
Lecture 2

Statistical Inference



1. Basic problem of statistical inference
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✓ The population distribution is our ultimate target.
✓ However, it is not reasonable to discuss the full information about it.
✓ We will estimate some parameters of the population distribution, 

e.g., mean value, variance, maximal value, correlation coefficient, ....



2. Point estimates of population parameters

We wish to find a function 

෠𝜃 = 𝑓 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑁

such that ෠𝜃 is a reasonable estimate of the 
unknown parameter 𝜃

population distribution

samples

𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑁

𝜃

statistical
inference
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𝜃: a parameter of the population distribution

We need to measure the difference 

between 𝜃 and ෠𝜃



3. Unbiased estimates

Definition  ෠𝜃 = ෠𝜃 𝑋1, 𝑋2, ⋯ , 𝑋𝑁 is called an 

unbiased estimator of  𝜃 if 𝐄 ෠𝜃 = 𝜃.

population

samples
𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑁

Unknown parameter 𝜃

෠𝜃 = ෠𝜃 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

✓Sample data 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑁 are definite values 
once a sampling is performed.

✓However, they vary with each sampling though 
the population remains the same. 

✓Moreover, because each sample 𝑥𝑖 is a result of 
random sampling, it is modeled by a random 
variable 𝑋𝑖 obeying the population distribution.

✓Thus, the sample data 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑁 are 
considered as realized values of the independent 
random variables 𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑁

✓Therefore, ෠𝜃 should be considered as a random 
variable ෠𝜃 = ෠𝜃 𝑋1, 𝑋2, ⋯ , 𝑋𝑁 .

As usual, we adopt
random sampling with replacement
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4. Sample mean and unbiased variance

For random samples 𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑁
the sample mean is defined by

Theorem The sample mean ത𝑋 is an 
unbiased estimator of the mean value 
of the population:

where 𝑚 is the mean value of the 
population.

ത𝑋 =
1

𝑁
෍

𝑘=1

𝑁

𝑋𝑘

𝐄 ത𝑋 = 𝑚
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𝑈2 =
1

𝑁 − 1
෍

𝑘=1

𝑁

𝑋𝑘 − ത𝑋 2

The unbiased variance is defined by

Theorem The unbiased variance 𝑈2 is an 
unbiased estimator of the variance of the 
population:

where 𝜎2 is the variance of the 
population.

𝐄 𝑈2 = 𝜎2



5. Better estimates

1. We have seen that  the sample mean

ത𝑋 =
1

𝑁
෍

𝑘=1

𝑁

𝑋𝑘

is an unbiased estimator: 𝐄 ത𝑋 = 𝑚. 

Let 𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑁 be random samples.

2. The weighted mean 

ෝ𝑚 = ෍

𝑘=1

𝑛

𝑎𝑘𝑋𝑘 , ෍

𝑘=1

𝑁

𝑎𝑘 = 1

is also an unbiased estimator. 

𝐄 ෝ𝑚 = ෍

𝑘=1

𝑁

𝑎𝑘𝐄 𝑋𝑘 = 𝑚

In fact,

3. Which is better?

Definition Let ෠𝜃1 and ෠𝜃2 be two unbiased 

estimators of  𝜃, i.e., 𝐄 ෠𝜃1 = 𝐄 ෠𝜃2 = 𝜃.

We say that ෠𝜃1 is better than ෠𝜃2 if 

𝐄 ෠𝜃1 − 𝜃
2
≤ 𝐄 ෠𝜃2 − 𝜃

2
.

In general, 𝐄 ෠𝜃 − 𝜃
2
= 𝐕 ෠𝜃 is called the 

mean squared error. 
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6. Sample mean is better than weighted mean

For the weighted mean  ෝ𝑚 = σ𝑘=1
𝑛 𝑎𝑘𝑋𝑘

we compute the mean squared error: 𝐄 ෝ𝑚 −𝑚 2 .

ෝ𝑚2 =෍

𝑗=1

𝑛

𝑎𝑗𝑋𝑗 ෍

𝑘=1

𝑛

𝑎𝑘𝑋𝑘

= ෍

𝑗≠𝑘

𝑎𝑗𝑎𝑘𝑋𝑗𝑋𝑘 +෍

𝑘=1

𝑛

𝑎𝑘
2𝑋𝑘

2

= ෍

𝑗≠𝑘

𝑎𝑗𝑎𝑘𝑚
2 +෍

𝑘=1

𝑛

𝑎𝑘
2 𝜎2 +𝑚2

= 𝑚2 ෍

𝑗,𝑘=1

𝑛

𝑎𝑗𝑎𝑘 + 𝜎2 ෍

𝑘=1

𝑛

𝑎𝑘
2 =𝑚2 + 𝜎2 ෍

𝑘=1

𝑛

𝑎𝑘
2First note that

and 

Hence

𝐄 ෝ𝑚 −𝑚 2 = 𝐄 ෝ𝑚2 −𝑚2 = 𝜎2 ෍

𝑘=1

𝑛

𝑎𝑘
2

= 𝜎2 ෍

𝑘=1

𝑛

𝑎𝑘 −
1

𝑛

2

+
2

𝑛
෍

𝑘=1

𝑛

𝑎𝑘 − 𝑛 ×
1

𝑛2

= 𝜎2 ෍

𝑘=1

𝑛

𝑎𝑘 −
1

𝑛

2

+
𝜎2

𝑛

𝐄 ෝ𝑚2 = ෍

𝑗≠𝑘

𝑎𝑗𝑎𝑘 𝐄 𝑋𝑗𝑋𝑘 +෍

𝑘=1

𝑛

𝑎𝑘
2𝐄 𝑋𝑘

2

=෍

𝑗≠𝑘

𝑎𝑗𝑎𝑘 𝐄 𝑋𝑗 𝐄 𝑋𝑘 +෍

𝑘=1

𝑛

𝑎𝑘
2 𝜎2 +𝑚2

This attains minimum when 𝑎𝑘 = 1/𝑛 (sample mean).
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Exercise 3 (5 min)
A coin is tossed 𝑁 times and then we obtain samples

Find an unbiased estimator of the probability that a head occurs.
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Exercise 4 (10 min)
A coin is tossed until a head occurs 𝐾 ≥ 2 times.  Let 𝑁 be the total number of tosses.  

Show that Ƹ𝑝 =
𝐾−1

𝑁−1
is an unbiased estimator of the probability that a head occurs.

𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑁 where 𝑋𝑘 = ቊ
1, if heads
0, if tails

෍

𝑛=0

∞
𝑛 + 𝑘

𝑛
𝑥𝑛 =

1

1 − 𝑥 𝑘+1
[Hint]   



7. Maximum likelihood estimates

• It is desired to use the best unbiased estimator.

• The best unbiased estimators are known for many concrete cases, 

however, it is not straightforward to obtain the best unbiased 

estimator in general.

• Then the maximum likelihood method is employed because

✓ the maximum likelihood estimator is rather easily derived; 

✓ and in many cases it is the best unbiased estimator.
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Examples: 

(1) Binomial population – opinion poll, etc.

The population distribution is the Bernoulli 

distribution 𝐵 1, 𝑝 , so the unknown parameter 

is 𝑝.

(2) Poisson population – counting rare events

The population distribution Po 𝜆 contains just 

one unknown parameter 𝜆.

(3) Normal population – Population consisting of 

individuals sharing a lot of small fluctuations 

The normal distribution 𝑁 𝑚, 𝜎2 contains two 

unknown parameters 𝑚 and 𝜎2.

8. Formulation

population distribution

𝑓 𝑥, 𝜃

with unknown parameter 𝜃

samples
𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑁

෠𝜃 = ෠𝜃 𝑥1, 𝑥2, ⋯ , 𝑥𝑁
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9. Likelihood functions
Let 𝑓 𝑥, 𝜃 be the population distribution, 
where 𝜃 is unknown.

The likelihood function is defined by

Basic idea: 
• Given a set of sample data 𝑥1, 𝑥2, ⋯ , 𝑥𝑁,

we determine the value 𝜃 which     
maximizes 𝐿 𝑥1, 𝑥2, ⋯ , 𝑥𝑁; 𝜃 .

• Roughly, we presume that the occurring 
event (the data 𝑥1, 𝑥2, ⋯ , 𝑥𝑁) is the one 
that have the highest probability among 
many other candidates.

The maximum value of 𝐿 is found by solving 
𝜕𝐿

𝜕𝜃
= 0.

Such a value 𝜃 = ෠𝜃 is called the maximum 
likelihood estimator.

It is often more convenient to consider the 
log-likelihood function:

log 𝐿 𝑥1, 𝑥2, ⋯ , 𝑥𝑁; 𝜃 = ෍

𝑘=1

𝑁

log 𝑓 𝑥𝑘 , 𝜃

Then  

𝜕 log 𝐿

𝜕𝜃
= ෍

𝑘=1

𝑁
𝜕

𝜕𝜃
log 𝑓 𝑥𝑘 , 𝜃 .
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𝐿 𝑥1, 𝑥2, ⋯ , 𝑥𝑁; 𝜃 =ෑ

𝑘=1

𝑁

𝑓 𝑥𝑘 , 𝜃



Example: Binomial population

We consider 

𝑓 𝑥, 𝑝 =
𝑝, if 𝑥 = 1
1 − 𝑝, if 𝑥 = 0

= 𝑝𝑥 1 − 𝑝 1−𝑥

where 𝑝 is unknown and to be estimated.

The log-likelihood function is defined by

log 𝐿 = ෍

𝑘=1

𝑁

𝑥𝑘 log 𝑝 + 1 − 𝑥𝑘 log 1 − 𝑝

The likelihood function is defined by

𝐿 𝑥1, 𝑥2, ⋯ , 𝑥𝑁; 𝑝 =ෑ

𝑘=1

𝑁

𝑓 𝑥𝑘 , 𝑝 =ෑ

𝑘=1

𝑁

𝑝𝑥𝑘 1 − 𝑝 1−𝑥𝑘

Then we have

𝜕

𝜕𝑝
log 𝐿 = ෍

𝑘=1

𝑁

𝑥𝑘
1

𝑝
+ 1 − 𝑥𝑘

−1

1 − 𝑝

= ෍

𝑘=1

𝑁
𝑥𝑘 − 𝑝

𝑝 1 − 𝑝

and  solving 
𝜕

𝜕𝑝
log 𝐿 = 0, we 

obtain the maximum likelihood 
estimator:

Ƹ𝑝 =
1

𝑁
෍

𝑘=1

𝑁

𝑥𝑘

which is known as the sample mean 
and is an unbiased estimator too.
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Problem 5

13

A number is chosen randomly from the interval 0, 𝑎 , where 𝑎 > 0 is unknown 

constant.  We obtain 𝑁 samples

𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑁

Set

and

(1) Show that both ො𝑎 and 𝑌 are unbiased estimators of 𝑎. 

(2) Which estimator is better ො𝑎 or 𝑌 ?

ො𝑎 = 2 ത𝑋 =
2

𝑁
෍

𝑘=1

𝑁

𝑋𝑘 𝑌 =
𝑁 + 1

𝑁
max 𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑁



Problem 6

There are many runners on the street. Each runner is given a number cloth starting with 

1 to a certain unknown big number 𝑁. Snap shots are taken at random. 

(1) In a snap shot there are 3 runners with numbers 𝑋1, 𝑋2, 𝑋3. Set 𝑀 = max 𝑋1, 𝑋2, 𝑋3 .

Prove that 

𝑃 𝑀 = 𝑘 =
3 𝑘 − 1 𝑘 − 2

𝑁 𝑁 − 1 𝑁 − 2

(2) Calculating the mean value 𝐄 𝑀 , show that  
4

3
𝑀 − 1 is an unbiased estimator of 𝑁.

(3) [Challenge]In a snap shot there are 𝑛 runners with numbers 𝑋1, 𝑋2, ⋯ , 𝑋𝑛. Show that 

1 +
1

𝑛
𝑀 − 1 is an unbiased estimator of 𝑁, where 𝑀 = max 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 . 
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Problem  7

There is a deck of 𝑁 cards and a unique number from 1 to 𝑁 is assigned to each card 

as a reward. Three cards are drawn randomly with replacement, say, 𝑋1, 𝑋2, 𝑋3. 

Consider their mean and median:
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ത𝑋 =
1

3
𝑋1 + 𝑋2 + 𝑋3 , 𝑀 = median 𝑋1, 𝑋2, 𝑋3

(1) Show that ത𝑋 is an unbiased estimator of the mean of the reward. 

(2) Show that 𝑀 is also an unbiased estimator of the mean of the reward.

(3) Calculating the mean squared errors, determine the better estimator. 



Problem 8

The exponential distribution with parameter 𝜆 > 0 is defined by the density 

function:

𝑓 𝑥, 𝜆 = ቊ𝜆𝑒
−𝜆𝑥 , 𝑥 ≥ 0,

0, 𝑥 < 0.

Then the likelihood function is defined by

𝐿 𝑥1, 𝑥2, ⋯ , 𝑥𝑁; 𝜆 =ෑ

𝑘=1

𝑁

𝑓 𝑥𝑘 , 𝜆 .

Find the maximum likelihood estimator መ𝜆 of  𝜆.
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