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S U M M A RY

The COVID-19 pandemic has revealed the significance of understanding how
social vulnerability influences epidemic progression and the effectiveness of
public health measures. This work presents three mathematical studies that
incorporate different aspects of social vulnerability and public health strate-
gies to investigate their impact on epidemic outcomes. We first investigate the
effects of regional lockdown policies in a community composed of two areas
with unequal medical treatment levels. By comparing the endemic sizes un-
der different lockdown strategies with different levels of mobility restriction,
our mathematical results indicate that stricter restriction of mobility leads to
smaller endemic sizes, although it may cause inconvenience to people’s daily
life. When considering weak lockdowns with partial restrictions, the most
effective policy is to prohibit the movement of susceptible individuals from
high density area to low density area. Next, we investigated how limited iso-
lation capacity affects epidemic consequences. We identify critical thresholds
beyond which isolation strategy breaks down due to the limited capacity. For
both non-reinfectious and reinfectious diseases, a sufficiently large isolation
capacity is essential to prevent the breakdown of isolation. When incorporat-
ing a discharge mechanism into the isolation strategy, maintaining a higher
discharge rate and a lower isolation rate helps preserve system functional-
ity and avoid saturation. Furthermore, we propose a structured SIR model
to investigate the relation between the distribution of preventive behavior
and epidemic consequence. We find that a high proportion of low-caution
individuals in the community accelerates transmission and increases social
damage. These studies could provide a deeper understanding of the complex
interplay between social vulnerability, public health measures, and disease
transmission.
Keywords: Epidemic dynamics, Social vulnerability, Public health, Lock-
down policy, Isolation capacity, Behavioral heterogeneity, Ordinary differen-
tial equations
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1I N T R O D U C T I O N

1.1 epidemics in human history

1.1.1 Historical outbreaks

Infectious diseases have played an important role in shaping human history.
One of the earliest well-documented major pandemics in history is the Plague
of Athens (430 BCE), which occurred during the Peloponnesian War and
was documented by Thucydides [36]. The plague decimated the population
and undermined the social order of Athens. While typhoid fever figures
prominently as a probable culprit, a recent theory, postulated by Olson and
some other epidemiologists and classicists, suggests that the Athenian plague
may have been caused by Ebola virus hemorrhagic fever [80,126].

The Antonine Plague (165–180 AD), likely caused by smallpox, spread
throughout the Roman Empire and killed millions [140,173]. The epidemic is
thought to have weakened Roman military power and contributed to the
empire’s long-term decline.

The Justinian Plague (541–542 AD), widely considered to be the first
pandemic of bubonic plague, originated in the Byzantine Empire [55,90,162]. It
spread rapidly through Mediterranean trade routes, killing tens of millions
and recurring in waves over two centuries.

A turning point in demographic and social history was the Black Death
(1347–1351). Carried from Asia to Europe via the Silk Road and maritime
routes, it is estimated to have killed between 75 and 200 million people
worldwide, with Europe losing up to 60 percent of its population [16,22,80,90].
This pandemic led to labor shortages, economic restructuring, and shifts in
religious authority, setting the stage for the modern era. It also transformed
urban planning and burial practices, and triggered waves of scapegoating and
social unrest [27]. The black Death underscores the impact of high-mortality
pathogens and the potential for nonlinear societal collapse when infection,
fear, and misinformation co-evolve.

In the 20th century, the Spanish Flu (1918–1920) infected more than
a third of the global population and resulted in an estimated 50 million
deaths [84,116,152,157,159]. The unusually high mortality among young adults
puzzled researchers and stimulated the development of modern epidemio-
logical surveillance systems. The Spanish Flu demonstrated the importance
of early warning systems, the role of asymptomatic transmission, and the
need for transparent public health communication in shaping epidemic
outcomes [64,157].

The emergence of HIV/AIDS in the 1980s has evolved into one of the
longest-lasting pandemics in human history. Originating from cross-species
transmission in Central Africa, it has led to over 35 million deaths world-
wide and fundamentally transformed approaches to public health [90,147].
The HIV/AIDS is characterized by slow disease progression and primarily
behavioral transmission pathways, such as unprotected sex and needle shar-
ing. The early spread was accompanied by misinformation, social stigma,
and delayed or inadequate governmental responses [100,108]. In South Africa,
long-standing structural inequalities were rooted in the apartheid legacy
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2 introduction

and further compounded by delayed political recognition of the crisis. These
factors created conditions that facilitated the rapid spread of HIV and ob-
structed early intervention efforts [108]. Meanwhile, the pandemic galvanized
global advocacy and contributed to institutionalized surveillance programs
that continue to inform pandemic preparedness [91].

The early 21st century witnessed new challenges posed by emerging
infectious diseases. The 2002–2003 SARS outbreak had profound implications
for global health governance. It highlighted weaknesses in early warning sys-
tems and underscored the importance of transparency and rapid reporting.
Consequently, it influenced revisions to the International Health Regula-
tions [10,31,32,73]. Most recently, the COVID-19 pandemic has demonstrated
how biological crises can intersect with and amplify pre-existing social vul-
nerabilities. Since its emergence in late 2019, COVID-19 has caused extensive
morbidity and mortality across all world regions [34,156,161]. However, its ef-
fects have been unevenly distributed, reflecting disparities in healthcare
access, housing, employment, and systemic discrimination. Evidence sug-
gests that marginalized populations have borne a disproportionate burden of
infection and death [107]. Furthermore, the pandemic has deepened existing
health inequalities both within and between countries, reinforcing the call
to integrate equity and social structure into public health planning [13]. The
trajectory and impact of historical outbreaks suggest that while the biological
features of a pathogen are critical in defining transmission dynamics, the
social context plays an important role in shaping epidemic consequences. Fac-
tors such as mobility, inequality, and public trust are particularly influential.
Therefore, insights from historical pandemics are essential for understanding
current outbreaks and for developing effective policies to reduce future risks.

1.1.2 Social vulnerability and social damage

Social vulnerability refers to the susceptibility of individuals or communities
to harm from external hazards due to underlying social, economic, and
environmental disadvantages [61,148,175]. Originally developed in the context
of disaster risk and climate change studies, the concept has been increasingly
applied in the fields of public health and epidemiology to explain differ-
ential outcomes in infectious disease outbreaks [37,123]. Social vulnerability
is multidimensional, encompassing indicators such as poverty, education,
housing insecurity, access to healthcare, transportation, gender, race, and
cultural practices.

The COVID-19 pandemic demonstrated how deeply social vulnerabil-
ity shapes disease outcomes. In countries across the world, marginalized
communities experienced disproportionately high rates of infection, hospi-
talization, and death due to pre-existing inequities in employment, housing
density, and healthcare access [88,89,122,138].

Mathematical modelling has increasingly incorporated social vulnerability
through mechanisms such as population distribution, parameter adjustment,
and agent-level heterogeneity [39]. For example, McGillen et al. [112] devel-
oped a compartmental HIV transmission model that incorporates behavioral
and geographic heterogeneity across 18 sub-Saharan African countries, and
demonstrated that aligning prevention funding with local epidemic patterns
and risk profiles can substantially increase the impact and cost-effectiveness
of interventions. Munday et al. [120] developed a transmission model incorpo-
rating social group differences in contact rates and susceptibility, showing
that even equal vaccine uptake can amplify infection risk disparities unless
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higher coverage is provided to high-risk groups. In the context of COVID-19,
Jentsch et al. [83] developed a mathematical model that incorporates social
behavior and epidemic transmission dynamics to evaluate COVID-19 vacci-
nation strategies. Their results suggest that when vaccination is initiated at
a later stage of the pandemic, prioritizing vaccination for individuals who
contribute more to transmission can reduce mortality more effectively than
targeting vulnerable age groups. The results of Britton et al. [23] showed that
population heterogeneity in age and social activity can substantially lower the
disease-induced herd immunity threshold for COVID-19, and emphasized
the importance of incorporating contact structure and individual variation
into epidemic models.

Furthermore, the relationship between social vulnerability and infectious
disease is bidirectional. While social vulnerability amplifies the risk and
severity of disease outcomes, epidemic outbreaks can further reinforce and
exacerbate existing social inequalities, functioning as drivers of structural and
societal damage. Infectious disease outbreaks frequently intensify existing
inequities by disrupting livelihoods, limiting access to education and health-
care, and eroding trust in institutions. For instance, the West African Ebola
epidemic devastated health systems and social cohesion in Liberia, Sierra
Leone, and Guinea, while also exacerbating stigmatization and fear-based
exclusion [79,136,154]. Similarly, COVID-19 deepened poverty, widened gender
and racial disparities, and increased exposure to domestic violence and men-
tal health burdens [13,89,121]. Historical pandemics have left similar legacies. In
India, the 1918 influenza pandemic is estimated to have killed 17–18 million
people, with mortality concentrated in socially disadvantaged regions where
famine, malnutrition, and colonial neglect intersected [29,149]. Such examples
underline that infectious disease crises are not isolated biomedical phenom-
ena but are shaped by social structures. Naidoo et al. [122] argues that models
excluding social vulnerability risk underestimate the true burden of disease
and may generate policies that inadvertently reinforce inequality. Therefore,
understanding social vulnerability is essential for informing equitable and
effective public health policy.

1.2 epidemiological background for modeling

1.2.1 Classification of infectious diseases

Infectious diseases are transmitted through various routes, depending on the
characteristics of the pathogen, the host, and the surrounding environment.
The main categories of infectious diseases based on transmission routes are
as follows [75,110,169]:

• Direct-contact transmitted diseases: Spread through direct contact
with an infected individual which includes physical touch or sexual
contact, and typically spreading diseases such as herpes, syphilis, and
HIV.

• Respiratory-transmitted diseases: Transmitted through infectious res-
piratory particles, either by droplet transmission during close-range
interactions or by airborne transmission via particles suspended in
the air over long distances. Examples of such diseases are COVID-19,
influenza, measles, smallpox, and tuberculosis.
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• Vector-borne diseases: Transmitted by vectors such as mosquitoes,
ticks, or fleas that carry pathogens from one host to another. Examples
of vector-borne diseases are malaria, dengue fever, Lyme disease, and
Zika virus.

• Food- and waterborne diseases: Spread through the ingestion of con-
taminated food or water. Examples of such diseases are cholera, typhoid
fever, and stomach flu.

• Vertically transmitted diseases: Passed from mother to child during
pregnancy, childbirth, or breastfeeding. Examples of such diseases are
HIV, syphilis, rubella, and hepatitis B.

1.2.2 Transmission mechanisms of infectious diseases

The classification of infectious diseases by transmission route provides a
useful overview of how pathogens move between hosts. However, a deeper
understanding of the underlying mechanisms is essential for predicting
disease spread and developing effective control strategies. Here, we introduce
detailed classification, including the following mechanisms:

• Direct contact transmission: This refers to physical transfer of pathogens
through close physical contact with an infected individual, such as
touching, kissing, or sexual contact.

• Indirect contact transmission: In this mechanism, pathogens are trans-
mitted via contaminated surfaces or objects (fomites), such as shared
utensils, doorknobs, or medical equipment.

• Droplet transmission: Involves the spread of pathogens via large res-
piratory droplets expelled when an infected person coughs, sneezes, or
talks. These droplets typically travel short distances (within one meter)
and deposit on the mucous membranes of a nearby host.

• Airborne transmission: Occurs when pathogens are carried by fine
aerosol particles that remain suspended in the air over long distances
and time. Inhalation of these particles can lead to infection even without
close contact.

• Vehicle-borne transmission: Involves the transmission of pathogens
through ingestion, injection, or exposure to contaminated substances
such as food, water, blood, or medical instruments.

• Vector-borne transmission: Involves transmission by living vectors
such as mosquitoes, ticks, or fleas, which carry and transmit the
pathogen between hosts.

• Vertical transmission: This refers to transmission from mother to child
during pregnancy, childbirth, or breastfeeding.

• Zoonotic transmission: Describes the spread of infectious agents from
animals to humans, either through direct contact (e.g., bites) or indi-
rectly through handling animal products or exposure to animal waste.

These transmission mechanisms may overlap within a single disease.
For example, both influenza and COVID-19 involve droplet and airborne
transmission mechanisms.
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1.2.3 Basic reproduction number

The basic reproduction number R0 is a fundamental epidemiological index
that quantifies the transmissibility of an infectious disease in a fully suscepti-
ble population. It is defined as the expected number of secondary infections
produced by a single infected individual in a community consisting only of
susceptible individuals during the entire infectious period [43,47,101,110].

In general, R0 depends on various factors, including the transmission
rate of the pathogen, the duration of infectiousness, and the contact structure
of the population. R0 > 1 indicates that the infection can spread in the
population, potentially leading to an outbreak of the epidemic. In contrast,
R0 < 1 indicates that the disease will eventually die out.

In compartmental models such as the SIR or SEIR models, R0 is derived
through the next-generation matrix approach. It serves as a key threshold
parameter for assessing outbreak potential and guiding public health inter-
ventions.

1.2.4 Control strategies for infectious diseases

Effective control of infectious diseases depends on a comprehensive under-
standing of transmission mechanisms and the implementation of appropriate
interventions. Control strategies can be categorized into pharmaceutical and
non-pharmaceutical measures [14,71,98,124,168]. These strategies aim to reduce
transmission, protect vulnerable populations, and prevent outbreaks.

• Pharmaceutical interventions: These include vaccination and medical
treatments. Vaccination confers individual immunity and contributes
to herd immunity, thereby reducing disease incidence. Antiviral and
antimicrobial therapies help lessen the severity and duration of illness.

• Contact tracing: This involves identifying and monitoring individuals
who have been in close contact with an infected person. It enables early
detection of new cases and breaks chains of transmission.

• Isolation and quarantine: Isolation involves separating infected indi-
viduals from the healthy population, while quarantine restricts the
movement of individuals who may have been exposed. These are
particularly important for diseases with high transmissibility or no
immediate medical treatment.

• Environmental and behavioral interventions: These include improv-
ing hygiene, sanitation, and ventilation, as well as promoting behaviors
such as mask-wearing, handwashing, and physical distancing. Such
measures are essential for controlling respiratory and enteric infections.

• Population-level movement control: Travel restrictions and commu-
nity lockdown are used to limit the geographic spread of disease during
severe outbreaks. However, such measures may carry significant social
and economic consequences and should be implemented with careful
consideration.

The selection and combination of these strategies depend on disease
characteristics, population vulnerability, and available medical resources.
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1.3 basic epidemic models

Mathematical models provide a framework for understanding the progres-
sion of infectious diseases and evaluating potential control strategies. In
this section, we introduce the fundamental epidemic models, which capture
the key mechanisms of disease transmission and serve as a foundation for
epidemiological modeling and analysis.

1.3.1 Kermack–McKendrick SIR model

The Kermack–McKendrick SIR model, proposed by Kermack and McK-
endrick [92] in 1927, is widely recognized as one of the foundational contribu-
tions to the field of epidemic modeling. The model considered three classes,
susceptible, infectious, and recovered. The model is based on the following
assumptions [20,144]:

• The total population size of the community is constant, ignoring any de-
mographic change with birth, death, and migration in a given epidemic
season.

• The fatality of disease is negligible in the season.

• The recovered individual cannot be infected again.

• The disease transmission follows a mass action, where the infection
force is proportional to the infective density in the population.

Based on the above assumptions, we have the following model:

dS

dt
= −βIS;

dI

dt
= βIS − ρI;

dR

dt
= ρI.

(1)

The variables S, I , R denote the sizes of susceptible, infective, and recovered
population. N is the total population size, and it is satisfied that S(t) +
I(t) + R(t) = N for any t ≥ 0. Initial condition is given by S0 + I0 = N ,
I0 > 0, and R0 = 0. Every parameter is positive. The parameter ρ denotes
the recovery rate of infective individual. Under the mass action assumption,
the contact rate is assumed to be proportional to the population density and
is given by βN , where β is the corresponding transmission coefficient. Since
the probability that a contact by a susceptible is with an infective is I/N , the
infection force, defined as the number of new infections per unit time per
susceptible individual, is given by (βN)(I/N) = βI . Therefore, the rate of
new infections in the population is βIS.

From system (1), the derivative of S(t) is negative for all t ≥ 0, so that
the number of susceptible individuals is monotonically decreasing in terms
of time with the positive initial value S(0) = S0. Then, we have

lim
t→∞

S(t) = S∞ ≥ 0.

Similarly, the derivative of R(t) is positive for all t ≥ 0, the number of
recovered individuals is monotonically increasing in terms of time and
cannot beyond the total population size N . We have

lim
t→∞

R(t) = R∞ ≤ N .
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On the other hand, the infected population size initially increases and
subsequently decreases monotonically to zero if

dI

dt

∣∣∣∣
t=0

= (βS0 − ρ)I0 > 0,

otherwise, it decreases monotonically to zero from the beginning. There-
fore, the necessary condition for the initial growth of infectives is the basic
reproduction number R0 := βN/ρ > 1.

From dS/dR = −βS/ρ, the final size of susceptible population at the
end of epidemic dynamics is given by

S∞ = S0 exp

(
−βR∞

ρ

)
.

Then, the final epidemic size defined as the total number of individuals who
have experienced the infection until the final stage of the epidemic dynamics
is given by R∞ := N − S∞.

1.3.2 SIS model

The SIS model describes infectious diseases for which recovery does not
provide immunity. In this subsection, we introduce a simplest SIS model
by Kermack and McKendrick [93]. The assumptions are the same as those in
Subsection 1.3.1, except that

• Individuals who recover from infection do not gain immunity and
become susceptible again.

The SIS model is given by:

dS

dt
= −βIS + ρI;

dI

dt
= βIS − ρI.

(2)

N is the total population size, and it is satisfied that S(t) + I(t) = N for any
t ≥ 0. Initial condition is given by S0 + I0 = N with I0 > 0. Every parameter
is positive. β is the infection rate and ρ is the recovery rate at which infective
individuals return to the susceptible class.The basic reproduction number is
given by R0 := βN/ρ.

Since S(t) + I(t) = N for any t, the nature of the epidemic dynamics by
(2) can be reduced to one dimensional ordinary differential equation:

dI

dt
= βI(N − I)− ρI = β

(
N − ρ

β
− I
)
I. (3)

When N − ρ/β ≤ 0, that is, R0 ≤ 1, the infective population size is monoton-
ically decreasing to zero with initial value I0 > 0. When N − ρ/β > 0, that is,
R0 > 1, we can solve the equation (3) explicitly using separation of variables.
The expression of the solution is given by

I(t) =
KI0 exp(rt)

K − I0 + I0 exp(rt)
=

K

1− (1−K/I0) exp(−rt)
,

where K = N − ρ/β, r = βN − ρ. Then, we have

lim
t→∞

I(t) = K
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for K > 0 and r > 0. It indicates that the infective population size mono-
tonically approaches the endemic equilibrium K when R0 > 1. Therefore, if
R0 > 1, the disease remains in the community and the system converges to
an endemic equilibrium. In contrast, if R0 ≤ 1, the disease dies out and the
system converges to a disease-free equilibrium.

1.3.3 SIRS model

The SIRS model assumes that the immunity acquired through recovery is
temporary and wanes over time. The assumptions are the same as those in
Subsection 1.3.1, except that

• Individuals who recover from infection acquire immunity, but this
immunity is eventually lost, and they return to the susceptible class.

• Immunity wanes at a constant rate.

Under these assumptions, the SIRS model is given by:

dS

dt
= −βIS + δR;

dI

dt
= βIS − ρI;

dR

dt
= ρI − δR.

(4)

N is the total population size, and it is satisfied that S(t) + I(t) +R(t) = N

for any t ≥ 0. Initial condition is given by S0 + I0 = N with I0 > 0. Every
parameter is positive. β is the infection rate, ρ is the recovery rate, δ is the rate
at which immunity wanes and recovered individuals return to the susceptible
class. The basic reproduction number is given by R0 := βN/ρ. This model
describes the reinfection mechanism driven by the loss of immunity.

It is easy to obtain that there are at most two equilibria. One is the
disease-free equilibrium E0(N , 0, 0), and the other is endemic equilibrium

E+

(
S∗,

δ

δ + ρ
(R0 − 1)S∗,

ρ

δ + ρ
(R0 − 1)S∗

)
with S∗ :=

ρ

β
.

The disease-free equilibrium E0 is globally asymptotically stable if and only
if the basic reproduction number satisfies R0 ≤ 1, implying the disease
dies out over time. When R0 > 1, the endemic equilibrium E+ exists and
becomes globally asymptotically stable, implying the disease persists within
the community.

1.3.4 SIRI model

The SIRI model assumes that the immunity acquired through recovery is
imperfect or partial, and recovered individuals may become infectious again.
The assumptions are the same as those in Subsection 1.3.3, except that

• After the recovery from the infection, the individual may get the infec-
tion again due to imperfect or partial immunity to against the disease.

• The reinfection after the recovery from the disease generally has a
likelihood not beyond that of the infection for the susceptible.
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Based on the assumptions, the simple SIRI model is given by :

dS

dt
= −βIS,

dI

dt
= βIS + εβIR− ρI,

dR

dt
= ρI − εβIR.

(5)

N is the total population size, and it is satisfied that S(t) + I(t) +R(t) = N

for any t ≥ 0. The initial condition is given by S0 + I0 = N with I0 > 0.
Every parameter is positive. β is the infection rate, and the reinfection rate
is given by εβ, where 0 < ε < 1. Here ε is a reduction parameter for the
actual infection rate because the recovered individual will have reduced
susceptibility due to acquired immunity. In particular, ε = 0 denotes full
immunity, corresponding to the SIR model (1) in the Subsection 1.3.1. ρ is
the recovery rate. The basic reproduction number is given by R0 := βN/ρ.

This model describes the reinfection mechanism driven by imperfect
immunity, and differs from the SIRS model in how reinfection is assumed. In
the SIRS model, individuals are assumed to acquire complete immunity after
recovery, which subsequently wanes over time. Once immunity is lost, these
individuals re-enter the susceptible class. In contrast, the SIRI model assumes
that immunity after recovery is inherently partial or imperfect. Recovered
individuals do not return to the susceptible class but instead retain partial
immunity, which allows for reinfection to primary infection. Furthermore,
the reinfection rate in the SIRI model is typically lower than that of primary
infection, reflecting partial immune protection rather than a full return to
susceptibility. This structural distinction allows the SIRI model to better
describe infectious diseases in which reinfection can occur due to imperfect
or partial immunity, immune evasion by the pathogen, or latent reactivation.
Examples include diseases such as malaria, tuberculosis, and certain viral
infections where immunity is not lifelong or pathogen persistence is possible.

1.3.5 Effect of the quarantine/isolation

Quarantine and isolation are critical public health interventions aimed at
reducing disease transmission by separating infected or potentially infected
individuals from the susceptible population. A simple extension of the SIR
model that incorporates an isolation compartment Q is given by

dS

dt
= −β I

N −Q
S,

dI

dt
= β

I

N −Q
S − σI − ρI,

dQ

dt
= σI − ρQ,

dR

dt
= ρI + ρQ.

(6)

In this model, susceptible individuals (S) become infected through con-
tact with infectious individuals (I). However, only individuals who are not
isolated can contribute to the disease transmission. This is reflected in the
term I/(N −Q), which assumes that isolated individuals do not contribute
to transmission, and susceptible individuals are exposed only to the non-
isolated population. Here The denominator N −Q represents the effective
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population participating in transmission. Once infected, individuals are ei-
ther isolated at rate σ, or directly recover at rate ρ. Under the assumption
that isolation does not affect the efficiency of recovery, isolated individuals
recover at the same rate ρ. Recovered individuals gain lifelong immunity and
no longer participate in disease transmission.

To evaluate the potential for epidemic spread under the influence of
isolation, we obtain the basic reproduction number R0 := β/(ρ+ σ). This ex-
pression indicates that basic reproduction number decreases with increasing
isolation rate σ or recovery rate ρ. In particular, even if the recovery rate is
unchanged, enhancing the isolation rate can reduce the value of R0, thereby
preventing a large-scale outbreak. Thus, isolation contributes to epidemic
control not by accelerating recovery, but by reducing the average number of
contacts that result in new infections. This result emphasizes the importance
of early detection and prompt isolation as non-pharmaceutical interventions,
especially for emerging infectious diseases without effective treatments or
vaccines.
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2.1 introduction

In addition to vaccination and medical treatment, lockdown can be regarded
as a basic strategy for the public health to suppress the spread of a transmis-
sible disease in a community. Especially in some regions with poor medical
infrastructure and low emergency response capacity, the lockdown could
play a role to give the government and decisionmaker a sufficient time to
arrange a strategy for controlling the epidemic [105,115,118]. Many studies have
shown that lockdown is effective in reducing the number of new cases in the
countries that implement it, compared with those countries that do not (for
example, Alfano and Ercolano [6], Lau et al. [99], Dechsupa et al. [40], Huang et
al. [78], Milne et al. [117], and references therein). The essential role of lockdown
is to reduce the frequency and duration of contacts between individuals in
the community. Such a strategy includes closing schools and workplaces,
preventing from being outside or gathering, restricting the access to public
places (e.g., public transportations), and so on [128,129].

Although such a strict restriction has an important role in suppressing
the disease transmission in a community, the economic development must
tend to face with great challenges due to the decline in the social activities
under it, as seen in the COVID-19 pandemic [24,44,125]. At the start of the
pandemic, del Rio-Chanona et al. [42] estimated that, the immediate impact
of COVID-19 in the US could threaten 22 percent of GDP, 24 percent of
jobs, and reduce wage income by 17 percent. According to Coccia [35], it
is uncertain whether the long-term lockdown can reduce the number of
COVID-19 infected individuals and deaths, and the longer lockdown has a
negative impact on the economy. Especially, the economy related to tourism
has been severely affected [171]. Not only the closure of factories and stores
has had a great impact on relevant industries (e.g., retail), but also consumers’
spending has declined due to restrictive measures and reduced income [104].
Tonnoir et al. [158] considered a mathematical model to investigate the optimal
investment strategy under the lockdown situation, and derived that it is
difficult to ensure both the reduction of regional disparities and economic
growth.

Furthermore, lockdown can cause significant psychological distress by
imposing isolation that negatively affects mental well-being [25,86]. Ganesan et
al. [62] also mentioned that the prolonged lockdown may cause some problems
in the physical and mental health. In particular, young people, who are more
susceptible to mental health issues than adults, are especially vulnerable
to the negative impacts of school closures and reduced opportunities for
physical activity and social interaction during lockdowns [41,164]. Hence, it is
necessary to consider whether a lockdown could allow a balance between
the epidemic control and the social activities.

While previous studies have mainly investigated the economic and psy-
chological impacts of lockdown, emphasizing its social costs, our study
mathematically compares different levels of lockdown policies, where each
level represents a different degree of restriction on economic and social
activities. Within this framework, we aim to investigate whether a lockdown

11
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strategy can be identified that not only suppresses the epidemic but also
sustains essential economic and social functions.

In this chapter, we consider a simple mathematical model to investigate
the efficiency of different types of lockdown according to the endemic size,
that is, the number of infective individuals at the endemic equilibrium. In our
modeling, we introduce different restrictions on the mobility of individuals
and define four types of lockdown: complete lockdown, strong lockdown,
weak lockdown type 1, and type 2. The mathematical analysis on our model
shows the existence and stability of possible equilibria and compare those
four types of lockdown to discuss which type of the lockdown is better
according to the endemic size.

2.2 assumptions

The movement of population must accelerate the spread of an epidemic,
which is a fundamental cause of a long-range epidemic transmission. In this
work, we consider a simple mathematical model of epidemic dynamics with
the following assumptions:

• The disease is not fatal;

• The community is composed of the peripheral area (area 1) and the
central area (area 2) with different qualities of the medical treatment
for the disease;

• Susceptible individuals of one area can temporarily visit to the other
area;

• Some infective individuals of the peripheral area (area 1) can get the
medical treatment at the central area (area 2), for example, transported
by ambulance;

• Recovered individual becomes susceptible again;

• The population size is constant in each area during the epidemic season.
We ignore any demographic change due to the natural birth, death,
and migration.

There is no specific assumption about the population sizes of the two
areas. The central area represents places where people typically work, go
to school, or shop, while the peripheral area consists of residential zones
where people return after such activities. Therefore, the central area may
have either a higher or lower population density compared to the peripheral
area. In Section 2.8, we define ρ as the ratio of the population sizes of the
two areas and show how it affects the endemic size for the two types of weak
lockdown.

2.3 model

As shown in Figure 1, Si denotes the population density of healthy individu-
als in area i who can be infected, Ii that of individuals in area i who have
been infected and are able to transmit the disease, and Hij that of individuals
belonging to area j who are infective and under the medical treatment in
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Figure 1: Scheme of the epidemic dynamics in our model (7).

area i. We construct the following mathematical model expressed by the
system of ordinary differential equations:

dS1

dt
= −β1I1S1 − α1β2I2S1 + θ1H11 + θ2H21;

dI1
dt

= β1I1S1 + α1β2I2S1 − γ1I1;

dH11

dt
= (1− p)γ1I1 − θ1H11;

dH21

dt
= pγ1I1 − θ2H21;

dS2

dt
= −β2I2S2 − α2β1I1S2 + θ2H22;

dI2
dt

= β2I2S2 + α2β1I1S2 − γ2I2;

dH22

dt
= γ2I2 − θ2H22,

(7)

where βi is the infection coefficient in area i, which represents the effective
infectivity of the transmissible disease. αiβj is the infection coefficient during
the temporary visit to area j, which is smaller than βj (0 < αi < 1). γi is
the treatment rate of the infective in area i, and θi is the recovery rate by
the medical treatment in area i. p is the proportion of infectives belonging
to the peripheral area, who get the medical treatment in the central area
(0 ≤ p ≤ 1). From the assumption, it holds that S1 + I1 +H11 +H21 = N1,
S2 + I2 +H22 = N2 for any time t with positive constants N1 and N2.

With the frequencies φi = Si/Ni, ψi = Ii/Ni, ζij = Hij/Nj , the area-
specified basic reproduction numbers Rr

0 = β1N1/γ1 for the peripheral area
and Rc

0 = β2N2/γ2 for the central area, we can transform the system (7) to

dφ1

dt
= −Rr

0γ1ψ1φ1 −Rc
0γ2α1ψ2φ1 + θ1ζ11 + θ2ζ21;

dψ1

dt
= Rr

0γ1ψ1φ1 + Rc
0γ2α1ψ2φ1 − γ1ψ1;

dζ11

dt
= (1− p)γ1ψ1 − θ1ζ11;

dζ21

dt
= pγ1ψ1 − θ2ζ21;

dφ2

dt
= −Rc

0γ2ψ2φ2 −Rr
0γ1α2ψ1φ2 + θ2ζ22;

dψ2

dt
= Rc

0γ2ψ2φ2 + Rr
0γ1α2ψ1φ2 − γ2ψ2;

dζ22

dt
= γ2ψ2 − θ2ζ22,

(8)
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Figure 2: Numerical examples of the temporal variation of the frequencies by the
system (8). (Rr

0 ,R
c
0) = (a) (0.4, 0.7); (b) (1.5, 1.2). Commonly, α1 = α2 =

0.5; θ1 = 0.6; θ2 = 0.8; γ1 = 0.5; γ2 = 0.8; p = 0.4.

where φ1 + ψ1 + ζ11 + ζ21 = 1, and φ2 + ψ2 + ζ22 = 1. As for the area-
specified basic reproduction numbers Rr

0 and Rc
0, we will give the detail later

in Section 3. Figure 2 shows numerical examples of the temporal variation of
the frequencies by the system (8) when the disease is extinct and persistent
respectively.

2.4 basic reproduction numbers

The basic reproduction number R0 is the expected supremum number of
secondary cases produced in a totally susceptible population by a single
infective individual during the time span of active infectivity [81]. If R0 < 1,
the number of infectives decreases and the disease will disapper after its
invasion in the community. Only if R0 > 1, the disease could persist after its
invasion in the community.

As described in Appendix 2.A.1 for the model (7), we can derive the
area-specified basic reproduction numbers Rr

0 = β1N1/γ1 for the peripheral
area and Rc

0 = β2N2/γ2 for the central area respectively. These are the basic
reproduction numbers for each area when two areas are fully isolated, that
is, the movement of susceptible individuals between them is prohibited.
In contrast, the basic reproduction number for the full epidemic dynamics
governed by (7) can be mathematically defined as

R0 =
Rr

0 + Rc
0 +

√
(Rr

0 −Rc
0)2 + 4α1α2R

r
0Rc

0

2
, (9)

which is the basic reproduction number for the whole community with the
mobility of susceptible individuals. We can easily find that R0 > Rr

0 and
R0 > Rc

0. When α1α2 = 0, that is, under a lockdown introduced in the
previous section, we have R0 = max {Rr

0 , Rc
0} from (9).

2.5 different policies of lockdown

Depending on the population size, the severity of pandemic, the economic
level, the medical condition, and the living customs in each region, it would
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be necessary to adopt an appropriate type of lockdown policy. In this work,
we consider different levels of restriction on individuals’ mobility.

Without the lockdown in our model, the temporary visit of susceptibles is
allowed in each area, and infectives of the peripheral area may get the medical
treatment in the central area (generally supposing that the central area has
a higher quality of the medical treatment than that in the peripheral area).
Table 1 shows four different types of the lockdown which we introduce in our
model. Under the weak lockdown type 1, only susceptibles of the peripheral
area are prohibited to visit the central area. Under the weak lockdown type
2, only susceptibles of the central area are prohibited to visit the peripheral
area. Under the strong lockdown, the movement of any susceptibles between
two areas is prohibited. For these three types of lockdown, infectives of the
peripheral area may get the medical treatment in the central area. In contrast,
under the complete lockdown, two areas become fully independent of each
other and any movement is prohibited between them, and infectives of the
peripheral area cannot get the medical treatment in the central area.

2.6 disease-free equilibrium

Disease-free equilibrium is defined as an equilibrium state without the
disease. For the model (8), it becomes E0(1, 0, 0, 0, 1, 0, 0). By the eigenvalue
analysis on the Jacobian matrix for E0, we can obtain the following result on
the local stability (Appendix 2.A.2):

Theorem 2.1. Disease-free equilibrium E0(1, 0, 0, 0, 1, 0, 0) is unstable if one of
the following conditions is satisfied:

(i) Rr
0 ≥ 1;

(ii) Rc
0 ≥ 1;

(iii)
( 1

Rr
0

− 1
)( 1

Rc
0

− 1
)
< α1α2.

When the mobility of susceptible individuals is sufficiently large, that
is, with sufficiently large α1α2, E0 is unstable with the condition Rr

0 < 1

and Rc
0 < 1. When α1α2 = 0, that is, the mobility of susceptible individuals

is prohibited for any of two areas, E0 is unstable if and only if the disease
persists at least in one of two areas.

Table 1: Different types of lockdown for our model (7).

α1 α2 p

Weak lockdown type 1 0 + +

Weak lockdown type 2 + 0 +

Strong lockdown 0 0 +

Complete lockdown 0 0 0
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2.7 endemic equilibrium

Endemic equilibrium means an equilibrium state at which the number of
infectives keeps a positive value for any time t. As shown in Appendix 2.A.3,
we can get the following result on the existence of a unique endemic equilib-
rium E∗(φ∗1,ψ∗1 , ζ∗11, ζ∗21,φ∗2,ψ∗2 , ζ∗22):

Lemma 2.1. Endemic equilibrium E∗ uniquely exists if and only if one of the
conditions (i), (ii) and (iii) in Theorem 4.1 is satisfied, independently of which type
of lockdown is adopted to the community.

Especially we can show the global stability of E∗ under the complete or
strong lockdown, making use of the Lyapunov function (Appendix 2.A.4):

Theorem 2.2. Under the strong lockdown with α1 = α2 = 0 or the complete lock-
down with α1 = α2 = p = 0, the endemic equilibrium E∗ is globally asymptotically
stable when it exists.

We have not obtained any mathematical result on the global stability
of E∗ under the weak lockdown or no lockdown. Numerical calculations
of the system (8), as shown in Figure 2(b), imply that it would be globally
asymptotically stable when it exists.

2.8 endemic size

The proportion of population size in the peripheral area and central area is
defined by ρ := N1/N2. We define here the endemic size as the total number
of infective individuals in the community at the endemic equilibrium E∗.
For our model (8), we define it by Ψ∗ := (N1 +N2 − S∗1 − S∗2)/(N1 +N2) =
1 − (ρφ∗1 + φ∗2)/(1 + ρ). We now designate the endemic sizes under the
complete, strong, and weak (type 1 and 2) lockdowns respectively by Ψ∗c , Ψ∗s ,
Ψ∗w1 and Ψ∗w2. We can get the following formulas of them from (8):

Ψ∗c =
ρ

1 + ρ

(
1− 1

Rr
0

)
+

1

1 + ρ

(
1− 1

Rc
0

)
;

Ψ∗s =
ρ

1 + ρ

(
1− 1

Rr
0

)
+

1

1 + ρ

(
1− 1

Rc
0

)
;

Ψ∗w1 =
ρ

1 + ρ

(
1− 1

Rr
0

)
+

1

1 + ρ
(1− φ∗2);

Ψ∗w2 =
ρ

1 + ρ
(1− φ∗1) +

1

1 + ρ

(
1− 1

Rc
0

)
,

where φ∗1 is the smaller root of the following quadratic equation of x, which
is less than 1/Rr

0 :

Rr
0γ1θ1θ2x

2 −
{

(Rr
0 + 1)γ1θ1θ2 + Rc

0α1ψ
∗
2γ2
[
θ1θ2 + (1− p)γ1θ2 + pγ1θ1

]}
x+ γ1θ1θ2 = 0

with ψ∗2 = θ2[1− (1/Rc
0)]/(θ2 + γ2). φ∗2 is the smaller root of the following

quadratic equation of x, which is less than 1/Rc
0:

Rc
0γ2θ2x

2 −
[
(Rc

0 + 1)γ2θ2 + Rr
0α2ψ

∗
1γ1(γ2 + θ2)

]
x+ γ2θ2 = 0

with ψ∗1 = θ1θ2[1− (1/Rr
0)]/[θ1θ2 + (1− p)γ1θ2 + pγ1θ1].

Since φ∗1 < 1/Rr
0 and φ∗2 < 1/Rc

0, we can easily obtain the order of
endemic sizes Ψ∗c = Ψ∗s < Ψ∗w•. The weak lockdown with minimal restrictions
has the least effect on preventing the spread of the epidemic.
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Figure 3: ρ dependence of Ψ∗w1 −Ψ∗w2. Numerically drawn with different value of
(a) θ1 = 0.1; (b) α1 = 0.3. Commonly, N2 = 2.0× 105; β1 = 8.0× 10−4;
β2 = 9.0× 10−4; γ1 = 0.3; γ2 = 0.9; α2 = 0.3; p = 0.4; θ2 = 0.5.

Figure 4: Parameter dependence of the order of epidemic sizes for the two types weak
lockdown. Numerically drawn with (a) θ2 = 0.5; (b) θ2 = 2. Commonly,
N1 = 1.0× 105; N2 = 2.0× 105; β1 = 8.0× 10−4; β2 = 9.0× 10−4; γ1 =
0.3; γ2 = 0.9; α1 = α2 = 0.3; θ2 = 0.5.

Population distribution

The efficiency of two types of weak lockdown is dependent on the parameter
ρ, the population distribution of the whole community. ρ is sufficiently small
if the population density of the central area is sufficiently larger than that
of the peripheral area. In this case, the endemic size is primarily influenced
by the endemic size of the central area, we can get that the weak lockdown
type 2 is better than type 1 as shown in Figure 3. Inversely, if we consider
the sufficient large population size of the peripheral area, we can get the
opposite result. Therefore, a more efficient weak lockdown is the prohibition
of mobility for susceptible individuals from an area of high population
density to that of low population density.

Hospitalization period

In our model, hospitalization period is given by 1/θ•. The extended hos-
pitalization period aims to reduce the pool of susceptible individuals and
slow the spread of the epidemic. Referring to Figure 4, when hospitalization
period of the peripheral area is longer than that of central area, raising the
proportion of infected individuals from the peripheral area to get medical
treatment in the central area could result in an increase in the endemic size
of the peripheral area. Furthermore, for a specific value of p, an extended
hospitalization period in the central area requires a longer hospitalization
period in the peripheral area to ensure that weak lockdown type 1 is better
than type 2.
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2.9 discussion

We consider an SIS +H model, where H represents the isolated state in the
community. In our model, we assume the community is composed by two
areas. The basic reproduction of the whole epidemic system is larger than
that of each area, which implies that individuals’ mobility could accelerate
the spread of transmissible disease. This result is consistent with previous
findings that human mobility can substantially accelerate epidemic spread
and increase the risk of infection. Lockdown is therefore a strategy to restrict
mobility, which could play a significant role in reducing epidemic spread
at an early stage, and has indeed been implemented in many countries and
regions during recent outbreaks.

Our purpose was to investigate whether different levels of lockdown can
achieve a balance between epidemic control and individuals’ activities. For
this reason, we introduced four types of lockdown by imposing different
restrictions on mobility. The mathematical results comparing the endemic
sizes under these four types indicate that complete and strong lockdowns
have the same endemic size, which is smaller than those under weak lock-
down. Allowing peripheral infected individuals to get medical treatment
in the central area does not have an effect on the endemic size. The weak
lockdown with minimal restriction on mobility has the lowest efficiency in
suppressing the spread of an epidemic. When the hospital in the central
area has a sufficiently longer isolation period than the peripheral area, free
infectives under the strong lockdown are less than those under the complete
lockdown. Furthermore, our results reveal that the population distribution
between the two areas plays an important role in comparing the endemic
sizes of the two weak lockdowns. For the weak lockdown, more efficient is
the prohibition of mobility for susceptible individuals from an area of high
population density to that of low population density. This finding provides a
mathematical explanation for why restrictions on flows connecting highly
populated areas can be more impactful in practice.

In summary, our analysis shows that the efficiency of lockdown depends
not only on the strictness of mobility restrictions but also on the population
distribution. These findings contribute a mathematical perspective on how
different lockdown levels shape epidemic consequence.
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appendix for chapter 2

appendix 2.a .1: derivation of the basic reproduction numbers

First, we define the area-specific basic reproduction number Rr
0 for the

peripheral area. Let we consider the initial stage of the disease invasion in
the peripheral area, at t = 0. The number of infective individuals in the
peripheral area is sufficiently small. If the disease invasion is successful, the
number of infective individuals in the peripheral area increases after it, that
is,

dI1
dt

∣∣∣∣
t=0

=
(
β1S1(0)− γ1

)
I1(0) > 0.

This occurs if and only if
β1S1(0)

γ1
> 1. (10)

If the inequality of (10) is inverse, the disease invasion fails, and the number
of infective individuals decreases in the peripheral area.

From the biological definition of the basic reproduction number, the
disease invasion is successful only if Rr

0 > 1, while it fails if Rr
0 < 1. Since the

basic reproduction number is conceptually defined as the expected number
of secondary cases by a single infective individual in a totally susceptible
population during the infection, we can define Rr

0 as the supremum of the
value β1S1(0)/γ1 from the condition (10) as follows:

Rr
0 := sup

S1(0)

β1S1(0)

γ1
=
β1N1

γ1
.

From this definition of Rr
0 , we have dI1/dt > 0 only when Rr

0 > 1. When
Rr

0 < 1, we have dI1/dt < 0. The derivation of the area-specified basic
reproduction number Rc

0 for the central area is the same as that of Rr
0 , and

we can define Rc
0 := β2N2/γ2.

In order to mathematically derive the basic reproduction number R0

for the community, we use here the method of the next generation ma-
trix [18]. Firstly, we change the order of equations in (8) for a mathematical
convenience:

dψ1

dt
= Rr

0γ1ψ1φ1 + Rc
0γ2α1ψ2φ1 − γ1ψ1;

dψ2

dt
= Rc

0γ2ψ2φ2 + Rr
0γ1α2ψ1φ2 − γ2ψ2;

dφ1

dt
= −Rr

0γ1ψ1φ1 −Rc
0γ2α1ψ2φ1 + θ1ζ11 + θ2ζ21;

dφ2

dt
= −Rc

0γ2ψ2φ2 −Rr
0γ1α2ψ1φ2 + θ2ζ22;

dζ11

dt
= (1− p)γ1ψ1 − θ1ζ11;

dζ21

dt
= pγ1ψ1 − θ2ζ21;

dζ22

dt
= γ2ψ2 − θ2ζ22.

(11)

Next we decompose the above system as the form

dX

dt
= F (X)− V (X),
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where X = (ψ1(t),ψ2(t),φ1(t),φ2(t), ζ11(t), ζ21(t), ζ22(t))T . F contains only
the recruitment terms of the infection, and V does the other factors in (11):

F :=


Rr

0γ1ψ1φ1+Rc
0γ2α1ψ2φ1

Rc
0γ2ψ2φ2+Rr

0γ1α2ψ1φ2
0
0
0
0
0

 ; V :=


γ1ψ1
γ2ψ2

Rr
0γ1ψ1φ1+Rc

0γ2α1ψ2φ1−θ1ζ11−θ2ζ21
Rc

0γ2ψ2φ2+Rr
0γ1α2ψ1φ2−θ2ζ22

−(1−p)γ1ψ1+θ1ζ11
−pγ1ψ1+θ2ζ21
−γ2ψ2+θ2ζ22

 .

The Jacobian matrices of F and V are now obtained as

DF (X) :=


Rr

0γ1φ1 Rc
0γ2α1φ1 Rr

0γ1ψ1+Rc
0γ2α1ψ2 0 0 0 0

Rr
0γ1α2φ2 Rc

0γ2φ2 0 Rc
0γ2ψ2+Rr

0γ1α2ψ1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ;

DV (X) :=


γ1 0 0 0 0 0 0
0 γ2 0 0 0 0 0

Rr
0γ1φ1 Rc

0γ2α1φ1 Rr
0γ1ψ1+Rc

0γ2α2ψ2 0 −θ1 −θ2 0
Rr

0γ1α2φ2 Rc
0γ2φ2 0 Rc

0γ2ψ2+Rr
0γ1α2ψ1 0 0 −θ2

−(1−p)γ1 0 0 0 θ1 0 0
−pγ1 0 0 0 0 θ2 0

0 −γ2 0 0 0 0 θ2

 .

For the disease-free equilibrium X0 = (0, 0, 1, 1, 0, 0, 0)T , we have

DF (X0) :=


Rr

0γ1 Rc
0γ2α1 0 0 0 0 0

Rr
0γ1α2 Rc

0γ2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ; DV (X0) :=


γ1 0 0 0 0 0 0
0 γ2 0 0 0 0 0

Rr
0γ1 Rc

0γ2α1 0 0 −θ1 −θ2 0
Rr

0γ1α2 Rc
0γ2 0 0 0 0 −θ2

−(1−p)γ1 0 0 0 θ1 0 0
−pγ1 0 0 0 0 θ2 0

0 −γ2 0 0 0 0 θ2

 .

By the upper left 2× 2 block matrix for each of DF (X0) and DV (X0), we
define

F :=

 Rr
0γ1 Rc

0γ2α1

Rr
0γ1α2 Rc

0γ2

 ; V :=

γ1 0

0 γ2

 .

Then we can derive the next generation matrix

K = FV−1 =

 Rr
0 Rc

0α1

Rr
0α2 Rc

0

 .

Since the basic reproduction number R0 is given by the maximum absolute
value of the eigenvalues of K [18], we can get the basic reproduction number
R0 given by (9).

appendix 2.a .2: proof of theorem 2.1

From (8), the Jacobian matrix at the disease-free equilibriumE0(1, 0, 0, 0, 1, 0, 0)
becomes

J(1, 0, 0, 0, 1, 0, 0) :=


0 −Rr

0γ1 θ1 θ2 0 −Rc
0γ2α1 0

0 (Rr
0−1)γ1α2 0 0 0 Rc

0γ2 0
0 (1−p)γ1 −θ1 0 0 0 0
0 pγ1 0 −θ2 0 0 0
0 −Rr

0γ1α2 0 0 0 −Rc
0γ2 θ2

0 Rr
0γ1α2 0 0 0 (Rc

0−1)γ2 0
0 0 0 0 0 γ2 −θ2

 .
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The characteristic equation of this Jacobian matrix can be obtained as

λ2(λ+ θ2)2(λ+ θ1)
{[
λ− (Rr

0 −1)γ1
][
λ− (Rc

0−1)γ2
]
−α1α2γ1γ2R

r
0Rc

0

}
= 0.

Then we find −θ1, and degenerated 0, −θ2 as the eigenvalues. Besides, we
have a quadratic equation given by the last factor in the left side, which
determines the other two eigenvalues λ1 and λ2. Since the discriminant of
the quadratic equation is always positive, λ1 and λ2 are necessarily real. We
can easily find that both λ1 and λ2 are non-positive if and only if

(Rr
0 − 1)γ1 < 0;

(Rc
0 − 1)γ2 < 0;

(Rr
0 − 1)(Rc

0 − 1) ≥ α1α2R
r
0Rc

0.

If one of the above three conditions is unsatisfied, λ1 or λ2 is positive. In such
a case, the disease-free equilibrium is unstable. The result leads to Theorem
2.1.

appendix 2.a .3: proof of lemma 2.1

Consider the existence of an endemic equilibriumE∗(φ∗1,ψ∗1 , ζ∗11, ζ∗21,φ∗2,ψ∗2 , ζ∗22)
with ψ∗1 > 0 or ψ∗2 > 0. From (8), we can derive the following relations of ψ∗1
and ψ∗2 :

θ1θ2 + (1− p)γ1θ2 + pγ1θ1

θ1θ2
ψ∗1 =

Rc
0γ2α1ψ

∗
2 + (Rr

0 − 1)γ1ψ
∗
1

Rr
0γ1ψ

∗
1 + Rc

0γ2α1ψ
∗
2

;

θ2 + γ2

θ2
ψ∗2 =

Rr
0γ1α2ψ

∗
1 + (Rc

0 − 1)γ2ψ
∗
2

Rc
0γ2ψ

∗
2 + Rr

0γ1α2ψ
∗
1

,

that is,

ψ∗2 = −
Rr

0γ1

Rc
0γ2α1

ψ∗1 −
γ1ψ
∗
1

Rc
0γ2α1(Aψ∗1 − 1)

= f(ψ∗1);

ψ∗1 = −
Rc

0γ2

Rr
0γ1α2

ψ∗2 −
γ2ψ
∗
2

Rr
0γ1α2(Bψ∗2 − 1)

= g(ψ∗2),

where A :=
[
θ1θ2 + (1− p)γ1θ2 + pγ1θ1

]
/
(
θ1θ2

)
and B :=

(
θ2 + γ2

)
/θ2. The

curve of f(ψ1) has asymptotes ψ1 = 1/A and

ψ2 = −
Rr

0γ1

Rc
0γ2α1

ψ1 −
γ1

ARc
0γ2α1

.

The curve of g(ψ2) has asymptotes ψ2 = 1/B and

ψ1 = −
Rc

0γ2

Rr
0γ1α2

ψ2 −
γ2

BRr
0γ1α2

.

We have

f ′(ψ1) =
γ1

Rc
0γ2α1

[ 1

(Aψ1 − 1)2
−Rr

0

]
> 0

if and only if
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1

A

(
1−

√
Rr

0

Rr
0

)
< ψ1 <

1

A
,

1

A
< ψ1 <

1

A

(
1 +

√
Rr

0

Rr
0

)
.

Further we have

f

(
1

A

(
1−

√
Rr

0

Rr
0

))
= −

γ1
(
1−

√
Rr

0

)2
ARc

0γ2α1
< 0;

f

(
1

A

(
1 +

√
Rr

0

Rr
0

))
= −

γ1
(
1 +

√
Rr

0

)2
ARc

0γ2α1
< 0.

When ψ1 →
(
1/A

)
−0

, f(ψ1) → +∞, and when ψ1 →
(
1/A

)
+0

, f(ψ1) →
−∞. Similarly,

g′(ψ2) =
γ2

Rr
0γ1α2

[ 1

(Bψ2 − 1)2
−Rc

0

]
> 0

if and only if

1

B

(
1−

√
Rc

0

Rc
0

)
< ψ2 <

1

B
,

1

B
< ψ2 <

1

B

(
1 +

√
Rc

0

Rc
0

)
.

Further we have

g

(
1

B

(
1−

√
Rc

0

Rc
0

))
= −

γ2
(
1−

√
Rc

0

)2
BRr

0γ1α2
< 0;

g

(
1

B

(
1 +

√
Rc

0

Rc
0

))
= −

γ2
(
1 +

√
Rc

0

)2
BRr

0γ1α2
< 0.

When ψ2 →
(
1/B

)
−0

, g(ψ2) → +∞, and when ψ2 →
(
1/B

)
+0

, g(ψ2) →
−∞. Since 1/A and 1/B are asymptotes of f(ψ1) and g(ψ2) respectively, and
both are less than 1, if Rr

0 > 1 or Rc
0 > 1, two curves f(ψ1) and g(ψ2) must

have an intersection in the (ψ1,ψ2) =
(
(0, 1), (0, 1)

)
-plane. We can directly

obtain the conclusion from the (ψ1,ψ2)-plane that the endemic equilibrium
E∗ exists. If Rr

0 < 1 and Rc
0 < 1, the endemic equilibrium exists if and only

if
f ′(ψ1)

∣∣
ψ1=0 <

1

g′(ψ2)|ψ2=0
,

that is,
(
1/Rr

0 − 1
)(

1/Rc
0 − 1

)
< α1α2. Hence, the conditions for existence

of endemic equilibrium E∗ are shown in Lemma 2.1.

appendix 2.a .4: proof of theorem 2.2

Under the strong lockdown with α1 = α2 = 0, we can analyze the dynamics
for the peripheral area and central area separately. Supposing the endemic
equilibrium of peripheral area E∗1(φ∗1,ψ∗1 , ζ∗11), the system of the epidemic
dynamics for the peripheral area can be described from (8) as follows:

dφ1

dt
= −Rr

0γ1(ψ1 −ψ∗1)(φ1 − φ∗1)−Rr
0γ1ψ

∗
1(φ1 − φ∗1)− θ2(φ1 − φ∗1)

− (γ1 + θ2)(ψ1 −ψ∗1) + (θ1 − θ2)(ζ11 − ζ∗11);

dψ1

dt
= Rr

0γ1(ψ1 −ψ∗1)(φ1 − φ∗1) + Rr
0γ1ψ

∗
1(φ1 − φ∗1);

dζ11

dt
= (1− p)γ1(ψ1 −ψ∗1)− θ1(ζ11 − ζ∗11),

(12)
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where φ∗1 = 1/Rr
0 ;

ψ∗1 =
θ1θ2

θ1θ2 + (1− p)θ2γ1 + pθ1γ1
(1−φ∗1); ζ∗11 =

(1− p)θ2γ1

θ1θ2 + (1− p)θ2γ1 + pθ1γ1
(1−

φ∗1).

Let us define the set Ω1 = {(φ1,ψ1, ζ11) | φ1 ≥ 0,ψ1 ≥ 0, ζ11 ≥ 0,φ1 +
ψ1 + ζ11 ≤ 1}.
For the case of θ1 > θ2, we can find the following Lyapunov equation:

V (φ1,ψ1, ζ11) =
[
(φ1 − φ∗1) + (ψ1 −ψ∗1) +

θ1 − θ2

θ1 + θ2
(ζ11 − ζ∗11)

]2
+

(θ1 − θ2)
[
θ2(2− p) + θ1p

]
(θ1 + θ2)2(1− p)

(ζ11 − ζ∗11)2

+ 2

[
θ2(2− p) + θ1p

]
γ1 + 2θ2(θ1 + θ2)

(θ1 + θ2)Rr
0γ1

[
(ψ1 −ψ∗1)−ψ∗1 log

ψ1

ψ∗1

]
,

(13)
which is positive for any (φ1,ψ1, ζ11) 6= (φ∗1,ψ∗1 , ζ∗11) in Ω1, and V (φ∗1,ψ∗1 , ζ∗11) =
0. Further,

dV (φ1,ψ1, ζ11)

dt
= −2θ2(φ1 − φ∗1)2 − 2

{[
1− θ1 − θ2

θ1 + θ2
(1− p)

]
γ1 + θ2

}
(ψ1 −ψ∗1)2

− 2
(θ1 − θ2)

[
θ1θ2 + θ2

1p+ θ2
2(1− p)

]
(θ1 + θ2)2(1− p)

(ζ11 − ζ∗11)2

becomes negative for any (φ1,ψ1, ζ11) 6= (φ∗1,ψ∗1 , ζ∗11) in Ω1, and zero for
(φ1,ψ1, ζ11) = (φ∗1,ψ∗1 , ζ∗11).
For the case of θ1 = θ2, we can find the following Lyapunov equation:

V (φ1,ψ1, ζ11) =
[
(φ1 − φ∗1) + (ψ1 −ψ∗1)

]2
+

2(2θ1 + γ1)

Rr
0γ1

[
(ψ1 −ψ∗1)−ψ∗1 log

ψ1

ψ∗1

]
which is positive for any (φ1,ψ1, ζ11) 6= (φ∗1,ψ∗1 , ζ∗11) in Ω1, and V (φ∗1,ψ∗1 , ζ∗11) =
0. Further,

dV (φ1,ψ1, ζ11)

dt
= −2θ1(φ1 − φ∗1)2 − 2(γ1 + θ1)(ψ1 −ψ∗1)2

becomes negative for any (φ1,ψ1, ζ11) 6= (φ∗1,ψ∗1 , ζ∗11) in Ω1. When φ1 → φ∗1
and ψ1 → ψ∗1 , obtain ζ ′11 → −θ1(ζ11 − ζ∗11). Then, denote ˜ζ11

′
= −θ1( ˜ζ11 −

ζ∗11), since ζ ′11 − ˜ζ11
′ → 0, obtain |ζ11 − ˜ζ11| → 0, that is, ζ11 → ˜ζ11. With

˜ζ11 → ζ∗11, we get the result that ζ11 → ζ∗11 when φ1 → φ∗1 and ψ1 → ψ∗1 .
Hence dV (φ1,ψ1, ζ11)/dt becomes zero for (φ1,ψ1, ζ11) = (φ∗1,ψ∗1 , ζ∗11).
For the case of θ1 < θ2, considering the reduced system

dφ1

dt
= −Rr

0γ1(ψ1 −ψ∗1)(φ1 − φ∗1)−Rr
0γ1ψ

∗
1(φ1 − φ∗1)− θ1(φ1 − φ∗1)

− (γ1 + θ1)(ψ1 −ψ∗1) + (θ2 − θ1)(ζ21 − ζ∗21);

dψ1

dt
= Rr

0γ1(ψ1 −ψ∗1)(φ1 − φ∗1) + Rr
0γ1ψ

∗
1(φ1 − φ∗1);

dζ21

dt
= pγ1(ψ1 −ψ∗1)− θ2(ζ21 − ζ∗21),

(14)

where φ∗1 = 1/Rr
0 , ψ∗1 = θ2(1− φ∗1)/(θ2 + pγ1), ζ∗21 = pγ1(1− φ∗1)/(θ2 +

pγ1).
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Let us define the set Ω2 = {(φ1,ψ1, ζ21) | φ1 ≥ 0,ψ1 ≥ 0, ζ21 ≥ 0,φ1 + ψ1 +
ζ21 ≤ 1}, we can find the following Lyapunov equation:

V (φ1,ψ1, ζ21) =
[
(φ1 − φ∗1) + (ψ1 −ψ∗1) +

θ2 − θ1

θ1 + θ2
(ζ21 − ζ∗21)

]2
+

(θ2 − θ1)
[
θ2(1− p) + θ1(1 + p)

]
(θ1 + θ2)2p

(ζ21 − ζ∗21)2

+ 2

[
θ2(1− p) + θ1(1 + p)

]
γ1 + 2θ1(θ1 + θ2)

(θ1 + θ2)Rr
0γ1

[
(ψ1 −ψ∗1)−ψ∗1 log

ψ1

ψ∗1

]
which is positive for any (φ1,ψ1, ζ21) 6= (φ∗1,ψ∗1 , ζ∗21) in Ω2, and V (φ∗1,ψ∗1 , ζ∗21) =
0. Further,

dV (φ1,ψ1, ζ21)

dt
= −2θ1(φ1 − φ∗1)2 − 2

{[
1− (θ2 − θ1)p

θ1 + θ2

]
γ1 + θ1

}
(ψ1 −ψ∗1)2

− 2
(θ2 − θ1)

[
θ1θ2 + θ2

1p+ θ2
2(1− p)

]
(θ1 + θ2)2p

(ζ21 − ζ∗21)2

becomes negative for any (φ1,ψ1, ζ21) 6= (φ∗1,ψ∗1 , ζ∗21) in Ω2, and zero for
(φ1,ψ1, ζ21) = (φ∗1,ψ∗1 , ζ∗21).
Then, supposing the endemic equilibrium of central area E∗2(φ∗2,ψ∗2), the
system of the epidemic dynamics for the central area can be described from
(8) as follows:

dφ2

dt
= −Rc

0γ2(ψ2 −ψ∗2)(φ2 − φ∗2)−Rc
0γ2ψ

∗
2(φ2 − φ∗2)− θ2(φ2 − φ∗2)

− (γ2 + θ2)(ψ2 −ψ∗2);

dψ2

dt
= Rc

0γ2(ψ2 −ψ∗2)(φ2 − φ∗2) + Rc
0γ2ψ

∗
2(φ2 − φ∗2),

(15)

where φ∗2 = 1/Rc
0, ψ∗2 = θ2(1− φ∗2)/(γ2 + θ2). Let us define the set Ω′2 =

{(φ2,ψ2)|φ2 ≥ 0,ψ2 ≥ 0,φ2 + ψ2 ≤ 1}, we can find the following Lyapunov
equation:

V (φ2,ψ2) =
[
(φ2 − φ∗2) + (ψ2 −ψ∗2)

]2
+

2(2θ2 + γ2)

Rc
0γ2

[
(ψ2 −ψ∗2)−ψ∗2 log

ψ2

ψ∗2

]
which is positive for any (φ2,ψ2) 6= (φ∗2,ψ∗2) in Ω′2, and V (φ∗2,ψ∗2) = 0.
Further,

dV (φ2,ψ2)

dt
= −2θ2(φ2 − φ∗2)2 − 2(γ2 + θ2)(ψ2 −ψ∗2)2

becomes negative for any (φ2,ψ2) 6= (φ∗2,ψ∗2) in Ω′2, and zero for (φ2,ψ2) =
(φ∗2,ψ∗2). Thus, under the strong lockdown, the endemic equilibriumE∗s (φ∗1,ψ∗1 ,

ζ∗11, ζ∗21,φ∗2,ψ∗2 , ζ∗22) is globally asymptotically stable.
Then, consider the stability of endemic equilibrium under the complete

lockdown, the case of α1 = α2 = p = 0. Supposing the endemic equilibrium
of peripheral area E∗11(φ∗1,ψ∗1), the system of the epidemic dynamics for the
peripheral area can be described from (8) as follows:

dφ1

dt
= −Rr

0γ1(ψ1 −ψ∗1)(φ1 − φ∗1)−Rr
0γ1ψ

∗
1(φ1 − φ∗1)− θ1(φ1 − φ∗1)

− (γ1 + θ1)(ψ1 −ψ∗1);

dψ1

dt
= Rr

0γ1(ψ1 −ψ∗1)(φ1 − φ∗1) + Rr
0γ1ψ

∗
1(φ1 − φ∗1),
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where φ∗1 = 1/Rr
0 , ψ∗1 = θ1(1−φ∗1)/(θ1 +γ1). Define the set Ω′1 = {(φ1,ψ1)|φ1 ≥

0,ψ1 ≥ 0,φ1 + ψ1 ≤ 1}, we can find the following Lyapunov equation:

V (φ1,ψ1) =
[
(φ1 − φ∗1) + (ψ1 −ψ∗1)

]2
+

2(2θ1 + γ1)

Rr
0γ1

[
(ψ1 −ψ∗1)−ψ∗1 log

ψ1

ψ∗1

]
which is positive for any (φ1,ψ1) 6= (φ∗1,ψ∗1) in Ω′1, and V (φ∗1,ψ∗1) = 0.
Further,

dV (φ1,ψ1)

dt
= −2θ1(φ1 − φ∗1)2 − 2(γ1 + θ1)(ψ1 −ψ∗1)2

becomes negative for any (φ1,ψ1) 6= (φ∗1,ψ∗1) in Ω′1, and zero for (φ1,ψ1) =
(φ∗1,ψ∗1).
Then, supposing the endemic equilibrium of central area E∗22(φ∗2,ψ∗2), the
system of the epidemic dynamics for the central area can be described from
(8) as follows:

dφ2

dt
= −Rc

0γ2(ψ2 −ψ∗2)(φ2 − φ∗2)−Rc
0γ2ψ

∗
2(φ2 − φ∗2)− θ2(φ2 − φ∗2)

− (γ2 + θ2)(ψ2 −ψ∗2);

dψ2

dt
= Rc

0γ2(ψ2 −ψ∗2)(φ2 − φ∗2) + Rc
0γ2ψ

∗
2(φ2 − φ∗2),

where φ∗2 = 1/Rc
0, ψ∗2 = θ2(1− φ∗2)/(γ2 + θ2). Let us define the set Ω′22 =

{(φ2,ψ2)|φ2 ≥ 0,ψ2 ≥ 0,φ2 + ψ2 ≤ 1}, we can find the following Lyapunov
equation:

V (φ2,ψ2) =
[
(φ2 − φ∗2) + (ψ2 −ψ∗2)

]2
+

2(2θ2 + γ2)

Rc
0γ2

[
(ψ2 −ψ∗2)−ψ∗2 log

ψ2

ψ∗2

]
which is positive for any (φ2,ψ2) 6= (φ∗2,ψ∗2) in Ω′22, and V (φ∗2,ψ∗2) = 0.
Further,

dV (φ2,ψ2)

dt
= −2θ2(φ2 − φ∗2)2 − 2(γ2 + θ2)(ψ2 −ψ∗2)2

becomes negative for any (φ2,ψ2) 6= (φ∗2,ψ∗2) in Ω′22, and zero for (φ2,ψ2) =
(φ∗2,ψ∗2). Thus, under the complete lockdown, endemic equilibrium E∗c is
globally asymptotically stable.





3 I S O L AT I O N C A PA C I T Y

3.1 introduction

To reduce the risk of the spread of an infectious disease in the community,
the strategies of quarantine, isolation, vaccination, and treatment are es-
sential [28,54,85,170]. These strategies have been crucial in managing diverse
infectious diseases such as severe acute respiratory syndrome (SARS), plague,
smallpox, cholera, yellow fever, influenza, and SARS-CoV-2. As summarized
by Martcheva [110], the implementation of such control strategies has his-
torically proven effective in mitigating disease spread. In particular, the
COVID-19 pandemic underscored the significance of non-pharmaceutical
interventions. There have been different policies for the public health from
place to place [114,132,160]. Given the importance of isolation and quarantine
in the contribution to suppress the spread of diseases, there are a lot of
works have been done with mathematical models (for example, Brauer and
Castillo-Chavez [18], Chowell et al. [33], Feng and Thieme [59] and references
therein). However, many countries experienced severe shortages in medical
resources during the COVID-19 outbreak [58,87,113,131,137,143,160]. This situation
has prompted growing attention in understanding how medical capacity
constraints influence epidemic consequence. In recent times, some works
using mathematical models considered how the limited medical resources
could affect the transmission and management of an infectious disease(for ex-
ample, Abdelrazec et al. [1], Kumar et al. [95], Mu et al. [119], Qin et al. [135], Saha
and Samanta [141], Sepulaveda-Salcedo et al. [145], Wang et al. [163], Wei et
al. [167], Zhao et al. [177] and references therein).

Quarantine/ isolation may be either perfect or imperfect, depending
on the nature of the epidemic and the policies adopted by the community.
Erdem et al. [57] considered imperfect quarantine and found a periodic so-
lution or damped oscillation that indicates recurring outbreaks, depending
on the quarantine effectiveness. Since isolation requires a certain space with
controlled conditions to keep the infected individuals away from the other
community members. If this capacity is too small, the isolation strategy may
break down at a finite time on the way of epidemic process. Amador and
Gómez-Corral [9] proposed a stochastic SIQS model with two quarantine
states in which the quarantine has a limited capacity. Their numerical cal-
culation showed a case where the quarantine compartment may become
saturated before the epidemic ends. However, they did not clarify the condi-
tions for this breakdown, as their focus was on the mathematical properties
of the model.

In this chapter, we construct and analyze mathematical models to consider
the relation of the isolation capacity to the epidemic consequence. In Section
3.2, we consider an SIRI+Q model with the discharge of isolated individuals
after the recovery, that is, an epidemic dynamics for a period longer than that
for the model in Section 3.4, in which the epidemic dynamics is assumed only
for a sufficiently short season, and thus without the discharge from isolation.
Since a discharge of recovered individuals from the isolation could serve a
supply of potential hosts for the disease spread because of its reinfectivity,
the discharge from the isolation must be one of the important factors to

26
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recoveryinfection

isolation discharge
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Q

Figure 5: Generic schema of the state transition in the considered epidemic dynamics
with the susceptible, infective, isolated (quarantined), and recovered classes:
S, I, Q, and R.

determine the effectivity of quarantine/isolation measure for the public
health. It is worth considering the model with such a discharge of recovered
individuals from the isolation which has a limited capacity. In section 3.3, we
introduce a work given by Ahmad and Seno [4], they considered an SIR+Q
model with a system of ordinary differential equations, introducing a limited
capacity of isolation. In Section 3.4, we focus on the relation of such a limited
capacity of isolation to the endemicity and the final epidemic/endemic size
for a simplest SIRI+Q model on the epidemic dynamics of a reinfectious
disease, expanding the modeling by Ahmad and Seno [4]. The reinfectivity of
disease means that the immunity gained by either vaccination or recovery
is imperfect, so that the recovered individuals could have a risk of infection
again. Actually there are not a few transmissible diseases with a reinfectivity,
including chronic lung diseases [174], Ebola virus disease [3,106], hand, foot
and mouth disease [176], influenza [38,53,72,134,165], while the reinfectivity has
been still requiring further scientific researches to understand its kinetics
and other nature. In Section 3.5, we conduct mathematical analysis for the
full model given by Section 3.2 and then discuss the epidemic consequences.

3.2 modeling

3.2.1 Assumptions

We consider a modeling on the epidemic dynamics of a reinfectious disease
during an epidemic season, which consists of susceptible, infective, isolated,
and recovered individuals. We assume the followings for our modeling:

• The demographic change due to the natural birth, death, and migration
is negligible.

• The fatality of disease is negligible.

• The infection occurs by the contact of susceptible individual to not
only organic but also potentially inorganic subjects contaminated with
the pathogen to cause the disease. This assumption indicates that the
considered epidemic dynamics would be of a disease, for example,
transmitted with aerosols or droplets emitted from the infective indi-
viduals. The transmission may not necessarily require person-to-person
contacts.

• Even after the recovery from the disease, the individual may get the
infection again, that is, the disease is reinfectious.

• The isolation has a capacity beyond which the isolation is impossible.
However, even under a situation that the isolation has reached the
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capacity, the isolation may be available as the recruitment of isolation-
requiring infectives for the vacancy of isolation generated by the dis-
charge of some isolated individuals with their recovery. As long as the
recruitment fills the vacancy of isolation by the discharge, the isolation
remains deficient, that is, malfunctioning with its saturation. Only after
the discharge comes to overcompensate the recruitment, the isolation
works below the capacity and with some available vacancy.

• As long as the isolation functions well to work below the capacity,
its accessibility is constant independently of how many infectives are
isolated.

The “isolation capacity” means here the operational limit of a public
health measure to control and make the infectives be away from any occasion
to cause the secondary infection. Such an isolation measure requires not only
the facilities for the quarantine/isolation but also the workers to serve the
operation. Those requirements determine the isolation capacity.

Moreover, since the recovery generates an immunity against the disease,
the assumption of possible reinfection means here that the immunity is im-
perfect or partial against the disease as already mentioned in the introduction
section, for example, due to the multiplicity of pathogen types (e.g., mutated
variants) [70,165]. As long as we consider a specific pathogen, there may be
a immune response as the cross-immunity for the invasion of such similar
pathogens by the antigen generated for a specific type of pathogen. The
cross-immunity may suppress the reinfection or the effective symptom to
reproduce and discharge the pathogen out of the host to cause the disease
transmission, while the immunity obtained by the recovery from the disease
works only to reduce the risk of reinfection and there is a risk for the recov-
ered individual to get the infection again. For the reasonable modeling, we
assume that the reinfection after the recovery from the disease generally has
a likelihood not beyond that of the infection for the susceptible.

Since we assume that the reinfection follows the imperfectness of im-
munity obtained by the recovery from the disease, we will not introduce
any specific period or time scale to get reinfected after getting the immu-
nity in our model. Thus the state transition in terms of the disease fol-
lows the susceptible–infective–recovered/immunized–infective (SIRI) struc-
ture in our modeling, as used for example in Buonomo [26], Georgescu and
Zhang [65], Ghosh et al. [66], Gomes et al. [67,68], Guo et al. [69], Gökaydin et
al. [70], Martins et al. [111], Pagliara et al. [130], Pinto et al. [133], Song et al. [151], Sri-
vastava et al. [153], Stollenwerk et al. [155], Wang [166].

3.2.2 Infection and reinfection forces

From the assumption given in the previous subsection, the reinfection force
is introduced here not beyond the infection force λ for the susceptible. For
the simplest introduction of such a reinfection force, we assume now it as ελ
with a constant ε ∈ [0, 1]. For the extremal case of ε = 1, the recovery does
not work at all to reduce the reinfection risk. For ε = 0, the recovery gives the
perfect immunity so that there is no likelihood of reinfection. The parameter
ε means the index for the likelihood of reinfection after the recovery.

We introduce the infection force λ for the susceptible as following

λ = λ(I,Q) := β
I

N −Q
, (16)
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where I and Q are respectively the infective and isolated population sizes
(densities), N total population size in the community, and β the infection
coefficient. This formula of the infection force is lead from the following idea
with the assumption on the transmission route through the subjects contami-
nated with the pathogen. For the continuous time model, the infection force
is generally defined by the probability of infection per susceptible individual
in a sufficiently short time interval ∆t, which is mathematically given as
λ∆t+ o(∆t).

We ignore any change/shift in the custom and style of daily life in the
community under the epidemic dynamics. This indicates an assumption
that the free (non-isolated) individual has a daily life independent of the
situation of epidemic dynamics. Then the free individual is assumed to have
a probability to contact to the subjects which may be contaminated with the
pathogen, given by c∆t+ o(∆t) with a positive constant c in a sufficiently
short time interval ∆t. The frequency of such contacts to the subjects depends
only on the custom and style of daily life, and it is now assumed to be
represented by a constant c. The probability of the contact to contagious
subjects is assumed to be proportional to the ratio of infective population
density I to the free population density N −Q, that is given by I/(N −Q).
In other words, with the mean-field approximation, the probability that a
subject is contaminated by the pathogen is assumed to be proportional to
I/(N −Q). The infection by such a contagious contact follows a probability
characterizing the infectivity of the pathogen too. The product of these
three factors results in the infection probability per susceptible individual
in a sufficiently short time interval ∆t, given as λ(I,Q)∆t+ o(∆t) by the
above formula (16) with the infection coefficient β representing the constant
parameters determined by those three factors.

3.2.3 Isolation well-functioning phase

In our modeling for the epidemic dynamics with a limited capacity of
isolation, we need to take account of the epidemic phase determined by
the accessibility of isolation: isolation well-functioning phase and isolation
malfunctioning phase. In this subsection, we introduce the isolation well-
functioning phase, and isolation malfunctioning phase will be discussed in
the next subsection.

The isolation well-functioning phase refers to the stage of epidemic
dynamics in which the isolated population size Q is less than a given isolation
capacity Qmax. During this phase, the quarantine/isolation works with a
net rate given by σI with the infective population size I and the per capita
quarantine rate σ. In our modeling for this phase, the epidemic dynamics is
governed by

dS

dt
= −β I

N −Q
S;

dI

dt
= β

I

N −Q
S + εβ

I

N −Q
R− ρI − σI;

dQ

dt
= σI − αQ;

dR

dt
= ρI + αQ− εβ I

N −Q
R.

(17)

Variables S and R are the susceptible and recovered population sizes (den-
sities) respectively. The total population size is given by a constant N =
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S + I +Q+R. Parameter ρ and α are the recovery rate for the non-isolated
infective individual and the discharge rate for the isolated individual after
the recovery respectively.

As introduced in the Subsection 3.2.2, the infection force for the sus-
ceptible is given by βI/(N −Q) with a positive positive parameter β. The
reinfection force for the recovered individual is given by εβI/(N −Q) with
a constant ε ∈ [0, 1].

3.2.4 Isolation malfunctioning phase

The isolation malfunctioning phase refers to the stage of epidemic dynamics
in which the isolated population size Q has reached the capacity Qmax < N .
However, as mentioned in Subsection 3.2.1, the isolation keeps working even
in such a situation since there are always some individuals discharged from
the isolation, and then the isolation becomes capable only for the vacancy
generated by the discharge.

Let us suppose that the system reaches the isolation malfunctioning phase
first at t = t?. Then we can regard t = t? as the moment that the epidemic
dynamics transfers from the isolation well-functioning phase to the isolation
malfunctioning phase. At the isolation malfunctioning phase, the following
system governs the epidemic dynamics:

dS

dt
= −β I

N −Qmax
S;

dI

dt
= β

I

N −Qmax
S + εβ

I

N −Qmax
R− ρI −min

[
σI, αQmax

]
;

dQ

dt
= min

[
σI, αQmax

]
− αQmax;

dR

dt
= ρI + αQmax − εβ

I

N −Qmax
R.

(18)

The isolation is available only for the vacancy generated by the discharge
of some isolated individuals. At the isolation malfunctioning phase, the
net discharge rate is given by αQmax, since the isolated population size
is then Q = Qmax. Thus, when the isolation remains malfunctioning at
the capacity, the number of individuals discharged from the isolation in
[t, t+∆t) is given by αQmax∆t. Since the epidemic dynamics proceeds even
at the isolation malfunctioning phase, only the vacancy is available for the
isolation of the infectives in [t, t+∆t). As given by (17) at the isolation well-
functioning phase, the number of detected infectives in [t, t+∆t) is given
by σI∆t+ o(∆t). However, if the newly detected and isolation-requiring
infectives σI∆t + o(∆t) is beyond the discharge of isolated individuals
αQmax∆t, that is, if σI > αQmax, then the newly isolated infectives in [t, t+
∆t) must be equal to the vacancy by the discharge of isolated individuals
αQmax∆t, because the isolation is not available beyond its capacity. Thus,
we mathematically assumed that the isolated population size keeps being
the limit Qmax at the isolation malfunctioning phase where σI > αQmax:
dQ/dt = min

[
σI, αQmax

]
− αQmax = αQmax − αQmax = 0.

The epidemic dynamics could return to the isolation well-functioning
phase from the isolation malfunctioning phase if the isolated population size
becomes smaller than the capacity Qmax by the discharge of isolated indi-
viduals that overcompensates the recruitment of newly isolation-requiring
infectives. Such a transition from the isolation malfunctioning phase to the
isolation well-functioning phase occurs if the epidemic dynamics at the isola-
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tion malfunctioning phase leads to σI < αQmax. Remark that the situation
with σI = αQmax is regarded here as being at the isolation malfunctioning
phase, because it is a situation that the isolation operation is tight even though
the isolation can available for all recruitment of newly isolation-requiring
infectives.

3.2.5 SIRI+Q model

From the arguments for our modeling of epidemic phases in the previous
subsection, we shall consider the following mathematical model of epidemic
dynamics:

dS

dt
= −β I

N −Q
S;

dI

dt
= β

I

N −Q
S + εβ

I

N −Q
R− ρI −Φ(Q, I);

dQ

dt
= Φ(Q, I)− αQ;

dR

dt
= ρI + αQ− εβ I

N −Q
R

(19)

with

Φ(Q, I) :=


σI for Q < Qmax;

min
[
σI, αQmax

]
for Q = Qmax

and the initial condition (S(0), I(0),Q(0),R(0)) = (S0, I0, 0, 0) where I0 > 0

and S0 = N − I0 > 0. The term Φ(Q, I) gives the net isolation rate which
depends on the accessibility of isolation.

Our model (19) can be regarded as a piecewise smooth system (PSS), espe-
cially what is sometimes called Filippov system or switching system [11,15,45,46,60,97].

As a preliminary nature of the system (19) for our model, we have the
following boundedness of the solution (Appendix 3.A.1):

Lemma 3.1. For the initial condition (S(0), I(0),Q(0),R(0)) = (S0, I0, 0, 0)
with I0 > 0 and S0 = N − I0 > 0, the solution of (19) belongs to the set
ΩN := {(S, I,Q,R) ∈ R4

+ | S + I +Q+R = N} for t > 0.

From the definitions of isolation well-functioning and malfunctioning phases
described in Subsection 3.2.3 and 3.2.4, the solution of the system (19) be-
longing to Ωw

N := {(S, I,Q,R) ∈ ΩN | Q < Qmax} at the isolation well-
functioning phase, while it belongs to Ωm

N := {(S, I,Qmax,R) ∈ ΩN | σI ≥
αQmax} at the isolation malfunctioning phase.

By the transformation of variables and parameters,

τ := (ρ+ σ)t; u :=
S

N
; v :=

I

N
; q :=

Q

N
; w :=

R

N
;

R0 :=
β

ρ+ σ
; a :=

α

ρ+ σ
; γ :=

σ

ρ+ σ
; qmax :=

Qmax

N
,
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with the basic reproduction number R0 := β/(ρ+ σ) for the model (19),
we can derive the following non-dimensionalized system mathematically
equivalent to the system (19):

du

dτ
= −R0

v

1− q
u;

dv

dτ
= R0

v

1− q
u+ εR0

v

1− q
w− (1− γ)v− φ(q, v);

dq

dτ
= φ(q, v)− aq;

dw

dτ
= (1− γ)v + aq− εR0

v

1− q
w

(20)

with

φ(q, v) :=


γv for q < qmax;

min
[
γv, aqmax

]
for q = qmax,

and the initial condition (u(0), v(0), q(0),w(0)) = (u0, v0, 0, 0) where v0 =
1− u0 > 0.

From Lemma 3.1, the solution of (20) belongs to the set Ω1 := {(u, v, q,w) ∈
R4

+ | u+ v + q + w = 1} for τ > 0. Further the solution of the system (20)
belonging to Ωw

1 := {(u, v, q,w) ∈ Ω1 | q < qmax} at the isolation well-
functioning phase, while it belongs to Ωm

1 := {(u, v, qmax,w) ∈ Ω1 | γv ≥
aqmax} at the isolation malfunctioning phase. Remark that variables u, v, q,
w, and parameters γ, qmax are less than 1.

Model with no isolation

First we consider an extreme case of the system (20) with γ = 0, that is, the
model (19) with σ = 0 when the isolation is always unavailable as a measure
for the public health. Then we have Q(t) ≡ 0 for any t ≥ 0 for the model (19),
that is, q(τ ) ≡ 0 for any τ ≥ 0 for the system (20):

du

dτ
= −R00vu;

dv

dτ
= R00vu+ εR00vw− v;

dw

dτ
= v− εR00vw,

(21)

where τ = ρt, and R0 = R00 := β/ρ is the basic reproduction number
according to (21).

For the system (21), we find the following dynamical nature (Appendix
3.A.2):

Lemma 3.2. If and only if εR00 ≤ 1, the system (21) approaches a disease-
eliminated equilibrium (u, v,w) = (u∗, 0,w∗) with u∗ ∈ [0, 1) and w∗ = 1−u∗ ∈
(0, 1] as τ →∞. Otherwise with εR00 > 1, it approaches the endemic equilibrium

(u, v,w) =
(

0, 1− 1

εR00
,

1

εR00

)
(22)

as τ →∞.
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Lemma 3.2 mathematically indicates that the endemic equilibrium (22)
is globally asymptotically stable for the system (21) when and only when
εR00 > 1. Otherwise, the epidemic dynamics converges to a disease-eliminated
equilibrium which is then globally asymptotically stable. The equilibrium
value of w∗ represents the final epidemic size at the disease-eliminated equi-
librium, which depends on the initial condition given by u0 or v0 (= 1− u0)
as indicated in Appendix 3.A.2. The final epidemic size w∗ means the pro-
portion of individuals who experienced the disease in the community after
the disease has become eliminated.

Model with unlimited isolation

We analyze here the system (20) with qmax ≥ 1, that is, the system (19) with
Qmax ≥ N . This corresponds to the case where the isolation does not have
any capacity to limit the accessibility, and therefore φ(q, v) = γv for any q

in (20). In other words, the epidemic dynamics always stays at the isolation
well-functioning phase, and is governed by (17). The system considered here
becomes

du

dτ
= −R0

v

1− q
u;

dv

dτ
= R0

v

1− q
u+ εR0

v

1− q
w− v;

dq

dτ
= γv− aq;

dw

dτ
= (1− γ)v + aq− εR0

v

1− q
w,

(23)

corresponding to (17) with the variable and parameter transformation for
the non-dimensionalization given in Section 3.2.5.

We can find the following result on the condition that the system (23)
approaches a disease-eliminated equilibrium (Appendix 3.A.3):

Theorem 3.1. If and only if εR0 ≤ 1, the system (23) approaches a disease-
eliminated equilibrium as τ → ∞. Otherwise with εR0 > 1, it approaches the
endemic equilibrium

(u, v, q,w) = E∗w
(

0,
a

γ
q∗w, q∗w,

1

εR0
(1− q∗w)

)
, (24)

where

q∗w =
1

1 +B∗w
(25)

with

B∗w :=
a

γ

(
1− 1

εR0

)−1
. (26)

This theorem indicates that the endemic equilibrium E∗w for the system (23)
with εR0 > 1 is globally asymptotically stable, as shown by Lemma 3.16 in
Appendix 3.A.3.

Since the susceptible subpopulation size is zero at the endemic equilib-
rium state E∗w, it is sustained by the infective recruitment with the reinfection
of recovered individuals. In other words, the endemicity of disease in the



34 isolation capacity

community is established with a sufficiently high likelihood of reinfection,
which is now expressed as εR0 > 1. Such the endemic equilibrium can
exist only with the discharge of isolated individual, that is, with a > 0. No
endemic equilibrium exists under unlimited isolation capacity if no discharge
occurs, as will be shown in Section 3.4.

According to the mathematical consistency of the results in Theorem 3.1
and Lemma 3.2 of Subsection 3.2.5, we can find the following result:

Corollary 3.1.1. As γ → +0 with εR0 > 1, the endemic equilibrium E∗w given by
(24) converges to the endemic equilibrium (22) for the system (20) with γ = 0, that
is, for the model (19) with σ = 0 when the isolation is not taken as a measure for the
public health.

It can be easily shown that B∗w →∞ as γ → +0, so that q∗w → 0 as γ → +0

by (25), and then v∗w = (a/γ)q∗w → 1− 1/(εR00) as γ → +0.

3.3 for non-reinfectious disease

3.3.1 Assumptions and model

We present a framework by Ahmad and Seno [4], which considered an SIR+Q
model with a system of ordinary differential equations and incorporated a
limited capacity of isolation. They assumed the epidemic dynamics only for
a sufficiently short season, and thus without the discharge from isolation.
The model is developed under the following assumptions:

• The total population size of the community is constant, ignoring any de-
mographic change with birth, death, and migration in a given epidemic
season.

• The fatality of disease is negligible in the season.

• Isolated individuals cannot contact any other in the community.

• Any isolated individual is not discharged in the season.

• The isolation capacity is limited. When the isolation reaches the capacity,
it breaks down and becomes incapable.

Based on the above assumptions, the epidemic dynamics may contain
two phases: isolation well-functioning phase and isolation incapable phase.
The definition of isolation well-functioning phase here is the same as in
Subsection 3.2.3, indicating that the isolated population size Q is less than
a given isolation capacity Qmax. In contrast to the isolation malfunctioning
phase introduced in Subsection 3.2.4, isolation incapable phase refers to
the situation where the isolated population size Q has reached the capacity
Qmax < N , and there is no discharge from isolation. The isolation is available
at the isolation well-functioning phase, while it is ceased at the isolation
incapable phase since it has reached the capacity.

Since the model does not consider reinfectious diseases or the discharge
mechanism from isolation, which corresponds to the case of ε = 0 and α = 0

for system (19) described in Section 3.2. The epidemic dynamics model is
given by:



3.3 for non-reinfectious disease 35

S I R

Q

Figure 6: Scheme for the epidemic dynamics model (27).

dS

dt
= −β I

N −Q
S;

dI

dt
= β

I

N −Q
S − ρI −Φ(Q, I);

dQ

dt
= Φ(Q, I);

dR

dt
= ρI

(27)

with

Φ(Q, I) :=


σI for Q < Qmax;

0 for Q = Qmax

and the initial condition (S(0), I(0),Q(0),R(0)) = (S0, I0, 0, 0). The vari-
ables S, I , Q, and R denote the sizes of susceptible, infective, isolated,
and recovered subpopulations respectively. The total population size of
the community is denoted by a positive constant N , and it is satisfied
that S(t) + I(t) + Q(t) + R(t) = N for any t ≥ 0. Hence it holds that
S0 + I0 = N . The individual state transition according to the epidemic dy-
namics is schematically shown in Figure 6. Every parameter is positive. The
parameter ρ denotes the recovery rate of infective individual. The infection
force for the susceptible is given by βI/(N −Q) with a positive positive
parameter β.

The piece-wise function Φ(Q, I) denotes the isolation rate of infected
individual. Parameter σ is the isolation rate at the isolation well-functioning
phase, which represents the efficiency of quarantine operation to detect and
isolate an infective. The parameter Qmax denotes the capacity of isolation,
which is assumed to satisfy Qmax < N . As long as the isolated subpopulation
size Q is less than the capacity Qmax, the isolation is available, and the
epidemic dynamics is at the isolation well-functioning phase with Φ(Q, I) =
σ. Once Q reaches Qmax, the isolation becomes ceased after it. Then the
epidemic dynamics enters in the isolation incapable phase with Φ(Q, I) =
0, as numerically exemplified by Figure 7(b). As the above assumption,
the isolated subpopulation size Q remains Qmax at the isolation incapable
phase since any isolated individual is not discharged from the isolation. In
contrast, as numerically exemplified by Figure 7(a), for a sufficiently large
capacity Qmax, the epidemic dynamics always remains at the isolation well-
functioning phase with Φ(Q, I) = σ, since the isolation never reaches the
capacity.
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(a) (b)

Figure 7: Numerical examples for the temporal variation of the SIR+Q model (27). (a)
Qmax = 70000; (b) Qmax = 20000, β = 1.5; ρ = 0.3; σ = 0.5; N = 100000;
(S0, I0,Q0,R0) = (99000, 1000, 0, 0). In (a), the isolation never reaches the
capacity, while it reaches the capacity at a moment indicated by an arrow
in (b). At the moment, the epidemic dynamics switches from the isolation
well-functioning phase to the isolation incapable phase.

By the transformation of variables and parameters,

τ := (ρ+ σ)t; u :=
S

N
; v :=

I

N
; q :=

Q

N
; w :=

R

N
;

R0 :=
β

ρ+ σ
; γ :=

σ

ρ+ σ
; qmax :=

Qmax

N
,

with the basic reproduction number R0 := β/(ρ+ σ) for the model (27),
we can derive the following non-dimensionalized system mathematically
equivalent to the system (27):

du

dτ
= −R0

v

1− q
u;

dv

dτ
= R0

v

1− q
u− (1− γ)v− φ(q, v);

dq

dτ
= φ(q, v);

dw

dτ
= (1− γ)v

(28)

with

φ(q, v) :=


γv for q < qmax;

0 for q = qmax,

and the initial condition (u(0), v(0), q(0),w(0)) = (u0, v0, 0, 0) where v0 =
1− u0 > 0. It is satisfied that u(τ ) + v(τ ) + q(τ ) +w(τ ) = 1 for any τ > 0.

Aside from the isolated state with a limited capacity, the epidemic dy-
namics is fundamentally governed by the one-way state transition as an SIR
model, so that necessarily I(t)→ 0 as t→∞, that is, v(t)→ 0 as τ →∞ as
well as the simple Kermack-McKendrick SIR model [18,19,110].

3.3.2 Conserved quantities

We can find the conserved quantity for the epidemic dynamics at the isolation
well-functioning and incapable phases, respectively (Appendix 3.A.4)
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At the isolation well-functioning phase:

u(τ ) + v(τ ) =
(

1 +
ρ

σ

)(u(τ )

u0

)σ/β
− ρ

σ
(29)

Equation (29) gives a relation satisfied by the solution of (28) with φ(q, v) =
γv for any t̂ ≥ 0 at the isolation well-functioning phase.

At the isolation incapable phase:

u(τ ) + v(τ ) = u(τ?) + v(τ?) +
ρ

β
(1− qmax) ln

u(τ )

u(τ?)
(τ > τ?), (30)

where τ > τ? is supposed as the moment at which the isolation reaches
the capacity, that is, when the isolation strategy breaks down due to an
insufficient isolation capacity, and then the dynamics switches from the
isolation well-functioning phase to the isolation incapable phase. Equation
(30) is satisfied by the solution of (28) with φ(q, v) = 0 for any τ > τ? at the
isolation incapable phase. Remark that, supposed that the isolation reaches
the capacity at τ = τ?, the equation (29) holds for τ ≤ τ? about the system
(28) with φ(q, v) = γv.

3.3.3 Isolation incapable phase

In this subsection, we can obtain the following theorem and corollaries about
the condition that the isolation reaches the capacity in a finite time on the
way of epidemic process (Appendix 3.A.5):

Theorem 3.2. The isolation reaches the capacity in a finite time on the way of
epidemic process if and only if

1− qmax

(
1 +

ρ

σ

)
> u0(1− qmax)β/σ. (31)

Corollary 3.2.1. The isolation reaches the capacity in a finite time on the way
of epidemic process if and only if qmax < qc, where qc is the critical value of the
isolation capacity and uniquely determined by the positive root of the following
equation:

1− qc
(

1 +
ρ

σ

)
= u0(1− qc)β/σ. (32)

If qmax ≥ qc, the isolation never reaches the capacity, and is always available.

Corollary 3.2.2. The isolation reaches the capacity in a finite time on the way of
epidemic process only if qmax < 1/(1 + ρ/σ).

Corollary 3.2.2 indicates that the isolation never reaches the capacity for
qmax ≥ 1/(1 + ρ/σ). Hence, from Corollary 3.2.1, it is necessary that qc <
1/(1 + ρ/σ). From the equation (32), the critical value of the isolation capacity
qc is monotonically increasing in terms of the infection coefficient β. The
higher likelihood of infection leads to the demand of a larger capacity of
isolation to avoid its breakdown in the epidemic dynamics. In contrast, qc is
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(a) (b)

Figure 8: (1/σ)-dependence of the critical value of the isolation capacity qc deter-
mined by (32) in Corollary 3.2.1. The curves are numerically drawn qc for
u0 = 0.5 (dotted), 0.8 (solid), 0.9 (dashed) with (a) β = 1.0 and ρ = 1.5;
(b) β = 1.5 and ρ = 1.0. If and only if qmax < qc, the isolation reaches the
capacity in a finite time on the way of epidemic process. Refer to Corollary
3.2.3 too. From (32), we can easily find that qc → 1− u0 as 1/σ → +0.

monotonically decreasing in terms of the initial susceptible size u0 and the
recovery rate ρ.

The smaller u0 means the larger initial infective size v0. Hence this result
indicates that the larger isolation capacity is required for the larger initial
infective size in order to avoid its saturation, that is, its breakdown. This
is because the larger initial infective size must lead to a larger number of
secondary cases which is more likely to cause the saturation of isolation.

As the patient can recover after a shorter expected duration of infectivity,
defined by 1/ρ, the isolation capacity to avoid its saturation is smaller. Since
the shorter duration of infectivity leads to the smaller infective subpopulation
size, the increase of isolated subpopulation must be slower, so that the
isolation capacity could be smaller to avoid its saturation. These results may
match our intuitive expectation.

Further, the critical value of the isolation capacity qc may have a non-
monotonic relation to the value of 1/σ which is indicated by the numerical
results in Figure 8. The following corollary shows the dependence of qc on
1/σ (Appendix 3.A.6):

Corollary 3.2.3. If β/ρ ≤ 1, the critical value of the isolation capacity qc is
monotonically decreasing in terms of 1/σ. On the other hand, there exists a finite
value of 1/σ to maximize qc if

β

ρ
>

u0 − 1

u0 lnu0
. (33)

It is easily seen that the right side of (33) is greater than 1 for any u0 ∈ (0, 1).
Sufficiently low efficiency of quarantine operation corresponds to suffi-

ciently large value of 1/σ, which means much slow quarantine operation
to isolate the infectives in the community. In such a case, the isolated sub-
population size Q increases much slow, so that it is less likely to reach the
capacity Qmax on the way of epidemic process. Such a dependence of qc on
1/σ appears as the decreasing monotonicity of qc for sufficiently large value
of 1/σ.
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The public health policy must require a high efficiency of quarantine
operation. The higher efficiency of quarantine operation leads to a faster
increase of Q, and eventually it could become more likely that the isolation
reaches the capacity, whereas such an efficient quarantine operation could
make the final epidemic size smaller as we will see in the later.

3.3.4 Final epidemic size

The final epidemic size for the system (28) is defined here as the proportion
of recovered or isolated individuals in the community at the end of epidemic
dynamics. In this subsection, we show the equation to determine the final
epidemic size respectively when the isolation never reaches the capacity
and when the isolation reaches the capacity on the way of epidemic process,
which can be derived from the conserved quantities obtained in Subsection
3.3.2.

Final size equation for qmax ≥ qc

When the isolation never reaches the capacity in any time, the final epidemic
size is determined only by the isolation well-functioning phase. In this case,
the final epidemic size z−∞ = q−∞ +w−∞ satisfies (Appendix 3.A.7):(

1− z−∞
)−σ/β

(
1 +

ρ

σ
− z−∞

)
= (u0)−σ/β

(
1 +

ρ

σ

)
. (34)

It is proved that the equation (34) determines a unique final epidemic size
z−∞ ∈ (1− u0, 1).

Final size equation for qmax < qc

When the isolation reaches the capacity in a finite time due to its insufficient
capacity, the final epidemic size z+

∞ = qmax +w+
∞ satisfies (Appendix 3.A.7):

β

σ

{qmax (1 + σ/ρ)

1− qmax
+ ln (1− qmax)

}
= ln(1− z+

∞)− lnu0 +
(β/ρ)z+

∞
1− qmax

.

(35)

It is proved in Appendix 3.A.8 that the equation (35) determines a unique
final epidemic size z+

∞ ∈ (1− u(τ?), 1), where u(τ?) = (1− qmax)β/σu0, and
1− u(τ?) > qmax(1 + ρ/σ) > qmax. As a result, the following theorem is
obtained:

Theorem 3.3. The final epidemic size for the system (28) is uniquely determined
by the equations (34) or (35) for given initial condition, which is z−∞ ∈ (1− u0, 1)
for qmax ≥ qc, and z+

∞ ∈ (1 − u(τ?), 1) for qmax < qc with u(τ?) = (1 −
qmax)β/σu0.

The final epidemic size depends on qmax only when the isolation reaches
the capacity in a finite time: z+

∞ depends on qmax while z−∞ does not. From
the equation (35), we can find that the final epidemic size z+

∞ is monotonically
decreasing in terms of qmax, since ∂z+

∞/∂qmax is shown to be negative. Figure
9 numerically shows the qmax-dependence of the final epidemic size. It is
seen that increasing the isolation capacity makes the final epidemic size
smaller. This result indicates that the sufficient capacity of isolation could
work as an effective factor to suppress a disease spread.
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(a) (b)

Figure 9: qmax-dependence of the final epidemic size. Numerically drawn for (a)
β/σ = 0.8 (ρ/β = 1.25); (b) β/σ = 1.25 (ρ/β = 0.8), u0 = 0.9 and
ρ/σ = 1.

Figure 9(b) shows a case where the final epidemic size becomes drasti-
cally large if the isolation reaches the capacity in a finite time. We obtain the
following analytical result on the qmax-dependence of the final epidemic size
for our model (Appendix 3.A.9):

Theorem 3.4. The final epidemic size has a discontinuous change at the critical
value of the isolation capacity: qmax = qc such that

z†∞ := lim
qmax→qc−0

z+
∞ > z−∞

if and only if

β

ρ
> 1 and u0 >

ρ

β

(
1 +

1− ρ/β
ρ/σ

)β/σ−1
. (36)

Otherwise it holds that z†∞ = z−∞.

When the condition (36) is not satisfied, the final epidemic size has no
discontinuous change at qmax = qc, as numerically illustrated by Figure
9(a). In this case, although the final epidemic size increases as the isolation
capacity less than the critical value qc, the change is gradual, that is, a slight
shortage isolation capacity leads to a relatively small increase in the final
epidemic size. When the condition (36) is satisfied, the final epidemic size has
a discontinuous change at qmax = qc, as numerically illustrated by Figure 9(b).
In this case, even a slight shortage of isolation capacity can cause a sudden
and large jump in the final epidemic size, resulting in disproportionately
severe social damage. Inversely, ensuring that the isolation capacity is even
slightly above the critical level qc can drastically reduce the total number of
infected individuals. This means that there is an epidemic situation in which
the isolation capacity would be the more important factor for the suppression
of disease spread. In such a situation, the insufficiency of isolation capacity
could cause a drastically severe consequence of the epidemic dynamics.

Figure 10(a) shows the parameter region (ρ/σ,β/σ) with respect to the
discontinuous change of the final epidemic size at qmax = qc. It is seen that
for sufficiently small β/σ > ρ/σ, such a discontinuous change of the final
epidemic size is likely to occur at qmax = qc. It is the case where the disease
spread is very slow and the recovery from the disease takes sufficiently long
time. Thus the severity of insufficient isolation capacity appears especially
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Figure 10: Parameter region with respect to the discontinuous change of the final
epidemic size at q = qc. Numerically drawn with the condition (36) in
Theorem 3.4 for (a) u0 = 0.9; (b) ρ/σ = 0.5; (c1) β/σ = 2.5; (c2) β/σ = 1.5.

for the epidemic dynamics of an infectious disease such that the infectivity is
weak while the disease is hardly treated to the recovery. On the other hand,
when β > ρ, such a discontinuous change may occur for σ large enough that
β/σ becomes sufficiently small.

Figures 10(b, c) indicate moreover that such a discontinuous change may
occur only for sufficiently large u0, that is, for sufficiently small v0. This
can be regarded as a typical situation as the initial condition about the
epidemic dynamics which starts with the invasion of an infectious disease in
a community.

3.3.5 Discussion

This section discusses the epidemiological implications of the SIR+Q model
incorporating a limited capacity of isolation. The results show that an increase
in the isolation capacity generally leads to a smaller final epidemic size.
However, once the isolation reaches its capacity and becomes incapable, the
final epidemic size may become significantly larger. This drastic increase is
more likely to occur when the disease spreads slowly and recovery takes
a sufficiently long time. In such cases, the severity of insufficient isolation
capacity becomes especially notable, particularly for infectious diseases with
low infectivity and limited treatability. In contrast, for diseases that have
high infectivity or are easily treated, the increase in isolation capacity tends
to result in only a modest change in the final epidemic size. Nonetheless, it
still contributes to epidemic suppression.

From a public health management perspective, a smaller critical value for
the isolation capacity is preferable, as it allows the policy to avoid breakdown
with limited available resources. In contrast, a larger critical value implies a
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more difficult situation for public health policy, since a much higher capacity
is required to maintain the isolation function and keep the epidemic size low.

In summary, the study highlights that a breakdown in isolation due to
limited capacity can lead to an unexpectedly large epidemic size. Although
a sufficiently large isolation capacity can help suppress the epidemic, its
effectiveness depends on the characteristics of the disease. While isolation
may not be the principal control measure, it remains an important component
of public health strategies. It contributes significantly to epidemic control
when combined with other policies. Furthermore, the findings point to the
essential need for satisfactory public health infrastructure and sufficient
social investment to support the effective operation of isolation policies
under resource-limited conditions.

3.4 for reinfectious disease

3.4.1 Assumptions and model

In this section, we consider a modeling on the epidemic dynamics of a
reinfectious disease during a short-term period, satisfying the following
assumptions on the epidemic dynamics, most of which are the same as those
in Subsection 3.2.1 except for that about the discharge from isolation:

• The demographic change due to the natural birth, death, and migration
is negligible in the season.

• The fatality of disease is negligible in the season.

• The infection occurs by the contact of susceptible individual to not only
organic but also potentially inorganic subjects contaminated with the
pathogen to cause the disease.

• The quarantine/isolation has a capacity beyond which the isolation is
impossible.

• As long as the isolation has not reached the capacity, the accessibility
of the isolation is constant independently of how many infectives are
isolated.

• The isolated individuals cannot contact others or be discharged in the
epidemic season. Hence the infectives come to make no contribution to
the epidemic dynamics once they enters the isolated state.

• Once the isolation reaches the capacity, its function breaks down to
become incapable onward in the season. Then the epidemic dynamics
continues without the quarantine/isolation.

• Even after the recovery from the infection, the individual may get the
infection again, that is, the disease is reinfectious.

From the assumptions of the availability of isolation, we need to take
account of two different epidemic phases in our modeling, which are the
same as in 3.3: isolation well-functioning phase and isolation incapable phase.

Isolation well-functioning phase

The isolation well-functioning phase refers to the epidemic phase at which
the isolated subpopulation size Q is less than the capacity, a given positive
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constant Qmax, when the isolation works with quarantine/isolation rate σ.
The epidemic dynamics at this phase is governed by

dS

dt
= −β I

N −Q
S;

dI

dt
= β

I

N −Q
S + εβ

I

N −Q
R− ρI − σI;

dQ

dt
= σI;

dR

dt
= ρI − εβ I

N −Q
R.

(37)

The variables S, I , and R denote the sizes of susceptible, infective, and
recovered subpopulations respectively. The total population size of the
community is denoted by a positive constant N , and it is satisfied that
S(t) + I(t) +Q(t) +R(t) = N for any t ≥ 0. The parameter ρ denotes the
natural recovery rate of infective individual. The reinfection coefficient is
given by εβ, where 0 < ε < 1. The quarantine/isolation rate of infective
individual at this phase σ represents the efficiency of quarantine operation
to detect and isolate an infective.

Isolation incapable phase

The isolation incapable phase refers to the epidemic phase at which the
isolated subpopulation size Q has reached the capacity Qmax, and then the
isolation breaks down to become incapable. The epidemic dynamics at this
phase is governed by

dS

dt
= −β I

N −Qmax
S;

dI

dt
= β

I

N −Qmax
S + εβ

I

N −Qmax
R− ρI;

dQ

dt
= 0;

dR

dt
= ρI − εβ I

N −Qmax
R.

(38)

Once the isolation reaches the capacity, the system switches to the isolation
incapable phase. Since we assume no discharge of isolated infectives from
the isolation state, the subpopulation size of free individuals is N −Qmax at
this phase. The extremal case with Qmax ≥ N corresponds to the situation
where the isolation never reaches the capacity, that is, it always works in
the epidemic dynamics. Only if Qmax < N , the isolation could reach the
capacity to cease functioning. Therefore, we consider hereafter only the case
of Qmax < N as a reasonable setup for our model.
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Figure 11: The individual state transition according to the epidemic dynamics of our
model (39).

Full system for epidemic dynamics

With the above modeling of the epidemic dynamics at two different epidemic
phases, we shall consider the following system as our mathematical model:

dS

dt
= −β I

N −Q
S;

dI

dt
= β

I

N −Q
S + εβ

I

N −Q
R− ρI −Φ(Q, I);

dQ

dt
= Φ(Q, I);

dR

dt
= ρI − εβ I

N −Q
R

(39)

with

Φ(Q, I) =


σI for Q < Qmax;

0 for Q = Qmax,

and the initial condition (S(0), I(0),Q(0),R(0)) = (S0, I0, 0, 0) where S0 >

0, I0 > 0, and S0 + I0 = N . The individual state transition according to the
epidemic dynamics is schematically shown in Figure 11. This model with
ε = 0 coincides with the SIR+Q model in Section 3.3.

The piecewise function Φ(Q, I) denotes the net quarantine/isolation rate
of infected individuals. As long as the isolated subpopulation size Q is less
than the capacity Qmax, the isolation is available, and the epidemic dynamics
is at the isolation effective phase with Φ(Q, I) = σI . Once Q reaches Qmax,
the isolation becomes ceased after it. Then the epidemic dynamics switches
to the isolation incapable phase with Φ(Q, I) = 0.

With the transformation of variables and parameters,

τ := (ρ+ σ)t; u :=
S

N
; v :=

I

N
; q :=

Q

N
; w :=

R

N
;

γ :=
σ

ρ+ σ
; qmax :=

Qmax

N
; R0 :=

β

ρ+ σ
,
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(a) (b) (c)

Figure 12: Numerical examples for the temporal variation of the model (40). (a)
qmax = 0.45, R0 = 1.2 (εR0 = 0.24); (b) qmax = 0.35, R0 = 1.2 (εR0 =
0.24); (c) qmax = 0.45, R0 = 2.5 (εR0 = 0.50). Commonly, u0 = 0.99;
ε = 0.2; γ = 0.6. In (a), the isolation never reaches the capacity, while it
reaches the capacity and becomes incapable after a moment τ = τ? in (b)
and (c).

and with the basic reproduction number R0 := β/(ρ+ σ) for the model (39),
we can derive the following non-dimensionalized system mathematically
equivalent to the system (39):

du

dτ
= −R0

v

1− q
u;

dv

dτ
= R0

v

1− q
u+ εR0

v

1− q
w− (1− γ)v− φ(q, v);

dq

dτ
= φ(q, v);

dw

dτ
= (1− γ)v− εR0

v

1− q
w

(40)

with

φ(q, v) =


γv for q < qmax;

0 for q = qmax,

and the initial condition (u(0), v(0), q(0),w(0)) = (u0, v0, 0, 0) where u0 > 0

and v0 = 1− u0 > 0. In the following analysis, we focus on the case qmax < 1

, which has been previously mentioned as a reasonable setup. For a mathe-
matical convention, we show here the following mathematical feature about
the solution of (40) (Appendix 3.A.10):

Lemma 3.3. For the initial condition (u(0), v(0), q(0),w(0)) = (u0, v0, 0, 0) with
v0 > 0 and u0 = 1− v0 > 0, the solution of (40) belongs to the set {(u, v, q,w) ∈
R4

+ | u+ v + q +w = 1} for τ > 0.

As numerically exemplified by Figure 12(a) for a sufficiently large ca-
pacity qmax, the epidemic dynamics can always remain at the isolation
well-functioning phase with φ(q, v) = γv, when the isolation never reaches
the capacity. In contrast, as numerically exemplified by Figure 12(b, c), if the
isolation capacity is insufficient, it reaches the capacity, and then the isolated
subpopulation size q remains qmax at the isolation incapable phase since
any isolated individual is not discharged from the isolation, following the
assumption and modeling given in the previous and present sections.



46 isolation capacity

3.4.2 Conserved quantities

In addition to the time-independent equality u+ v + q +w = 1, we can find
the following time-independent equalities for the variables as the conserved
quantities in the epidemic dynamics governed by the system (40) (Appendix
3.A.11).

At the isolation well-functioning phase:

1− q =
( u

u0

)γ/R0

; (41)

u+ v = F (u) :=


1− εR0

γ − εR0

( u

u0

)γ/R0

− 1− γ
γ − εR0

( u

u0

)ε
for εR0 6= γ;

(
1 + ε

1− γ
γ

ln
u

u0

)( u

u0

)ε
for εR0 = γ.

(42)

At the isolation incapable phase:

q = qmax; u+ v = G(u) :=
(

1− 1− γ
εR0

)
(1− qmax) +B

( u

u0

)ε
(43)

with

B :=


1− γ

εR0(1− εR0/γ)

[
(1− qmax)1−εR0/γ − εR0

γ

]
for εR0 6= γ;

1− γ
γ

[
ln(1− qmax) + 1

]
for εR0 = γ.

(44)

The equations for εR0 = γ in (42) and (44) can be mathematically derived
also by taking the limit as εR0 → γ for those for εR0 6= γ. Hence we may use
only the equations for εR0 6= γ without distinguishing the case of εR0 = γ

unless it would be necessary in the mathematical argument. That is, we may
use the equations for εR0 6= γ as those mathematically including the specific
case of εR0 = γ.

As described about the derivation of (43) in Appendix 3.A.11, we used the
continuity of the temporal variation of the variables in the system (40) at the
moment that the isolation reaches the capacity and the system (40) switches
to the isolation incapable phase. Then we have noted the following feature
of the system (40), which will be useful for our subsequent mathematical
analysis on the model:

Lemma 3.4. If the system enters the isolation incapable phase at a finite time
τ = τ?, then the susceptible subpopulation size at the moment becomes

u(τ?) = u? := u0
(
1− qmax

)R0/γ
. (45)
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Note that, from the continuity of variables u and v at τ = τ?, the equalities
(41), (42), and (43) simultaneously holds at τ = τ?, so that we have F (u?) =
G(u?).

3.4.3 Isolation well-functioning phase

In this section, suppose that the system (40) always remains at the isolation
well-functioning phase, when it never reaches its capacity at finite time
along the path of the epidemic process. Then with the arguments given in
Appendix 3.A.12, we can obtain the following results on the consequence of
the epidemic dynamics when the system (40) always remains at the isolation
well-functioning phase.

First, we find the following result implying that a sufficiently large iso-
lation capacity could lead the system to a disease-eliminated equilibrium
E−0 , even though the disease is reinfectious for the recovered individuals
(Appendix 3.A.12):

Lemma 3.5. If the system always remains at the isolation well-functioning phase,
the disease is eventually eliminated.

Next, we can obtain the following important feature of the epidemic
dynamics by the system (40):

Lemma 3.6. If the system (40) can always remains at the isolation well-functioning
phase, there are necessarily some susceptibles who can escape from the infection at
the end of the epidemic dynamics.

The existence of such susceptibles at the end of the epidemic dynamics is
well known for the Kermack-McKendrick SIR model , while the above lemma
indicates such a case even for the epidemic dynamics with a reinfectious
disease in our model.

Consequently with these lemmas, we can obtain the following result
(Appendix 3.A.13):

Theorem 3.5. If the system always remains at the isolation well-functioning phase,
it eventually approaches a disease-eliminated equilibrium E−0 given by

E−0 (u−∞, v−∞, q−∞,w−∞) =

(
u−∞, 0, 1−

(u−∞
u0

)γ/R0

,
(u−∞
u0

)γ/R0

− u−∞
)

, (46)

with a positive susceptible subpopulation size u−∞ ∈ (0,u0), which is determined by
the unique positive root of the equation

u−∞ = F (u−∞). (47)

The equation (47) is derived by taking τ → ∞ for the equality (42) with
v → 0. The disease-eliminated equilibrium E−0 is uniquely determined
for each given initial condition with u0 > 0. In other words, the disease-
eliminated equilibrium E−0 depends on the initial condition given by the
initial infective subpopulation size v0 (alternatively u0).
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In the next subsection, we will show the necessary and sufficient condition
that the system (40) always remains at the isolation well-functioning phase,
and alternatively the condition that the isolation reaches the capacity at finite
time along the path of the epidemic process. As an important preliminary
found by the arguments in Appendix 3.A.13 for Theorem 3.5, we obtain the
following lemma too:

Lemma 3.7. The system (40) can always remains at the isolation well-functioning
phase only if εR0 < 1. Otherwise, if εR0 ≥ 1, then the isolation reaches the capacity,
and the system enters the isolation incapable phase at finite time.

This result shows a sufficient condition that the isolation reaches the capacity
at finite time. Even when εR0 < 1, there could be such a case as shown in
the next subsection.

3.4.4 Isolation incapable phase

Taking account of the results shown in the previous section, we can prove the
following theorem to show the necessary and sufficient condition that the
isolation reaches the capacity at finite time along the path of the epidemic
process (Appendix 3.A.14):

Theorem 3.6. Isolation reaches the capacity and becomes incapable at finite time
along the path of the epidemic process if and only if one of the following conditions is
satisfied:

(i) εR0 ≥ 1;

(ii) εR0 < 1 and

u0(1− qmax)R0/γ < F
(
u0(1− qmax)R0/γ). (48)

Otherwise, if both conditions (i) and (ii) are not satisfied, the isolation never reaches
the capacity in the epidemic dynamics.

In other words, the system always remains at the isolation well-functioning
phase when and only when both conditions (i) and (ii) are not satisfied. The
inequality (48) for ε = 0 matches the condition (32) obtained in Corollary
3.2.1 on the SIR+Q model without reinfection.

This result of Theorem 3.6 can be translated in the following way with
the critical value qc for the isolation capacity qmax (Appendix 3.A.15):

Corollary 3.6.1. Isolation reaches the capacity and becomes incapable at finite time
if and only if qmax < qc, where qc is defined as the smallest positive root of the
equation

u0(1− qc)R0/γ = F
(
u0(1− qc)R0/γ). (49)

If and only if qmax ≥ qc, the system always remains at the isolation well-functioning
phase, where the isolation never reaches the capacity.
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Isolation breaks down Isolation breaks down Isolation breaks down

(a) (b) (c)

Figure 13: (a) R0-dependence; (b) ε-dependence; (c) v0-dependence of the critical
value qc of the isolation capacity qmax. Numerically drawn by Theorem 3.6,
Corollaries 3.6.1 and 3.6.2 with (a) ε = 0.2, u0 = 0.9; (b) R0 = 4, u0 = 0.9,
(c) ε = 0.2, R0 = 4, and commonly γ = 0.6. The boundary qc is given by
(49), and the dotted curve of qc is by (50). The difference between qc and
qc appears rather slight in (b) and (c). In (c), qc = 0.875 independently of
v0 while qc depends on v0 = 1− u0.

As shown in Appendix 3.A.15 and Figure 13, the critical value qc defined
in Corollary 3.6.1 becomes less than 1 for εR0 < 1, while it becomes 1 for
εR0 ≥ 1. Since qmax < 1 from our assumption, it is impossible to satisfy
that qmax ≥ qc when εR0 ≥ 1. That is, the system necessarily enters the
isolation incapable phase at finite time, in accordance with the result shown
in Theorem 3.6.

From the equation (49), we can easily find that the critical value qc for
the isolation capacity qmax is monotonically increasing in terms of the basic
reproduction number R0, the index for the reinfection ε, and the initial
infective subpopulation size v0. The stronger infectivity, the higher likelihood
of reinfection, or the larger number of the initial infected individuals leads
to the demand of a larger isolation capacity to avoid its breakdown in the
epidemic dynamics, as numerically illustrated in Figure 13.

Moreover, we note that qc → γv0 = γ(1− u0) as R0 → 0 with (49) (see
Figure 13(a)). We can easily find that the condition (48) becomes qmax <

γ(1− u0) as R0 → 0. This is a reasonable mathematical feature about our
model (40). When no disease transmission occurs with R0 = 0, every initial
infective belonging to v0 alternatively recovers or is isolated, and the system
eventually approaches the equilibrium (u, v, q,w) = (u0, 0, γv0, (1− γ)v0),
if the isolation capacity is not below γv0, which can be easily found by
considering the system (40) with R0 = 0. Otherwise, if qmax < γv0, the
isolation reaches the capacity on the way of the infective elimination, and it
becomes incapable.

As clearly indicated by Theorem 3.6, the isolation reaches the capac-
ity at finite time if qmax < qc even when εR0 < 1. It has been already
shown in Lemma 3.7 that the system can always remain at the isolation well-
functioning phase only when εR0 < 1, and now we can find the following
subsidiary result too (Appendix 3.A.15):
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Corollary 3.6.2. When εR0 < 1, if

qmax ≥ qc :=


1−

(1− εR0

1− γ

)γ/(εR0−γ)
for εR0 6= γ;

1− e−γ/(1−γ) for εR0 = γ,

(50)

the system always remains at the isolation well-functioning phase and the isolation
never reaches the capacity.

This corollary gives a sufficient condition that the system always remains
at the isolation well-functioning phase when εR0 < 1, that is, the right
side of (50) gives a sufficient isolation capacity for it, independently of the
initial condition given by the value u0. The sufficient isolation capacity qc
is the supremum of qc in terms of u0: It holds that qc > qc, so that we
have qmax > qc if qmax ≥ qc (see Figure 13). Only if the condition (50) is
unsatisfied, the system enters the isolation incapable phase at finite time
along the path of the epidemic process.

As the other important subsidiary result obtained in the proof for Corol-
lary 3.6.1 in Appendix 3.A.15, we can find

Lemma 3.8. u−∞ = u0(1− qc)R0/γ .

This result will be useful in the subsequent analysis. Note that the equilibrium
value u−∞ is independent of the isolation capacity qmax because it is for the
equilibrium at the isolation well-functioning phase when the isolation never
reaches the capacity.

We obtain the following lemma and theorem about the feasible equilibria
at the isolation incapable phase (Appendix 3.A.16):

Lemma 3.9. At the isolation incapable phase, u → u+
∞ ∈ (0,u?) as τ → ∞, if

and only if εR0 < 1− γ. The equilibrium value u+
∞ is determined by the unique

positive root in (0,u?) of the equation

u+
∞ = G(u+

∞), (51)

where G is defined by (43) and (44). If εR0 ≥ 1− γ, then u→ 0 as τ →∞.

Theorem 3.7. At the isolation incapable phase, if and only if εR0 < 1− γ, the
system (40) approaches a disease-eliminated equilibrium E+

0 :

E+
0 (u+

∞, v+
∞, q+

∞,w+
∞) =

(
u+
∞, 0, qmax, 1− u+

∞ − qmax
)
, (52)

where u+
∞ is determined by the unique positive root in ( 0,u?) of the equation (51).

If εR0 = 1− γ at the isolation incapable phase, it approaches the disease-eliminated
equilibrium E+

0 given as (0, 0, qmax, 1− qmax). Otherwise, if εR0 > 1− γ at the
isolation incapable phase, it approaches the endemic equilibrium E+

∗ :

E+
∗ (u+

∞, v+
∞, q+

∞,w+
∞) =

(
0,
(

1− 1− γ
εR0

)
(1− qmax), qmax,

1− γ
εR0

(1− qmax)

)
.

(53)
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Figure 14: Parameter region for the revival of outbreak, numerically drawn by Theo-
rem 3.8 with the parameter values used in Figure 13: (a) R0-dependence;
(b) ε-dependence; (c) v0-dependence. The revival of outbreak occurs for the
filled region. For the other region, the infective subpopulation size keeps
decreasing or increasing even at the moment that the isolation reaches the
capacity and the system enters the isolation incapable phase.

As a result, the system approaches an endemic equilibrium if and only
if εR0 > 1− γ at the isolation incapable phase. Otherwise, it approaches
a disease-eliminated equilibrium, independently of whether it enters the
isolation incapable phase or not.

Figure 12(b, c) numerically exemplify the cases in which the system ap-
proaches an disease-eliminated equilibrium E+

0 and the endemic equilibrium
E+
∗ respectively after it enters the isolation incapable phase. The endemic

state arises in the community necessarily after the isolation reaches the ca-
pacity. The endemic state is sustained by the reinfection for the recovered
individuals, since there is no susceptible who has not experienced the disease
in the community (i.e., u+

∞ = 0). From Theorems 3.5 and 3.7, even after the
isolation reaches the capacity, the elimination of the disease may occur if the
reinfectivity is weak enough to satisfy that εR0 ≤ 1− γ.

3.4.5 Revival of outbreak

As already seen in Figure 12(b, c), there could be a case where the infec-
tive subpopulation size turns from decreasing to increasing at the moment
that the isolation reaches the capacity and the system enters the isolation
incapable phase. Such a case appears as a revival of outbreak of the disease
spread in the community. We can get the following condition that such a
revival of outbreak occurs (Appendix 3.A.17):

Theorem 3.8. When the isolation reaches the capacity at finite time, a revival of
outbreak occurs if

εR0 − 1

R0
(1− qmax) < εF (u?)− u? < εR0 − (1− γ)

R0
(1− qmax),

where u? is defined by (45).

Figure 14 shows numerically obtained parameter regions for the revival of
outbreak. It is implied that the parameter dependence is not simple. Roughly
the larger isolation capacity or the larger infectivity is more likely to cause
the revival of outbreak, while the sufficiently small isolation capacity is less
likely. We may expect that the breakdown of the isolation operation along
the path of the epidemic process could lead to the revival of outbreak.
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(a) (b) (c)

Figure 15: qmax-dependence of the endemic size v∞. Numerically drawn with (a)
ε = 0.12 (εR0 = 0.48; qc = 0.7305); (b) ε = 0.2 (εR0 = 0.8; qc = 0.8750);
(c) ε = 0.3 (εR0 = 1.2; qc = 1), and commonly u0 = 0.9; γ = 0.6;
R0 = 4.0. Note that v∞ = 0 independently of qmax if εR0 ≤ 1− γ, as
indicated in Theorem 3.7.

3.4.6 Endemic size

The endemic size is defined here as the equilibrium value of the infective sub-
population size v∞, which is hence zero if the system approaches a disease-
eliminated equilibrium. From Theorem 3.7, it can become positive only at the
isolation incapable phase, and given as v+

∞ = {1− (1− γ)/(εR0)}(1− qmax)
from E+

∗ given by (53).
From Theorem 3.6, Corollary 3.6.1, and Theorem 3.7, we have noted that,

when εR0 ≥ 1, the system necessarily approaches an endemic equilibrium
at the isolation incapable phase. Then the endemic size v+

∞ is monotonically
decreasing in terms of the isolation capacity qmax as shown by (53). See the
numerical example in Figure 15(c).

In contrast, especially when the disease spreads with εR0 ∈ (1− γ, 1 ), the
disease becomes eliminated if qmax ≥ qc ∈ (0, 1), while it becomes endemic
if qmax < qc, as seen in the numerical examples of Figure 15(a, b). Then the
endemic size shows a discontinuity at qmax = qc, where it is continuous and
positive in terms of qmax < qc, and zero for qmax > qc. Thus, in such a case,
the isolation capacity is a crucial factor for the endemicity of the spreading
disease.

3.4.7 Final epidemic size

The final epidemic size z∞ is defined here as the proportion of individuals in
the community who have experienced the infection until the final stage
of the epidemic dynamics. Hence it is given by z∞ := 1 − u∞ for the
system (40). From this definition of the final epidemic size, when the system
(40) approaches an endemic equilibrium, we have z∞ = 1, because every
individual in the community has experienced the infection at the end of the
epidemic dynamics with u∞ = 0.

First, as shown by Theorems 3.6, 3.7, and Corollary 3.6.1, when the
isolation never reaches the capacity in the epidemic dynamics with εR0 < 1

and qmax ≥ qc, the system (40) approaches a disease-eliminated equilibrium,
and then the final epidemic size z∞ is given by z−∞ := 1− u−∞ with u−∞ given
by Lemma 3.8. That is, we have z−∞ = 1− u0(1− qc)R0/γ ∈ (0, 1).

Next, from those results obtained in the previous subsections, when the
isolation reaches the capacity at finite time with qmax < qc, we have the
following results on the final epidemic size z∞:
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(a) (b)

(d)(c)

Figure 16: qmax-dependence of the final epidemic size z∞. Numerically drawn for
(a) R0 = 0.65 (εR0 = 0.195; qc = 0.0084); (b) R0 = 1.1 (εR0 = 0.33;
qc = 0.1192); (c) R0 = 1.5 (εR0 = 0.45; qc = 0.3000); (d) R0 = 2.5

(εR0 = 0.75; qc = 0.4925), and commonly u0 = 0.99; ε = 0.3; γ = 0.3. In
(d), z+

∞ = 1 because the system approaches an endemic equilibrium with
εR0 > 1− γ as indicated in Theorem 3.7.

• If εR0 < 1− γ, the system (40) approaches a disease-eliminated equi-
librium as shown by Theorem 3.7. Then the final epidemic size z∞
is given by z+

∞ := 1− u+
∞ with the unique positive root u+

∞ of the
equation (51).

• If εR0 = 1− γ, the system (40) approaches a disease-eliminated equi-
librium accompanied with u→ 0 as τ →∞, as shown by Theorem 3.7.
Then the final epidemic size z∞ is given by z+

∞ = 1.

• If εR0 > 1− γ, the system (40) approaches the endemic equilibrium
(53) as shown by Theorem 3.7. Then the final epidemic size becomes
z∞ = 1 accompanied with u→ 0 as τ →∞.

Especially as for the final epidemic size at the isolation incapable phase
z∞ = z+

∞ with εR0 < 1− γ and qmax < qc, we can find the following feature
(Appendix 3.A.18):

Lemma 3.10. The final epidemic size z∞ = z+
∞ is monotonically decreasing in

terms of qmax ∈ (0, qc) at the isolation incapable phase with εR0 < 1− γ.

Figure 16 numerically shows the qmax-dependence of the final epidemic size
z∞. It is seen that the larger isolation capacity makes the final epidemic size
smaller. Figure 16(b) shows a case where the final epidemic size z∞ becomes
drastically large if the isolation reaches the capacity at finite time. The same
tendency is seen also in Figure 16(d) whereas the difference between z−∞
(around 0.9965) and z+

∞ = 1 is rather small. In contrast, the final epidemic
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size z∞ can be continuous in terms of the isolation capacity qmax as shown
in Figure 16(a, c).

We can obtain the following analytical result on such the discontinuity in
the qmax-dependence of the final epidemic size z∞ (Appendix 3.A.19):

Theorem 3.9. When εR0 < 1, the final epidemic size z∞ has a discontinuity at
qmax = qc such that

z†∞ := lim
qmax→qc−0

z+
∞ > z−∞

if and only if one of the following conditions is satisfied:

(i) 1− γ ≤ εR0 < 1;

(ii) ε(1− γ) < εR0 < 1− γ and

u0(1− qc)R0/γ−1 >
ε

1− ε

(1− γ
εR0

− 1
)

. (54)

If the condition (54) is unsatisfied for εR0 ∈ (ε(1− γ), 1− γ), then it holds that
z†∞ = z−∞.

The condition (ii) for ε = 0 becomes coincident with the condition obtained
in Ahmad and Seno [4] for such a discontinuity about the SIR+Q model
without reinfection. The numerical example Figure 16(d) shows the case (i)
in Theorem 3.9, and Figure 16(b) does the case (ii). Figure 16(c) shows the
case where the condition (54) is unsatisfied with εR0 ∈ (ε(1− γ), 1− γ). In
contrast, Figure 16(a) corresponds to the case of R0 < 1− γ.

In Figure 17, we numerically show the (ε, R0)-dependence of the disconti-
nuity of the final epidemic size z∞ at qmax = qc. For the region corresponding
to the case (i) in Theorem 3.9, that is, for the region between two solid bound-
ary curves εR0 = 1 and εR0 = 1− γ, we have an endemic equilibrium
(53) with z+

∞ = 1 for qmax < qc, when we can observe the discontinuity at
qmax = qc as Figure 16(d). For the filled region below the solid boundary
curve εR0 = 1− γ, corresponding to the case (ii) in Theorem 3.9, we have
a disease-eliminated equilibrium (52) with z+

∞ < 1 for qmax > qc, when we
can observe the discontinuity at qmax = qc as Figure 16(b). For the blank
region below the solid boundary curve εR0 = 1− γ in Figure 17, we have
z+
∞ → z−∞ as qmax → qc − 0, when the final epidemic size z∞ is continuous

even at qmax = qc as Figure 16(a). For the blank region beyond the solid
boundary curve εR0 = 1 in Figure 17, we have an endemic equilibrium
(53) at the isolation incapable phase for any qmax ∈ [0, 1), and there is no
case of qmax ≥ qc = 1. As indicated by Figure 17, although not simple is
the dependence of the discontinuity of the final epidemic size z∞ on the
nature of spreading disease, represented by the parameters R0 and ε, it is
implied that the higher risk of reinfection (i.e., with the larger ε) is more
likely to cause such the discontinuity. Moreover, the faster isolation (i.e.,
with the larger γ) is more like to do so too. The faster isolation means the
more effective quarantine, which could be regarded as a better feature in
the isolation operation for the public health measure. Therefore, sufficiently
effective quarantine and fast isolation would be highly important to suppress
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(a) (b)

(d)(c)

Figure 17: (ε,R0)-dependence of the discontinuity of the final epidemic size z∞ at
qmax = qc. For the filled region, we have z†∞ > z−∞ as shown in Theorem
3.9. Numerically drawn with (a) γ = 0.2; (b) γ = 0.3; (c) γ = 0.4; (d)
γ = 0.6, and commonly u0 = 0.9. The upper solid boundary curve is of
εR0 = 1, and the lower is of εR0 = 1− γ. The horizontal dotted line is of
R0 = 1− γ. The detail is in the main text.

(a) (b)

Figure 18: Numerically drawn contour plots of qc in terms of (ρ/σ,β/ρ), making
use of Theorem 3.6, Corollary 3.6.1, and Theorem 3.7: (a) ε = 0; (b)
ε = 0.2. Commonly, u0 = 0.99. In (b), the endemic equilibrium may
appear only for εR0 > 1− γ, that is, for β/ρ > 1/ε. For εR0 ≥ 1, that
is, for εβ/ρ ≥ 1 + σ/ρ, the system (40) necessarily enters the isolation
incapable phase for any isolation capacity qmax, corresponding to qc = 1.
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(a) (b) (c)

Figure 19: ρ/σ-dependence of the critical isolation capacity qc and the final epidemic
size z∞. Numerically drawn for (a) ε = 0.0; (b) ε = 0.15; (c) ε = 0.30, and
commonly u0 = 0.99; qmax = 0.4; β/ρ = 4.0.

the endemic size or the final epidemic size, because the sufficient capacity
of isolation may drastically reduce such sizes as the consequence of the
epidemic dynamics.

Figure 18 shows the numerical calculation of the (ρ/σ,β/ρ)-dependence
of qc for our model (40), where we used qc determined by (49) in Corollary
3.6.1, which can be expressed by only four parameters u0, ε, β/ρ, and ρ/σ
with the original parameters in our model (39). The parameter β/ρ corre-
sponds in fact to the basic reproduction number of the epidemic dynamics
by (39) without isolation. Hence, in contrast to R0 with isolation, we may
call β/ρ the primitive basic reproduction number at the stage of the disease
invasion in the community when the quarantine measure has not yet been
applied.

Numerical results in Figure 18 clearly demonstrate that the severe epi-
demic with the larger primitive basic reproduction number requires the
larger isolation capacity to avoid its breakdown, which matches our intuitive
expectation as seen in the R0-dependence of qc in Subsection 3.4.4 (refer
to Figure 13). On the whole, a sufficiently high efficiency of the quarantine
could make the isolation capacity smaller to avoid its breakdown, and a
sufficiently low efficiency could induce the breakdown, as mentioned also at
the end of the previous section. On the other hand, the critical isolation ca-
pacity qc appears to have a non-trivial relation to the efficiency of quarantine
operation, represented by the parameter σ. There are some cases where qc
becomes relatively large in an intermediate range of σ, while qc gets smaller
for sufficiently small or large σ. Such a non-trivial dependence of the qc
on the quarantine efficiency was found and discussed also in Ahmad and
Seno [4] on the SIR+Q model without reinfection (refer to Figure 18(a)). Our
numerical calculations in Figure 18 imply that such a feature appears re-
markably for ε = 0, that is, for the model without reinfection, and it becomes
more complicated for the model with reinfection.

Actually as for the dependence of the final epidemic size z∞ on the
quarantine efficiency, it can result in an unexpected feature as shown in Figure
19. As Ahmad and Seno [4] investigated for the model without reinfection, the
final epidemic size z∞ could have a non-monotone relation to σ, and then z∞
could take a local maximum for an intermediate value of σ. Sufficiently high
quarantine efficiency (i.e., sufficiently large σ) can make the critical isolation
capacity qc rather small, and thus it can significantly reduce the final epidemic
size z∞. As indicated by Figure 19, it is necessary for the quarantine to have
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(a) (b)

Figure 20: Numerical examples for the temporal variation of the model (40) with a
change of the isolation capacity at τ = τs: (a) qmax = 0.65 to 0.75, τs = 60;
(b) qmax = 0.75 to 0.65, τs = 15. Commonly, γ = 0.5; R0 = 2.0; ε = 0.3

(εR0 = 0.6); u0 = 0.99; qc = 0.6554. In (a), the isolation reaches the
capacity and becomes incapable at a moment τ = τ?, and then the disease
tends to become endemic until τ = τs, whereas it turns to be eliminated
after the raise of isolation capacity at τ = τs. In (b), the disease tends to be
eliminated until τ = τs, whereas it revives after the reduction of isolation
capacity after it.

a sufficiently high efficiency in order to avoid the breakdown of isolation
and to successfully suppress the final epidemic size. However, as shown
by the numerical calculations in Figures 18 and 19, the reinfection could
make complicated the relation of the quarantine efficiency to the critical
isolation capacity, and such a complicatedness implies a difficulty to prepare
an appropriate measure of the quarantine and isolation for the public health
in a community.

From the definition of parameters ρ and σ for the epidemic dynamics by
(39), the expected duration of the infectivity (i.e., the transmissibility of the
disease by an infective) is given by 1/ρ, and the expected duration of the
detection of an infective until it gets isolated is given by 1/σ at the isolation
effective phase. In a sense, it would be reasonable to assume that 1/σ < 1/ρ,
that is, ρ/σ < 1, because the detection of an infective is possible only when
the individual has the infectivity. However, the quarantine efficiency must
depend on the availability of medical services and the voluntary access of
infectives to such a service. Therefore, with the dependence on such factors,
poor quarantine efficiency could make ρ/σ ≥ 1.

3.4.8 Discussion

In this section, we analyzed an SIRI+Q model that incorporates both rein-
fection and limited isolation capacity. The results indicate that the increase
of the isolation capacity makes the endemic size and the final epidemic
size smaller as implied by the mathematical results on the SIR+Q model
in Section 3.3, while mathematical arguments required to show important
features because of the reinfection introduced.

More significantly, it is implied that the breakdown of isolation due to its
limited capacity could induce a considerable change of the epidemic severity
accompanied with the revival of outbreak, the emergence of endemicity, or
a staggeringly wide spread of the disease, for example. In other words, the
isolation capacity could be a crucial factor for the public health policy not
only to reduce the epidemic size but also to suppress the endemicity.

The higher risk of reinfection leads to the larger critical capacity of
isolation: The larger isolation capacity is necessary to avoid the severe con-
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sequence of the epidemic dynamics with a reinfectious disease. In general,
the reinfectivity of spreading disease must induce the higher importance of
the isolation capacity for the effective public health measure, because the
recovered individual may get infected again and further become a spreader
of the disease. Actually, since the existence of reinfectivity could induce the
endemicity of the disease, the isolation capacity must be rather important
to control the disease spread. Figure 20 gives numerical examples with our
model (40) to indicate the importance. An increase of the isolation capacity
may result in the effective suppression of the endemicity and drive the dis-
ease to its elimination as in Figure 20(a). In contrast, a careless reduction
of the isolation capacity, as in Figure 20(b), for example, because of the low
prevalence monitored in the epidemic dynamics, may induce the revival of
the disease spread by the released endemicity with the reinfectivity.

In our results as illustrated by Figure 17, when the isolation capacity is
insufficient, the higher risk of reinfection is more likely to not only induce
an endemic state but also lead to a discontinuously larger epidemic size
even though the disease finally gets eliminated. Further, as was shown in
our mathematical results, the highly effective quarantine with a sufficient
capacity of isolation could result in a successful suppression of the endemic
size or the final epidemic size to an unexpectedly distinct extent. This implies
the importance of the isolation capacity as a measure for the public health,
while such a sufficient capacity of the isolation or an effective quarantine
must be ready before the outbreak of a disease spread because it would
generally become hard to prepare after it.

The smaller critical value of the isolation capacity qc is better for the
management of the epidemic dynamics. That is, the smaller critical value for
the isolation capacity makes an isolation policy with a feasible capacity more
likely to be invulnerable to avoid its breakdown. The larger critical value for
the isolation capacity indicates a harder situation for the public health policy
since a large capacity of isolation is necessary to avoid its breakdown and to
suppress the endemicity or make the final epidemic size at a low level. As
the factors to determine the effectiveness of a public health policy against a
spreading disease, the isolation capacity and the quarantine efficiency could
be independently improved. Our results clearly indicate their relevance, and
it is implied that the improvement about one of them could make that about
the other more feasible, as discussed in Shahverdi et al. [146]. Inversely, when
one of them could not be sufficiently improved, the improvement of the other
becomes less effective.

3.5 influence of isolation discharge

In this section, we analyze the system (20) introduced in Subsection 3.2.5,
which incorporates both reinfection and discharge from isolation.

3.5.1 Endemic equilibria

Endemic equilibrium at the isolation well-functioning phase

As numerically exemplified by Figure 21(b), there is a case where the system
(20) with a limited isolation capacity may approach an endemic equilibrium
E∗w given by (24) in Subsection 3.2.5 at the isolation well-functioning phase,
even if there is a finite period in which it temporally stays at the isolation
malfunctioning phase. In this subsection, we consider the condition that such
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(a) (b)

Figure 21: Numerical examples of the convergence to an endemic state for
the system (20). (a) qmax = 0.2; (b) qmax = 0.3, commonly with
(u(0), v(0), q(0),w(0)) = (0.99999, 0.00001, 0.0, 0.0); R0 = 3.0; ε = 0.35;
εR0 = 1.05; γ = 0.5; a = 0.2; q∗w = 0.106383. In (a), the system approaches
an endemic equilibrium E∗m at the isolation malfunctioning phase, while,
in (b), it approaches an endemic equilibrium E∗w at the isolation well-
functioning phase.

an endemic equilibrium E∗w exists as an asymptotically stable state at the
isolation well-functioning phase for the system (20) with a limited isolation
capacity.

If such an equilibrium E∗w exists for the system (17) at the isolation well-
functioning phase, that is, for (23), then it is locally asymptotically stable
if and only if εR0 > 1, as shown by Theorem 3.1. To have it as a feasible
equilibrium at the isolation well-functioning phase for the system (20), it
must belong to Ωw

1 defined in Subsection 3.2.5. In other words, it is necessary
that q∗w < qmax, because otherwise E∗w given by (24) cannot exist for the
system (20) at the isolation well-functioning phase where the value of q must
be less than qmax. Hence, from (25) and Theorem 3.1, we have the following
result:

Theorem 3.10. For the system (20), the endemic equilibrium E∗w with the endemic
size v∗w given by (24) exists at the isolation well-functioning phase if and only if

εR0 > 1 and qmax > q∗w, (55)

where q∗w is given by (25) and (26) in Subection 3.2.5. Then E∗w is locally asymptot-
ically stable.

Furthermore from (24) and (55), we note that the endemic size v∗w at E∗w
necessarily has the following feature:

Corollary 3.10.1. At the endemic equilibrium E∗w for the system (20), the endemic
size v∗w satisfies that γv∗w < aqmax.

Remark that the system (20) approaches a disease-eliminated equilibrium
only if εR0 ≤ 1, as shown by Theorem 3.1. Then we have q → 0 as τ →∞ be-
cause of the discharge of isolated individuals from the isolation. However, we
will show in the following part that the condition εR0 ≤ 1 is not sufficient for
the system (20) to approach a disease-eliminated equilibrium. On the other
hand, Lemma 3.15 in Appendix 3.A.3 for the proof of Theorem 3.1 indicates
that the system (20) never approaches any disease-eliminated equilibrium if
εR0 > 1, and then it approaches an endemic state.
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Endemic equilibrium at the isolation malfunctioning phase

As numerically exemplified in Figure 21(a), there is a case where the system
approaches an endemic equilibrium

(u, v, q,w) = E∗m
(

0, v∗m, qmax, 1− qmax − v∗m
)

, (56)

with v∗m > 0 at the isolation malfunctioning phase. Here we consider the
condition that such an endemic equilibrium E∗m exists as an asymptotically
stable state.

When the system (20) stays at the isolation malfunctioning phase, that
is, when the solution of (20) belongs to Ωm

1 defined in Subsection 3.2.5,
the epidemic dynamics is governed by the following system correspond-
ing to (18) with the variable and parameter transformation for the non-
dimensionalization given in Subsection 3.2.5:

du

dτ
= −R0

v

1− qmax
u;

dv

dτ
= R0

v

1− qmax
u+ εR0

v

1− qmax
w− (1− γ)v− aqmax;

dq

dτ
= 0;

dw

dτ
= (1− γ)v + aqmax − εR0

v

1− qmax
w.

(57)

Since it holds that u+ v + qmax +w = 1 for any τ at the isolation malfunc-
tioning phase, the dynamics governed by the system (57) can be regarded as
mathematically equivalent to the dynamics with the following two dimen-
sional closed system:

du

dτ
= −R0

v

1− qmax
u;

dv

dτ
= (1− ε)R0

v

1− qmax
u−Ψ(v),

(58)

where

Ψ(v) :=
εR0

1− qmax
v2 −

{
εR0 − (1− γ)

}
v + aqmax. (59)

From the former equation of (58), we have u → 0 when v → v∗m > 0 as
τ →∞. Hence, from the latter equation of (58), to have the system (20) ap-
proaching an endemic equilibrium E∗m given by (56), it is necessary that the
equation Ψ(v) = 0 has a root such that v = v∗m ∈ [aqmax/γ, 1− qmax). This
is because γv∗m ≥ aqmax is necessary to have the system (20) at the isolation
malfunctioning phase as described in Subsection 3.2.5. Further, since such an
endemic state of E∗m must be sustained with the reinfection for the recovered
population after the susceptible individuals disappear, it is necessary that
w∗s = 1− v∗m − qmax > 0, that is, v∗m < 1− qmax. These conditions about v∗m
show it necessary that aqmax/γ < 1− qmax:

Lemma 3.11. If the endemic equilibrium E∗m given by (56) exists at the isolation
malfunctioning phase for the system (20), then it is necessary that

A :=
aqmax

1− qmax
< γ. (60)
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Here the parameter A represents the nature of isolation, which is positively
correlated to qmax and a, that is, to the capacity Qmax and the discharge rate
α.

Now taking account of Lemma 3.11, we can obtain the following result
about the existence and stability of the endemic equilibrium E∗m for the
system (20) at the isolation malfunctioning phase (Appendix 3.A.20):

Theorem 3.11. Once the system (20) enters the isolation malfunctioning phase at
a moment, it necessarily approaches the unique endemic equilibrium E∗m given by
(56) with the endemic size

v∗m =
1− qmax

2

{
1− 1− γ

εR0
+

√(
1− 1− γ

εR0

)2
− 4A
εR0

}
, (61)

if and only if

εR0 > 1− γ and A ≤ Ac (62)

with

Ac :=


A1 :=

εR0

4

(
1− 1− γ

εR0

)2
for εR0 ∈ (1− γ, 1 + γ ];

A2 := γ
(

1− 1

εR0

)
(= a/B∗w) for εR0 ∈ (1 + γ, ∞).

(63)

We can easily find that Ac ≤ γ for any γ ∈ (0, 1) and εR0 > 1 − γ, in
logical accordance with Lemma 3.11. In addition, it holds that A1 ≥ A2 for
εR0 > 1− γ, and A1 = A2 only for εR0 = 1 + γ.

Remark that the condition A ≤ A2 is equivalent to qmax ≤ q∗w that is the
complement to the latter condition of (55) in Theorem 3.10. Therefore, under
the condition that εR0 > 1 + γ and A ≤ A2, no endemic state exists at the
isolation well-functioning phase. Thus, taking account of Theorem 3.1, we
find the following result:

Corollary 3.11.1. If εR0 > 1 + γ and A ≤ A2, the system (20) enters the
isolation malfunctioning phase at a moment, and it necessarily approaches the
endemic equilibrium E∗m given by (56).

We note that the result of Theorem 3.11 as a→ 0, that is, A → 0 agrees
with the result (53) of Theorem 3.7 in Subsection 3.4.4, where the endemic
equilibrium E∗m given by (56) with (61) agrees with the endemic equilibrium
E+
∗ at “the isolation incapable phase”, and the condition (62) becomes only

the former as shown therein.
According to a mathematical consistency of the results in Theorem 3.11

and Lemma 3.2 of Subsection 3.2.5, we can obtain the following corollary too
(Appendix 3.A.21):

Corollary 3.11.2. As γ → +0 with εR0 > 1, the endemic equilibrium E∗m given
by (56) converges to the endemic equilibrium (22) for the system (20) with γ = 0,
that is, for the model (19) with σ = 0 when the isolation is not taken as a measure
for the public health.
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Figure 22: (εR0,A)-dependence of the existence of feasible endemic equilibria, E∗w at
the isolation well-functioning phase and E∗m at the isolation malfunctioning
phase. For the regions D∗0 , D∗0+m, D∗w, D∗w+m, and D∗m.

From the arguments in Appendix 3.A.20 for the proof of Theorem 3.11,
we can obtain the following important result on the behavior of the system
(20) at the isolation malfunctioning phase:

Lemma 3.12. When the condition (62) is unsatisfied, the system (20) never enters
the isolation malfunctioning phase, or it eventually returns to the isolation well-
functioning phase from the isolation malfunctioning phase at a certain moment.

Accordingly, from Lemma 3.12 with Theorems 3.1 and 3.10, we can find the
following result:

Theorem 3.12. When the condition (62) is unsatisfied, the system (20) approaches
the endemic equilibrium E∗w given by (24) at the isolation well-functioning phase if
εR0 > 1, or alternatively a disease-eliminated equilibrium if εR0 ≤ 1.

With those results of Theorems 3.10–3.12, Lemma 3.11, and Corollary
3.11.1, we can get the (εR0,A)-dependence of the existence of feasible en-
demic equilibria, E∗w at the isolation well-functioning phase and E∗m at the
isolation malfunctioning phase, as shown by Figure 22, where the parameter
region can be classified in the following five subregions:

D∗0 :=
{

(εR0,A)
∣∣ εR0 ≤ 1, A > A1

}
;

D∗0+m :=
{

(εR0,A)
∣∣ 1− γ < εR0 ≤ 1, 0 < A ≤ A1

}
;

D∗w :=
{

(εR0,A)
∣∣ 1 < εR0 < 1 + γ, A > A1

}
∪
{

(εR0,A)
∣∣ εR0 ≥ 1 + γ, A > A2

}
;

D∗w+m :=
{

(εR0,A)
∣∣ 1 < εR0 < 1 + γ, A2 < A ≤ A1

}
;

D∗m :=
{

(εR0,A)
∣∣ εR0 > 1, A ≤ A2

}
.

For the region D∗w+m, both of E∗w and E∗m exist. For the region D∗0+m, the
endemic equilibrium E∗m exists while a disease-eliminated equilibrium is
feasible at the same time. For the regions D∗w and D∗m, the equilibria E∗w and
E∗m are globally asymptotically stable respectively. For the region D∗0 , the
system eventually approaches a disease-eliminated equilibrium.

Then we find the following result on the sufficient capacity of isolation to
avoid its malfunction:
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Theorem 3.13. If A ≥ γ, that is, if the isolation capacity qmax is large enough to
satisfy that

qmax ≥ qsuff :=
1

1 + a/γ
, (64)

then the epidemic dynamics of (20) never results in the saturation of isolation
capacity, independently of ε and R0, that is, of the disease’s infectivity.

This result is mathematically consistent to Lemma 3.11: When the condition
(64) is satisfied, there is no endemic equilibrium at the isolation malfunction-
ing phase. Remark that the sufficient capacity qsuff is determined only by the
ratio a/γ = α/σ, that is, by the ratio of isolation discharge and quarantine
rates.

However, even if the condition (64) is satisfied, the disease may become
endemic while the isolation is functioning well. Actually we can easily find
that necessarily q∗w < qsuff . Such an endemicity arises if εR0 > 1, as already
indicated by Theorem 3.12:

Corollary 3.13.1. Even when the isolation capacity qmax is large enough to satisfy
the condition (64), so that the isolation becomes functioning well, the system (20)
approaches the endemic equilibrium E∗w defined by (24) if εR0 > 1.

Consequently, for the disease with a sufficiently high likelihood of reinfec-
tion as εR0 > 1, the disease eventually becomes endemic, independently of
whether the isolation becomes malfunctioning or not. For such a reinfectious
disease, the isolation measure could not suppress its spread even with its sat-
isfactory management, whereas it necessarily serves the reduction of endemic
size in the community. Nonetheless, independently of how high likelihood of
reinfection the spreading disease has, the community should have an action
to avoid the malfunction of isolation, because the malfunction of isolation
must show the deficiency in the public health measure to the people, which
may causes a social unrest with the exhaustion of medical services about
the quarantine/isolation measure. Thus, naturally it is desirable to have a
sufficient isolation capacity ready for the public health in a community, even
though it could not suppress the endemicity of a disease.

In contrast, for the disease with a low likelihood of reinfection as εR0 < 1,
we find the secondary sufficient capacity of isolation to suppress the en-
demicity as indicated by Figure 22:

Corollary 3.13.2. If A ≥ γ2/4, that is, if the isolation capacity qmax is large
enough to satisfy that

qmax ≥ qsecsuff :=
1

1 + 4a/γ2
, (65)

then the epidemic dynamics of (20) for the disease with εR0 < 1 necessarily results
in the elimination of disease.

The inequality qsecsuff < qsuff necessarily holds. We may regard qsecsuff as the
critical value for the isolation capacity qmax according to the transmissible
disease relatively less reinfectious. However, as seen from Figure 22, even
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(a-1)

(a-2)

(b-1)

(b-2)

Figure 23: Temporal variations by the system (20) in the bistable situation of (a)
D∗0+m; (b) D∗w+m respectively. Numerically calculated with (a) (εR0,A) =
(0.4, 0.02222); qmax = 0.1; R0 = 1.14286; ε = 0.35; εRc

0 = 0.248676;
v(0) = 0.009 for (a-1), 0.010 for (a-2). (b) (εR0,A) = (1.035, 0.06667);
qmax = 0.25, R0 = 1.15; ε = 0.9; εRcc

0 = 1.08; v(0) = 0.005 for (b-1),
0.006 for (b-2). Commonly γ = 0.9; a = 0.2. In (a-1), the system approaches
a disease-eliminated equilibrium, and in (b-1), it approaches the endemic
equilibrium E∗w at the isolation well-functioning phase. In contrast, it
approaches the endemic equilibrium E∗m at the isolation malfunctioning
phase in (a-2) and (b-2).

if qmax ≥ qsecsuff , the emergence of a reinfectious disease with a high rein-
fectivity as εR0 > 1 leads to its endemicity in the community, and then the
isolation may become malfunctioning if qmax < qsuff . Since the community
should prepare also for the emergence of such a highly reinfectious disease
from the viewpoint of well-organized public health policy, it must be de-
sirable to have a sufficient capacity of isolation as qmax ≥ qsuff . This would
be one of lessons drawn from our experience of the recent pandemic with
COVID-19.

Incidentally we note that the results of Theorem 3.13 and Corollary 3.13.2
become meaningless as a → 0 when no discharge of the isolation occurs.
The conditions (64) and (65) can actually never satisfied for a = 0, since the
condition qmax ≥ 1, that is, Qmax ≥ N , is regarded as unrealizable in general.
As seen from Figure 22, for a = 0, that is, for A = 0, we have only three
regions D∗0 , D∗m, and D∗0+m on the horizontal axis, correspondingly to the
results obtained about the model without the discharge from isolation in
Subsection 3.4.4.

3.5.2 Bistability

From Theorems 3.1 and 3.10–3.12, we find that there are some cases where a
bistable situation occurs as indicated in Figure 22:

Theorem 3.14. The system (20) is in a bistable situation to approach either of

(i) a disease-eliminated equilibrium or the endemic equilibrium E∗m if (εR0,A) ∈
D∗0+m;
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Figure 24: Bifurcation of the equilibrium values v∗ and q∗ in terms of εR0 for the
system (20) with qmax satisfying the condition (66). Numerically drawn
with (24), (25), and (61) for A = 0.04390; a = 0.2; qmax = 0.18; γ = 0.5,
taking account of the results given by Theorems 3.1–3.11, and Lemma 3.12.
Refer to Figure 22. In the figures, (v∗w, q

∗
w) is of the endemic equilibrium

E∗w at the isolation well-functioning phase, and (v∗m, q∗s ) is of the endemic
equilibrium E∗m at the isolation malfunctioning phase. DEE indicates a
disease-eliminated equilibrium with v∗ = q∗ = 0. Two critical values
εRc

0 and εRcc
0 for εR0 are given by (67) and (68), 0.896859 and 1.09626

respectively in this numerical calculation. Remark that εRc
0 ∈ (1− γ, 1)

and εRcc
0 ∈ (1, 1 + γ).

(ii) endemic equilibria E∗w or E∗m if (εR0,A) ∈ D∗w+m.

As mentioned in the previous subsection, the system (20) with a→ 0, that
is, the model (40) without the discharge from isolation considered in Section
3.4 does not have any bistable situation with different asymptotically stable
endemic equilibria. It has only a bistable situation with a disease-eliminated
equilibrium and an endemic one, where the endemic equilibrium is at “the
isolation incapable phase” where the isolation breaks down by the saturation
of its capacity. Such a bistable situation corresponds to the region D∗0+m in
Figure 22 for the system (20) with the discharge from isolation. As a distinct
nature of the system (20) with the discharge from isolation, it can be in a
bistable situation with different two asymptotically stable endemic equilibria
E∗w and E∗m, which corresponds to the region D∗w+m in Figure 22. As in
the model (40) in Section 3.4, the final state of the system (20) depends on
whether the system enters the isolation malfunctioning phase or not in such
a bistable situation.

Figure 23(a) gives numerical examples for (εR0,A) ∈ D∗0+m such that the
system approaches either of a disease-eliminated equilibrium or the endemic
equilibrium E∗m, depending on the initial condition. Numerical examples for
(εR0,A) ∈ D∗w+m are given as Figure 23(b) too. As seen from Figure 22, such
a bistable situation occurs only for sufficiently small A and a limited range
of εR0:

Corollary 3.14.1. A bistable situation occurs only if εR0 ∈ (1− γ, 1 + γ) and
A < γ2/(1 + γ), that is,

qmax <
1

1 + a/γ + a/γ2
∈ (qsecsuff , qsuff ). (66)

We remark that the range (1− γ, 1 + γ) of εR0 for the bistable situation is
bounded above by 2 because of γ ∈ (0, 1). Thus, if εR0 ≥ 2, such a bistable
situation does not occur, and the epidemic dynamics leads to an endemic
state, as already seen by Figure 22 in Subsection 3.5.1.

The bifurcation diagram given in Figure 24 clearly indicates the existence
of bistability according to two equilibria for the system (20) with qmax sat-
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(a) (b)

Figure 25: Dependence of the values v∞, q∞, and w∞ at the final state on the
initial infective population size v0 for the system (20) in a bistable sit-
uation: (a) D∗0+m; (b) D∗w+m. The system converges to an equilibrium
with v∞ and q∞ which are numerically calculated with (a) (εR0,A) =
(0.4, 0.02222); qmax = 0.10; R0 = 1.14286; ε = 0.35; γ = 0.9; (b)
(εR0,A) = (1.12, 0.08169); qmax = 0.29; R0 = 1.4; ε = 0.8; γ = 0.5,
and commonly a = 0.2; v(0) = 0.00001.

isfying the condition (66). As shown in Figure 24, we have critical values
εRc

0 and εRcc
0 for εR0 according to the bifurcation, where the critical value

εRc
0 ∈ (1− γ, 1) is determined by the root of equation A1 = A:

εRc
0 := 1− γ + 2A+ 2

√
A(1− γ +A), (67)

and the other critical value εRcc
0 ∈ (1, 1 + γ) is by the root of equation

A2 = A:

εRcc
0 :=

(
1− A

γ

)−1
(68)

with the condition (60). We have a bistable situation only for εR0 ∈ (εRc
0, εRcc

0 ).
In such a bistable situation, once the system (20) enters the isolation

malfunctioning phase, it approaches E∗m, as indicated by Corollary 3.11.1.
We could not find the mathematical condition that the system (20) enters the
isolation malfunctioning phase at a certain moment. Like the analytical result
obtained for the model without the discharge from isolation in Section 3.4,
the condition must depend on the initial value v0 (alternatively u0 = 1− v0)
and the other parameters, as already implied by Figures 23 and 24. Indeed
Figure 25 shows numerical results according to the dependence of the final
state on the initial infective population size v0.

As expected, Figure 25 implies that the larger value of initial infective
population size v0 is more likely to induce the convergence of the system
(20) to a severer endemic equilibrium with malfunctioning isolation. Besides,
we remark that, even when the system (20) converges to a disease-eliminated
equilibrium, the larger v0 results in the larger final epidemic size w∗ de-
fined in Lemma 3.2, since it means the number of individuals who have
experienced the infection until the elimination of disease.

3.5.3 Epidemic consequence

While the epidemic consequence would depend also on the initial condition
as shown in the previous section, we find that the higher reinfectivity (the
larger εR0) is more likely to cause the convergence to the severer endemic
equilibrium E∗m with malfunctioning isolation, as indicated by Figure 26.
Such an epidemic consequence with the endemic equilibrium E∗m with
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Figure 26: (εR0,A)-dependence of the final state for the system (20). Numerically
calculated with qmax = 0.3; γ = 0.9; v(0) = 0.00001. Refer to Figure 22.
The definition of εRF

0 is given in Subsection 3.5.3.

(a) (b) (c)

(d) (e) (f)

Figure 27: qmax-dependence of the values v∞, q∞, and w∞ to which v, q, and w

of the system (20) converge. Numerically drawn with (R0, εR0) = (a)
(1.143, 0.8); (b) (1.286, 0.9); (c) (1.429, 1.0); (d) (1.5, 1.05); (e) (1.714, 1.2);
(f) (3.571, 2.5), and commonly ε = 0.7; γ = 0.9; a = 0.2; v(0) = 0.00001.
Here qi is defined as (69).

malfunctioning isolation requires a small value of A, which corresponds to a
small isolation capacity Qmax or/and a small discharge rate α. Inversely, a
sufficiently large isolation capacity or/and a large discharge rate could make
the epidemic consequence less severe without the malfunction of isolation or
lead to the elimination of disease.

For further detail, Figure 26 clearly illustrates that the system may ap-
proach the endemic equilibrium E∗m even when εR0 ≤ 1, which depends
on the initial condition and the parameter values including qmax as shown
by Figures 23(a) and 27(a–c): For (εR0,A) ∈ D∗0+m, there is a critical value
Ac < A1 for A below which the system (20) could enter the isolation mal-
functioning phase and approaches the endemic equilibrium E∗m. As seen by
Figures 26 and 27(a–c), the critical value Ac depends on εR0 ∈ (1− γ, 1).
If A > Ac when εR0 ≤ 1, the system (20) approaches a disease-eliminated
equilibrium.

This result indicates the existence of a critical capacity qc for the isolation,
which depends on the reinfectivity εR0. As εR0 gets greater, it is larger.
Such the critical capacity qc could be regarded as corresponding to the result
for the model with no discharge from isolation of (50) in Subsection 3.4.4,
whereas the parameter region D∗0+m significantly narrows down for the
model (20) with the discharge from isolation.
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Actually the case for the model with no discharge from isolation in Section
3.4 appears on the horizontal axis (i.e., A = 0) in Figure 26. From the result
given in Section 3.4, the critical value for εR0 < 1 on the horizontal axis is
given as εR0 = εRF

0 with RF
0 ∈ (0, 1/ε) which is uniquely determined by

the root of the following equation in terms of R0:

u0(1− qmax)R0/γ = F
(
u0(1− qmax)R0/γ)

with

F (u) :=


1− εR0

γ − εR0

( u

u0

)γ/R0

− 1− γ
γ − εR0

( u

u0

)ε
for εR0 6= γ;

(
1 + ε

1− γ
γ

ln
u

u0

)( u

u0

)ε
for εR0 = γ.

It is clear that RF
0 depends on the initial condition, that is, on the initial

value u0 = 1− v0.
In contrast to Section 3.4, where explicit conditions for determining the

critical capacity qc and the threshold εRF
0 were obtained, it is difficult to

derive analytical results when discharge from isolation is considered.
Nevertheless, when εR0 ≤ 1, Figures 26 and 27(a–c) clearly indicate the

existence of the critical capacity qc < q1, where

qi :=
1

1 + a/Ai
(i = 1, 2) (69)

from the definition of A in (60) and that of Ai by (63), and thus qmax = qi
corresponds to A = Ai. We have q1 ≥ q2 for εR0 ≥ 1− γ, and q1 = q2 only
for εR0 = 1 + γ.

Next, when εR0 > 1, the epidemic dynamics by the model (20) leads
to the endemic equilibrium E∗w even when the isolation is functioning well
without the saturation of its capacity. As indicated by Figures 26 and 27(d–f),
when εR0 > 1, there is a critical value Ac ∈ [A2,A1] for A below which
the system (20) enters the isolation malfunctioning phase and approaches
the endemic equilibrium E∗m. If A > Ac when εR0 > 1, the system (20)
approaches the endemic equilibrium E∗w, where the epidemic consequence
could be regarded as less severe in terms of the infective population size
at the endemic state. In accordance with such the criticality when εR0 > 1,
the system (20) approaches E∗w if qmax > qc ∈ [q2, q1), while it does E∗m if
qmax ≤ qc. We could not analytically identify the critical value Ac or qc for
εR0 ∈ (1, 1 + γ), while we find Ac = A2, that is, qc = q2 for εR0 ≥ 1 + γ, as
seen from Figures 22, 26, and 27(f).

As shown in Subsection 3.5.2, the critical values Ac and qc depend on
the initial condition only at the bistable situation. That is, they depend on
the initial condition for εR0 ∈ (1− γ, 1 + γ), while it is given by Ac = A2

and qc = q2 independently of the initial condition for εR0 ≥ 1 + γ. Remark
that the critical value Ac or qc indicates the criticality not for the endemicity
but for the function of isolation, whereas it can do the criticality also for the
endemicity when εR0 ≤ 1.

Finally, for the criticality of isolation function and endemicity, we obtain
the following result:

Theorem 3.15. There exists a unique critical value qc for the isolation capacity
qmax such that the endemic size becomes minimal or the disease is eliminated with
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(a) (b) (c)

(d) (e) (f)

Figure 28: a-dependence of of the values v∞, q∞, and w∞ to which v, q, and w

of the system (20) converge. Numerically drawn with (R0, εR0) = (a)
(1.286, 0.9); (b) (1.429, 1.0); (c) (1.5, 1.05); (d) (1.714, 1.2); (e) (2.857, 2.0);
(f) (4.286, 3.0), and commonly ε = 0.7; γ = 0.9; qmax = 0.3; v(0) =
0.00001. We have v∗w = w∗w for εR0 = 2 from (24). Here a = ai is defined
as (70), and a1 = a2 only for εR0 = 1 + γ.

well-functioning isolation if qmax > qc, while the isolation capacity qmax < qc
induces the larger endemic size with malfunctioning isolation.

It is easily found from (61) that the endemic size v∗m at the equilibrium E∗m is
monotonically decreasing in terms of qmax, as shown by Figure 27.

In the same way, we can find the criticality according to the parameter a
as seen in Figure 28. A critical value ac exists in the range [a2, a1) with

ai :=
1− qmax

qmax
Ai (i = 1, 2), (70)

where a = ai corresponds to A = Ai. Both of a1 and a2 are monotonically
decreasing in terms of qmax. We have a1 ≥ a2 for εR0 ≥ 1− γ, and a1 = a2

only for εR0 = 1 + γ. When εR0 ∈ (1− γ, 1], the disease becomes eliminated
if a ≥ ac ∈ (0, a1), and it becomes endemic at E∗m with malfunctioning
isolation if a < ac. When εR0 > 1, the disease becomes endemic at E∗w with
well-functioning isolation if a ≥ ac ∈ [a2, a1), and it becomes endemic at E∗m
with malfunctioning isolation if a < ac. Although we could not analytically
obtain the expression of ac for εR0 ∈ (1− γ, 1 + γ), the same as Ac about A,
we find that ac = a2 for εR0 ≥ 1 + γ. As well as the critical capacity qc for
the isolation capacity qmax, the critical value ac indicates the criticality for
the function of isolation.

While the larger a must work to avoid the malfunction of isolation because
it means the faster discharge from isolation, it does not necessarily suppress
the endemicity or reduce the endemic size as seen in Figures 28 and 29. If
the system approaches the endemic equilibrium E∗w with well-functioning
isolation for a sufficiently large a ≥ ac when εR0 > 1, the larger a makes the
endemic size v∗w bigger. Indeed, v∗w is monotonically increasing in terms of a,
since we have

v∗w =
a/γ

1 + a/A2
,
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(a) (b) (c)

Figure 29: (qmax, a)-dependence of the value v∞ to which v of the system (20)
converges. Numerically drawn with (R0, εR0) = (a) (1.286, 0.9); (b)
(1.714, 1.2); (c) (4.286, 3.0), and commonly ε = 0.7; γ = 0.9; v(0) =
0.00001.

from (24–26). In contrast, it can be easily seen from (61) that the endemic
size v∗m at the endemic equilibrium E∗m with malfunctioning isolation is
monotonically decreasing in terms of a.

As a result for the criticality about the isolation function and endemicity,
we obtain the following result:

Theorem 3.16. There exists a unique critical value ac for the parameter a to
minimize the endemic size or make the disease eliminated: When εR0 ∈ (1− γ, 1],
the disease becomes eliminated if and only if a > ac. When εR0 > 1, the endemic
size takes the infimum for a→ ac + 0.

Especially when εR0 ≥ 1 + γ, we have the infimum endemic size as

lim
a→a2+0

v∗w = (1− qmax)
(

1− 1

εR0

)
from (24–26), (63), and (70), because ac = a2 in this case as mentioned before.
We could not find the explicit formula for the infimum endemic size as well
as ac for εR0 ∈ (1− γ, 1 + γ).

The critical value ac leads to the critical value for the discharge rate
α. Theorem 3.16 implies that the faster discharge from isolation does not
necessarily favor the better epidemic consequence. For the disease with a
weak reinfectivity as εR0 ≤ 1, the faster discharge can work to eliminate it,
while the faster discharge may induce the higher endemicity for the disease
with a strong reinfectivity as εR0 > 1. Since the faster discharge leads to
the more efficient recruitment of (recovered) individuals susceptible for the
reinfection, too fast discharge could result in an overcompensating increase
in the endemic size.

From the further investigation in Appendix 3.A.22 about the endemic size
v∗ when εR0 > 1− γ, we can find the following result about its supremum
in terms of a too:

Corollary 3.16.1. When εR0 > 1− γ, if

qmax ≤
γ

εR0 − 1 + γ
, (71)

then the endemic size v∗ takes the supremum

(1− qmax)
(

1− 1− γ
εR0

)
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for a→ +0, that is, when no isolated individual is discharged. Otherwise, if

qmax >
γ

εR0 − 1 + γ
, (72)

the endemic size for

a > a† := γ(1− qmax)
(
qmax −

γ

εR0 − 1 + γ

)−1(
1− 1

εR0

)
(73)

becomes bigger than any endemic size for a ≤ a†, and the supremum is given as its
upper bound 1− 1/(εR0).

Remark that the condition (72) can be satisfied only for εR0 > 1, and the
condition (71) is necessarily satisfied for εR0 ∈ (1−γ, 1). Especially when the
condition (72) is satisfied for εR0 > 1, too large a could make the epidemic
consequence the worst.

Although the larger isolation capacity and the faster discharge from
isolation would be preferable from the viewpoint of public health measure,
Theorem 3.16 and Corollary 3.16.1 imply a difficulty to make a better policy
for the public health, because the optimal policy could depend on the nature
of spreading disease. To appropriately manage the public health measure for
a spreading disease, it must be important to monitor the epidemic situation
and adjust the measure, following the accumulating scientific knowledge
about the disease.

As we have already seen in Figures 21 and 27–29, the final infective
population size v∞ may become discontinuously larger if the system enters
the isolation malfunctioning phase and approaches an endemic equilibrium
at the phase. Numerical results in Figures 27–29 clearly show the existence
of such a discontinuous shift of the endemic size in terms of the isolation
capacity qmax and the parameter a. It is indicated that the endemicity arises
to make the endemic size discontinuously large for qmax and a below their
critical values.

Although we could not obtain the analytical result on the critical values
for qmax and a with which such a discontinuous shift of the endemic size v∗

occurs, we can obtain the following result about it (Appendix 3.A.23):

Theorem 3.17. Only in the bistable situation of D∗0+m and D∗w+m, the endemic
size v∗ has a discontinuous shift at qmax = qc or a = ac where the approached equi-
librium switches between those at the isolation well-functioning and malfunctioning
phases. In other cases, the endemic size v∗ continuously depends on qmax and a,
that is, v∗ is continuous even at either qmax = qc = q2 and a = ac = a2.

Hence such a discontinuous shift of endemic size occurs only for εR0 ∈
(1− γ, 1 + γ).

Numerical results show the existence of such a discontinuous shift of the
endemic size v∗ for qmax = qc in Figure 27(a–c) and for a = ac in Figure 28(a,
b) with respect to D∗0+m. So do those for qmax = qc in Figure 27(d, e) and for
a = ac in Figure 28(c–e) with respect to D∗w+m. In contrast, Figures 27(f) and
28(f) show numerical examples such that the endemic size v∗ continuously
depends on qmax and a when εR0 ≥ 1 + γ out of D∗0+m and D∗w+m. The
endemic size v∗ continuously varies between v∗m and v∗w at the critical value
either qmax = q2 and a = a2, that is, at the boundary between D∗w and D∗m
for εR0 ≥ 1 + γ in Figure 22. See also numerical results in Figure 29.
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3.5.4 Discussion

In this section, we analyzed an SIRI+Q model that incorporates both rein-
fection and limited isolation capacity with the discharge mechanism. The
results highlight the significant role of both isolation capacity and isolation
period in determining the epidemic consequences of a reinfectious disease.
There could be a critical value for the isolation capacity Qmax below which
the isolation becomes malfunction to induce the endemicity. For a highly
reinfectious disease, such a situation with malfunctioning isolation may in-
duce a significantly large endemic size. Further, there could exist a critical
value for the isolation period (1/α in our model) such that the endemic size
becomes significantly large if the isolation period is longer than the critical.

For the disease with a weak reinfectivity, which is given by the case
of εR0 < 1 in our model, the isolation measure could be the key factor
in achieving disease elimination. In this case, elimination can be possible
through a sufficiently large isolation capacity and efficient discharge of
patient. Inversely, the disease could become endemic if the capacity is rather
small or the isolation takes much long period before the discharge of patient.
Such endemicity is necessarily accompanied by the malfunction of isolation
measure. In our model, when the isolation reaches its capacity and becomes
malfunctioning, the epidemic dynamics leads to an endemic equilibrium
with a significantly large endemic size. This result clearly demonstrates the
importance of well-functioning isolation measure to suppress the endemic
size.

When the isolation remains malfunctioning with the saturation of its
capacity, the epidemic dynamics could be qualitatively different from when
the isolation functions well. Such a qualitative shift in the epidemic dynamics
could cause a drastic deterioration of the social damage for the community.
Once isolation reaches its capacity, it can place growing strain on medical
services and potentially lead to a progressive worsening of the epidemic
situation, as public health measures fail to function effectively. A sufficient
isolation capacity is also essential for maintaining the quality of medical
services during an epidemic.

Moreover, our results indicate that a higher discharge rate and a lower
quarantine rate tend to reduce the occupancy of isolation facilities, thereby
decreasing the likelihood of reaching the isolation capacity. However, from
a public health perspective, quarantine measures are generally promoted
to suppress disease transmission, whereas the discharge rate is inherently
constrained by the nature of the disease and the limitations of medical
resources. Hence, the discharge rate is generally cannot be easily increased as
we would prefer. Even though a sufficient isolation capacity may theoretically
prevent the malfunction of isolation, ensuring such capacity is often difficult
due to limited medical resources and societal pressure to extend the isolation
period. These factors increase the likelihood of saturation, thereby requiring
the sufficient isolation capacity to remain effective.

Furthermore, our results of Theorems 3.15 and 3.16 imply that a certain
intermediate value of isolation discharge rate would be optimal to make
the epidemic consequence as minor as possible. As shown in Figure 29,
the critical value ac is monotonically decreasing in terms of the isolation
capacity qmax, whereas we could not analytically prove it for the case where
εR0 ∈ (1− γ, 1 + γ). Hence, such an optimal value of the isolation discharge
rate α would become smaller for the larger isolation capacity Qmax. Therefore,
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a larger isolation capacity enables more flexible and effective management of
quarantine and isolation to reduce social damage.
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appendix for chapter 3

appendix 3.a .1: proof of lemma 3.1

The isolated population size Q never becomes greater than Qmax in the
epidemic dynamics governed by (19) with the initial value Q(0) = 0. From
(19), we have dQ/dt ≤ 0 for Q = Qmax. Thus the isolated population size Q
never becomes greater than Qmax < N for any t ≥ 0.

Then from (19), we formally have

I(t) = I(0) exp
[ ∫ t

0
β

S(ν)

N −Q(ν)
+ εβ

R(ν)

N −Q(ν)
− ρ− σ dν

]
> 0

with I(0) > 0 for any t such that Q(ν) < Qmax for any ν < t. If the system
gets in the isolation malfunctioning phase at t = t? and stays there for
t ∈ [t?, t†], we have I(t?) > 0 from the above argument, and

I(t) = I(t?) exp
[ ∫ t

t?
β

S(ν)

N −Qmax
+ εβ

R(ν)

N −Qmax
− ρ− αQmax

I(ν)
dν
]
> 0

for any t ∈ [t?, t†] when the system remains at the isolation malfunctioning
phase. If the system returns to the isolation well-functioning phase after
t = t† <∞ and stays there for t ∈ (t†, t‡), then we have

I(t) = I(t†) exp
[ ∫ t

t†
β

S(ν)

N −Q(ν)
+ εβ

R(ν)

N −Q(ν)
− ρ− σ dν

]
> 0

with I(t†) > 0 for any t ∈ (t†, t‡). From these arguments, we have I(t) > 0

for any t ≥ 0 according to the system (19). Thus, we have dQ/dt
∣∣
Q=0

> 0 for
any t ≥ 0. Since dQ/dt > 0 at t = 0, we finally find that Q ∈ (0,Qmax) for
any t > 0.

Then with the same arguments, we can have S > 0 and R > 0 for any
t > 0. Lastly, since it must hold that S + I +Q+R = N (a given positive
constant) for any t ≥ 0 from the equations of (19), we obtain the lemma.

appendix 3.a .2: proof of lemma 3.2

In the case of ε = 0 where no reinfection occurs, the system (21) becomes one
of the well-known Kermack-McKendrick SIR model, and we know that the
system approaches a disease-eliminated equilibrium (u, v,w) = (u∗, 0,w∗)
where u∗ is given by the unique positive root in (0, 1) satisfying the equation

u∗ − 1

R00
log u∗ = 1− 1

R00
log u0,

and w∗ = 1− u∗ (for example, see Martcheva 110 , Seno 144 ).
To prove Lemma 3.2, we consider the other two cases about the value of

ε: ε = 1 and ε ∈ (0, 1), where the reinfection occurs. The former is the case
where the reinfection is possible with the same infection force as that for the
initial infection.

i) case of ε = 1 In this case, the second equation of (21) becomes

dv

dτ
=
{
R00(u+w)− 1

}
=
{
R00(1− v)− 1

}
= R00

(
1− 1

R00
− v
)
v.
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Hence, as known well for the logistic equation, we find that v is monotoni-
cally decreasing toward zero as time passes if R00 ≤ 1, while v monotonically
approaches 1− 1/R00 > 0 as time passes if R00 > 1. Therefore, for the sys-
tem (21) with ε = 1, the system approaches a disease-eliminated equilibrium
if R00 ≤ 1, while it does an endemic equilibrium if R00 > 1.

From the first and third equations in (21) with ε = 1, we can derive

dw

du
= −1−R00w

R00u
.

Then, from this equation, we can find the following equality that holds for
any τ ≥ 0:

R00w(τ ) = 1− u(τ )

u0
, (74)

where we used the initial condition that u(0) = u0 ∈ (0, 1) and w(0) = 0.
When R00 ≤ 1, since u+w = 1− v for any τ ≥ 0 and v → 0 as τ →∞, we
can get the equilibrium values u∗ and w∗ as τ →∞ from (74):

u∗ =
1−R00

1− u0R00
u0; w∗ =

1− u0

1− u0R00
.

In the same way, when R00 > 1, since v → 1− 1/R00 as τ →∞, we can get

u→ 0; w → 1

R00

as τ →∞. Note that du/dτ < 0 for any positive u and v. Since v converges
to a positive value as τ →∞ when R00 > 1, we have du/dτ < 0 as long as
u > 0.

ii) case of ε ∈ (0, 1) When εR00 ≤ 1, from the third equation of (21),
we have

dw

dτ
= v− εR00vw ≥ (1−w)v. (75)

Since we have dw/dτ
∣∣
τ=0

> 0 with w(0) = 0 and v(0) > 0, w becomes and
remains positive for τ > 0 (refer to Lemma 3.1). Besides, from the second
equation of (21), we formally have

v(τ ) = v(0) exp
[ ∫ τ

0
R00u(s) + εR00w(s)− 1 ds

]
> 0

for any τ ≥ 0. Thus v remains positive for τ ≥ 0. Hence, we further find that
w = 1− u− v < 1 for τ ≥ 0 (refer to Lemma 3.1). With these arguments, we
have (1−w)v > 0 for τ > 0. Therefore, from (75), we find that dw/dτ > 0

for any τ > 0, that is, w is monotonically increasing when εR00 ≤ 1. Since
w ∈ (0, 1) for any τ > 0, this result indicates that w → w∗ ∈ (0, 1] as τ →∞.
At the same time, it is necessary that dw/dτ → 0 as τ →∞. Then, from (75),
it is necessary that (1−w)v → 0 as τ → ∞, that is, w → w∗ = 1 or v → 0

as τ →∞. Since v → 0 even when w → 1 as τ →∞ because of the equality
v = 1− u− v ∈ (0, 1) for τ ≥ 0, we conclude that v → 0 as τ → ∞ when
εR00 ≤ 1. This is the case where the system approaches a disease-eliminated
equilibrium.

From the first and third equations of (21), we can derive

dw

du
= −1− εR00w

R00u
.
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With this equation, we can find the following equality that holds for any
τ ≥ 0:

εR00w(τ ) = 1−
{u(τ )

u0

}ε
, (76)

where we used the initial condition that u(0) = u0 ∈ (0, 1) and w(0) = 0.
Since v → 0 as τ → ∞ when εR00 ≤ 1, we find from (76) that (u,w) →
(u∗,w∗) ∈ (0, 1)× (0, 1) as τ → ∞ when εR00 ≤ 1, where u∗ is uniquely
determined by the equation

εR00(1− u∗) = 1−
( u∗
u0

)ε
,

and w∗ = 1− u∗.
Next let us consider the case where εR00 > 1. From (76), we formally

have

v(τ ) = 1−w(τ )− u(τ ) = 1− 1

εR00

[
1−

{u(τ )

u0

}ε]
− u(τ ). (77)

Then, substituting (76) and (77) for the first equation of (21), we can get the
following closed ordinary differential equation of u:

du

dτ
= − u

ε

{
εR00(1− u) +

( u

u0

)ε}
. (78)

Since the right side of (78) is necessarily negative for any u ∈ (0, 1) and
becomes zero for u = 0, we find that u → 0 as τ → ∞. Lastly, from (76)
and (77), we can get the result that v → 1− 1/(εR00) and w → 1/(εR00) as
τ →∞ when εR00 > 1.

appendix 3.a .3: proof of theorem 3.1

Lemma 3.13. If εR0 < 1, the system (23) approaches a disease-eliminated equilib-
rium as τ →∞.

Proof. Taking account of u+ v + q +w = 1 for any τ ≥ 0, the system (23) is
mathematically equivalent to the following three dimensional one:

du

dτ
= −R0

v

1− q
u;

dv

dτ
= R0

v

1− q
u+ εR0

v

1− q
(1− u− v− q)− v;

dq

dτ
= γv− aq.

(79)

From (79), we have

d(u+ v)

dτ
= −εR0

v

1− q
(u+ v)− (1− εR0)v < 0 (80)

for any v > 0 when εR0 < 1. Besides u is monotonically decreasing for
any τ > 0 since u, v, and q are positive and less than 1 for any τ > 0 with
v(0) ∈ (0, 1) and u(0) = 1− v(0) (refer to Lemma 3.1). If v → v∗ > 0 as
τ → ∞, then u → 0 and u+ v → 0 since the right side of (80) is always
negative. Thus, v would have to converge to zero. This is contradictory. Hence
we find that v → 0 as τ →∞ when εR0 < 1. This proves the lemma.
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Lemma 3.14. For the system (23) with εR0 = 1, we have (u, v, q,w)→ (0, 0, 0, 1)
as τ →∞.

Proof. For the special case of εR0 = 1, the system (79) becomes

du

dτ
= −R0

v

1− q
u;

dv

dτ
= {(R0 − 1)u− v} v

1− q
;

dq

dτ
= γv− aq.

(81)

Suppose that R0 > 1 for ε < 1 because of εR0 = 1. From (81), we can obtain

d

dτ
ln(u+ v) = − v

1− q
;

d

dτ
lnu = −R0

v

1− q
,

and subsequently

(u+ v)R0 =
u

u0
, (82)

making use of u0 + v0 = 1 for the initial condition (u(0), v(0), q(0),w(0)) =
(u0, v0, 0, 0) with v(0) ∈ (0, 1). Then, from the first equation of (81) and the
relation (82), we can get the following closed ordinary differential equation
of u:

du

dτ
= −R0

u0

1− q

{( u

u0

)1+1/R0

− u0

( u

u0

)2
}

, (83)

where u/u0 < 1 for any τ > 0 because the first equation of (81) indicates
that u is monotonically decreasing with du/dτ < 0 for any τ > 0. Thus, we
find from (83) that du/dτ

∣∣
u>0

< 0 with R0 ≥ 1 and du/dτ
∣∣
u=0

= 0. Hence
we have u → 0 as τ → ∞. Therefore, from (82), we have v → 0 as τ → ∞
at the same time. Finally, from the third equation of (81), we have q → 0 as
τ →∞, and subsequently w = 1−u− v− q → 0 as τ →∞. These arguments
are valid even for the case of R0 = 1 with ε = 1. As a result, we have this
lemma.

Consequently, from Lemmas 3.13 and 3.14, we find that the system (23)
approaches a disease-eliminated equilibrium as τ → ∞ if εR0 ≤ 1. Those
lemmas indicate also that the convergence to a disease-eliminated equilib-
rium is independent of the initial condition.

Lemma 3.15. If εR0 > 1, the disease-eliminated equilibrium (u, v, q,w) =
(u∗, 0, 0, 1− u∗) with any u∗ ∈ [0, 1) for the system (23) is unstable.

Proof. The Jacobi matrix at the equilibrium (u, v, q) = (u∗, 0, 0) for the system
(79) becomes

J0 =


0 −R0u

∗ 0

0 (1− ε)εR0u
∗ + εR0 − 1 0

0 γ −a


.

The eigenvalues for J0 are 0, (1− ε)εR0u
∗ + εR0 − 1, and −a. The second

eigenvalue is positive for any u∗ ∈ [0, 1) with εR0 > 1. Therefore the lemma
is proved.
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Lemma 3.15 indicates that the system (23) does not approach any disease-
eliminated equilibrium when εR0 > 1. That is, the system (23) can approach
a disease-eliminated equilibrium only when εR0 ≤ 1. As a result from Lem-
mas 3.13, 3.14, and 3.15, we can get the former part of Theorem 3.1. The latter
part of Theorem 3.1 is proved by the following lemma on the existence and
stability of the endemic equilibrium E∗w given by (24):

Lemma 3.16. The unique endemic equilibrium E∗w given by (24) exists for the
system (23) if and only if εR0 > 1, and then it is globally asymptotically stable.

Proof. It is easy to see that the condition εR0 > 1 is necessary and sufficient
for the existence of the endemic equilibrium E∗w given by (24) with (25) and
(26). When E∗w exists with εR0 > 1, the global asymptotic stability can be
proved with a Lyapunov function for E∗w as follows: With εR0 > 1, we define
the following function in Ω̂1 := {(u, v, q) | u ≥ 0, v > 0, q ≥ 0, u+ v + q <

1}:

V (u, v, q) :=
1

εR0 − 1

{
u+ (v− v∗w)− v∗w ln

v

v∗w

}
+

1

γ

{
(1− q)− (1− q∗w)− (1− q∗w) ln

1− q
1− q∗w

}
,

where v∗w = (a/γ)q∗w with q∗w given by (25). Then, from (79), we can easily
derive

dV

dτ
= − εR0

εR0 − 1
· (v− v∗w)2

1− q
− a

γ
· (q− q∗w)2

1− q
− R0

εR0 − 1
· {εv + (1− ε)v∗w}u

1− q
.

From Lemma 3.1, the solution for the system (23), that is, for the mathemati-
cally equivalent system (79) with the initial condition that u(0) = 1− v(0),
v(0) ∈ (0, 1), and q(0) = 0 stays in Ω̂1 for any τ ≥ 0, and the endemic
equilibrium E∗w belongs to Ω̂1. The function V is positive definite for any
(u, v, q) ∈ Ω̂1\{(0, v∗w, q∗w)}, and V (0, v∗w, q∗w) = 0. The derivative dV /dτ is
negative definite for any (u, v, q) ∈ Ω̂1\{(0, v∗w, q∗w)}, and dV /dτ = 0 for
(u, v, q) = (0, v∗w, q∗w).

On the other hand, from Lemma 3.1 and the non-dimensionalization in
Subsection 3.2.5, we know that the solution for the system (23) belongs to Ω1

defined in Subsection 3.2.5. Since Ω1 ⊂ Ω̂1 and E∗w ∈ Ω1, we can conclude
that the function V is a Lyapunov function for the endemic equilibrium E∗w
of the system (79). Therefore the global asymptotic stability of the endemic
equilibrium E∗w has been proved by the existence of a Lyapunov function V
in Ω1.

appendix 3.a .4: derivation of the conserved quantities

The isolation effective phase

When the isolation never reaches the capacity in a finite time due to a
sufficient isolation capacity for the epidemic dynamics, the system (28) always
follow the isolation well-functioning phase with φ(q, v) = γv. In this case,
from the equations in (28), we can derive the following differential equations:

dv

du
= −1 +

1− q
R0u

, (84)
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and

dq

dw
=

γ

1− γ
. (85)

From (85), we can obtain the following relation between q and w:

q =
γ

1− γ
w, (86)

where we used q(0) = w(0) = 0. Since u+ v + q +w = 1, the equation (86)
becomes

1− q = γ(u+ v) + 1− γ. (87)

Substituting (87) for (84), we can derive the following ordinary differential
equation of v in terms of u:

dv

du
=

γ

R0

v

u
+

1− γ
R0

1

u
+

γ

R0
− 1.

We can easily solve this ordinary differential equation, and get the relation
(29), making use of v(0) = v0, u(0) = u0, and v0 + u0 = 1.

The isolation incapable phase

Once the isolation reaches the capacity in a finite time on the way of the
epidemic process with an insufficient isolation capacity, the system (28)
comes to follow the isolation incapable phase. In this case, from the first and
second equations of (28), we can derive the following differential equation:

dv

du
= −1 +

(1− γ)(1− qmax)

R0u
. (88)

We can easily solve (88), and get the relation

v(τ ) = −u(τ ) +
ρ(1− qmax)

β
lnu(τ ) +C (89)

with an undetermined constant C. For τ = τ?, we have

C = u(τ?) + v(τ?)− ρ(1− qmax)

β
lnu(τ?). (90)

Making use of (90) for (89), we can get the equation (30) that gives the
conserved quantity at the isolation incapable phase.

appendix 3.a .5: proof of theorem 3.2 and corollaries 3.2.1 and

3.2.2

From the equation (29), when the isolation never reaches the capacity, we
have the equation

u−∞ = F (u−∞) := − ρ
σ

+

(
u−∞
u0

)γ/R0 (
1 +

ρ

σ

)
, (91)

since v(τ )→ 0 as τ →∞. We have F (0) = −ρ/γ, F (u0) = 1, and F ′(u) > 0

for u ∈ (0,u0). Hence F (u) is a monotonically increasing, continuous and
differentiable function of u ∈ (0,u0), which satisfies that F (0) < 0 and
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F (u0) > u0. Further we can easily find that F (u) is linear if σ/β = 1, and
otherwise it is alternatively convex or concave for u ∈ (0,u0). Therefore we
find that the equation (91) has a unique root u−∞ ∈ (0,u0), and F (u) < u for
u ∈ (0,u−∞) while F (u) > u for u ∈ (u−∞,u0).

On the other hand, from u−∞ + q−∞ +w−∞ = 1 and q−∞ = (σ/ρ)w−∞ by (86)
in Appendix 3.A.4, we find that u−∞ = 1− q−∞/γ. Making use of this relation,
we find that the equation (91) is equivalent to the following equation:

q−∞ = 1−
(u−∞
u0

)γ/β
. (92)

It must be satisfied that q−∞ ≤ qmax in the case where q(τ ) never reaches
qmax for any τ > 0. Since q(τ ) is monotonically increasing in terms of τ , if
q−∞ ≤ qmax, the isolation does not reach the capacity for any τ > 0. Therefore,
if and only if q−∞ ≤ qmax, the isolation does not reach the capacity for any
τ > 0.

Consequently we find that, if and only if q−∞ > qmax, the isolation reaches
the capacity at τ = τ? <∞. From (91) and (92), we can derive the following
condition equivalent to q−∞ > qmax:

u−∞ < 1− qmax

(
1 +

ρ

σ

)
. (93)

Since u−∞ > 0, we note that this inequality holds only if qmax < 1/(1 + ρ/σ).
Hence if qmax ≥ 1/(1 + ρ/σ), the inequality (93) does not hold and we
necessarily have q−∞ ≤ qmax, so that the isolation does not reach the capacity
for any τ > 0. From the nature of the function F (u) shown in the above,
the condition (93) is equivalent to the condition that F (u) > u for u =
1− qmax(1 + ρ/σ). This leads to the condition (31) in Theorem 3.2.

On the other hand, from the condition (93), we can define the critical
value for the isolation capacity qc as qc := (1− u−∞)/(1 + ρ/σ) such that
the condition (93) is satisfied if and only if qmax < qc, which becomes
necessary and sufficient for the isolation to reach the capacity in a finite time.
Substituting u−∞ = 1− qc(1 + ρ/σ) for the equation F (u−∞) = u−∞, we can
get the equation (32). Then the uniqueness of qc follows that of u−∞ shown in
the above.

appendix 3.a .6: proof of corollary 3.2.3

Form (32), we can easily derive the following derivative of qc in terms of
1/σ0:

∂qc
∂(1/σ)

=
σ2ρqc + σβ {σ− qc (σ + ρ)} ln(1− qc)
−σ (σ + ρ) + β {σ− qc (σ + ρ)}/(1− qc)

. (94)

As we can easily find from (32) that qc → 1− u0 as 1/σ → +0, we have

∂qc
∂ (1/σ)

∣∣∣∣
(1/σ,qc)→(+0,1−u0)

> 0 ⇐⇒ β

ρ
>

u0 − 1

u0 lnu0
. (95)

Next, to find the sign of (94) for sufficiently large value of 1/σ, we use
the Maclaurin expansion in terms of σ and get

∂qc
∂ (1/σ)

= (1− qc) ln(1− qc)σ + o(σ).
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Since (1− qc) ln(1− qc) < 0 for qc ∈ (0, 1), the sign of (94) must be neces-
sarily negative for sufficiently large value of 1/σ. As a consequence, qc is
monotonically decreasing for sufficiently large value of 1/σ.

Since qc is continuous in terms of 1/σ, qc is monotonically increasing for
a sufficiently small value of 1/σ if the condition (95) is satisfied. Then, qc has
at least one extremal maximum for a finite value of 1/σ. It is easily seen that
(u0 − 1)/(u0 lnu0) > 1 for any u0 ∈ (0, 1).

On the other hand, the following equation must be satisfied at the ex-
tremum that makes the derivative (94) zero:

1 +
ρ

σ
=

1

qc
+

ρ/β
ln(1− qc)

. (96)

We can easily prove that the right side of (96) is less than 1 for any qc ∈ (0, 1)
if β/ρ ≤ 1. Since the left side of (96) is always greater than 1, this means that
the equation (96) cannot hold for β/ρ ≤ 1. Hence, the derivative (94) cannot
become zero if β/ρ ≤ 1.

Therefore, β/ρ > 1 is necessary for the existence of a certain value of
1/σ > 0 to maximize qc. At the same time, this result means that, when
β/ρ ≤ 1, the derivative (94) cannot change the sign at any value of 1/σ. Then
from the above arguments, it must be negative, so that qc is monotonically
decreasing in terms of 1/σ when β/ρ ≤ 1.

appendix 3.a .7: derivation of the final size equation

Final size equation for qmax ≥ qc

By applying τ →∞ for the equation (29), we get the following equation:

(u−∞)−σ/β
(
u−∞ +

ρ

σ

)
= (u0)−σ/β

(
1 +

ρ

σ

)
, (97)

where we used v(τ ) → 0 as τ → ∞. The final epidemic size is given by
z−∞ = q−∞ + w−∞ = 1− u−∞. Making use of u−∞ = 1− z−∞ for (97), we can
get the equation (34) which determines the final epidemic size when the
isolation never reaches the capacity.

Final size equation for qmax < qc

By applying τ →∞ for the equation (30), we can get the following equation:

u+
∞ = u(τ?) + v(τ?) +

ρ

β
(1− qmax) ln

u+
∞

u(τ?)
, (98)

where we used v(τ ) → 0 as τ →∞. Now, from the equality u(τ ) + v(τ ) =
1− {q(τ ) +w(τ )} and (86) derived in Appendix 3.A.4, we have

u(τ ) + v(τ ) = 1− q(τ )
(

1 +
ρ

σ

)
. (99)

For the continuity of the solution at τ = τ?, we have u(τ ) = u(τ?), v(τ ) =
v(τ?), and q(τ?) = qmax. Then the equations (29) and (99) become

u(τ?) + v(τ?) = − ρ
σ

+
{u(τ?)

u0

}σ/β(
1 +

ρ

σ

)
; (100)

u(τ?) + v(τ?) = 1− qmax

(
1 +

ρ

σ

)
. (101)
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We can solve the parallel equations (100) and (101) in terms of u(τ?) and
v(τ?),

u(τ?) = (1− qmax)β/σu0; v(τ?) = 1− u(τ?)− qmax

(
1 +

ρ

σ

)
, (102)

and then substitute them for (98). As a result, we can get the equation

β/ρ
1− qmax

{
u+
∞ − 1 + qmax

(
1 +

ρ

σ

)}
= lnu+

∞ − lnu0 −
β

σ
ln(1− qmax).

(103)

When the isolation reaches the capacity at any finite time, the final epidemic
size is defined by z+

∞ = qmax + w+
∞ = 1− u+

∞. Thus, making use of u+
∞ =

1− z+
∞ for (103), we can get the equation (35).

appendix 3.a .8: proof of the unique existence of the final

epidemic size

Unique existence of z−∞

The left side of equation (34) is a function of z−∞, which we denote here
by A(z−∞). The right side of (34) is a positive constant B0 independent of
z−∞. The function A(z) is continuous and differentiable for z ∈ (1− u0, 1),
satisfying that

A(1− u0) = (u0)−σ/β
(
u0 +

ρ

σ

)
< B0; lim

z→1−0
A(z) =∞ > B0.

Hence, there exist at least one root of the equation A(z) = B0 for z ∈
(1− u0, 1).

We can easily find that the function A(z) is monotonically increasing or
has a unique extremal minimum in (1− u0, 1). When A(z) is monotonically
increasing for z ∈ (1− u0, 1), it must have a unique intersection with the
horizontal line B0 in (1− u0, 1). Even when A(z) has a unique extremal
minimum for z ∈ (1− u0, 1), it has a unique intersection with the horizontal
line B0 since A(1− u0) < B0. Thus in both cases, the equation A(z) = B0

has a unique root in (1− u0, 1). As a result, the final epidemic size z−∞ ∈
(1− u0, 1) is uniquely determined by the equation (34).

Unique existence of z+∞

To prove that the final epidemic size z+
∞ is uniquely determined by the

equation (35), let us consider the existence of a root for the equation G(u) = 0

where

G(u) := u−
{
u(τ?) + v(τ?)

}
− ρ

β
(1− qmax) ln

u

u(τ?)
. (104)

From (30) in Subsection 3.3.2 and (98) in Appendix 3.A.7, the equation
G(1− z+

∞) = 0 is mathematically equivalent to the final size equation (35).
Since u(τ ) is monotonically decreasing as time passes, we have u(τ ) <

u(τ?) for τ > τ?. Hence we consider G(u) hereafter for u ∈ (0,u(τ?)). The
function G(u) is continuous and differentiable for u ∈ (0,u(τ?)). Moreover,
it satisfies that lim

u→+0
G(u) = ∞ > 0, and G(u(τ?)) = −v(τ∗) < 0. From

these facts, the equation G(u) = 0 has at least one root in (0,u(τ?)). Further
we can easily find that G(u) is monotonically decreasing or has a unique
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extremal minimum in (0,u(τ?)). When G(u) is monotonically decreasing for
u ∈ (0,u(τ?)), the equation G(u) = 0 has a unique root in (0,u(τ?)). Even
when G(u) has a unique extremal minimum in (0,u(τ?)), it has a unique
root in (0,u(τ?)), because the extremum value of G must be negative since
G(u(τ?)) < 0. Hence in both cases, the equation G(u) = 0 has a unique
root u = u+

∞ ∈ (0,u(τ?)). Therefore, the equation (35) determines a unique
final epidemic size z+

∞ ∈ (1− u(τ?), 1). This is because u+
∞ = 1− z+

∞ and
z+
∞ = 1− u+

∞ ∈ (1− u(τ?), 1) where 1− u(τ?) = v(τ?) + qmax(1 + ρ/σ) >
qmax(1 + ρ/σ) > qmax from (101), and u(τ?) is given by (102) in Appendix
3.A.7.

appendix 3.a .9: proof of theorem 3.4

In order to prove the Theorem 3.4, we use two lemmas.

Lemma 3.17. It holds that z+
∞ ≥ qc (1 + ρ/σ) ≥ z−∞.

Proof. The proof is given straightforward from the arguments in the proof
for Theorem 3.2 and its corollaries, given in Appendix 3.A.5. From (93), the
condition q−∞ ≤ qmax is equivalent to

u−∞ ≥ 1− qmax

(
1 +

ρ

σ

)
, (105)

where u−∞ is the root of (97), and subsequently q−∞ is given by (92). Thus,
when and only when the condition (105) is satisfied, the isolation never
reaches the capacity, so that the epidemic dynamics is always at the isolation
well-functioning phase. Inversely, when and only when the condition (105)
is unsatisfied, the epidemic dynamics enters in the isolation incapable phase
in a finite time.

Thus, for the value u(τ?) at the moment when the isolation incapable
phase begins, it must hold that

u(τ?) < 1− qmax

(
1 +

ρ

σ

)
.

The value u(τ ) is monotonically decreasing in terms of time since du/dτ is
negative for any τ > 0. Hence we have u+

∞ < u(τ?) where u+
∞ is the root of

(103) at the isolation incapable phase. Therefore, we have

u+
∞ < 1− qmax

(
1 +

ρ

σ

)
. (106)

Since z−∞ = 1− u−∞, these arguments indicate that, when and only when
the isolation never reaches the capacity, we have z−∞ ≤ qmax(1 + ρ/σ) from
(105). Since this condition must hold for any qmax ≥ qc from Corollary 3.2.1,
and since z−∞ is independent of qmax, we find that z−∞ ≤ qc(1 + ρ/σ).

On the other hand, when the isolation reaches the capacity at a finite
time with qmax < qc, we have z+

∞ > qmax(1 + ρ/σ) from (106). Since this
condition must hold for any qmax < qc, we have z+

∞ ≥ qc(1 + ρ/σ).

Lemma 3.18. It holds that z−∞ = qc (1 + ρ/σ).

Proof. Substituting z−∞ = qc (1 + ρ/σ) for (34) and taking account of (32) in
Corollary 3.2.1, we can easily find that the equation (103) holds. Since z−∞ is
uniquely determined as the root of (34), we can result in this lemma.
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Now, the equation (35) can be rewritten as

qmax

(
1 +

ρ

σ

)
− z+
∞ =

ρ

β
(1− qmax) ln

1− z+
∞

u0(1− qmax)β/σ . (107)

Taking the limit as qmax → qc for (107), we have the following equation with
respect to z†∞ from Lemma 3.18 and (34):

H(z†∞) := z−∞ − z†∞ −
ρ

β
(1− qc) ln

1− z†∞
1− z−∞

= 0.

It is easily found that H(z−∞) = 0 and lim
z→1−0

H(z) = ∞. The derivative of

H(z) becomes

H ′(z) = −1 +
ρ

β

1− qc
1− z

,

which is monotonically increasing in terms of z ∈ (z−∞, 1) ⊂ (0, 1) with
H ′(z) →∞ as z → 1− 0. If H ′(z−∞) ≥ 0, then H(z) > 0 for any z ∈ (z−∞, 1).
In this case, the root of H(z) = 0 in [z−∞, 1] is only z = z−∞. In contrast, if
H ′(z−∞) < 0, there exists a unique value η ∈ (z−∞, 1) such that H ′(z) < 0

for z ∈ (z−∞, η) and H ′(z) > 0 for z ∈ (η, 1). This means that H(z) < 0

for z ∈ (z−∞, η), and H(z) is monotonically increasing for z ∈ (η, 1) with
lim

z→1−0
H(z) = ∞. Therefore we have a unique value ζ ∈ (η, 1) ⊂ (z−∞, 1)

such that H(ζ) = 0, because H(z) is continuous in (z−∞, 1).
On the other hand, from (35), we can derive

∂z+
∞

∂qmax
=

1 + (ρ/β) ln
[
(1− z+

∞)/
{
u0(1− qmax)β/σ

}]
1− (ρ/β)(1− qmax)/(1− z+

∞)
.

Then we have

∂z+
∞

∂qmax

∣∣∣∣
(qmax,z+

∞)=(qc,z−∞)

=
1

1− (ρ/β)(1− qc)/(1− z−∞)
= − 1

H ′(z−∞)
.

(108)

Hence we find that, if H ′(z−∞) < 0, the derivative (108) becomes positive.
Thus, if z†∞ = z+

∞ with H ′(z−∞) < 0, z+
∞ must be smaller than z−∞ for qmax

less than and sufficiently near qc because z+
∞ is continuous and differentiable

for qmax ∈ (0, qc) and the derivative (108) is positive. This is contradictory to
the result of Lemma 3.17. Therefore, if H ′(z−∞) < 0, z†∞ must be greater than
z−∞.

The condition H ′(z−∞) < 0 is equivalent to the following:

ρ

β
< 1 and qc < qcc :=

1− ρ/β
1− ρ/β + ρ/σ

. (109)

From qmax < qc and (32), the second inequality of (109) is equivalent to

1− qcc
(

1 +
ρ

σ

)
< u0 (1− qcc)β/σ .

This inequality results in the second condition of (36). If H ′(z−∞) ≥ 0, z†∞
must be z−∞ since the equation H(z) = 0 has the unique root z = z−∞ in
[z−∞, 1] and the derivative (108) is non-positive with no contradiction. These
arguments prove the theorem.
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appendix 3.a .10: proof of lemma 3.3

Note that the isolated population size q never becomes greater than qmax in
the epidemic dynamics governed by (40) with the initial value q(0) = 0. From
(40), we have dq/dτ = 0 for q = qmax. Thus, also in accordance with the
modeling assumption, the isolated population size q never becomes greater
than qmax < 1 for any τ ≥ 0.

Then from (40), we formally have

v(τ ) = v(0) exp
[ ∫ τ

0
R0

u(ν)

1− q(ν)
+ εR0

w(ν)

1− q(ν)
dν − τ

]
> 0

with v(0) > 0 for any τ such that q(ν) < qmax for any ν < τ . If the system
gets in the isolation incapable phase after τ = τ? > 0, we have v(τ?) > 0

from the above argument, and

v(τ ) = v(τ?) exp
[ ∫ τ

τ?
R0

u(ν)

1− q(ν)
+ εR0

w(ν)

1− q(ν)
dν − (1− γ)(τ − τ?)

]
> 0

for any τ ≥ τ? because the system remains at the isolation incapable phase
once it enters the phase. Therefore from these arguments, we have v(t) > 0

for any τ ≥ 0 about the system (40) with v(0) = v0 > 0. Thus we have
dq/dτ > 0 with q = 0 for any τ ≥ 0. Since dq/dτ > 0 at τ = 0, we finally
find that q ∈ (0, qmax) for any τ > 0.

With the same arguments, we can prove that u > 0 and w > 0 for any
τ > 0. Finally, since it holds from the equations of (40) that u+ v+ q+w = 1

for any τ ≥ 0, we obtain the lemma.

appendix 3.a .11: derivation of conserved quantities

At the isolation effective phase

This is the phase when the system (40) follows the isolation effective phase
with φ(q, v) = γv. First, from the equations of du/dτ and dq/dτ in (40), we
can derive the following differential equation:

du

dq
= −R0

γ

u

1− q
. (110)

We can easily solve the equation (110), and find the equation (41) between u
and q, making use of u(0) = u0 > 0, and q(0) = 0.

Next, from the equations of du/dτ and dv/dτ in (40), we can derive the
following differential equation:

dv

du
= ε

v

u
− ε
(

1− 1

εR0

)1− q
u
− (1− ε), (111)

using the relation w = 1− u− v − q. Then substituting (41) for (111), we
can solve it and derive the equation (42), making use of u(0) = u0 and
v(0) = v0 = 1− u0.

At the isolation incapable phase

Once the isolation reaches the capacity at finite time, the system (40) switches
to the isolation incapable phase with φ(q, v) = 0. From the equations of
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du/dτ and dv/dτ in (40) at the isolation incapable phase, we can obtain the
following differential equation:

dv

du
= ε

v

u
− ε
(

1− 1− γ
εR0

)1− qmax

u
− (1− ε). (112)

We can easily solve (112) and get the following equation

u(τ ) + v(τ ) =
(

1− 1− γ
εR0

)
(1− qmax) +C{u(τ )}ε (113)

from the general solution of (112) with an undetermined constant C.
Since the isolation incapable phase arises only after the isolation reaches

the capacity, suppose now that it arises at τ = τ? > 0. From the continuity of
the temporal variation of the variables in the system (40), both of the equa-
tions (42) and (113) are satisfied at τ = τ?. This is the continuity condition
that is satisfied by the system (40) if it switches the isolation effective phase
to the isolation incapable phase at τ = τ?.

First, as shown in Lemma 3.4, we find the susceptible subpopulation
size u = u? defined by (45) at the moment τ = τ? from (41), because
q(τ?) = qmax at the moment when the isolation reaches the capacity. Next,
from the continuity condition about the equations (42) and (113), we have
the following equality which holds at τ = τ?:

1− εR0

γ − εR0

( u?
u0

)γ/R0

− 1− γ
γ − εR0

( u?
u0

)ε
=
(

1− 1− γ
εR0

)
(1− qmax) +C(u?)ε

when γ 6= εR0, and[( 1

R0
− ε
)

ln
u?

u0
+ 1
]( u?

u0

)ε
=
(

1− 1− γ
εR0

)
(1− qmax) +C(u?)ε

=
(

2− 1

γ

)
(1− qmax) +C(u?)ε

when γ = εR0. Hence with (45), we find

C =


1− γ

εR0(1− εR0/γ)

[
(1− qmax)1−εR0/γ − εR0

γ

]
(u0)−ε when εR0 6= γ;

1− γ
γ

[
ln(1− qmax) + 1

]
(u0)−ε when εR0 = γ.

(114)

Finally, substituting (114) for (113), we can derive the equation (43) for the
isolation incapable phase.

appendix 3.a .12: proof of lemma 3.5 and 3.6

If the system remains at the isolation effective phase, the isolated subpop-
ulation size q monotonically increases for any τ ≥ 0 since the infective
subpopulation size v > 0 from Lemma 3.3. Since it holds that q < qmax < 1

for any τ ≥ 0, q must converge to a positive finite value less than or equal
to qmax < 1 as τ → ∞, so that we have dq/dτ → 0 as τ → ∞. Therefore,
it is necessary that v → 0 as τ → ∞. This proves Lemma 3.5. Then, from
the equation in (40), we have du/dτ → 0 as τ → ∞ at the same time. Sub-
sequently, from the relations u + v + q + w = 1 and (41), we can get the
disease-eliminated equilibrium E−0 given by (46), and find that u−∞ must be
positive. This leads to Lemma 3.6.
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appendix 3.a .13: proof of theorem 3.5, and lemma 3.7

If u → 0 as τ → ∞, we have q → 1 as τ → ∞ because of the conserved
quantity (41). This is contradictory to the supposition which means that
q < qmax < 1 for any τ ≥ 0. Hence the convergence such that u→ u−∞ > 0 as
τ →∞ is necessary when the system always remains at the isolation effective
phase.

By applying the equations (41) and (42) for the equation of du/dτ in (40),
we can reduce the system (40) to the following mathematically equivalent
one dimensional system:

du

dτ
= −R0u0{F (u)− u}

( u

u0

)1−γ/R0

. (115)

From the above arguments to show that du/dτ → 0 as τ → ∞ while the
value u is positive, we find it necessary that F (u)− u→ 0 as τ →∞, while
u→ u−∞ which is given by a positive root in (0,u0) for the equation (47).

Since u is monotonically decreasing from u0 as time passes, and F (u0)−
u0 = 1− u0 > 0, we have u→ u−∞ > 0 as τ →∞ if and only if the equation
(47) has a positive root u−∞ in (0,u0). Now the function F (u) is continuous
and differentiable in (0,u0), with F (u) → 0 as u → +0, and F (u) → 1 as
u→ u0 − 0. Moreover, from the derivative

F ′(u) =



ε

u0

1− γ
γ − εR0

( u

u0

)γ/R0−1
[

γ

1− γ

( 1

εR0
− 1
)
−
( u

u0

)ε−γ/R0
]

when εR0 6= γ;

ε
(

1 + ε
1− γ
γ

ln
u

u0
+

1− γ
γ

1

u0

)
when εR0 = γ,

(116)

we can easily find that F ′(u) > 0 and further F ′′(u) < 0 for u ∈ (0,u0)
when εR0 ≥ 1. In contrast, when εR0 < 1, there is a unique critical value
u = uc ∈ (0,u0) such that F ′(uc) = 0, F ′(u) < 0 for u ∈ (0,uc), and
F ′(u) > 0 for u ∈ (uc,u0), where

uc :=


u0

{ γ

1− γ

( 1

εR0
− 1
)}R0/(εR0−γ)

when εR0 6= γ;

u0 exp
[
− 1

ε

( γ

1− γ
+

1

u0

)]
when εR0 = γ.

(117)

From these features of the function F , we have F (u) − u > 0 for any
u ∈ (0,u0) when and only when εR0 ≥ 1. This is the case where the equation
(47) has no positive root in (0,u0). In contrast, there exists a unique positive
root u = u−∞ in (0,u0) for the equation (47) when and only when εR0 < 1,
proved by the intermediate value theorem for the continuous function F (u)
in [0,u0], because F (u)− u → 0 as u → +0 and F (u)− u → 1− u0 > 0 as
u→ u0 − 0 while F (u)− u < 0 for u ∈ (0,uc).

Consequently, the system can always remains at the isolation effective
phase only when εR0 < 1, and then u → u−∞ > 0 as τ → ∞, where u−∞ is
determined by the unique positive root in (0,u0) for the equation (47). This
indicates the equilibrium E−0 given by (46) is uniquely determined, and it is
globally asymptotically stable because the temporal variation is determined
by the above one dimensional ordinary differential equation (115) when the
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system always remains at the isolation effective phase, about which we find
from the features of F that F (u)− u < 0 for u ∈ (0,u−∞), and F (u)− u > 0

for u ∈ (u−∞,u0). Lastly these arguments prove Theorem 3.5.
Further from the above arguments, when εR0 ≥ 1, the susceptible sub-

population size u is monotonically decreasing toward zero, and then the
isolated subpopulation size q monotonically increasing toward one, which
is impossible unless there is no capacity for the isolation, that is, qmax = 1.
Hence, we can conclude that q reaches qmax < 1 when εR0 ≥ 1. This proves
Lemma 3.7.

appendix 3.a .14: proof of theorem 3.6

Since we have the result of Lemma 3.7 for the case of εR0 ≥ 1, it is sufficient
to consider only the case of εR0 < 1. As shown in (46) by the conserved
quantity (41), we have the equation

q−∞ = 1−
(u−∞
u0

)γ/R0

(118)

for the equilibrium values u−∞ and q−∞ at the equilibrium E−0 if the system
always remains at the isolation effective phase. Then it must be satisfied
that q−∞ ≤ qmax. Since q(τ ) is monotonically increasing in terms of τ , if
q−∞ > qmax, it means that the system cannot remain at the isolation effective
phase, and the isolation reaches the capacity at finite time. Inversely, in a
mathematical sense, when the isolation reaches the capacity at finite time, it
never holds that q−∞ ≤ qmax, and instead it holds that q−∞ > qmax. From (118)
, the condition that q−∞ > qmax is mathematically equivalent to

u−∞ < u0(1− qmax)R0/γ . (119)

This can be regarded as the necessary and sufficient condition that the
isolation reaches the capacity at finite time. As shown in Appendix 3.A.13 to
prove Theorem 3.5 and the related results, we have found that F (u)− u < 0

for u ∈ (0,u−∞), and F (u)− u > 0 for u ∈ (u−∞,u0) when εR0 < 1. Hence
the condition (119) becomes equivalent to (48) of Theorem 3.6.

appendix 3.a .15: proof of corollaries 3.6.1, 3.6.2, and lemma

3.8

The condition (48) cannot hold if the right side

F
(
u0(1− qmax)R0/γ)

=


1− γ
γ − εR0

(1− qmax)
[ 1− εR0

1− γ
− (1− qmax)εR0/γ−1

]
when εR0 6= γ;

(1− qmax)
[

1 +
1− γ
γ

ln(1− qmax)
]

when εR0 = γ

(120)

is not positive, which leads to (50) in Corollary 3.6.2.
The critical value qc for the isolation capacity qmax must be defined as the

upper bound of qmax that satisfies the condition (119) in Appendix 3.A.14.
Therefore, it must hold that u−∞ = u0(1− qc)R0/γ . This proves Lemma 3.8.
Then this is the case that u = u0(1− qc)R0/γ becomes the unique positive
roof of the equation u = F (u) when εR0 < 1, as the definition of u−∞. This
result shows Corollary 3.6.1.
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appendix 3.a .16: proof of lemma 3.9 and theorem 3.7

Applying the equation (43) for the equation of du/dτ in (40), we can obtain
the following one dimensional ordinary equation which determines the
dynamics by (40) for τ ≥ τ? at the isolation incapable phase:

du

dτ
= − R0

1− qmax
{G(u)− u}u. (121)

Let us consider the case of εR0 < 1 first. Then, from the condition (ii) of
Theorem 3.6, it holds that

G(u?) > u0(1− qmax)R0/γ = u? = u(τ?), (122)

Besides, as already mentioned at the end of Subsection 3.4.2, from the
continuity of u(τ ) and v(τ ) at τ = τ?, it holds that F (u?) = G(u?).

Thus we have du/dτ < 0 at τ = τ? with G(u?) − u? > 0. Now we
consider the function G(u)− u with B 6= 0 in order to investigate the sign of
du/dτ in (0,u?). From the definition of G and B by (43) and (44), we have

G(0) =
(

1− 1− γ
εR0

)
(1− qmax) (123)

and

G′(u)− 1 = εB
( u

u0

)ε−1
− 1; G′′(u) = −ε(1− ε)B

( u

u0

)ε−2
. (124)

If B < 0, then the function G(u)− u is convex and monotonically de-
creasing for u ∈ (0,u?) since G′′(u) > 0 and G′(u)− 1 < 0 from (124) in this
case. Hence, there is no positive root of the equation G(u)− u = 0 if B < 0,
because G(u)− u > 0 for all u ∈ (0,u?) with G(u?)− u? > 0.

If B > 0, then the function G(u)− u is concave for all u > 0 and has
at most one extremal maximum value in (0,u?) since G′′(u) < 0, and the
number of positive root for the equation G′(u)− 1 = 0 is only one from (124).
The function G(u)− u is unimodal in (0,u?) if the extremal maximal value
exists there, while it is monotonically increasing in (0,u?) if the extremal
maximal value exists out of (0,u?). Thus, independently of whether the
function G(u) − u is unimodal or monotonically increasing, there is no
positive root of the equation G(u)− u = 0 if G(0) ≥ 0, because then G(u)−
u > 0 for all u ∈ (0,u?) with G(u?) − u? > 0. In contrast, if G(0) < 0,
there is a unique positive root of the equation G(u) − u = 0 in (0,u?),
that is u+

∞, independently of whether the function G(u)− u is unimodal or
monotonically increasing. Then it holds that G(u)− u > 0 for u ∈ (u+

∞,u?)
and G(u)− u < 0 for u ∈ (0,u+

∞). Therefore, from the temporally continuous
decreasing change of u, we can conclude that u must converge to u+

∞ ∈ (0,u?)
as τ →∞ if B > 0 and G(0) < 0, while it must converge to 0 if B < 0 or if
B > 0 and G(0) ≥ 0.

When B = 0, G(u) becomes constant for all u ∈ [0,u?]:

G(u) ≡ G(0) =
(

1− 1− γ
εR0

)
(1− qmax) =

(
1− 1− γ

εR0

)(εR0

γ

)γ/(γ−εR0)

(125)

from (43) and (44). Then the condition (122) results in(
1− 1− γ

εR0

)(εR0

γ

)(γ−R0)/(γ−εR0)
> u0.
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Hence, under the condition (122) with which the system enters the isolation
incapable phase, we find it necessary that εR0 > 1− γ. Thus we find that
G(u) ≡ G(0) ∈ (0, 1) in this case. Since u is temporally monotonically
decreasing from u = u? with G(u) ≡ G(0) > u?, we have G(u) − u =
G(0)− u > 0 for any τ > τ? and any u ∈ (0,u?). Therefore, u must converge
to 0 as τ →∞ in this case because du/dτ < 0 for any u ∈ (0,u?). Finally, we
can conclude that, when εR0 < 1, u converges to u+

∞ ∈ (0,u?) as τ →∞ if
and only if B > 0 and G(0) < 0, and otherwise it converges to 0.

Next let us consider the case of εR0 ≥ 1. Then we have G(0) > 0 from
(123). Further we necessarily have G(u?) = u? + v? > u? in this case, because
v(τ?) = v? > 0 at τ = τ? from Lemma 3.3. Thus we can apply the same
arguments as those for the case of εR0 < 1, and find that u converges to 0 as
τ →∞ in this case. Consequently we have the following result:

Lemma 3.19. At the isolation incapable phase, u → u+
∞ ∈ (0,u?) as τ → ∞ if

and only if εR0 < 1, B > 0 and G(0) < 0. Otherwise, u→ 0 as τ →∞.

From the condition G(0) < 0, we have εR0 < 1− γ. From the condition
B > 0, we have

(
1− εR0

γ

)[
(1− qmax)1−εR0/γ − εR0

γ

]
> 0 when εR0 6= γ;

ln(1− qmax) + 1 > 0 when εR0 = γ.

(126)

When εR0 < 1− γ and εR0 = γ, the condition γ < 1/2 must be satisfied.
In this case, the condition (ii) of Theorem 3.6 can be written as

1 + ln(1− qmax) > u0(1− qmax)1/ε−1 − 1− 2γ

γ
ln(1− qmax),

and we find that the right side of this inequality is necessarily positive. Thus,
when εR0 < 1− γ and εR0 = γ, the condition (126) for B > 0 holds at the
isolation incapable phase. Therefore, the condition εR0 < 1− γ is necessary
and sufficient to have u→ u+

∞ ∈ (0,u?) as τ →∞ when εR0 = γ.
When εR0 < 1− γ and εR0 6= γ, the condition (126) becomes equivalent

to the following:

(1− qmax)1−εR0/γ >
εR0

γ
with

εR0

γ
< 1 (127)

or

(1− qmax)1−εR0/γ <
εR0

γ
with

εR0

γ
> 1. (128)

Now, from Corollary 3.6.2, it is necessary in order to have the isolation
incapable phase that the condition (50) is unsatisfied, which we can find
equivalent to the following:

(1− qmax)1−εR0/γ >
1− γ

1− εR0
for

εR0

γ
< 1; (129)

(1− qmax)1−εR0/γ <
1− γ

1− εR0
for

εR0

γ
> 1. (130)
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On the other hand, we have

1− γ
1− εR0

− εR0

γ
=

(1− γ)− εR0

1− εR0

(
1− εR0

γ

)
.

Hence, when εR0 < 1− γ, we find that the conditions (129) and (130) are
sufficient for (127) and (128) respectively. That is, since the condition (127)
or (128) necessarily holds when (129) or (130) is satisfied with εR0 < 1− γ,
the condition (127) or (128) is satisfied at the isolation incapable phase with
εR0 < 1 − γ. Therefore, when εR0 6= γ, the condition εR0 < 1 − γ is
necessary and sufficient to have u → u+

∞ ∈ (0,u?) as τ → ∞. Finally this
result and Lemma 3.19 prove Lemma 3.9.

Then, from the conserved quantity (43), we note that v → 0 when u →
u+
∞ ∈ (0,u?) as τ → ∞, while v → G(0) > 0 when u → 0 as τ → ∞. Thus,

the system (40) approaches a disease-eliminated equilibrium at the isolation
incapable phase if u→ u+

∞ ∈ (0,u?) as τ →∞. Besides, exceptionally with
εR0 = 1− γ, the disease goes extinct even when u → 0 as τ → ∞ at the
isolation incapable phase. In contrast, the system approaches the endemic
equilibrium if u→ 0 as τ →∞ when εR0 > 1− γ. These results with Lemma
3.9 prove Theorem 3.7.

appendix 3.a .17: proof of theorem 3.8

From the equation of dv/dτ in the system (40) before and after the isolation
reaches the capacity at τ = τ?, we can obtain the value of dv/dτ at q = qmax

respectively as follows:

dv

dτ

∣∣∣
τ→τ?−0

=
R0v

?

1− qmax

{
u? − εF (u?) +

εR0 − 1

R0
(1− qmax)

}
;

dv

dτ

∣∣∣
τ→τ?+0

=
R0v

?

1− qmax

{
u? − εG(u?) +

εR0 − (1− γ)

R0
(1− qmax)

}
,

(131)

where u(τ?) = u? defined by (45), and we used

lim
τ→τ?−0

v(τ ) = v? := F (u?)− u?; lim
τ→τ?+0

v(τ ) = G(u?)− u?

from the continuity of u(τ ) and v(τ ) at τ = τ?. Besides, as mentioned at the
end of Subsection 3.4.2, from the continuity of u(τ ) and v(τ ) at τ = τ?, it
holds that F (u?) = G(u?).

Note that the former of (131) is necessarily less than the latter because

lim
τ→τ?−0

φ(q, v) = γv? > lim
τ→τ?+0

φ(q, v) = 0.

Hence the value v may continuously increase or decrease at τ = τ? unless
the revival does not occur. If the former is negative and the latter is positive,
it occur. Thus these arguments result in Theorem 3.8.

appendix 3.a .18: proof of lemma 3.10

Taking into account the continuity of u+
∞ in terms of qmax ∈ (0, qc) when

εR0 < 1− γ, we prove first its monotonicity:

Lemma 3.20. z+
∞ is monotone in terms of qmax ∈ (0, qc).
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Proof. Suppose that ∂z+
∞/∂qmax = −∂u+

∞/∂qmax becomes zero for qmax =
q� ∈ (0, qc). First let us consider the case with εR0 6= γ. From the qmax-
derivative of the equation (51) with (43) and (44), we can find that such q�

must satisfy the following equation:

−1− γ − εR0

εR0
+

1− γ
εR0

(1− q�)−εR0/γ
(
u+
∞
u0

)ε
qmax=q�

= 0,

that is, (
u+
∞
u0

)ε
qmax=q�

=
1− γ − εR0

1− γ
(1− q�)εR0/γ .

Then from (43) and (44) again, we have

G(u+
∞)
∣∣
qmax=q�

=
1− γ − εR0

γ(1− εR0/γ)
(1− q�)

[
1− (1− q�)εR0/γ−1] < 0.

This is contradictory to the existence of u+
∞ > 0 that satisfies the equation

(51) for each qmax ∈ (0, qc) as shown by Lemma 3.9. Therefore such q�

cannot exist in (0, qc). Thus the derivative ∂z+
∞/∂qmax has a constant sign

for qmax ∈ (0, qc).
For the case with εR0 = γ, we can apply the same arguments to have

G(u+
∞)
∣∣
qmax=q�

=
1− 2γ

γ
ln(1− q�) < 0

since 2γ < 1 when εR0 = γ < 1− γ. Hence from the contradiction again,
we find that the derivative ∂z+

∞/∂qmax has a constant sign for qmax ∈ (0, qc)
also in this case. Lastly these arguments prove the lemma.

Next to complete the proof for Lemma 3.10, we prove the following fea-
ture of the derivative ∂z+

∞/∂qmax:

Lemma 3.21.
∂z+
∞

∂qmax

∣∣∣∣
qmax→0+

< 0.

Proof. As qmax → 0+, the equation (51) becomes

1− u+
∞ =

1− γ
εR0

[
1−

(u+
∞
u0

)ε]
(132)

for both cases of εR0 6= γ and εR0 = γ. It is easily found that this equation
has a unique positive root u+

∞ = u+0
∞ ∈ (0,u0). From the equation (51) with

(43) and (44), we can derive

∂z+
∞

∂qmax

∣∣∣∣
qmax→0+

= − ∂u+
∞

∂qmax

∣∣∣∣
qmax→0+

=
u+0
∞

1−G′(u+0
∞ )

, (133)

making use of (132).
First let us consider the case with εR0 6= γ. Then from (43) and (44) with

(132) again, we have

1−G′(u+0
∞ ) = 1− ε

u0

(u+0
∞
u0

)ε−1(1− γ
εR0

)
= 1− ε

u+0
∞

(u+0
∞
u0

)ε(1− γ
εR0

)
=

1− u+0
∞

u+0
∞

[
u+0
∞

1− u+0
∞
− ε (u+0

∞ /u0)ε

1− (u+0
∞ /u0)ε

]
. (134)
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Now consider the function ζ(ε) := εaε/(1− aε) for ε ∈ (0, 1) with a ∈ (0, 1).
We can easily find that

ζ ′(ε) =
aε

(1− aε)2

(
1− aε + ε ln a

)
< 0

because the function h(x) := 1− xε + ε lnx is negative for x ∈ (0, 1) about
any ε ∈ (0, 1). Hence the function ζ(ε) is monotonically decreasing in terms
of ε, so that we have ζ(ε) > ζ(1) = ξ(a) := a/(1− a). Since ξ(a) is mono-
tonically increasing in terms of a ∈ (0, 1), we finally find the following
order:

ζ(ε)
∣∣
a=u+0

∞ /u0
> ζ(1)

∣∣
a=u+0

∞ /u0
= ξ

(
u+0
∞ /u0

)
> ξ
(
u+0
∞
)

because u+0
∞ < u0 < 1. Then, since the equation (134) can be rewritten as

1−G′(u+0
∞ ) =

1

ξ
(
u+0
∞
) [ ξ(u+0

∞
)
− ζ(ε)

∣∣
a=u+0

∞ /u0

]
,

we conclude that 1−G′(u+0
∞ ) < 0, so that the derivative (133) is negative.

These arguments can be simply applied for the case of εR0 = γ, and show
that the derivative (133) is negative. Consequently we have proved that the
derivative (133) is negative.

From the continuity of u+
∞ in terms of qmax ∈ (0, qc), Lemmas 3.20 and

3.21 prove that the qmax-derivative of z+
∞ is negative for qmax ∈ (0, qc). As a

result, Theorem 3.10 has been proven.

appendix 3.a .19: proof of theorem 3.9

First we show the following lemma:

Lemma 3.22. z†∞ ≥ z−∞.

Proof. If the system (40) enters the isolation incapable phase at time τ = τ?

with qmax < qc, we have u+
∞ < u(τ?) = u? because du/dτ < 0 even after

τ = τ?. Hence z+
∞ := 1− u+

∞ > 1− u? for qmax < qc with u(τ?) = u? given
by (45). Therefore we find that

lim
qmax→qc−0

z+
∞ = z†∞ ≥ lim

qmax→qc−0
(1− u?) = 1− u0(1− qc)R0/γ . (135)

Then from Lemma 3.8, the right side of (135) is equal to z−∞, which proves
this lemma.

As shown in the first part of Subsection 3.4.7 if εR0 ≥ 1− γ and qmax <

qc, we have the final epidemic size z∞ = z+
∞ = 1. From Theorem 3.6

and Corollary 3.6.1, if εR0 ≥ 1, we have qc = 1, and thus there is no
critical capacity for the isolation. Then we do not have any case of the final
epidemic size at the isolation effective phase, that is, z−∞ does not exist. Only
if εR0 < 1, we can have z−∞ as the final epidemic size at the isolation effective
phase. Therefore, we can conclude that, the final epidemic size z∞ shows a
discontinuity at qmax = qc for εR0 ∈ [ 1− γ, 1), when z+

∞ = 1 > z−∞ which is
given by Lemma 3.8.

If εR0 < 1− γ and qmax < qc, we have the final epidemic size z∞ =
z+
∞ < 1 when the system (40) approaches a disease-eliminated equilibrium
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E+
0 given by (52). Then the final epidemic size z+

∞ := 1− u+
∞ is determined

by the unique positive root u+
∞ of the equation (51) in Lemma 3.9. As argued

in Appendix 3.A.16 for the proof of Lemma 3.9, the unique existence of the
positive root u+

∞ of the equation (51) follows the condition that G(u?)− u? >
0 and G(0) < 0, where the function G(u)− u with qmax ∈ (0, qc) is unimodal
or monotonically increasing in (0,u?).

Now we can find that

Lemma 3.23. u? → u−∞, G(u?)− u? → G(u−∞)− u−∞ = 0, and G(0) < 0 as
qmax → qc − 0 with εR0 < 1− γ.

This lemma can be easily proved by the straightforward calculation with
(42–44), (45), (49), and Lemma 3.8. Hence from the continuity of u+

∞ in
terms of qmax ∈ (0, qc), we have u+

∞ → u−∞ as qmax → qc − 0 if the function
G(u) − u becomes monotonically increasing in (0,u?) as qmax → qc − 0.
This is because there is no root of the equation G(u)− u = 0 in (0,u?) as
qmax → qc − 0, while u+

∞ is continuous in terms of qmax ∈ (0, qc). In contrast,
if the function G(u)− u becomes unimodal with a maximal extremum in
(0,u?) as qmax → qc − 0, the equation G(u)− u = 0 has a root u++

∞ ∈ (0,u?),
and we have u+

∞ → u++
∞ as qmax → qc − 0 because of the continuity of u+

∞ in
terms of qmax ∈ (0, qc).

As shown in Appendix 3.A.16, the continuous function G(u)− u has at
most one extremum for u > 0, and G′(u)− 1 = (ε/u0)B(u/u0)ε−1 − 1→∞
as u→ +0 with εR0 < 1− γ. Thus it is monotonically increasing in (0,u?) if
and only if the derivative of G(u)− u, that is, G′(u)− 1 is non-negative for
u = u?, while it is unimodal in (0,u?) if G′(u)− 1 is negative for u = u?. As
a result, taking account of Lemma 3.23 and the above arguments on the limit
of u+

∞ as qmax → qc − 0, we get

Lemma 3.24. As qmax → qc − 0 with εR0 < 1− γ,

u+
∞ →


u−∞ if G′(u−∞) ≥ 1;

u++
∞ < u−∞ if G′(u−∞) < 1.

Therefore, if and only if G′(u−∞) < 1 with εR0 < 1− γ, we have z†∞ =
1 − u++

∞ > 1 − u−∞ = z−∞. the condition G′(u−∞) < 1 with εR0 < 1 − γ
becomes (54) in Theorem 3.9 by the straightforward calculation with Lemma
3.8 and (49). The calculation must be carried out respectively for the cases
of εR0 6= γ and εR0 = γ, while the final result for εR0 = γ appears to be
included in (54).

Making use of (49) in a different way, the condition (54) can be rewritten
as

1− γ
γ − εR0

(1− qc)εR0−γ <
1− εR0

γ − εR0
− ε

1− ε

(1− γ
εR0

− 1
)

for εR0 6= γ; (136)

1− γ
γ

ln(1− qc) >
ε

1− ε
1− 2γ

γ
− 1 for εR0 = γ. (137)

Since 1− qc ∈ (0, 1), it is necessary that the right side of (136) is greater than
(1− γ)/(γ − εR0), and the right side of (137) is negative. Then we can find
the following necessary condition:
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(a) (b) (c)

Figure 30: Numerically drawn vector flows for the system (58) with (εR0, qmax) = (a)
(1.05, 0.2); (b) (1.05, 0.3); (c) (2.1, 0.6), and commonly ε = 0.35; γ = 0.5;
a = 0.2. The solid curve indicates the nullcline for v: dv/dτ = 0 in (58),
and the dashed horizontal line does v = aqmax/γ. Vector flows are drawn
over R2

+, though only those above the dashed horizontal line are valid for
the arguments on the dynamics governed by (58).

Lemma 3.25. For G′(u−∞) < 1 with εR0 < 1− γ, it is necessary that R0 > 1− γ.

Finally Lemmas 3.24 and 3.25 prove Theorem 3.9.

appendix 3.a .20: proof of theorem 3.11 and lemma 3.12

Suppose that there exists an endemic equilibrium E∗m defined by (56) with the
endemic size v∗m ∈ [aqmax/γ, 1− qmax). It is easy to see that the condition
(62) is sufficient to satisfy (60). Since the endemic size v∗m is given by a
root of the quadratic equation Ψ(v) = 0 with (59), it is necessary that its
discriminant is non-negative and the root of Ψ′(v) = 0 is positive, because
Ψ(v) is a convex parabola with Ψ(0) = aqmax > 0. The former condition
gives

A ≤ A1 (138)

with the latter condition εR0 > 1− γ which is the same as the former of (62).
These conditions are necessary for the existence of E∗m.

Under these two conditions, the equation Ψ(v) = 0 has one or two
positive roots necessarily less than 1− qmax, since we can easily find that
Ψ(1− qmax) > 0 and Ψ′(1− qmax) > 0. Besides we can prove that the smaller
root cannot correspond to v∗m when the equation Ψ(v) = 0 has two distinct
roots, as shown in the subsequent arguments making use of the isocline
method for the two dimensional system (58). Therefore the formula of v∗m is
given by (61) as the non-smaller root for the equation Ψ(v) = 0 with (59).

As seen in Figure 30(a), the isocline method in the (u, v)-phase plane can
show that the smaller root of the equation Ψ(v) = 0 corresponds to an unsta-
ble equilibrium for the system (58), while the larger root corresponds to an
asymptotically stable equilibrium for it. In a specific case where the equation
Ψ(v) = 0 has only one positive root, the isocline method indicates that the
root corresponds to an equilibrium which has a singular stability as follows:
There is a subset of points with a positive measure in the neighborhood of
the equilibrium such that the trajectory from the point of the subset goes
far away (i.e., repelled) from the equilibrium, while the trajectory from the
point of the complement in the neighborhood asymptotically approaches the
equilibrium. It is easily seen also by the isocline method that the trajectory
must asymptotically approach the equilibrium even in such a specific case
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once the system enters the isolation malfunctioning phase after the isolation
well-functioning phase. Hence, as a possible case where the system (58) ap-
proaches an endemic equilibrium at the isolation mulfunctioning phase, we
include the case where the discriminant of Ψ(v) = 0 is zero, that is, the case
of A = A1. As a result, we obtain v∗m given by (61) which is the non-smaller
root of the equation Ψ(v) = 0.

Next, from (61), the condition that v∗m ≥ aqmax/γ leads to the following
condition:

A ≤ A3 :=
γ

2

(
1− 1− γ

εR0

)
with εR0 > 1− γ

or

A3 < A ≤ A2 with εR0 > 1 + γ.

(139)

We can easily prove the followings:

A3 ≥ A1 < γ for εR0 ∈ (1− γ, 1 ] ;

A3 > A1 < γ and A1 ≥ A2 for εR0 ∈ (1, 1 + γ ] ;

A3 < A2 < A1 < γ for εR0 ∈ (1 + γ, 1− γ + 2
√
γ ] ;

A3 < A2 < γ ≤ A1 for εR0 ∈ [ 1− γ + 2
√
γ, ∞) .

Finally from these arguments, we can find the condition (62) which is neces-
sary and sufficient to satisfy all of those conditions (60), εR0 > 1− γ, (138),
and (139).

When the condition (62) is unsatisfied, the isocline method shows that
the trajectory for the system (58) in the region of v > aqmax/γ eventually
enters the region of v < aqmax/γ in a finite time, as illustrated by Figure
30(b, c), because there is no asymptotically stable state in the region of
v ≥ aqmax/γ. This means that the system (20) cannot keep staying at the
isolation malfunctioning phase, and eventually enters the isolation well-
functioning phase. This result shows Lemma 3.12. These arguments indicate
that the condition (62) is necessary if the system (20) approaches the endemic
equilibrium E∗m at the isolation malfunctioning phase. Consequently we have
proved Theorem 3.11.

appendix 3.a .21: proof of corollary 3.11.2

As long as we consider the endemic equilibrium E∗m, the condition (60) in
Lemma 3.11 is necessary to be satisfied. Since the right side of inequality (60)
converges to zero as γ → +0, we have to take into account that qmax → +0

at the same time as γ → +0. This is reasonable for the reasonability of
mathematical modeling too, because both limits of γ → +0 and qmax → +0

mean that the isolation becomes incapable. Hence we must take the limit
as qmax → +0 for v∗m given by (61) when γ → +0. Then we find that
v∗m → 1− 1/(εR00) as γ → +0 and qmax → +0.
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appendix 3.a .22: proof of corollary 3.16.1

We have

v∗m := sup
a
v∗m = lim

a→+0
v∗m = (1− qmax)

(
1− 1− γ

εR0

)
;

v∗w := sup
a
v∗w = lim

a→∞
v∗w = 1− 1

εR0

from the monotonicity of v∗m and v∗w in terms of a. Hence, we find the
following result on the a-dependence of endemic size: When εR0 > 1, if
v∗w > v∗m, that is, if the condition (72) is satisfied, then there exists a specific
value a† for a such that the endemic size v∗w for a > a† at the isolation
well-functioning phase is bigger than any endemic size for a ≤ a†, where
a† can be obtained as the root of the equation v∗w = v∗m, which leads to the
definition of a† given in (73). In contrast, if v∗m > v∗w, that is, if

qmax <
γ

εR0 − 1 + γ
, (140)

then there exists a specific value a‡ for a such that the endemic size v∗m for
a < a‡ at the isolation malfunctioning phase is bigger than any endemic size
for a ≥ a‡, where

a‡ =
γ

1− qmax

( 1

qmax
− εR0 − 1 + γ

γ

)(
1− 1

εR0

)
,

derived by solving the equation v∗m = v∗w. We can easily find that necessarily
a† > a2 and a‡ < a2 when either of them exists for εR0 > 1 under the
condition (72) or alternatively (140). If v∗m = v∗w, the endemic size v∗w for any
finite a > ac is smaller than v∗m. Finally, these arguments prove Corollary
3.16.1.

appendix 3.a .23: proof of theorem 3.17

First we can get the following result on the endemic size:

Lemma 3.26. v∗m → v∗w as qmax → qc − 0 for εR0 ≥ 1 + γ.

This lemma can be easily proved by straightforward calculation of the limit
for v∗m given by (61). Lemma 3.26 indicates that E∗m converges to E∗w as
qmax → qc − 0 for εR0 ≥ 1 + γ, where qc = q2 defined by (69) as shown in
Subsection 3.5.3. Thus the endemic size v∗ continuously depends on qmax

for εR0 ≥ 1 + γ where it switches between v∗w and v∗m (refer to Figures 22
and 26 too).

Next, again by straightforward calculations of the limit for v∗w given by
(24–26), we can find

Lemma 3.27. v∗w → 0 as εR0 → 1 + 0.

Lemma 3.27 indicates that E∗w converges to a disease-eliminated equilibrium
as εR0 → 1 + 0. Thus the endemic size v∗ continuously depends on εR0

unless the condition in Corollary 3.14.1 is satisfied when v∗ switches between
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a disease-eliminated equilibrium and the endemic equilibrium E∗w at the
isolation well-functioning phase for εR0 = 1 (refer to Figures 22 and 26).

As a result from Lemmas 3.26 and 3.27, there is no discontinuity at the
boundaries between D∗m and D∗w, and between D∗0 and D∗w in Figure 22. This
means that, if a discontinuity exists, it must be only for the parameter region
D∗0+m or D∗w+m. Therefore, from Lemmas 3.26 and 3.27, we get the result
given in the latter half of Theorem 3.17.

To consider the possibility to have a discontinuity for the parameter
region D∗0+m or D∗w+m, we shall use the decreasing monotonicity of v∗m in
terms of qmax, which has been already mentioned in Subsection 3.5.3. We
find the following result on the endemic size v∗m for the parameter region
D∗0+m:

Lemma 3.28. The endemic size v∗m is definitely positive for the parameter region
D∗0+m.

This is because we have

v∗m →
1− q1

2

(
1− 1− γ

εR0

)
> 0

as qmax → q1 − 0 for the parameter region D∗0+m, so that v∗m is necessarily
greater than the above limit for the parameter region D∗0+m because of
its decreasing monotonicity in terms of qmax. Therefore, for the parameter
region D∗0+m, we have a discontinuity of the final infective population size
v∞ between v∗m and 0 (i.e., a disease-eliminated state) at the critical value of
qmax in D∗0+m where the state approached by the system switches between a
disease-eliminated equilibrium and the endemic equilibrium E∗m.

Next, since it necessarily holds from Corollary 3.10.1 and arguments in
Subsection 3.5.1 that v∗w < aqmax/γ ≤ v∗m, we would have v∗w → aqc/γ =
v∗m with a proper limit qmax → qc in the parameter region D∗w+m if v∗ is
continuous at a critical value of qmax. For v∗w given by (24–26), we find that
qmax = 1/(1 +B∗w) when v∗w = aqmax/γ. On the other hand, from (61), we
can find that, as qmax → 1/(1 +B∗w) + 0,

v∗m →
γ

εR0
· B∗w

1 +B∗w
=
{

1 +
(1 + γ)/(εR0)− 1

1− 1/(εR0)

} a/γ
1 +B∗w

>
a/γ

1 +B∗w
= v∗w

for εR0 ∈ (1, 1 + γ). Therefore, it is impossible that v∗w → aqmax/γ = v∗m as
qmax → 1/(1 +B∗w) + 0. Consequently we do not have any value of qmax in
the parameter region D∗w+m such that v∗w → aqmax/γ = v∗m with a proper
limit qmax → qc. That is, it is satisfied that v∗w < aqmax/γ ≤ v∗m for any qmax

in D∗w+m. This means that there is a discontinuity of the endemic size v∗

between v∗m and v∗w for the critical value of qmax in D∗w+m where the state
approached by the system switches between E∗m and E∗w. The way of these
arguments can be applied for the corresponding arguments with respect to
the equilibrium switch at the critical value of a in D∗0+m and D∗w+m. Finally
these arguments have proved Theorem 3.17.





4B E H AV I O R A L H E T E R O G E N E I T Y I N P E O P L E

4.1 introduction

The COVID-19 pandemic has resulted in an unprecedented worldwide public
health emergency and revealed that population heterogeneity plays a crucial
role in the spread of the transmissible disease [5,23,30,49,127]. In contrast to the
assumption of homogeneous mixing, considering population heterogeneity,
including differences in age, economic status, and individual behavior may
help to better understand the transmission dynamics of infectious diseases.

Many studies have extended epidemic models to account for such hetero-
geneity and have demonstrated the substantial impact on disease spread and
control strategies (for example, Sattenspiel and Dietz [142], Garnett and Ander-
son [63], Dwyer et al. [51], Dwyer et al. [52], Brauer [21], Hickson and Roberts [76],
Izhar and Ben-Ami [82], Bonaccorsi and Ottaviano [17], Acemoglu et al. [2],
Almeida et al. [7]). Acemoglu et al. [2] developed a multigroup SIR model di-
viding the population into three age classes and used numerical optimization
to design optimal targeted lockdown policies that balance health outcomes
and economic losses. Their study highlighted the importance of population
heterogeneity in policy design.

In particular, the heterogeneity in individual susceptibility plays an im-
portant role in shaping epidemic outcomes. This is because susceptibility
directly determines the likelihood that an individual becomes infected, and
thus affects the spread of transmission within the population. Several studies
have shown that a small fraction of the population may carry a majority
of the total susceptibility, significantly affecting transmission potential (for
example, Smith et al. [150], King et al. [94], Althouse et al. [8], Liu et al. [102],
Wong and Collins [172], Rose et al. [139]). This phenomenon implies that in-
dividuals with higher susceptibility can disproportionately drive epidemic
spread, especially in the early stages of an outbreak. It also suggests that
targeted interventions for these highly susceptible groups could substantially
reduce overall transmission.

In addition to susceptibility, heterogeneity in infectivity also plays a
critical role in epidemic dynamics. The findings by Markwalter et al. [109]

showed that a small number of highly infectious individuals can dispropor-
tionately contribute to the transmission for malaria. Similar patterns have
been observed in other diseases, such as SARS-CoV-2, where superspreading
events dominate the transmission process [50]. Lloyd-Smith et al. [103] showed
that individual-level variation in infectiousness can result in superspreading
events and significantly shape the dynamics of the outbreak. Kuylen et al. [96]

further distinguished between heterogeneity in infectiousness and contact be-
havior, showing that higher infectiousness-related heterogeneity may reduce
outbreak resurgence, while contact-related heterogeneity may increase it.

Beyond individual-level differences in susceptibility and infectivity, the
structure of social contact patterns also has a crucial influence on epidemic
dynamics. Hill et al. [77] analyzed a multi-group SIR model incorporating
preferential and proportionate mixing and found that contact heterogene-
ity significantly alters the effective reproduction number and vaccination
thresholds. Dimarco et al. [48] investigated this aspect using a Boltzmann-type
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kinetic model, showing that individuals with a higher contact rate drive
transmission disproportionately, and that targeting these individuals may
lead to more effective intervention strategies.

Furthermore, some studies have highlighted the importance of structured
population heterogeneity in shaping epidemic outcomes. Britton et al. [23]

demonstrated that incorporating age and social activity levels into epidemic
models significantly reduces the estimated herd immunity threshold for
SARS-CoV-2. Elbasha and Gumel [56] further showed that in heterogeneous
populations, optimal vaccination strategies depend on the underlying contact
structure and group-specific transmission rates.

In this chapter, we introduce a population structure defined by hetero-
geneity in individual preventive behaviors. These behavioral differences are
shaped by underlying educational backgrounds and influence both suscep-
tibility and transmissibility. Rather than focusing on variation in contacts
between individuals, this study considers heterogeneity in both individual
susceptibility and infectivity, which have been considered separately in pre-
vious studies, thereby capturing the combined effect of these two factors on
epidemic consequence. Moreover, this study provides analytical results that
quantify the role of preventive behavior heterogeneity. Our theoretical analy-
sis aims to provide valuable insights for the development of effective public
health policies and try to provide a theoretical foundation for understanding
epidemic progression.

4.2 assumptions and model

We assume the following for our modeling:

• The total population size is constant, when any demographic change
due to birth, death or migration is assumed to be negligible in the
epidemic season.

• The fatality of disease is negligible.

• Disease transmission occurs through contact between pathogens and
individuals. For example, the transmission of COVID-19 can be caused
by contact with contaminated materials.

• Individuals of the community are categorized into n classes based on
their caution level.

• The differences in caution level are caused by the education level.
Compared to the spread of disease transmission, improvements in
education require a significantly longer period. Hence the transition
between different classes during the epidemic season is negligible.

• Caution level affects preventive behavior in both susceptible and in-
fected individuals.

• Susceptible individuals of low caution level are more likely to get
infected compared to those with high caution level.

• Infected individuals of low caution level contribute more to disease
transmission due to lower-quality preventive behavior, even after infec-
tion.

• The recovery rate is the same for infected individuals regardless of
their level of caution.
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From the assumptions, we obtain the following mathematical model:

dSi
dt

=− εiβ
n∑
k=1

γkIkSi;

dIi
dt

= εiβ

n∑
k=1

γkIkSi − ρIi;

dRi
dt

= ρIi.

(141)

The variables Si, Ii, and Ri denote the sizes of susceptible, infective, and
recovered subpopulation of caution level i respectively. The total population
size of the community is given by a positive constant N , the population size
of caution level i is given by Ni := piN , with pi ∈ (0, 1), and

∑n
i=1 pi = 1. It

is satisfied that Si(t) + Ii(t) +Ri(t) = piN for any t ≥ 0. Initial condition
is given by Si(0) + Ii(0) = piN , Ii(0) ≥ 0, and Ri(0) = 0 for all i. The
infection coefficient for susceptible individuals of caution level i is given by
εiβ. εi indicates the efficiency of preventive behavior, where εi ∈ (0, 1], and
1 = ε1 > ε2 > . . . > εn. A small value of εk corresponds to a high caution
level, indicating that susceptible individuals adopt higher-quality preventive
behaviors, such as regular mask-wearing and frequent hand-washing, which
reduce the potential route for disease transmission. Conversely, a large value
of εk corresponds to a low caution level, reflecting less effective preventive
behaviors. Within this framework, individuals of class 1 are assumed to have
the lowest caution level, while those of class n with the highest caution level.
The parameter γk ∈ (0, 1] represents the contribution of the epidemic by
an infected individual of caution level k, which could be regarded as the
density of the pathogen produced by an infected individual of caution level
k. For example, wearing a mask or reducing the frequency of going out could
decrease the contamination of objects and air by pathogens produced by
infected individuals. The contribution of slowing down the spread of the
epidemic by infected individuals of caution level 1 is the smallest, indicating
that 1 = γ1 > γ2 > ... > γn. The parameter ρ denotes the recovery rate of an
infected individual.

With the following transformation of variables and parameters, we can
derive the non-dimensionalized system mathematically equivalent to the
system (141):

τ := ρt; ui :=
Si
N

; vi :=
Ii
N

; wi :=
Ri
N

; R0,i := γi〈ε〉R
sup
0 ;

Rsup
0 :=

βN

ρ
;

dui
dτ

= −ui
εi
〈ε〉

n∑
k=1

R0,kvk;

dvi
dτ

= ui
εi
〈ε〉

n∑
k=1

R0,kvk − vi;

dwi
dτ

= vi.

(142)

The initial condition is given by ui(0) + vi(0) = pi, vi(0) > 0, and
wi(0) = 0 for all i. Here R0,i denotes the class-specific basic reproduc-
tion number, which will be formally defined in Section 4.3. Rsup

0 is the upper
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bound of the system basic reproduction number R0 which will be defined in
Section 4.4. For the mathematical convention, we show here the following
mathematical feature about the solution of (142) (Appendix 4.A.1):

Lemma 4.1. With the initial condition ui(0) + vi(0) = pi, vi(0) ∈ (0, pi), and
wi(0) = 0 for all i, the solution of (142) belongs to the set {(ui, vi,wi) ∈ R3

+ |
ui + vi +wi = pi} for all i and τ ≥ 0.

Then we can get ui(τ ) + vi(τ ) +wi(τ ) = pi for all i and τ ≥ 0.

4.3 class-specific basic reproduction number

In this section, we divide the population into n classes based on the different
caution levels. We consider the basic reproduction number in terms of differ-
ent classes. Here we define the class-specific basic reproduction number R0,i

as the supremum of the expected number of secondary cases generated by an
infected individual at caution level i over the entire course of the infectious
period.

We can get the class-specific reproduction number as following (Appendix
4.A.2):

R0,i := sup
{Sk}

1

ρ

n∑
k=1

εkβSkγi =
1

ρ

n∑
k=1

εkβpkNγi =
γi〈ε〉βN

ρ
, (143)

where 〈ε〉 =
∑n
k=1 pkεk. Here 〈ε〉 means the mean efficiency of preventive

behavior in the community. A small value of 〈ε〉 indicates the overall level of
preventive behavior is high, while a large value of 〈ε〉 indicates the overall
level of preventive behavior is low.

Since γ1 > γ2 > · · · > γn is a decreasing sequence, we can derive the
following order of the class-specific basic reproduction numbers R0,i from
the definition:

R0,1 > R0,2 > · · · > R0,n. (144)

A larger value of class-specific basic reproduction number R0,i in class i
indicates a higher susceptibility and infectivity of this class, thereby resulting
in a greater contribution to the disease transmission.

Then, we define the mean value of the class-specific basic reproduction
number 〈R0,i〉 as the class-level mean of R0,i, determined by the distribution
of individuals across all caution levels. Here we define

〈R0,i〉 :=
n∑
i=1

piR0,i, (145)

where pi represents the proportion of individuals in the community at
caution level i. By substituting (143) into (145), we can obtain

〈R0,i〉 =
n∑
i=1

pi
1

ρ

n∑
k=1

εkβpkNγi =
〈ε〉〈γ〉βN

ρ
. (146)

From the order shown in (144), we can obtain the following result:

R0,1 > 〈R0,i〉 > R0,n.
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4.4 system basic reproduction number

Here we consider the basic reproduction number R0 for the n classes in
the community. We define the system basic reproduction number R0 as
the supremum of the expected number of secondary cases generated by an
infected individual of the community over the entire course of the infectious
period.

We derive the system basic reproduction number by the Next Generation
Matrix Method (Appendix 4.A.3):

R0 := sup
{Si}

1

ρ

n∑
i=1

εiβSiγi =
1

ρ

n∑
i=1

εiβpiNγi =
〈εγ〉βN

ρ
, (147)

where 〈εγ〉 =
∑n
k=1 pkεkγk. Here 〈εγ〉 depends on the efficiency of an indi-

vidual’s preventive behavior and the transmission potential of pathogens by
infected individuals. The basic reproduction number R0 is neither the sum
nor the mean value of the class-specific basic reproduction number R0,i.

The mathematical property of the reproduction numbers is shown as
follows (Appendix 4.A.4):

Lemma 4.2. R0,1 > R0 > 〈R0,i〉.

R0,1 represents the class with the lowest caution level and minimal pre-
ventive behavior against a transmissible disease. 〈R0,i〉 reflects the mean
individual-level transmission potential, which does not account for behav-
ioral differences across classes. R0 describes the infection potential at the
population level and captures the heterogeneity in population. This order
indicates that the overall transmission potential of the population cannot be
determined by a simple mean value of individual reproduction numbers, but
is instead shaped by the behavioral structure among individuals.

4.5 conserved quantities

We derive the following time-independent equalities from system (142) (Ap-
pendix 4.A.5):

Lemma 4.3.{
u1(τ )

u1(0)

}1/ε1
=

{
u2(τ )

u2(0)

}1/ε2
= · · · =

{
un(τ )

un(0)

}1/εn
(148)

for any τ > 0.

Lemma 4.4.

log{U(τ )}〈ε〉 +
n∑
k=1

R0,k [pk − uk(0) {U(τ )}εk ] = X(τ ) (149)

for any τ > 0, where

U(τ ) :=
{
ui(τ )

ui(0)

}1/εi
, X(τ ) :=

n∑
k=1

R0,kvk(τ ). (150)
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4.6 final epidemic size

We find the following results implying that the disease disappears at the
final stage of epidemics in the community (Appendix 4.A.6):

Lemma 4.5. ui(τ )→ u∞i ≥ 0, vi(τ )→ 0, and wi(τ )→ w∞i > 0 as τ →∞ for
any i.

From Lemma 4.5, we can get ui(τ ) + vi(τ ) + wi(τ ) → u∞i + w∞i , and
X(τ )→ 0 as τ →∞. Since ui(τ ) + vi(τ ) +wi(τ ) = pi for all i and τ ≥ 0, we
can get u∞i +w∞i = pi as τ →∞. Let us define ui(τ )→ u∞i as τ →∞, from
(150), U∞ can be defined by

U∞ :=
{
u∞i
ui(0)

}1/εi
=

{
u∞j
uj(0)

}1/εj
(151)

for any i, j as τ → ∞. From equation (149) and Lemma 4.5, we can get
the following result to show the unique root of equality (149) as τ → ∞
(Appendix 4.A.6):

Lemma 4.6. U∞ ∈ (0, 1) is the unique root of equation F (U) = 0, where

F (U) := logU 〈ε〉 +
n∑
k=1

R0,k [pk − uk(0)Uεk ] . (152)

From (151), u∞i is uniquely defined by

u∞i = ui(0)Uεi∞. (153)

Then, we can find the following results implying the relation of the initial
size of infective population on the final size of the susceptibles (Appendix
4.A.7):

Lemma 4.7.
∂u∞i
∂vj(0)

< 0 for any j.

Lemma 4.7 indicates that a larger initial value uj(0) (a smaller vj(0)) could
lead to a greater u∞i . Since pi is the upper bound of the initial value uj(0)
for any j, we can define the supreme of u∞i which is given by

u∗i := sup
{ui(0)}

u∞i = u∞i
∣∣
uj (0)→pj−0

for all j.
Next, we define the final epidemic size W∞ as the proportion of individ-

uals in the community who have experienced the infection until the final
stage of the epidemic dynamics. We can obtain

W∞ :=
n∑
i=1

w∞i =
n∑
i=1

(pi − u∞i ) =
n∑
i=1

pi −
n∑
i=1

u∞i = 1−
n∑
i=1

u∞i . (154)
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Using (153) for (154), we can obtain

W∞ = 1−
n∑
i=1

ui(0)Uεi∞. (155)

It is easy to derive ∂w∞i /∂vj(0) > 0, indicating a large initial size of the
infective population could result in a larger final epidemic size.

Since the initial values of each class are independent, we obtain the fol-
lowing result (Appendix 4.A.8):

Lemma 4.8.
∂

∂uj(0)

(
u∞i
ui(0)

)
> 0 for any j.

Following the Lemma 4.8, we define the supreme of U∞ from (151), which is
given by

U∗ := sup
{ui(0)}

{
u∞i
ui(0)

}1/εi
= sup
{ui(0)}

U∞ = U∞
∣∣
ui(0)→pi−0

. (156)

Further, U∗ is a root of

lim
ui(0)→pi−0

F (U) = 0, (157)

where

lim
ui(0)→pi−0

F (U) = F (U) := logU 〈ε〉 +
n∑
k=1

R0,kpk (1−Uεk ) .

It is easy to find that equation (157) always has a root U = 1. Then, we show
the following mathematical result about the solution of (157) (Appendix
4.A.8):

Lemma 4.9. As ui(0)→ pi for all i, we have

U∞ →

1, if R0 ≤ 1,

U∗ ∈ (0, 1), if R0 > 1.

Therefore, equation (157) has a unique root U = 1 if R0 ≤ 1, and a unique
root U∗ in (0, 1) if R0 > 1. From (156), taking the limit of ui(0)→ pi for all i,
we can get

U∗ =

{
u∞i
ui(0)

}1/εi

ui(0)→pi−0

=

(
u∗i
pi

)1/εi
=

(
u∗j
pj

)1/εj

(158)

for any i, j. Then, we define the infimum of w∞i which is given by

w∗i := inf
{ui(0)}

w∞i = inf
{ui(0)}

(pi − u∞i ) = pi − sup
{ui(0)}

u∞i = pi − u∗i . (159)

From (154), the infimum of the final epidemic size W ∗ is given by

W ∗ := inf
{ui(0)}

W∞ = inf
{ui(0)}

n∑
k=1

w∞i =
n∑
i=1

inf
{ui(0)}

w∞i =
n∑
k=1

w∗i . (160)
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Making use of (158) and (159) to (160), we can get

W ∗ = 1−
n∑
i=1

(U∗)εi pi. (161)

The following Theorem illustrates the dependence of the system basic
reproduction number on the infimum of final epidemic size (Appendix
4.A.8):

Theorem 4.1. W ∗ = 0 if R0 ≤ 1, W ∗ > 0 if R0 > 1. In particular, when R0 = 1,
U∞ approaches 1 and the infimum of the final epidemic size satisfies W ∗ = 0.

The above Theorem states that the infimum of the final epidemic size is zero
when the system basic reproduction number does not exceed 1, however, this
does not imply that the final epidemic size W∞ is zero. W ∗ represents the
minimal outcome or lower bound of final epidemic size. A larger W ∗ implies
that even under the most optimistic circumstances, the epidemic cannot be
avoided and will inevitably result in a social damage. Thus, W ∗ could be
considered as an indicator to quantify the minimal unavoidable damage the
epidemic may cause to the community.

4.7 dependence of behavioral heterogeneity

4.7.1 Initial behavior of disease spread

The initial behavior of a disease within a community is a critical aspect of
understanding the progress of the spread of the epidemic. The early-stage
dynamics of the disease are not only determined by whether the system
basic reproduction number R0 is greater than or less than 1. Instead, specific
conditions related to the dynamics of the disease and the characteristics of
the population play a significant role. To characterize the initial trend of the
epidemic, let us denote the proportion of the total infective population size
in the community as

V (τ ) :=
∑n
i=1 Ii(τ )

N
=

n∑
i=1

vi(τ ).

Then, we can derive the following result about the initial variation of the
total infective population size (Appendix 4.A.9):

Lemma 4.10. Suppose that the disease initially emerges in class `, which means
v`(0) = v0 is positive and sufficiently small, while vk(0) = 0 for all k 6= `. Then,
V initially decreases if

R0,` <
〈ε〉

〈ε〉 − v0ε`
;

V initially increases if

R0,` >
〈ε〉

〈ε〉 − v0ε`
.

Since the inequality 〈ε〉(R0,` − 1) ≤ v0ε`R0,` holds when R0,` ≤ 1, we
can get V initially decreases when R0,` ≤ 1. When R0,` > 1, we observe
that the inequality 〈ε〉 > (ε`/(1− 1/R`))v0 is more easily satisfied than its
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Figure 31: Temporal variation of the total infective population size where the
initial infection appears at the class `. Numerically drawn with
(a) ` = 50, v0 = 1.0 × 10−5, vi(0) = 0.0 for i 6= `; (b) ` = 80,
v0 = 1.0 × 10−5, vi(0) = 0.0 for i 6= `. Commonly, N = 1.0 × 105;
n = 100; pk = [nCkq

k(1 − q)n−k ]/[1 − (1 − q)n]; εk = 0.99k−1;
γk = 0.998k−1; β = 2.0× 10−5; ρ = 0.9; q = 0.673; 〈ε〉 = 0.514. In (a),
(R0,1,R0,50,R0, 〈R0,i〉,R0,100) = (1.143, 1.036, 1.001, 1.001, 0.937);
ε50 = 0.611. In (b), (R0,1,R0, 〈R0,i〉,R0,80,R0,100) =
(1.143, 1.001, 1.001, 0.975, 0.937); ε80 = 0.452.

reverse inequality, since v0 is assumed to be sufficiently small and 〈ε〉 is a
finite positive value. Hence, We may approximate that V initially increases
when R0,` > 1. On the other hand, since R0,i follows a decreasing order
R0,1 > · · · > R0,n, we can get V initially decreases when R0,1 < 1 and
increases when R0,n > 1.

Furthermore, if the first derivative of the total infected population size is
zero at the initial moment, that is, dV (τ )/dτ |τ=0 = 0, the initial variation of
the total infected population is determined by the system basic reproduction
number R0. V initially decreases if R0 ≤ 1, and initially increases if R0 > 1

(Appendix 4.A.9).
Figure 31 illustrates the impact of initial disease emergence in a different

class on the initial variation of the total infected population size. When the
disease emerges within a class with high cautiousness, the total number of
infectives initially declines. However, when the disease appears in a class
with low cautiousness, the higher transmission risk leads to an initial increase
in the total number of infectives. The rapid increase in the total infected
population inevitably leads to social damage, which emphasizes the impor-
tance of enhancing individuals’ cautiousness in reducing the social damage
of infectious diseases. Figure 32 illustrates how the class size distribution
affects the initial variation of the total infected population size. In particular,
as shown in Figure 32(b), there could be a case where the total infective sub-
population size turns from decreasing to increasing at the moment. Such a
case appears as a revival of outbreak of the disease spread in the community.

The following lemma shows a sufficient condition for the monotonic
decrease of the total infective population size(Appendix 4.A.10):

Lemma 4.11. If R0,1 ≤ 1, then V decreases monotonically over time.

The result of Lemma 4.11 is intuitive, when R0,1 is not greater than 1, it
implies that the disease fails to spread within the community.
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Figure 32: Temporal variation of the total infective subpopulation size. The top row
illustrates the class size distribution in terms of q, while the bottom row
illustrates the corresponding temporal variation of V . Numerically drawn
with (a) q = 0.6; (b) q = 0.673; (c) q = 0.7. N = 1.0× 105; n = 100;
pk = [nCkq

k(1− q)n−k ]/[1− (1− q)n]; εk = 0.99k−1; γk = 0.998k−1;
β = 2.0 × 10−5; ρ = 0.9. The initial condition is given by v80(0) =
1.0× 10−5; vi(0) = 0.0 for i 6= 80. ε80 = 0.452; 〈ε〉 = (a) 0.553; (b) 0.514;
(c) 0.500. (R0,1,R0, 〈R0,i〉,R0,80) = (a) (1.230, 1.093, 1.093, 1.050);
(b) (1.143, 1.001, 1.001, 0.975); (c) (1.112, 0.969, 0.969, 0.949). In (b), the
early period of V is decreasing, then tends to increase.

4.7.2 Final epidemic size

In this subsection, we analyze the sensitivity of the final epidemic size to a
small variation in the class size. Suppose p̃i = pi for class i /∈ {`, `− 1, `+ 1},
and

p̃`−1 = p`−1 + αδp,

p̃` = p` − δp,

p̃`+1 = p`+1 + (1− α)δp,

where α ∈ [0, 1], δp > 0 and sufficiently small. Initial value of class i /∈
{`, `− 1, `+ 1} is given by ũi(0) = ui(0), and those for class `− 1, `, and
`+ 1 are respectively given by

ũ`−1(0) = u`−1(0) + α
u`(0)

p`
δp;

ũ`(0) = u`(0)− u`(0)

p`
δp;

ũ`+1(0) = u`+1(0) + (1− α)
u`(0)

p`
δp.

Based on the supposition, we derive

〈ε̃〉 = 〈ε〉+ ∆εδp;

〈ε̃γ〉 = 〈εγ〉+ ∆(εγ)δp;

˜R0,i = R0,i + R0,i
∆ε
〈ε〉

δp,

(162)

where ∆ε = αε`−1 − ε` + (1 − α)ε`+1, ∆(εγ) = αε`−1γ`−1 − ε`γ` + (1 −
α)ε`+1γ`+1.
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Let us denote
R̃0 =R0 + δR0;

ũ∞i =u∞i + δui;

W̃∞ =W∞ + δW∞.

Then, we derive the following theorems, which respectively characterize the
sensitivity of the basic reproduction number and the final epidemic size
(Appendix 4.A.11):

Theorem 4.2.

δR0 = R0
∆(εγ)

〈εγ〉
δp.

Theorem 4.3.

δW∞ =
Dδp

F ′(U∞)U∞

{
D1(R0,k,α)− u`(0)

p`
D2(R0,k,α,U∞)

}
− u`(0)

p`
D3(α,U∞)δp,

where

D =
n∑
k=1

εkuk(0)Uεk∞ ,

D1(R0,k,α) = α(R0,`−1 −R0,`)− (1− α)(R0,` −R0,`+1),

D2(R0,k,α,U∞) = α
{
R0,`−1U

ε`−1
∞ −R0,`U

ε`∞
}
− (1− α)

{
R0,`U

ε`∞ −R0,`+1U
ε`+1
∞

}
,

D3(α,U∞) = α
{
U
ε`−1
∞ −Uε`∞

}
− (1− α)

{
Uε`∞ −U

ε`+1
∞

}
.

Theorem 4.2 indicates that the change in the system basic reproduction
number R0 depends on the α, and distribution of εi and γi. Increasing
the proportion of high caution class could effectively reduce the spread of
the transmissible disease. This is because individuals in high caution class
exhibit lower susceptibility and infectivity, thereby reducing the potential of
transmission. The result given by Theorem 4.3 is more complicated. From
(176) in Appendix 4.A.7, and ε`−1 > ε` > ε`+1, we can get Uε`+1

∞ > Uε`∞ >

U
ε`−1
∞ . Then, we can obtain δW∞ < 0 if one of the following conditions is

satisfied:

• α is sufficiently small;

• |εi − εj | � 1 for ∀i, j, and

R0,` > αR0,`−1 + (1− α)R0,`+1;

• |γi − γj | � 1 for ∀i, j, and

Uε`∞ < U
ε`−1
∞ +

1− α
α

U
ε`+1
∞ .

The larger value of α indicates a higher proportion of individuals in lower
caution classes, leading to a greater final epidemic size. Furthermore, the
final epidemic size depends on the distribution of preventive behaviors,
characterized by the parameters γ and ε.
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Figure 33: The relation between the class size distribution as defined in (163) and (a)
reproduction numbers; (b) final epidemic size. Numerically drawn with
N = 1.0× 105; n = 10; bε = 0.5; bγ = 0.6; β = 1.0× 10−5; ρ = 0.5. The
initial condition is given by v1(0) = 1.0× 10−5; vi(0) = 0.0 for i 6= 1. The
critical value for W ∗ = 0 is given by qc = 0.170.

4.8 model with specific behavioral heterogeneity

4.8.1 A modified binomial class size distribution

In this subsection, we consider a specific distribution to illustrate our n class
model. Let us consider the following modified binomial distribution {pk},
and {εk} and {γk}:

pk =
nCkq

k(1− q)n−k

1− (1− q)n
; εk = bk−1

ε ; γk = bk−1
γ , (163)

where bε in (0, 1) and bγ in (0, 1). Then, we can get

〈ε〉 =
n∑
k=1

εkpk =
1

bε

{1− q(1− bε)}n − (1− q)n

1− (1− q)n
;

〈γ〉 =
n∑
k=1

γkpk =
1

bγ

{
1− q(1− bγ)

}n − (1− q)n

1− (1− q)n
;

〈εγ〉 =
n∑
k=1

εkγkpk =
1

θ

{1− q(1− θ)}n − (1− q)n

1− (1− q)n
,

where θ = bεbγ . From the definition of the class-specific basic reproduction
number (143) and system basic reproduction number (147), we can get

R0i =γi〈ε〉R
sup
0 ;

R0 =〈εγ〉Rsup
0 .

Following Theorem 4.1, we can derive that W ∗ = 0 if 〈εγ〉 ≤ 1/Rsup
0 ,

W ∗ > 0 if 〈εγ〉 > 1/Rsup
0 . The critical condition of R0 = 1 is given by 〈εγ〉 =

1/Rsup
0 . Furthermore, the modified binomial distribution pk is monotonically

decreasing for q < 2/(n+ 1), monotonically increasing for q > n/(n+ 1),
and unimodal for 2/(n+ 1) < q < n/(n+ 1).

Figure 33 illustrates that increasing the caution level significantly con-
tributes to the reduction of both the system basic reproduction number and
the final epidemic size. Figure 34 (a) illustrates that the final epidemic size
W∞ is positive under the condition of small q and large θ. A sufficiently
large proportion of individuals with high caution in the community and the
significant difference in caution levels can lead to a positive final epidemic
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Figure 34: Parameter region of infimum of final epidemic size W ∗ with the class size
distribution as defined in (163). The red region shows W ∗ > 0 for any q in
(0, 1), the yellow region shows W ∗ = 0 for any q in (0, 1). The boundary
curve is given by R0 = 1. Numerically with (a) Rsup

0 = 2.0; (b) q = 0.8.
n = 10. The critical value qc = 0.128, θc = 0.926.

size. As shown in Figure 34 (b), W ∗ = 0 if Rsup
0 < 1. Conversely, if Rsup

0
is sufficiently large, the final epidemic size W∞ is necessarily positive. The
formulas for the critical values qc, θc, and Rsup

c are shown in Appendix
4.A.12.

4.8.2 Two class model

We consider the mathematical model (142) with n = 2. Here, assume p1 = p,
p2 = 1− p, the class-specific basic reproduction number is given by

R0,1 = γ1〈ε〉Rsup
0 ; R0,2 = γ2〈ε〉Rsup

0 ,

where 〈ε〉 = ε1p+ ε2(1− p). The basic reproduction number is given by

R0 = {ε1γ1p+ ε2γ2(1− p)}Rsup
0 . (164)

From equation (155), the final epidemic size is given by

W∞ = 1− u1(0)Uε1∞ − u2(0)Uε2∞ . (165)

If all individuals in the community are highly cautious about the epidemic,
the risk of infection decreases due to the effectiveness of protective behaviors.
According to the definition of the basic reproduction number, R0 reaches its
minimum under this situation. In contrast, R0 reaches its maximum when
all individuals in the community with low caution level. From the above
arguments, we can derive that R0 reaches its minimum if p = 0, R0 reaches
its maximum if p = 1. Let us define

Rmin
0 := ε2γ2R

sup
0 ; Rmax

0 := ε1γ1R
sup
0 ,

Under the assumption that ε1 = γ1 = 1, it follows that Rmin
0 < Rmax

0 . Then,
we obtain the following result (Appendix 4.A.13):

1. If Rmin
0 ≥ 1, W ∗ > 0 for any p in (0, 1);

2. If Rmax
0 ≤ 1, W ∗ = 0 for any p in (0, 1);
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3. If Rmin
0 < 1 < Rmax

0 , there exists a critical value pc in (0, 1), such that
W ∗ = 0 for p ≤ pc, W ∗ > 0 for p > pc, where

pc =
1

1 +
(
Rmax

0 − 1
)

/
(
1−Rmin

0

) .

Furthermore, it is easy to find that the critical value pc is monotonically
decreasing with the ε2 and γ2. Smaller values of ε2 and γ2 indicate a greater
difference of the preventive behavior between these two classes, which leads
to a larger pc and makes the condition W ∗ = 0 easier to satisfy, thereby
potentially minimizing the resulting social damage.

4.8.3 Comparison of two communities

Suppose that two communities A and B, which have class size distribu-
tions given by parameters pA ∈ (0, 1) and pB ∈ (0, 1). For mathematical
simplification, we assume the following relations between parameters.

εB
i = ωεA

i and γB
i = ωγA

i for i = 1, 2 with ω > 0;

εA
2 = bεA

1 and γA
2 = bγA

1 with b ∈ (0, 1);

Rsup,B
0 = r0R

sup,A
0 with r0 > 0.

(166)

Let us suppose that two communities have the same R0 > 1. Then, since
R0 = 〈εγ〉ARsup,A

0 = 〈εγ〉BRsup,B
0 = r0〈εγ〉BRsup,A

0 , we have 〈εγ〉A =

r0〈εγ〉B = R0/Rsup,A
0 . That is,

pAε
A
1 γ

A
1 + (1− pA)εA

2 γ
A
2 = R0{pBε

B
1 γ

B
1 + (1− pB)εB

2 γ
B
2 } =

R0

Rsup,A
0

. (167)

From (166), the equalities given in (167) lead to

pA + (1− pA)b2 = r0ω
2{pB + (1− pB)b2} = κ :=

1

εA
1 γ

A
1

R0

Rsup,A
0

∈ (pA, 1).

(168)
From the equalities in (168), we obtain

b =

√
κ− pA

1− pA
=

√
1− 1− κ

1− pA
;

κ

r0ω2
= pB + (1− pB)

κ− pA

1− pA
= 1− (1− pB)

1− κ
1− pA

∈ (0, 1).

Furthermore, we can easily get

〈ε〉A = pAε
A
1 + (1− pA)εA

2 = εA
1 {pA + (1− pA)b};

〈ε〉B = pBε
B
1 + (1− pB)εB

2 = ωεA1 {pB + (1− pB)b};

RA
0,2 = γA

2 〈ε〉ARsup,A
0 = bγA

1 〈ε〉ARsup,A
0 = bRA

0,1;

RB
0,2 = γB

2 〈ε〉BRsup,B
0 = bγB

1 〈ε〉BRsup,B
0 = bRB

0,1;

RA
0,1 = γA

1 〈ε〉ARsup,A
0 = ϕ(pA)R0;

RB
0,1 = γB

1 〈ε〉BRsup,B
0 = ϕ(pB)R0,
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where

ϕ(x) :=
x+ (1− x)

√
1− 1−κ

1−pA
1− (1− x) 1−κ

1−pA
.

Thus, we have

ϕ(pA) =
1

κ

{
pA + (1− pA)

√
1− 1− κ

1− pA

}
;

ϕ(pB) =
pB + (1− pB)

√
1− 1−κ

1−pA
1− (1− pB) 1−κ

1−pA
.

Therefore, we have RA
0,2 = bϕ(pA)R0 and RB

0,2 = bϕ(pB)R0. Note that ϕ(x)
is monotonically decreasing in terms of x ∈ (0, 1), with ϕ(0) = 1/b > 1,
and ϕ(1) = 1. Hence, ϕ(x) ∈ (1, 1/b) for x ∈ (0, 1). Therefore, we have
bϕ(x) < 1 < ϕ(x) for x ∈ (0, 1). As a result, the above equalities about
the class-specific basic reproduction numbers imply RA

0,1 > R0 > RA
0,2 and

RB
0,1 > R0 > RB

0,2. This result is consistent with the order given in (144) and
Lemma 4.2 for the n-class model.

The infima of final epidemic size W ∗A and W ∗B for communities A and B
are determined as

W ∗A = 1− pA(U∗A)ε
A
1 − (1− pA)(U∗A)ε

A
2 = 1− pA(U∗A)ε

A
1 − (1− pA){(U∗A)ε

A
1 }b;

W ∗B = 1− pB(U∗B)ε
B
1 − (1− pB)(U∗B)ε

B
2 = 1− pB{(U∗B)ω}ε

A
1 − (1− pB)[{(U∗B)ω}ε

A
1 ]b,

where U∗A and U∗B are given as the roots of FA(U) = 0 and FB(U) = 0 in
(0, 1) with

FA(U) := logU 〈ε〉A + RA
0,1pA

(
1−Uε

A
1
)

+ RA
0,2(1− pA)

(
1−Uε

A
2
)

=
{
pA + (1− pA)b

}
logUε

A
1

+ R0 ϕ(pA)
[
pA(1−Uε

A
1 ) + (1− pA)b

{
1− (Uε

A
1 )b
}]

;

FB(U) := logU 〈ε〉B + RB
0,1pB

(
1−Uε

B
1
)

+ RB
0,2(1− pB)

(
1−Uε

B
2
)

=
{
pB + (1− pB)b

}
log
(
Uω
)εA1

+ R0ϕ(pB)
(
pB

{
1− (Uω)ε

A
1
}

+ (1− pB)b
[
1−

{
(Uω)ε

A
1
}b])

.

Then, let us define

Ψ(X,P ) :=
{
P + (1−P )b

}
logX + R0ϕ(P )

{
P (1−X) + (1−P )b(1−Xb)

}
.

The infima of final epidemic sizes W ∗A and W ∗B are given by

W ∗A = 1− pAx
∗
A − (1− pA)(x∗A)b;

W ∗B = 1− pBx
∗
B − (1− pB)(x∗B)b,

where x∗A ∈ (0, 1) and x∗B ∈ (0, 1) are the root of equations Ψ(x, pA) = 0 and
Ψ(x, pB) = 0 respectively.

On the other hand, we have

ϕ(P ) =
P + (1− P )

√
1− 1−κ

1−pA
1− (1− P ) 1−κ

1−pA
=

P + (1− P )b

P + (1− P )b2
.
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Figure 35: pB-dependence of W ∗B. Numerically with R0 = 5.0; κ = 0.9, pA = 0.7;
b = 0.816.

Therefore, the equation Ψ(x, p) = 0 is equivalent to

Ψ̃(x, p) := {p+ (1− p)b2} log x+ R0{p(1− x) + (1− p)b(1− xb)} = 0.

It is easy to find that, when R0 > 1, the equation Ψ̃(x, p) = 0 in terms of
x ∈ (0, 1) has a unique root x∗(p) ∈ (0, 1), where Ψ̃(x, p)→ −∞ as x→ +0,
and Ψ̃(1, p) = 0. This result is consistent with Lemma 4.9. Then, we obtain
the following results (Appendix 4.A.14):

Lemma 4.12. If and only if r0ω2 = 1, it holds that pB = pA, which implies
x∗B = x∗A, and consequently W ∗A = W ∗B.

Lemma 4.13. If and only if r0ω2 > 1, it holds that pB < pA, which implies
x∗B < x∗A.

Lemma 4.12 demonstrates that two communities with different qualities of
caution level could have the same final epidemic size. The larger community
may have the same final epidemic size if it has a higher quality of preventive
behavior, that is, smaller ω. Lemma 4.13 implies that the final epidemic sizes
of two communities are generally different from each other even if they
have the common R0. It should be noted that Lemma 4.13 does not directly
imply that the final epidemic size W ∗B would be larger than W ∗A, since the
two communities have different size distributions represented by pA and
pB with pB < pA for r0ω2 > 1. These findings are illustrated numerically
in Figure 35. Furthermore, from equation (168), it is easy to find that ω is
monotonically decreasing in terms of pB for given values of κ, r0 and b.
Therefore, even though community B has a larger population of high caution
individuals, its lower quality of preventive behavior, that is, larger ω, may
lead to a larger final epidemic size than that of community A. Alternatively,
when community B has a larger proportion of low caution individuals, its
final epidemic size would be larger than that of community A, even with
higher quality of preventive behavior.

4.9 discussion

In this work, we consider a mathematical model for the epidemic dynamics
with the heterogeneity of preventive behavior among individuals about a
disease transmission, focusing on the relation of the distribution of preventive
behavior to the final epidemic consequence in a community.
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To clarify the heterogeneity, we divided the total population into n classes,
each class representing a different level of caution against a transmissible
disease. We focused on the distribution of class size and preventive behavior,
that is the variations in both susceptibility and infectivity in the population.
The class structure is assumed to reflect educational background, individuals
of higher education exhibiting higher levels of caution and more effective
preventive behaviors.

We defined two types of basic reproduction numbers: the class-specific
basic reproduction number, which reflects the transmission potential within
each class, and the system-level basic reproduction number, which reflects
the overall transmission potential in the population.

Based on the time-independent equality, we derived the final epidemic
size. Our results showed that the final epidemic size and system basic repro-
duction number strongly depends on the class size distribution. There exists
a criticality for the distribution of caution level that determines the severity
of social damage by the disease spread. In particular, a large proportion of
individuals in low caution classes increases the system reproduction number
and results in a larger final epidemic size. Conversely, when the population
is majority composed of high caution individuals, the damage due to the
disease spread is significantly suppressed. These findings emphasize the im-
portance of promoting preventive awareness, especially in more vulnerable
or less-informed groups, and highlight the potential benefits of increasing
people’s caution through education or public health interventions. We also
investigated the initial change of the total infected population size, and
obtain mathematical conditions for the outbreak, revival, and unsuccessful
spread of the disease. Our analysis revealed how the class size distribution
influence initial epidemic dynamics.

This work aims to provide a theoretical understanding of epidemic dy-
namics by introducing a structured SIR model that investigates how indi-
vidual preventive heterogeneity influences the epidemic consequence. The
results demonstrate that the distribution of caution levels in the population
plays a crucial role in determining both the initial progression and the final
size of disease spread.
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appendix for chapter 4

appendix 4.a .1: proof of lemma 4.1

From the equations in (142), we can derive

ui(τ ) =ui(0) exp

[
− εi
〈ε〉

∫ τ

0

n∑
k=1

R0,kvk(ν)dν

]
> 0

with ui(0) > 0 for any τ > 0. Then consider the case of vi(0) > 0 for all i. We
have

dvi
dτ

> ui
εi
〈ε〉

R0,ivi − vi (169)

for all i. Making the integration for the right-hand side of (169), we can
derive it by

vi(0) exp

[∫ τ

0
ui(ν)

εi
〈ε〉

R0,idν − τ
]
> 0 (170)

with vi(0) > 0 for all i. From (169) and (170), we can derive vi(τ ) > 0 for any
τ > 0 with vi(0) > 0 for all i. Next, consider the case vj(0) = 0 for all j, and
there exists vi(0) > 0 for i 6= j, we can derive

dvj
dτ

∣∣∣
τ=0

= uj
εj
〈ε〉

n∑
k=1, 6=j

R0,kvk > 0 (171)

at the initial moment τ1 > 0 and τ1 � 1. Hence, we can get vj(τ1) > 0. For
τ ≥ τ1, we can solve the equation (171), and is given by

vj(τ ) = vj(τ1) exp

[∫ τ

τ1

ui(ν)

vi(ν)

εi
〈ε〉

n∑
k=1

R0,kvk(ν)dν − τ

]
> 0.

From the above arguments, we can derive vj(τ ) > 0 for any τ > 0. Since
wi(τ ) = pi − ui(τ )− vi(τ ), we can get wi(τ ) > 0 for any τ > 0, and obtain
the lemma.

appendix 4.a .2: derivation of reproduction numbers

From system (141), we can derive

d

dt

n∑
i=1

Ii =
n∑
i=1

{
εiβ

n∑
k=1

γkIkSi

}
−

n∑
i=1

ρIi

=
n∑
k=1

{
n∑
i=1

εiβSiγkIk

}
−

n∑
i=1

ρIi.

From the above equation, the amount of new infections by a single infected
individual of caution level i during the time interval [t, t+ ∆t] is given by∑n
k=1 εkβSkγi∆t. At the time t, the effective basic reproduction number of

caution level i is given by
n∑
k=1

1

ρ
εkβSkγi.

Since the basic reproduction number of caution level i is the supremum of
the effective basic reproduction number, we can derive it as shown in (143).
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appendix 4.a .3: derivation of system reproduction number

In order to derive the system basic reproduction number R0, we use the
next generation matrix method and decompose the system (141) into the
recruitment terms of new infections and the other terms as follows:

dX
dt

= F(X)−V(X),

where X = (I1(t), . . . , In(t),Si(t), . . . ,Sn(t))T . F represents the recruitment
rate of new infections, and V represents the other factors related to the
epidemic dynamics, where

F :=



ε1β
∑n
k=1 γkIkS1

...

εnβ
∑n
k=1 γkIkSn

0

...

0



; V :=



ρI1

...

ρIn

ε1β
∑n
k=1 γkIkS1

...

εnβ
∑n
k=1 γkIkSn



.

Then, we have the Jacobian matrices of F and V about X:

DF(X) :=

F1 F2

0 0

 ;DV(X) :=

V1 0

F1 F2

 ,

where

F1 =


ε1βγ1S1 · · · ε1βγnS1

...
. . .

...

ε1βγ1Sn · · · ε1βγnSn

 ;

F2 =



ε1β
∑n
k=1 γkIk 0 · · · 0

0 ε2β
∑n
k=1 γkIk · · · 0

...
...

. . .
...

0 0 · · · εnβ
∑n
k=1 γkIk


;

V1 = ρ× In, an n× n diagonal matrix with all diagonal elements equal to ρ.
At the disease-free state X0 := (0, . . . , 0,S1, . . . ,Sn), we have

DF(X0) :=

F∗1 0

0 0

 ;DV(X0) :=

V1 0

F∗1 0

 ,
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where

F∗1 :=


ε1βγ1S1 · · · ε1βγnS1

...
. . .

...

ε1βγ1Sn · · · ε1βγnSn

 .

Taking the top left hand corner n× n matrices in each of the two matrices,
we have

F := F∗i V := V1.

The next generation matrix (NGM) is obtained by

K = FV−1 = ρ−1


ε1βγ1S1 · · · ε1βγnS1

...
. . .

...

ε1βγ1Sn · · · ε1βγnSn

 . (172)

The eigenvalues of (172) are given by

λ1 =
1

ρ

n∑
k=1

βγkεkSk, λ2 = · · · = λn = 0. (173)

The maximum absolute value of the eigenvalues of (173) is λ1. From the
definition of the basic reproduction number R0, taking the supremum of λ1

with respect to Si, we have

R0 = sup
{Si}

1

ρ

n∑
i=1

εiβSiγi =
1

ρ

n∑
i=1

εiβpiNγi =
〈εγ〉βN

ρ
.

appendix 4.a .4: proof of lemma 4.2

From the meaning of the εk and γk, a smaller value of εk indicates that
individuals of class k have a higher level of caution and contribute less to the
spread of the epidemic. Then, the covariance between εk and γk is positive.
Since

〈εγ〉 = 〈ε〉〈γ〉+ Cov(ε, γ),

we can obtain 〈εc〉 > 〈ε〉〈γ〉. Then we have R0 > 〈R0,i〉. From the definition
of the system basic reproduction number,

R0 := sup
{Si}

1

ρ

n∑
i=1

εiβSiγi =
1

ρ

n∑
i=1

εiβpiNγi <
1

ρ

n∑
i=1

εiβpiNγ1,

we can obtain R0 < R0,1. Lemma 4.2 is proved.

appendix 4.a .5: derivation of time-independent quantities

From equation dui/dτ in (142), we can derive the following differential
equation:

dui
duj

=
uiεi
ujεj

. (174)
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We can solve equation (174), and find equation (148) with ui(0) > 0 for
all i. Next, from the definition of X(τ ) :=

∑n
k=1 R0,kvk(τ ), we can get the

following closed system:

dX

dτ
= X

n∑
k=1

ukR0,k
εk
〈ε〉
−X;

dui
dτ

= −Xui
εi
〈ε〉

.

(175)

We can derive the following differential equation from (175):

dX

dui
= −

n∑
k=1

R0,k
ukεk
uiεi

+
〈ε〉
uiεi

.

Then, using equation (148), we position the differential dui on the right-hand
side and integrate both sides with respect to ui, we can obtain

X(τ )−X(0) = −
∫ τ

0

n∑
k=1

R0,k
uk(τ )εk
ui(τ )εi

dui +

∫ τ

0

〈ε〉
ui(τ )εi

dui

X(τ ) =
n∑
k=1

R0,k(pk − uk(0))−
∫ τ

0

n∑
k=1

R0,k

(
ui(τ )

ui(0)

)εk/εi uk(0)εk
ui(τ )εi

dui

+
〈ε〉
εi

log
ui(τ )

ui(0)

=
n∑
k=1

R0,k(pk − uk(0))−
n∑
k=1

R0,kuk(0)
ui(τ )εk/εi − ui(0)εk/εi

ui(0)εk/εi

+ log {U(τ )}〈ε〉

=
n∑
k=1

R0,kpk −
n∑
k=1

R0,kuk(0) {U(τ )}εk + log {U(τ )}〈ε〉 .

Then, we can derive the time-independent equality (149).

appendix 4.a .6: proof of lemma 4.5 and 4.6

From the equation dui/dτ in (142), we can get ui(τ ) is monotonically de-
creasing for any i. Suppose ui(τ )→ u∞i > 0 as τ →∞ for some i. We have
dui/dτ → 0 as τ →∞ with the supposition ui(τ )→ u∞i > 0. Therefore, it is
necessary that X(τ )→ 0 as τ →∞. With the definition of X , and vi(τ ) > 0

for any τ > 0 in Lemma 4.1, we can get that vi(τ ) → 0 as τ → ∞ for all i.
At the same time, since vi(τ ) > 0 for any τ > 0, from the equation dwi/dτ
in (142), we can get wi(τ ) → w∞i > 0 as τ → ∞ for all i. Next, suppose
ui(τ ) → 0 as τ → ∞ for all i, we can get

∑n
k=1 uk(τ )R0,kεk/〈ε〉 − 1 < 0

for sufficiently large τ . Then, we can get dX/dτ < 0 in (175) with positive
X(τ ) for sufficiently large τ . If X(τ ) > 0 for any τ > 0, it is necessary
that

∑n
k=1 uk(τ )R0,kεk/〈ε〉 − 1 = 0 as τ → ∞, there is a contradiction for

our supposition that ui(τ ) → 0 as τ → ∞. Therefore, it is necessary that
X(τ ) → 0 as τ → ∞. With the definition of X , and vi(τ ) > 0 for any
τ > 0 in Lemma 4.1, we can get that vi(τ ) → 0 as τ → ∞ for all i. Since
ui(τ ) + vi(τ ) +wi(τ ) = pi for any τ , we can get wi(τ )→ w∞i > 0 as τ →∞
for all i. Based on the above arguments, Lemma 4.5 is proved.

From (152), denote F (U) = f1(U)−f2(U), where f1(U) =
∑n
k=1 R0,k(pk−

uk(0)Uεk ), f2(U) = − logU 〈ε〉. We can get that f1(0) =
∑n
k=1 R0,kpk > 0,
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f1(1) =
∑n
k=1 R0,k(pk − uk(0)) > 0, f2(U)|U→+0 = +∞, and f2(1) = 0.

It indicates that there exists at least one intersection for the curve f1(U)
and f2(U). Then we can get that f ′1(U) = −

∑n
k=1 R0,kuk(0)εkU

εk−1 < 0,
f ′′1 (U) =

∑n
k=1 R0,kuk(0)εk(1− εk)Uεk−2 > 0, f ′2(U) = −〈ε〉/U < 0, and

f ′′2 (U) = 〈ε〉/U2 > 0, these two curves are both monotonically decreas-
ing with convex shape. It indicates that there is a unique intersection
between these two curves for U ∈ (0, 1). Hence there is unique root of
F (U) = f1(U) − f2(U) = 0 for U ∈ (0, 1). Since U → U∞ and X → 0

as τ → ∞, F (U∞) = 0 satisfied for U∞ ∈ (0, 1). Therefore, Lemma 4.6 is
proved.

appendix 4.a .7: proof of lemma 4.7

Making partial derivative in terms of uj(0) for equation F (U∞) = 0, we can
get

F ′(U∞)
∂U∞
∂uj(0)

−
γj
〈ε〉

U
εj
∞ = 0

for any j. From the nature of F (U) in Lemma 4.6, we can get

F ′(U∞) = f ′1(U∞)− f ′2(U∞) > 0. (176)

We can get
∂U∞
∂uj(0)

=
γjU

εj
∞

〈ε〉F ′(U∞)
> 0

for any j. Then we can get

∂u∞i
∂uj(0)

=
∂

∂uj(0)
{ui(0)Uεi∞} = ui(0)εiU

εi−1
∞

∂U∞
∂uj(0)

> 0

for any j. Since ui(0) + vi(0) = pi for all i, the large value of ui(0) indicates

the small value of vi(0), we can get
∂u∞i
∂vj(0)

< 0 for any j. Lemma 4.7 is

proved.

appendix 4.a .8: proof of lemma 4.8, 4.9, and theorem 4.1

For i 6= j, we can get that

∂

∂uj(0)

(
u∞i
ui(0)

)
=

1

ui(0)

∂u∞i
∂uj(0)

> 0.

For i = j, we can get

∂

∂ui(0)

(
u∞i
ui(0)

)
=

1

u2
i (0)

{
ui(0)

∂u∞i
∂ui(0)

− u∞i
}

=
1

u2
i (0)

{
ui(0)

∂u∞i
∂ui(0)

− ui(0)Uεi∞

}
=

1

ui(0)

{
∂

∂ui(0)
(ui(0)Uεi∞)−Uεi∞

}
=εiU

εi−1
∞

∂U∞
∂ui(0)

> 0.

Hence Lemma 4.8 is proved.
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Denote F (U) = g1(U) − g2(U), where g1(U) =
∑n
k=1 R0,kpk {1−Uεk},

g2(U) = − logU 〈ε〉. We can get g1(0) =
∑n
k=1 R0,kpk > 0, g1(1) = 0,

g2(U)|U→+0 = +∞, and g2(1) = 0. There exists at least one root of F (U) =
0 for U ∈ (0, 1]. Then we can get g′1(U) = −

∑n
k=1 R0,kpkεkU

εk−1 < 0,
g′′1 (U) =

∑n
k=1 R0,kpkεk(1 − εk)Uεk−1 > 0, g′2(U) = −〈ε〉/U < 0, and

g′′2 (U) = 〈ε〉/U2 > 0. There exists unique root of F (U) = 0 for U ∈ (0, 1]
because g1(U) and g2(U) are both convex curve. In addition, F (U) = 0 has
an unique root U = 1 if the following condition holds:

g′1(1) ≥ g′2(1). (177)

The condition (177) is equivalent to

R0 ≤ 1.

Hence Lemma 4.9 is proved. Similarly, F (U) = 0 has an unique root in (0, 1)
if the following condition holds:

g′1(1) < g′2(1). (178)

The condition (178) is equivalent to

R0 > 1.

Next, let us prove U∗ is the unique root of equation F (U) = 0 for R0 > 1.
From (152), we can find that there exists Uc for R0 > 1, where U∞ < Uc < 1,
and

F ′(Uc) =
1

Uc

{
〈ε〉 −

n∑
k=1

R0,kεkuk(0)Uεkc

}
= 0.

Then, take the limit uk(0)→ pk, we can derive

F ′(Uc) =
1

Uc

{
〈ε〉 −

n∑
k=1

R0,kεkpkU
εk
c

}
< 0.

Since F ′(1) = 〈ε〉 −
∑n
k=1 R0,kεkuk(0) < 0 for R0 > 1, we can derive

F ′(1) = 〈ε〉 −
∑n
k=1 R0,kεkpk < 0. It is easy to find that F ′(1) < F ′(Uc).

There exists U∗c < Uc < 1, where F ′(U∗c ) = 0. Thus, when take the limit
uk(0)→ pk, we can derive that U∞ → U∗ ∈ (0, 1).

appendix 4.a .9: proof of lemma 4.10

Suppose the initial condition for system (142) is given by v`(0) = v0 > 0, and
vk(0) = 0 for any k 6= `. We can get

V (0) =
n∑
i=1

vi(0) = v0,

n∑
k=1

R0,kvk(0) = R0,`v0.
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At τ = 0, we can get

dV (τ )

dτ

∣∣∣∣
τ=0

=
n∑
i=1

ui(0)
εi
〈ε〉

n∑
k=1

R0,kvk(0)− V (0);

= R0,`v0

n∑
i=1

ui(0)
εi
〈ε〉
− v0

=

R0,`

 n∑
i=1,i 6=`

ui(0)
εi
〈ε〉

+ u`(0)
ε`
〈ε〉

− 1

 v0

=

R0,`

 n∑
i=1,i 6=`

pi
εi
〈ε〉

+ (p` − v0)
ε`
〈ε〉

− 1

 v0

=

{
R0,`

(
n∑
i=1

pi
εi
〈ε〉
− v0

ε`
〈ε〉

)
− 1

}
v0

=

{
R0,`

(
1− v0

ε`
〈ε〉

)
− 1

}
v0.

Since 〈ε〉 > p`ε` > v0ε`, it is easy to obtain 1− v0ε`/〈ε〉 > 0. With v0 > 0, the
sign of dV (τ )/dτ |τ=0 depends on the sign of R0,` (1− v0ε`/〈ε〉)− 1. Then,
we can get dV (τ )/dτ |τ=0 < 0 if the following condition satisfied:

R0,`

(
1− v0

ε`
〈ε〉

)
− 1 < 0.

By simplification, we can get

〈ε〉(R0,` − 1) < R0,`v0ε`.

When R0,` ≤ 1, the above inequality holds, indicating that V initially de-
creases. Since R0,1 > · · · > R0,n, we can get that V initially decreases if
R0,1 ≤ 1. Similarly, dV (τ )/dτ |τ=0 > 0 if

〈ε〉(R0,` − 1) > R0,`v0ε`.

Then, let us consider the situation that

dV (τ )

dτ

∣∣∣∣
τ=0

= 0,

meaning that

R0,` =
〈ε〉

〈ε〉 − v0ε`
. (179)

During a very short time interval ∆τ , we obtain

V (∆τ )− V (0) =
dV (τ )

dτ

∣∣∣∣
τ=0

∆τ +
1

2

d2V (τ )

dτ2

∣∣∣∣
τ=0

(∆τ )2 + o((∆τ )2).

To determine the sign of d2V (τ )/dτ2
∣∣
τ=0

, the following calculation is re-
quired:

dvi(τ )

dτ

∣∣∣∣
τ=0

=


pi
εi
〈ε〉

R0,`v0, for i 6= `;

(p` − v0)
ε`
〈ε〉

R0,`v0 − v0, for i = `.
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d2vi(τ )

dτ2

∣∣∣∣
τ=0

=



pi
εi
〈ε〉

R0,`v0

{
− εi
〈ε〉

R0,`v0 −
ε`
〈ε〉

R0,`v0

+
n∑
k=1

R0,kpk
εk
〈ε〉
− 2

}
,

for i 6= `;

(p` − v0)
ε`
〈ε〉

R0,`v0

{
− 2

ε`
〈ε〉

R0,`v0

+
n∑
k=1

R0,kpk
εk
〈ε〉
− 2

}
+ v`,

for i = `.

Then, we can get

d2V (τ )

dτ2

∣∣∣∣
τ=0

=
n∑
i=1

d2vi(τ )

dτ2

∣∣∣∣
τ=0

=
n∑

i=1,i 6=`
pi
εi
〈ε〉

R0,`v0

{
− εi
〈ε〉

R0,`v0 −
ε`
〈ε〉

R0,`v0 +
n∑
k=1

R0,kpk
εk
〈ε〉
− 2

}

+ (p` − v0)
ε`
〈ε〉

R0,`v0

{
−2

ε`
〈ε〉

R0,`v0 +
n∑
k=1

R0,kpk
εk
〈ε〉
− 2

}
+ v`

=

{
n∑
i=1

−pi
εi
〈ε〉

εi
〈ε〉

+ 2v0
ε`
〈ε〉

ε`
〈ε〉
−

n∑
i=1

pi
εi
〈ε〉

ε`
〈ε〉

}
(R0,`v0)2

+

{
n∑
i=1

pi
εi
〈ε〉
− v0

ε`
〈ε〉

}
n∑
i=1

R0,kpk
εk
〈ε〉

R0,`v0

+ 2

{
−

n∑
i=1

pi
εi
〈ε〉

+ v0
ε`
〈ε〉

}
R0,`v0 + v0

=

{
n∑
i=1

−pi
εi
〈ε〉

εi
〈ε〉

+ 2v0
ε`
〈ε〉

ε`
〈ε〉
− ε`
〈ε〉

}
(R0,`v0)2

+

{
1− v0

ε`
〈ε〉

}{ n∑
i=1

R0,kpk
εk
〈ε〉
− 2

}
R0,`v0 + v0. (180)

By making use of the equality (179) into (180), we can obtain

d2V (τ )

dτ2

∣∣∣∣
τ=0

= M1v
3
0 +M2v

2
0 +M3v0, (181)

where

M1 =

(
ε`
〈ε〉

R0,`

)2

;

M2 = −
n∑
i=1

pi
εi
〈ε〉

εi
〈ε〉

R2
0,` −

ε`
〈ε〉

R0,`;

M3 =
n∑
k=1

R0,kpk
εk
〈ε〉
− 1.

Since v0 is sufficiently small, the sign of equation (181) is governed by the
sign of M3 when M3 6= 0. From (143), we can get

M3 =
n∑
k=1

γk〈ε〉βN
ρ

pk
εk
〈ε〉
− 1 =

n∑
k=1

γkεkpkβN

ρ
− 1 =

〈εγ〉βN
ρ

− 1 = R0 − 1.
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Then, d2V (τ )/dτ2|τ=0 > 0 if R0 > 1, d2V (τ )/dτ2|τ=0 < 0 if R0 < 1. When
R0 = 1, the sign of d2V (τ )/dτ2|τ=0 is determined by M2, which is negative.
Hence when dV (τ )/dτ |τ=0 = 0, V initially decreases if R0 ≤ 1 and initially
increases if R0 > 1.

appendix 4.a .10: proof of lemma 4.11

Suppose the initial condition for system (142) is given by v`(0) = v0 > 0, and
vk(0) = 0 for any k 6= `. We can get

dV (τ )

dτ
=

n∑
i=1

ui(τ )
εi
〈ε〉

n∑
k=1

R0,kvk(τ )− V (τ )

<

n∑
i=1

pi
εi
〈ε〉

n∑
k=1

R0,kvk(τ )− V (τ ) =
n∑
k=1

R0,kvk(τ )− V (τ ). (182)

Since R0,1 > R0,i holds for i 6= 1, we can get when R0,1 ≤ 1,

n∑
k=1

R0,kvk(τ )− V (τ ) < 0.

Therefore, if R0,1 ≤ 1,
dV (τ )

dτ
< 0 for any τ .

appendix 4.a .11: derivation of theorem 4.2 and 4.3

First, from the definition of system basic reproduction number (147) and
(162), we can easily derive

R̃0 =
˜〈εγ〉βN
ρ

=
〈εγ〉βN

ρ
+
βN

ρ
∆(εγ)δp = R0 +

R0

〈εγ〉
∆(εγ)δp.

Theorem 4.2 is proved. From (154), we can get

δW∞ = −
n∑
i=1

δui.

Assume δui = Aiδp for ∀i, we have

δW∞ = −
n∑
i=1

Aiδp.

From (151), Ũ∞ is defined by

Ũ∞ :=
(
ũ∞i
ui(0)

)1/εi
=

(
ũ∞`−1

ũ`−1(0)

)1/ε`−1

=

(
ũ∞`
ũ`(0)

)1/ε`
=

(
ũ∞`+1

ũ`+1(0)

)1/ε`+1

(183)
for ∀i 6= `− 1, `, `+ 1. Then we can denote

Ũ∞ = U∞ + δU∞.

From (152), let us define

F̃ (Ũ) := log Ũ 〈ε̃〉 +
n∑

k=1,6=`−1,`,`+1

˜R0,k

{
pk − uk(0)Ũεk

}
+

`+1∑
k=`−1

˜R0,k

{
p̃k − ũk(0)Ũεk

}
.
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From Lemma 4.6, we can get Ũ∞ is the unique root of F̃ (Ũ) = 0 in (0, 1). By
using Taylor expansion for (183), we can get

δU∞ = NiMiδp (184)

for i 6= `− 1, `, ` + 1, where Ni = U∞/(εiui(0)), Mi = Ai/U
εi∞. For i =

`− 1, `, `+ 1, we can get

δU∞ =



N`−1

(
M`−1 − α

u`(0)

p`

)
δp;

N`

(
M` +

u`(0)

p`

)
δp;

N`+1

(
M`+1 − (1− α)

u`(0)

p`

)
δp.

Making use of Taylor expansion for the equation F̃ (Ũ∞) = 0, we can get

F̃ (Ũ∞) =

(
1 +

∆ε
〈ε〉

δp

){
F (U∞) + F ′(U∞)δU∞

+ αR0,`−1

(
1− u`(0)

p`
U
ε`−1
∞

)
δp

−R0,`

(
1− u`(0)

p`
Uε`∞

)
δp

+ (1− α)R0,`+1

(
1− u`(0)

p`
U
ε`+1
∞

)
δp

}
= 0.

(185)
Since F (U∞) = 0, from (184) and (185), we can get

M` +
u`(0)

p`
=

1

F ′(U∞)N`

{
− αR0,`−1

(
1− u`(0)

p`
U
ε`−1
∞

)

+ R0,`

(
1− u`(0)

p`
Uε`∞

)

−R0,`+1(1− α)

(
1− u`(0)

p`
U
ε`+1
∞

)}
.

Then we have

δW∞ =−
n∑
i=1

Aiδp

=−
n∑
k=1

{
N`
Nk

(
M` +

u`(0)

p`

)}
+
u`(0)

p`

{
Uε`∞ − αU

ε`−1
∞ − (1− α)U

ε`+1
∞

}
=

Dδp

F ′(U∞)U∞

{
D1(R0,k,α)− u`(0)

p`
D2(R0,k,α,U∞)

}
− u`(0)

p`
D3(α,U∞)δp,
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where

D =
n∑
k=1

εkuk(0)Uεk∞ ,

D1(R0,k,α) = α(R0,`−1 −R0,`)− (1− α)(R0,` −R0,`+1),

D2(R0,k,α,U∞) = α
{
R0,`−1U

ε`−1
∞ −R0,`U

ε`∞
}
− (1− α)

{
R0,`U

ε`∞ −R0,`+1U
ε`+1
∞

}
,

D3(α,U∞) = α
{
U
ε`−1
∞ −Uε`∞

}
− (1− α)

{
Uε`∞ −U

ε`+1
∞

}
.

appendix 4.a .12: derivation of qc , θc , and R sup
c

From Theorem 4.1 and equation (164), the condition R0 = 1 represents the
threshold at which W ∗ = 0, and it can be rewritten as

Rsup
0

1

θ

{1− q(1− θ)}n − (1− q)n

1− (1− q)n
= 1.

Let us define

f(θ, q, Rsup
0 ) = Rsup

0

1

θ

{1− q(1− θ)}n − (1− q)n

1− (1− q)n
.

Then, making use of Taylor expansion at θ = 0 for f(θ, q), we derive

f(θ, q, Rsup
0 )

∣∣
θ→0+

= Rsup
0

1

θ

(1− q)n + θnq(1− q)n−1 − (1− q)n

1− (1− q)n

= Rsup
0

nq(1− q)n−1

1− (1− q)n
.

Then, given Rsup
0 , the critical value qc can be determined as the root of

n∑
k=1

nCk(−1)kqkc

{
(1− θ)k + (1− θ

Rsup )

}
= 0. (186)

Similarly, given q, the critical value Rsup
c is given by

Rsup
c =

1− (1− q)n

nq(1− q)n−1
.

Next, consider the case of q → 1, we can get

f(θ, q, Rsup
0 )

∣∣
q=1

= Rsup
0 θn−1,

the critical value θc is given by

θc =
(
Rsup

0

)−1/(n−1)
. (187)

appendix 4.a .13: derivation of conditions for W ∗ = 0

From Theorem 4.1 and equation (164) , we can derive that W ∗ = 0 if

R0 = pRmax
0 + (1− p)Rmin

0 < 1. (188)

We can solve the inequality (188) and derive:

p <
1−Rmin

0

Rmax
0 −Rmin

0

, (189)
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From the definition, Rmax
0 > Rmin

0 . If Rmin
0 > 1, the right hand side of (189)

is negative, and W ∗ > 0 for any p in (0, 1). If Rmax
0 < 1, (189) holds for any

p in (0, 1). If Rmin
0 < 1 < Rmax

0 , we can find the critical value qc satisfied

pc =
1−Rmin

0

Rmax
0 −Rmin

0

,

and shown in Subsection 4.8.2.

appendix 4.a .14: proof of lemma 4.12 and 4.13

Let us suppose that x∗B < x∗A. From the feature of Ψ̃(x, p) and the definition of
x∗A, we have Ψ̃(x∗A, pA) = 0, Ψ̃(x, pA) < 0 for x ∈ (0,x∗A), and Ψ̃(x, pA) > 0

for x ∈ (x∗A, 1). Hence, it holds that Ψ̃(x∗B, pA) < 0, that is,{
pA + (1− pA)b2

}
log x∗B + R0

{
pA(1− x∗B) + (1− pA)b{1− (x∗B)b}

}
< 0.

(190)
On the other hand, from the definition of x∗B, we have Ψ̃(x∗B, pB) = 0, that is,{
pB + (1− pB)b2

}
log x∗B + R0

{
pB(1− x∗B) + (1− pB)b{1− (x∗B)b}

}
= 0.

This equation leads to

1

R0
log x∗B = −

pB(1− x∗B) + (1− pB)b{1− (x∗B)b}
pB + (1− pB)b2

. (191)

Substituting equation (191) for inequality (190), we have

(pA − pB)[b(1− x∗B)− {1− (x∗B)b}] < 0. (192)

Since b(1− x)− (1− xb) < 0 for x ∈ (0, 1) and b ∈ (0, 1), the inequality (192)
holds if and only if pB < pA. Consequently, x∗B < x∗A only if pB < pA. In the
same way, we can demonstrate that x∗B > x∗A only if pB > pA. Furthermore,
we can prove that x∗B = x∗A only if pB = pA. We can easily find that the
inverses of these propositions are true.

On the other hand, from equation (168), we note that r0ω2 = 1 if and
only if pB = pA, while r0ω2 > 1 if and only if pB < pA. Therefore, Lemma
4.12 and 4.13 have been proved.





5 C O N C L U D I N G R E M A R K S

In this dissertation, we aimed to investigate how structural factors asso-
ciated with social vulnerability influence epidemic consequence and the
effectiveness of public health measures. Social vulnerability refers to the
limited resilience of certain populations when facing disasters, including the
outbreak of transmissible diseases, and is influenced by medical access, pop-
ulation distribution, cultural differences, and other societal constraints [122].
Understanding these factors is crucial since they determine whether an epi-
demic can be effectively controlled and how severe the social damage will be
after the pandemic.

To address this question, we developed mathematical models to investi-
gate the roles of mobility restrictions, limitations in isolation capacity, and
behavioral heterogeneity in shaping epidemic consequences. Our purpose
was to provide theoretical insights to help design equitable and adaptive
strategies for epidemic control.

In Chapter 2, we investigated the impact of regional lockdown policies
on the epidemic consequence. The purpose of this analysis was to determine
which type of mobility restriction policy minimizes epidemic size. The model
considers a community composed of two regions with different healthcare
conditions. Our findings revealed that both complete and strong lockdowns
lead to the same and smaller endemic sizes compared to the weak lockdown,
which indicates that strong lockdown without additional restrictions on
hospital use could be more favorable in terms of maintaining economic
activity. Moreover, we compared two types of the weak lockdown, and found
that those permitting restricted movement from high to low density areas
were the most effective in suppressing disease spread. Interestingly, when
the isolation period in the central region is sufficiently longer than in the
peripheral area, the number of free infectives under a strong lockdown may
be even lower than under a complete lockdown. These results underscore
the importance of considering both population distribution and healthcare
conditions when considering the effective mobility restriction policies.

In Chapter 3, we investigated the influence of limited isolation capacity on
epidemic dynamics. We considered three situations based on assumptions:
non-reinfectious diseases, reinfectious diseases, and reinfectious diseases
with discharge mechanisms incorporated into the isolation strategy. Our
results revealed that a larger isolation capacity could enhance the feasibility
of effective quarantine management as a controllable public health measure
to minimize the social damage caused by disease transmission. When the
isolation strategy breaks down due to limited capacity, it may lead to unex-
pectedly severe epidemic consequences, such as the revival of outbreak in
the case of reinfectious diseases, or bistability when discharge mechanisms
are considered. In particular, a sufficiently large isolation capacity is required
to avoid severe consequences of the epidemic dynamics with a reinfectious
disease since recovered individuals may become susceptible again and con-
tribute to further transmission. Furthermore, a higher discharge rate and a
lower quarantine rate make it more feasible to maintain sufficient isolation
capacity, as they reduce the occupancy level and help avoid saturation. Natu-
rally the quarantine/isolation could not be necessarily the principal factor
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for the public health policy against the spread of an infectious disease, while
it must be important and could have a significant contribution to the suppres-
sion of the epidemic size, accompanied with the other measures against the
epidemic. These findings emphasize the importance of maintaining adequate
public health infrastructure as indicated by Unruh et al. [160] on the social
response to the COVID-19 pandemic. However, such infrastructure requires
sufficient social investment, which implies that the management of effective
quarantine policies may bring substantial challenges in controlling the spread
of an infectious disease within a community.

In Chapter 4, we proposed a structured SIR model to analyze the im-
pact of behavioral heterogeneity on epidemic dynamics. The purpose of
this analysis was to clarify how differences in preventive behaviors across
groups affect the final epidemic size. Our findings revealed that the final
epidemic size strongly depends on the distribution of caution level among
individuals in the community. In particular, the larger proportion of low
cautious individuals in the community not only accelerates the spread of a
transmissible disease in the early stage but also contributes to the greater
final epidemic size, thereby resulting in more severe social damage. Our find-
ings also emphasize the importance of public health efforts, such as health
education in schools and awareness programs in the community, which aim
to encourage the adoption of preventive practices, including hand hygiene,
mask-wearing, and vaccination.

Through the studies conducted by these chapters, we obtained a deeper
understanding of the complex phenomena associated with differences in
mobility structure, limitations in medical resources, and heterogeneity in
social structure. These factors significantly influence not only the dynamics
of disease transmission but also the feasibility and effectiveness of public
health interventions.

This dissertation underscores the necessity of incorporating social vul-
nerability into the design of equitable and adaptive public health strategies.
The findings suggest that public health measures must be evaluated not only
by the effectiveness in reducing disease transmission but also by taking into
account structural diversity and societal constraints. In particular, a balanced
strategy is required. Short-term measures such as lockdowns and quaran-
tines should be combined with long-term structural interventions, including
education programs to improve individual caution levels. In addition, prepar-
ing satisfactory public health infrastructure in advance requires substantial
social investment, and establishing well-functioning epidemic monitoring
systems that can adjust measures in time remains a major challenge. More-
over, enhancing people’s awareness of infectious disease risks could reduce
social vulnerability and increase the effectiveness of other interventions. By
presenting mathematical models for the epidemics, this dissertation aims to
provide theoretical insights for designing satisfactory public strategies in the
face of epidemics in the future.
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