Lecture 3

Normal Linear Models



1. Multi-dimensional data

2-dimensional data

No. parent Adult child
1 68.2 63.3
2 71.8 72.5
3 64.4 69.2
L X; Vi
928 X928 Y928

n samples

p-dimensional data

p variables
~ N
X1 | Xy X; X
Xi1 | Xi2 Xij Xip

Matrix notation

ith data

Xi=

data matrix

D =[X; X, X; X"



1. Multi-dimensional data: Frequency table

Mid-Heights of Parents (x) F. Galton:

in hereditary stature,
Anthropological Miscellanea
(1886)

below 645 655 665 675 685 695 705 715 725 above| sum | Regression towards mediocrity

ANTHROPOLOGICAL MISCELLANEA.

TLEGRESRION forwerds MuDToCRITY &0 HEREDITARY SrTaTURE.
By Fraxons Gaures, FR.8, &o

[Wrrs Prares IX awp X))

Tms memoir contains the data upon which the remarks on the Law
of Regression were founded, that I made in my Presidential Address
B0 Section IL, uf Aberdeen. That address, which will appear in
duc course in the Journal of the British Association, has already
besn published in * Nature,” SBceptember 84th, I reproduce here
the portion of it which bears mpon regression, togather with some
amplifieation where hrevity bad rendered it obseuze, sud Thave added
copies of $he disgrans suspended at the meeting, witheut which the
letterpress s necessavily difficult to follow. My object is to place
beyond donbst the existence of a simple and far-resching law that
governs the hereditary transimission of, I believe, every one of fihoxe
simple qualities which ail possess, though in usequal degrees. I
once before ventured to draw altention to this luw on [ar wore
stendor avidence than I now possess.

1% is s0me years since ] made an extensive series of exporimoents
on the produre of soeds of difforent size but of the same species.
They yiclded results that seemed very noteworthy, snd 1 nsed them
as the basis of a lectnre before the Royal Ingitution ou February
Yth, 1877, 1% appesred from these experiments that the offspring
did not tond to ble their parent seeds in size, but to be always
more mediogre thun they-—to be smaller thun the pavents, if 1he
purents were lurge; Lo be larger than the parents, 3f the parents
wore very small. The point of convergence was considernbly helow
tho average sive of tho seeds contained in the large bagtul I bought
at a nursery garden, out of which I selected those that wers sown,
and 1 had some rozson to believe that the size of the sewd towards
which the praduce converged was similar to that of an avernge
seed taken ontof hods of self-planted specimens.

The esperiments showed further that the mean filial regression
towards mediverity was dirently proportional 1o the parentsl devia-
tion from it.  This curions resnlt was based oo se many planlings,
conducted for me by friends living in various parts ol the country,
from Nairn in the noveh to Cornwall in the sonth, during one, twa,
or even threc gemerations of the plants, vhat I could entertaln no
doubt of the trath of my conelusions. The exuel ratio of repression
remuined & littlo donbrful, owing to variable influcnees ; therefore
I did not attempt to deflne it But as it seoms & pity thal ne
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2. Regression analysis

Mid-heights of Parents

Adult Children

Heights of

belowé 64.5

65.5 | 66.5 ' 67.5 : 68.5 : 69.5

705 - 715 | 72.5 ‘above

Joint

distribution

-

We like to know a reasonable formula

X D> y

~




3. Models for response

input

explanatory variables

* ohe-variable
X
e two-variable

x = [x1 x;]
° Or more

v = )

B

deterministic
system

deterministic
linear system

stochastic
linear system

outcome
response

>
>

>y

y = f(x)
y = f(x) = f(x1,x3)

y=Bx (or y=Bx+7y)
Yy = X101 + x5,

Y=0(px+e
Y=X1,B]_+x2ﬁ2+e

e ~N(0,0%) :



5. Normal linear models

i-thinput (i = 1,2,-:-,n)
* one-variable X;

* p-variable X; = [Xu xip]

—

stochastic
linear system

outcome

>

We consider y; is a realized value of a random variable Y; where

Yi=,8xl-+el- or

{e{, ey, -+, e,} are independent random variables obeying N (0, 02)

Yi=x;61+ -+ X0, + €

In matrix expression:

Y =Xp +e where Y=

b1 €1
) B — ﬁ] ) e = el
By n




5. Normal linear models: An example

Xi :: stochastic :: Vi
(Parents’ height) linear system (Child’s height)

Y=XB+e where Y=|Y| X=|%| B=[B] e= €i

where {e,, e,,-+,e,} areiid random variables obeying N (0, c%)

e

Basic Problem: Given observations y4, y,, -*+, y,, we determine the best J

\.




6. Scatter p|Ot Problem: Find the best parameters 3,y

y modeled by Y; y =[x y

y=Bx+y




7. Maximum likelihood estimation

How to determine the best f# in the normal linear model Y = Xf + e

1-dimensional input (case of single explanatory variable)

Y, =0x;+e 1=1,2--,n(size of data)

{es, ey, +,e,} are iid random variables obeying N (0, %)

Then Y; ~ N(u;, 0%) with u; = Bx; so the probability density function is given by

o it 1 oy (i = Bx)?
P 202 | VongZz P 202

1
in(yi) = N

The log-likelihood function

n n
n 1
logL = log| | fr,(v) = ~5log(2mo™) =53 (31 = fx)?
i=1 =1



The log-likelihood function

n n
n 1
logL = log| | fy, ) = —Slog(2mo?) = -5 (3 = px)?
i=1 =1

We need to find [ which maximizes log L

n n
0 1 1
%logL = —FZ 2(y; — Bx)(—x;) = ;Z()’i — Bx;)x; =0
=1 =1
N . Check the details!
= Z XiYi — 'Bz xi =0 In matrix form "X1 Y17
i=1 i=1 : :
) B=X"X)"X"y X=|x| y=|¥
i=1XiYi : :
= b= n 2 X L Vn
1=1"1
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p-dimensional input (case of p explanatory variables)

Recall the case of 1-dimensional input
Y, =p0x;+e; i1=1,2--,n(size of data)

{e|, ey, -+, e,} are independent random variables obeying N (0, 02)

p-dimensional input

p
Y, = inj[)’j + ¢; (i=1,2,---,n) {e{,e,, -+, e,} iid obeying N(O,az)
=1

p
ThenY; ~ N(u;, 0%) with  p; = 2 XiiP;

j=1
so the probability density function is given by

{ (yi — .Ui)z}
exp §—

202

(yi) =
le Vi 27_[0_2 :



The log-likelihood function

n n ) 1 n ) B
logL = log 1_[ fr;(yi) = =7 log(2mo”) — 2722(3'" — U;) Hi = z XijBj
=1 =1

We need to find [}, which maximize log L

n
I — ool = — Zz( Ol :iZ( — u)xy = 0

a,Bk 8 252 Vi — :ul aﬁk O_zizl Yi — Ui)Xik
n

= Z YiXik —
i=1

= Thisis a linear system and is solvable. @~ — Matrix notation is essential!

p
zxijﬁszk =0 (k=12--,p)

j=1

M:

Il
[

l

12



Matrix notation

n

p
YiXik —Zinjﬁjxik =0 k=12, & X'y)p-X'XB,=0
— :

n
1= =1 j=1

_yl_ 'xll cee xlj ces xlp_ _ﬁl_
y=|Yi|, X=|xa - Xy = Xip|, B=|B
L Vn _xni o knj Xnp _,Bp_
Check the details!
— XTy = XTXﬁ
Theorem. For a normal linear model
(= ﬁ:(XTx)-ley Y=Xp +e

the maximum likelihood estimation is given by
B=X"X)"X"y

13




8. Example

Based on a physical principle two variables x and y
are known to be related as y = [x. In an experiment

x is controlled very precisely, and we measure y. The

result of five experiments is as follows. Determine S.

X

2

5

7

8

3

10

11

17

We apply the formula g = (XTX ) 1XTy where

=
|

18], X

0 Ul A N

-3

117

9

10
11

= X! X=[158]

20

15

10

14



9. Regression lines

dummy variable

Setting _V
Ask for the best parameters 3,y V1 X1 | 17
: : 1
y=|¥| X=|"|1f, ﬁ=[ﬁ]
g = fx + 5 -1 !
Yy = Y . xn | 1)

Our normal linear model is given by
Y=Xf+e & y;=0Lx;+y+e¢

and the maximum likelihood estimation

is given by
p=XX)'X"y




9. Regression lines: An explict form

n n
The maximum likelihood estimation: EZ X 12
n 1 n yl )
ﬁ — (XTx)—ley i=1 i=1
n
V17 X1 17 1 - 1 ==
: :1 1 O-xxza xiz_xz O-xy=52xiyi_xy
where y=[Yi|, X= in 1|, B= ['8] i=1 i—1
: S | 14 Then we have
| Yn An 1 XTX = 1 laxx + X2 ] [ny + 3237]
First we note that X 1
< _ : : B=X"X)1XTy
in in zxi%
XTx = XTy = _ 111 —X 2] [ny + fi’]
z X; n z Vi Oxx |=X  Oxx T X y
It is convenient to introduce _ i[ ~ Oxy B ]
Oy L X0xy T VOxx

16



Namely,

p=l-l s

x _fo-xy + yo-xx

Thus,

o o
y=,8x+y=ﬂx —ﬂf+37

O-x X O-X X

0}
S y-y=— (x-%

O-x X

<

VOyy  \/Oxx0yy /Oxx

Correlation coefficient

VOxxOyy  OxOy

Pxy

Theorem Regression line of y on x is
given by
y—Yy X —X

= Pxy
oy Oy

Note: the roles of x and y are not symmetric.
Regression line of x on y is given by

y—y X — X
ay Oy

Pxy

17




Exercise 5 (10min)

We have the following data.

X 6 2 |10 | 4 3

y | 5] 1|7 ]| 4]3

Find the regression line of y on x,

by using the formula

y—y
Oy

= Pxy

X —X

Oy

10

12

18



[Hint] completing the following table to obtain X, y, 02,

sum | mean
X 10
y 7
22
&

2
Oy

) O-.X'y and pxy

19



10. Least squares estimation

Normal linear model

Y=Xp+e
p
< Y= zxikﬁk + €
k=1

mean vector

E[Y] = XB + E[e] = XB

p

o ElY;] = (XB); = z Xik Bk

k=1

variance-covariance matrix

V[Y] =E[(Y - XB)(Y — XB)"]

& (VIYDy = E[((v - XB)(¥ - XB)7), |
= E[(Y - XB);(Y — XB);]
= E[(Y; — E[v;D(Y; — E[v}])]

= Cov (YL,Y]) = 0'261']'

Because {eq, e,,:*, e,} are independent random

variables obeying N (0, 0%) by assumption.

20



Suppose we are given data (x4, 1), (X2, ¥5),***, (X5, V)

Consider
SPB)=-XB'V(y-Xp)
where
_yl_ _x]_]_ se xlj xlp_ '181‘
y=|%| X=|x Xij Y|, B=|h|
Y. X1t Xnj e By

S(B) = U_ZZn:(J’i —(XB);)* = U_ZZ Vi — zp:xuﬁj
i=1

=1 j=1




2
n

p
Minimize  S(B) = (y = XB)'V'y ~XB) =02 ) | yi— ) x;6;

i=1 j=1
n p
a,Bk —S(B) = U_ZZ 21 yi— zxijﬁj (—xix) =0
=1 ]:1
Check the details!
n n p
< 23’1' szijxikﬁj _
— e Theorem For a normal linear model

Y=Xp +e
S (XTy), = z(XTX)kj,Bj = (XTXB), the least squares estimation is given by
/=1 B=XX)"'X"y

T ~ — vT
X' y=XXp Note: The result is the same as the one

btained b ' likelihood estimation.
s B=X"X)"1XTy obtained by maximum likelihood estimation

22



11. Two-dimensional normal distribution N(m, X)

a
° mean vector m = [b]

011 012]

* variance-covariance matrix X = [
021 022

necessarily symmetric

012 = 021

and positive definite

(x, Ax) > 0 for all x with x # O.

Then [Z| =detX # 0

 density function of N(m, X)

1 1 B
fl,y) =fx) = NoE exp {—5((96 —m), 2" (x — m))}

Note: (x,y) = xTy (LHS is a matrix form)

23



11. Two-dimensional normal distribution N(m, %)

y

1 1
~Janm T {_ (e —m), 27 (x — m»} = Jer (07) f>

f(x)

Marginal distributions

J0) [ {

fx(x) =J fxy (x,y) dy fr (x) Zj fxy (x,y) dx

+00 400 +0c0 400
iy = j f xf(r,y)dxdy =a  my = f f yf (x,y)dxdy = b
t0o ~+00 +00 400
o2 = j f (x — D2f (6, y)dxdy =0y, oF = j j () — B2 f (. y)dxdy = 0y

Oy = f_m foo(x — @)y = B)f (o y)dxdy = 01 = 0y Check the details!

24



THEOREM: Assume that a random vector (X, Y) obeys 2-dimensional normal
distribution N(m, X). Then Cov(X,Y) = 0 implies that X and Y are independent.

PROOF. Note first that

[Uxx ny] Oxy O
Yy = =
Oyx Oyy 0 gy

— 2 — 2
Oxy = Oyy = COV(X,Y)

Then
((x —m), 27 (x — m))

_ X — mX O'xx [x — mX
y - mY ayy y — mY
= Oxx (x — mX)z + Oyxx (x — mX)z

1Z] = OxxOyy

1 1 )
flx,y) = ST exp {—5 (x—m), 27 (x - m))}

S —— {—%{a;;(x —my)? + og(y = m >2}}
\/ (21) 205 Oy,

I
—
D
<
o
I
~
=
I
>
—
N
——
—

{ (y — my)z}
X exXpy = ———
IZnaﬁ y

= fx()fy(y)

Since the joint density function is factorized, X and Y are
independent.

Check the details!

25



Problem 9

Assume that a random vector (X, Y) obeys 2-dimensional normal distribution N(m, X), that is, the joint

distribution is given by

1 1 a 011 012
— —_— —_ -1 —_ —_ =
fir (o) = (2n)2|2|exp{ (= m), 27 (x m>>} m=[,| z=[0 o]
(1) Show by direct computation of the integral that the marginal distribution fyx (x) obeys N(a, g;4).
+00
fx(x) = fxy(x,y) dy

(2) Calculate the conditional expectation:

r_oo Y frx(y1x)dy  where fnx(ylx):fX;X(é; )y )

(3) Examine that y = E[Y|X = x] is the regression line of y on x.

E[Y|X =x] = |




Problem 10

The right table shows 892 samples
of (x,y), where x is the mid-height
of parents and y the height of their
child [Galton 1886].

(1) Find the correlation coefficient.

(2) Find the regression line of y on x.

Mid-height parents (x)

Adult Children (y)

64.5: 65.5 : 66.5:67.5 68.5:69.5:70.5:71.5:72.5: sum
73.2 3 4 3 2 2 14
72.2 1 4 4 11 4 9 /7 40
71.2 2 11 18 ¢ 20 7 4 2 64
70.2 5 4 19 ¢ 21 25 14 10 1: 99
69.2 2 7 13 38 i 48 : 33 18 5 2 i 166
68.2 7 14 : 28 @ 34 @ 20 12 3 1 :119
67.2 5 11 17 ¢ 38 : 31 27 3 4 136
66.2 5 11 17 ¢ 36 i 25 17 3 115
65.2 1 15 16 4 1 1 47
64.2 4 14 11 16 55
63.2 4 5 7 1 1 30
62.2 1 3 7
sum: 22 : 65 78 211 : 218 {178 : 64 | 41 15 | 892




