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1 Introduction

Today numerous species are experiencing habitat shifts
potentially driven by climate change. Invasion of an
alien predator species into a native prey-predator sys-
tem could lead to substantial ecological consequences.
In this research we present a discrete-time population
dynamics model to analyze exploitative competition be-
tween native and alien predators sharing a common prey.
The study investigates the conditions under which an
alien predator can successfully invade a native predator-
prey system, the persistence of both predators, and the
consequences of their interactions.

2 Assumptions

• The predator is a specialist, dependent solely on a
specific prey.

• The native prey-predator environment is invaded
by an alien predator.

• The predation is stage-specific.

• Adults of prey and predator die out after their re-
spective reproductive season.

• Prey population features density-dependent intra-
specific competition.

3 Model J

We consider a prey-predator interaction where the na-
tive predator is P, which targets the juvenile stage of the
prey population and Q is the invading predator which
targets the adult prey. The native prey-predator system
of Model J is as follows
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where Hn and Pn are the adult prey and predator pop-
ulation densities respectively, at generation n. r0 is the
supremum number of offsprings produced by an adult
prey, ρ1 is the reproduction rate of the predator per
prey consumed for P, a1 is the attack efficiency of the
juvenile and β is the coefficient of the strength of density
effect for the reproduction in the predator population.

4 Model A

Contrary from Model J, in Model A the native preda-
tor is Q, which targets the adult prey and the invading
predator is P, which targets the juvenile prey. The equa-
tions for the native prey-predator system of Model A are
as follows
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)
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where Qn is the adult predator population density for Q
at generation n. ρ2 is the reproduction rate of the preda-
tor per prey consumed for Q, a2 is the attack efficiency
of the predator.

5 Dynamics with invading alien
predator

We extend the dynamics of the native prey-predator
model to incorporate an invading alien predator, result-
ing in a three-species system: the prey H, the predator
P, and Q.
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To simplify analysis, we non-dimensionalize the sys-
tem by introducing scaled variables for prey and preda-
tor densities, as well as new parameters. Let

hn = Hn

β , pn = a1Pn, qn = a2Qn, α1 =
a1ρ1β, α2 = a2ρ2β.
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6 Predator persistence in the na-
tive prey-predator system

When r0 < 1 the prey population goes to extinction.
Hence. we will consider the case for r0 > 1. For the
native prey-predator system of Model J, we have
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) r0
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for any n > 0 and hn > 0. Then pn → 0 as n → ∞ if
R0

P ≤ 1. Similarly, for the native prey-predator system
of Model A, we have
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)
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where qn → 0 as n → ∞ if R0
Q ≤ 1. As a consequence,

these results indicate the global stability of the predator
extinction equilibrium for the native prey-predator sys-
tem of Model J and Model A with RP

0 ≤ 1 and RQ
0 ≤ 1

respectively where

RP
0 = α1(r0 − 1),

RQ
0 = α2(r0 − 1).

Predator persistence is the case when the native preda-
tor persists in the environment without going extinct
which is possible when RP

0 > 1 for native prey-predator

system of Model J and RQ
0 > 1 for native prey predator

system of Model A.

7 Invasion success of the alien
predator

This numerical example of the bifurcation shows differ-
ent regions where invasion is successful. In the case of
Model J, initially it can be observed that the alien preda-
tor Q is unable to invade in the native prey-predator
system where the prey H and predator P exist in equi-
librium. After that, the invasion is successful and both
the predators Q and P coexist. However, this region
is small. After that the native predator P goes ex-
tinct, leading to competitive exclusion where the alien
predator Q exists in a stable state with the H. Similar
observations can be made for Model A where P is the
invading predator and Q is the native predator.

8 Invadability

Model J Model A

This result indicates that the invasion of predator Q in
Model J, that is the native prey-predator system with
predator P , is harder to be successful than that of
predator P in Model A, that is the native prey-predator
system with predator Q. Especially when α1 = α2 for
predators P and Q, we can see that the invasion of
predator P in the native prey-predator system of Model
A is successful, while that of predator Q in the native
prey-predator system of Model J is unsuccessful. In
Model J, α2 needs to be sufficiently larger than α1 to
invade successfully. However, in the case of Model A,
α1 can be lesser than α2 and still invade successfully.
Coexistence is possible but difficult.

9 Concluding remarks

These findings underscore the critical role of life stage-
specific interactions in determining the outcomes of
species invasions. Future research may extend these
models to account for additional ecological factors such
as environmental variability, multi-predator interac-
tions, and adaptive behaviors in prey and predators.
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