, \cdots, X_N$$

Set

$$\hat{a} = 2\bar{X} = \frac{2}{N} \sum_{k=1}^{N} X_k$$
 and $Y = \frac{N+1}{N} \max\{X_1, X_2, X_3, \dots, X_N\}$

(1) Show that both \hat{a} and Y are unbiased estimators of a.

(2) Which estimator is better \hat{a} or Y ?

There are many runners on the street. Each runner is given a number cloth starting with 1 to a certain unknown big number N. Snap shots are taken at random. (1) In a snap shot there are 3 runners with numbers X_1, X_2, X_3 . Set $M = \max\{X_1, X_2, X_3\}$. Prove that

$$P(M = k) = \frac{3(k-1)(k-2)}{N(N-1)(N-2)}$$

(2) Calculating the mean value $\mathbf{E}[M]$, show that $\frac{4}{3}M - 1$ is an unbiased estimator of N. (3) [Challenge]In a snap shot there are n runners with numbers X_1, X_2, \dots, X_n . Show that $\left(1 + \frac{1}{n}\right)M - 1$ is an unbiased estimator of N, where $M = \max\{X_1, X_2, \dots, X_n\}$.

There is a deck of N cards and a unique number from 1 to N is assigned to each card as a reward. Three cards are drawn randomly with replacement, say, X_1, X_2, X_3 . Consider their mean and median:

$$\overline{X} = \frac{1}{3}(X_1 + X_2 + X_3), \quad M = \text{median}\{X_1, X_2, X_3\}$$

(1) Show that X̄ is an unbiased estimator of the mean of the reward.
(2) Show that M is also an unbiased estimator of the mean of the reward.
(3) Calculating the mean squared errors, determine the better estimator.

The exponential distribution with parameter $\lambda > 0$ is defined by the density function:

$$f(x,\lambda) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Then the likelihood function is defined by

$$L(x_1, x_2, \cdots, x_N; \lambda) = \prod_{k=1}^N f(x_k, \lambda).$$

Find the maximum likelihood estimator $\hat{\lambda}$ of λ .