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Figure 2.1: Scheme for the state transitions of members in the netizen community with spreading
disinformation and its counter information. For detail, see the main text.

1 Introduction

In recent decades, the development of the Internet has made the information exchange much
easier and faster than before. Anyone who has a device connected to the Internet can post
any piece of information on a platform. Such information can reach another user of the same
platform even on the other side of the earth immediately. On the other hand, the spread of a
disinformation benefits from the developing Internet facility too. It is not easy for every person
to verify the authenticity and accuracy about each piece of information spreading on available
platforms. On social occasions like election or in a pandemic situation, people are very easy
to encounter various information from unreliable sources. Cuan-Baltazar et al (2020) analysed
the contents of 110 websites in the early period of COVID-19 pandemic and found that the
information on most of the webpages is not from reliable sources. To make matters worse, some
people may deliberately spread some disinformation for their own purposes such as attracting
public concern or committing fraud. The spread of disinformation has become one of social
issues attracting much concern in recent years. Some governments or societies could release
some refutation information to suppress the harmful influence of disinformation. Zhang et al
(2022) analysed a mathematical model on the spread of rumors and official rumor-refutation
information. Dansu and Seno (2024) studied a population dynamics model on the effect of the
timing to release correctional information for the spread of misleading information. Srinivasan
and Babu (2021) discussed the model of social immunity to rumors in online social networks.

In this work, we consider a population dynamics model for the reaction between a piece of
disinformation and its counter information in a netizen community. We assume some members of
the netizen community who can distinguish disinformation by themselves. When they encounter
the disinformation, they can identify its falseness and may communicate others about it. We
focus on the population structure in the netizen community, which consists of such “sophisti-
cated” members and the others, and try to discuss how the population structure of a netizen
community determines the social damage caused by a disinformation spread in it.

2 Assumptions

We consider the spread of information in a netizen community composed of a certain number
of members (users). We assume two types of information spreading in the netizen community:
a piece of disinformation, and its counter information. We assume the spread of information
does not rely on a specific structure of the network. This is applicable for some websites such
as forums where the spread of information does not rely on a network of relationships. Every
member can post information on it, and each member has a certain chance to contact information
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from any other member. Members could be regarded as surrounded by the ocean of information.
The members can be influenced by them, and could change their behaviours as follows:

• The total number of members, that is, the total population size of the netizen community
does not change during the period that the information spreads in it.

• Members are classified into two classes: “sophisticated” and “unsophisticated”, depending
on their ability to identify the falseness of disinformation. Unsophisticated members cannot
distinguish the disinformation by themselves. In the time scale to consider the population
dynamics related to the disinformation spread, the class is unchanged for every member
of the netizen community.

• Sophisticated members never believe the disinformation when they receive it.

• Unsophisticated members who have not received nor accepted either disinformation or its
counter information are classified into the “naive” class. Naive members may be influenced
by the disinformation and become “believers” who accept and believe it.

• Believers spread the disinformation in the netizen community. That is, they become the
source of spreading disinformation.

• Believers may discard their belief on the disinformation if they accept the counter infor-
mation. Those members who were once believers but no longer believe the disinformation
are classified into the “reformed” class.

• Reformed members may release the counter information too. They have experienced the
“believer” state so that they could have a reasonable motivation to call members’ attention
on the spreading disinformation. The “reformed” members do not transfer to any other
state.

• Naive members are susceptible to the counter information too. They may accept the
counter information and become “rejoinders”. Any member never believes disinformation
once accepting the counter information. Such a member can be regarded as immune to
the disinformation.

• Rejoinders release the counter information in the netizen community. Once a rejoinder
stops releasing the counter information with the loss of interest about it, such a member
transfers to the “rejecter” state.

• Although rejecters are immune to the disinformation and never believe it again, they may
return to the rejoinder state and restart releasing the counter information. It could be
motivated by the encounter to the spreading disinformation.

• Sophisticated members take one of “rejoinder” and “unconcerned” states. At the rejoinder
state, they release the counter information, and at the unconcerned state, they do not
act anything with respect to the spreading information. The sophisticated members may
change the state between them during the spread of disinformation. Before the emergence
of the disinformation in the netizen community, all the sophisticated members are at the
unconcerned state.

3 Modelling

3.1 Transition form naive class to believer class

The chance that a naive member becomes a believer could be assumed to have a positive cor-
relation to the concentration of disinformation in the netizen community. The concentration
of disinformation is now assumed to be positively correlated to the believer population size in
the netizen community since the disinformation is released by believers. In our modelling, we
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introduce a linear positive correlation between them, that is, the concentration of disinformation
in the netizen community is assumed to be proportional to the believer population size.

The probability that a naive member becomes a believer during time interval [t, t+∆t] with
sufficiently small ∆t is now assumed to be given by

βB(t)∆t+ o(∆t),

where o(∆t) indicates a higher order terms of ∆t. Thus, the rate of a naive member to become
a believer is given by βB(t). Since the naive population size at time t is given by U(t), the
net rate, that is, the momental flux of naive members to become believers at time t is given
by βB(t)U(t) (see Figure 3.1). As β gets larger, the naive members are easier to believe the
disinformation and become believers. In other words, the disinformation spreads more easily in
the netizen community with larger β.

3.2 State transition by the counter information

Members at three states could contribute to the spread of counter information in the netizen
community: unsophisticated rejoinders (R), sophisticated rejoinders (A), and reformed believers
(X). We assume that the concentration of counter information is proportional to the population
size of members who release it. Thus, by the expression κ1R + κ2A + κ3X we denote the
total concentration of counter information in the netizen community in our model. The positive
parameters κ1, κ2, and κ3 characterize the differences in their contributions to the release of
counter information in the netizen community.

Naive members may accept the counter information and become rejoinders. We assume
that the probability with which a naive member becomes a rejoinder is proportional to the
concentration of counter information in the netizen community. Thus, the probability during
time interval [t, t+∆t] with sufficiently small ∆t is now given as

σ{κ1R(t) + κ2A(t) + κ3X(t)}∆t+ o(∆t).

Hence the rate at which a naive member becomes a rejoinder at time t is given by σ{κ1R(t) +
κ2A(t)+κ3X(t)}. The net rate of the transition of members from the naive state to the rejoinder
one is given by σ(κ1R+ κ2A+ κ3X)U . We do not take account of the difference in the quality
of information from different sources, and we assume that the “strength” or “persuade power”
of information is the same for all the counter information independently of the source. As the
coefficient σ gets larger, the naive members are easier to accept the counter information and
become rejoinders.

The believers may relinquish their belief of disinformation when they accept the counter
information. Similarly, the chance that a believer becomes a reformed member is assumed to
be proportional to the concentration of counter information in the netizen community. During
time interval [t, t+∆t] with sufficiently small ∆t, the chance is given by

γ{κ1R(t) + κ2A(t) + κ3X(t)}∆t+ o(∆t).

Thus, the per capita rate of such a transition at time t is γ(κ1R(t) + κ2A(t) + κ3X(t)). Then
the momental net flux of members from the believer state to the reformed state is given by
γ(κ1R+ κ2A+ κ3X)B.

3.3 Transition between rejoinder and rejecter states

Rejoinders can be classified into two: One is of unsophisticated members after accepting the
counter information (R), and the other of sophisticated members (A). They release the counter
information like volunteers. As we assumed in Section 2, the rejoinders may gradually lose
interest in the information and stop releasing the counter information which mean the state
transition to other states, that is, the rejecter state or the unconcerned state. We assume that
leaving the rejoinder state is random independently of the situation in the netizen community.
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Figure 3.1: Scheme of state transitions by the influence of disinformation and counter information
in our model (3.1).

Thus, the probability that a rejoinder lose interest of the information during time [t, t +∆t] is
now given by

δ∆t+ o(∆t).

The rate δ is a constant. Hence, the net transition rate of unsophisticated rejoinders to rejecters
is given by δR, and that of sophisticated rejoinders to unconcerned members is given by δA. As
δ gets larger, the rejoinders are easier to lose interest and stop releasing the counter information.
We can regard 1/δ as the expected duration that releases the counter information. In this work,
we assume the same transition rate δ for both of sophisticated and unsophisticated rejoinders.

Influenced by the spreading disinformation, the rejecters or unconcerned members may restart
releasing the counter information. For a rejecter or an unconcerned sophisticated member, the
probability to become rejoinder during time period [t, t+∆t] with sufficiently small ∆t is given
as

αB(t)∆t+ o(∆t).

The per capita transition rate from rejecter or unconcerned to rejoinder state is αB. The net
rate from rejecters (Y ) to rejoinders is αBY , and unconcerned sophisticated members (S) to
rejoinders is αBS. We assume the same per capita transition rate α for both of rejecters and
unconcerned sophisticated members to rejoinders state. As α gets larger, rejecters and uncon-
cerned members are more voluntary to release the counter information for the other members in
the netizen community.
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3.4 System to govern the population dynamics

dU

dt
= −βBU − σ(κ1R+ κ2A+ κ3X)U ;

dB

dt
= βBU − γ(κ1R+ κ2A+ κ3X)B;

dR

dt
= σ(κ1R+ κ2A+ κ3X)U − δR+ αBY ;

dX

dt
= γ(κ1R+ κ2A+ κ3X)B;

dY

dt
= δR− αBY ;

dS

dt
= −αBS + δA;

dA

dt
= αBS − δA.

(3.1)

The proportion of sophisticated members in the netizen community is denoted by a constant
p ∈ (0, 1). The total population size is given by N . Thus, the sophisticated population size is
pN , and the unsophisticated population size is (1− p)N .

The initial state of the system is defined for the moment when the disinformation emerges in
the netizen community. At the initial moment, there are some initial believers B0 who carry a
disinformation in the netizen community, and other members have no contact to the information.
The initial condition of system (3.1) is given as

(U,B,R,X, Y, S,A) = (U0, B0, 0, 0, 0, pN, 0), (3.2)

where B0 > 0 is the population size of initial believers. U0 = (1−p)N−B0 is the population size
of naive members, and they are unsophisticated members who are unaware of the disinformation
at the initial. We assume that the number of initial believers is sufficiently small relative to the
total population size of unsophisticated members, that is, B0/(1− p)N ≪ 1.

3.5 Social damage

In this work, we define the social damage caused by the disinformation as how many members
in the netizen community ever believed the disinformation. Since the transition from the naive
state to the believer state is one-directional (see Figure 3.1), the social damage can be expressed
by the sum of the population size of believer and reformed members at the final state, as we will
show in the later section that the population sizes converge to equilibrium values. Therefore,
in our modelling, the social damage is represented by B∗ + X∗, where B∗ and X∗ are the
equilibrium population sizes of believer and reformed members at the final state.

We also define the damage risk per unsophisticated member, that corresponds to the proba-
bility that an unsophisticated member is cheated by the disinformation and becomes a believer
in the course of the population dynamics with the considered spreading disinformation. It is
given by

Population size of members who once believed the disinformation

Total population size of unsophisticated members
=

B∗ +X∗

(1− p)N
.

4 Netizen community with no voluntary sophisticated mem-
bers

In this section, we consider a case where there is no voluntary sophisticated member in the netizen
community. In this case, all sophisticated members are always unconcerned to the disinformation
and never become rejoinders, which means S = pN and A = 0. Under this assumption, any
sophisticated member does not join the dynamics, and does not release any counter information
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Figure 4.1: Scheme of state transition in the netizen community with no voluntary sophisticated
member.

even with contacting the disinformation. Furthermore, we omit the state transition from the
unsophisticated rejoinders to rejecters with δ = 0 and Y = 0 (see Figure 4.1).

As for the initial condition, we set a positive initial value of unsophisticated rejoinders, that is,
R0 > 0. If R0 = 0, we have R(t) = 0 for any t > 0, and then there will be no counter information
in the netizen community. In such a case, the members in the netizen community are unable to
have any counter information because the sophisticated members are all unconcerned. The initial
condition with R0 > 0 means that the counter information comes from an “external source” on
which we do not mention anymore since there would be a variety of possibilities to have it.

4.1 With stiff believer

Here we consider the dynamics where the believers are stiff and will not lose interest in spreading
the disinformation. We have γ = 0 and X = 0 with this assumption. As seen from Figure 4.1,
the model is described by the following system:

dU

dt
= −βBU − σκ1RU ;

dB

dt
= βBU ;

dR

dt
= σκ1RU,

(4.1)

where U + B + R = (1 − p)N . The initial condition of the system is given as (U,B,R) =
(U0, B0, R0). Then, we can get the following result on the convergence of the solution for (4.1)
(Appendix A):

Theorem 4.1. The solution of system (4.1) has the convergent nature as

(U,B,R) → (0, B∗, R∗) as t → ∞,

where R∗ and X∗ are uniquely determined by the root of equations(1− p)N = R∗ +B0

(R∗

R0

) β
σκ1

;

B∗ = (1− p)N −R∗.

(4.2)

Social damage As defined in Section 3.5, we find from Theorem 4.1 for the model (4.1) that
the value of B∗ represents the population size of those who once believed the disinformation, that
is, the social damage. Given initial condition B0, R0 and proportion p, the final size (B∗, R∗)
depends on the ratio ρ = β/σκ1. As the ratio ρ gets larger, the disinformation will cause a more
serious social damage (see Figure 4.2).

A larger ρ can be caused by larger β. It means that if the naive members are easier to believe
the disinformation, there will be more members being cheated by the disinformation, and the
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Figure 4.2: Numerical calculation of B∗ for (4.2), with N = 1.0, p = 0.4, B0 = 1.0 × 10−7,
R0 = 1.0× 10−8.

social damage will be greater. A smaller σ or a smaller κ1 will also make ρ larger. This can
be interpreted as the role of counter information. If the counter information is not easy to be
accepted by naive members (small σ), or if the rejoinders are less frequently to release counter
information (small κ1), the social damage of disinformation will be more serious.

4.2 With mild believer

In this section, we consider the dynamics where the believers are mild and they may lose interest
in spreading the disinformation. The believers will become reformed members who no longer
believe the disinformation (see Figure 4.1). The model is described by the following system:

dU

dt
= −βBU − σ(κ1R+ κ3X)U ;

dB

dt
= βBU − γ(κ1R+ κ3X)B;

dR

dt
= σ(κ1R+ κ3X)U ;

dX

dt
= γ(κ1R+ κ3X)B,

(4.3)

where U +B+R+X = (1− p)N . The initial condition of the system is given as (U,B,R,X) =
(U0, B0, R0, 0). We can get the following result on the convergence of the solution for (4.3)
(Appendix B):

Theorem 4.2. The solution of system (4.3) has the convergent nature as

(U,B,R,X) → (0, 0, R∗, X∗) as t → ∞,

where R∗ and X∗ are positive values, R∗ +X∗ = (1− p)N .

In this case, we have B → 0 which means there will be no believer and no circulating
disinformation in the end. The value X∗ is the population size of those who were once been
cheated by the disinformation, which is the social damage.

WITH REFORMED MEMBERS RELEASING NO COUNTER INFORMATION

Here we assume that the reformed members just “silently” stop believing the disinformation
without releasing counter information, which means κ3 = 0. Thus, the counter information is
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Figure 4.3: Numerical calculated of final size X∗ for equation (4.4), with N = 1.0, p = 0.4,
B0 = 1.0× 10−7, R0 = 1.0× 10−8.

only released by rejoinders (R) in the netizen community . We get the following result for the
special case with γ = σ (Appendix C).

Corollary 4.1. Under the conditions that κ3 = 0 and γ = σ, R∗ and X∗ at the final state of
system (4.3) are uniquely determined by the root of equations:(1− p)N = R0 +

∞∑
n=0

1
nβ
σκ1

+ 1

( B0

U0 +B0

)n{
R∗

(R∗

R0

) nβ
σκ1 −R0

}
;

X∗ = (1− p)N −R∗.

(4.4)

Social damage Given B0, R0 and p, the root R∗ of equation (4.4) monotonically decreases in
terms of the ratio ρ = β/σκ1. It means a larger ρ will make R∗ smaller, and make social damage
X∗ = (1−p)N −R∗ larger. A numerical calculated X∗ value is shown in Figure 4.3. We can see
that there exists a certain range of ρ that the slope of the curve is much more steep (ρ between
0.8 to 1.0). This implies that within this range, a small change of ratio ρ may result in a large
difference on the social damage X∗.

WITH REFORMED MEMBERS RELEASING SOME COUNTER INFORMA-
TION

Here we assume that the reformed members release counter information at a certain frequency
(κ3 > 0). We get the following result for the special case with γ = σ, β = σκ1 and κ1 = κ3

(Appendix D).

Corollary 4.2. Under the condition that κ1 = κ3, γ = σ and β = σκ1, The value X∗ at the
final state of system (4.3) is uniquely determined by the root of equation

(1− p)N = X∗ +R0 +R0

U0

B0
ln

(1−p)N
R0

+ U0

B0

1 + U0

B0

(4.5)

in (0, (1− p)N −R0).

4.3 Social damage

In this section, we compare the social damage in different netizen community which is determined
by (4.2), (4.4) and (4.5) respectively (Appendices E and F).
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Figure 4.4: Numerical calculation for the systems: (a) (4.1); (b) κ3 = 0 for (4.3) ; (c) κ3 = κ1

for (4.3), commonly with N = 1.0, p = 0.4, β = 1.0, σκ1 = 1.0, γκ1 = 1.0, B0 = 1.0 × 10−7,
R0 = 5.0× 10−8.

Corollary 4.3. Given same parameters β, σ, κ1, same initial state (U0, B0, R0) and the con-
dition γ = σ, when B0 and R0 are relatively small, the social damage B∗ determined by (4.2) is
greater than the social damage X∗ from (4.4).

This means that given the same conditions, the netizen community with the stiff believer
(4.4) suffers more social damage compared to a netizen community with mild believers (4.2).
The stiffness of the believer will make the influence of the disinformation more serious.

Corollary 4.4. Given same parameters β, σ, κ1, same initial state (U0, B0, R0) and the con-
ditions κ1 = κ3, γ = σ and β = σκ1, X

∗ determined by (4.4) is greater than the X∗ from (4.5).

It means that if the reformed believers do not release any counter information (4.4), the social
damage will be more serious compared to netizen community with reformed believers release some
counter information (4.5). In Figure 4.4, numerical calculation matches this result: a netizen
community with stiff believers (Figure 4.4(a)) receives more social damage by the disinformation,
compared to the netizen communities with mild believers; the netizen community with reformed
members releasing no counter information (Figure 4.4(b)) receives less social damage; the netizen
community with reformed members releasing some counter information (Figure 4.4(c)) receives
the least social damage among the three netizen communities.

5 Netizen community with naive members indifferent to
counter information

In this section, we assume that the sophisticated members may release counter information in
this netizen community. However, the naive members are not affected by the counter information
and never become rejoinders. This means that the naive members never gain the immunity to
the disinformation from the counter information. This assumption corresponds to σ = 0 in the
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Figure 5.1: Numerical calculation of final sizes U∗ and X∗ for the system (5.1) with N = 1.0,
p = 0.6, β = 1.0, γκ2 = 0.8, α = 5.0, δ = 6.0, B0 = 1.0× 10−7.

system, and we have R ≡ 0 and Y ≡ 0 for any t ≥ 0. The model of the system is given as

dU

dt
= −βBU ;

dB

dt
= βBU − γ(κ2A+ κ3X)B;

dX

dt
= γ(κ2A+ κ3X)B;

dS

dt
= −αBS + δA;

dA

dt
= αBS − δA,

(5.1)

with initial condition
(U,B,X, S,A) = (U0, B0, 0, pN, 0). (5.2)

Theorem 5.1. The solution of system (5.1) has the convergent nature as

(U,B,X, S,A) → (U∗, 0, X∗, pN, 0) as t → ∞,

where the value of U∗ follows {
U∗ = 0, if κ3 = 0;

U∗ > 0, if κ3 > 0.

In Appendix G, we provide proof of the theorem. In the final state, X∗ is the size of reformed
members, and U∗ is the size of the naive members. A numerical calculation (see Figure 5.1)
shows that a greater κ3 makes the social damage X∗ smaller.

When κ3 = 0, the reformed members do not release counter information, it results in U∗ = 0.
In this case, it is not possible to have anyone remained in the naive state U . The size of reformed
members in the final state is X∗ = (1− p)N , which means all the unsophisticated members will
be at the reformed class in the end. Since reformed members come from believers, every member
who is unsophisticated will experience a certain period of being a believer.

When κ3 > 0, reformed members release the counter information at some frequency. Then
there will be some unsophisticated members who stay in the naive state U without believing the
disinformation. In this case, the reformed members release counter information and their efforts
will save some unsophisticated members from the disinformation.

This indicates the important role of unsophisticated members who release counter infor-
mation. When counter information is only released by sophisticated members (κ3 = 0), their
voluntary behaviour is not enough to prevent naive members from believing the disinformation.
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R0 = 0.0.

Everyone who is unsophisticated will experience being cheated by the disinformation. In other
words, if we want to protect unsophisticated members from disinformation, it is necessary to
have some counter information accepted and spread by the unsophisticated members themselves.

6 Contribution of sophisticated members to moderate the
social damage

In this section, we will analyse how the proportion of sophisticated members in the netizen
community (p) contributes in the netizen community to suppress the disinformation in the
generic model (3.1). We have the following property of the system (Appendix H):

Theorem 6.1. The system (3.1) with p > 0 and the initial condition (3.2) has the convergent
nature as

(U,B,R,X, Y, S,A) → (0, 0, 0, X∗, Y ∗, pN, 0) as t → ∞.

For the final state, U , B, R and A converges to 0. There will be no believer in the end and
there will be no disinformation spreading in the community. There will also be no naive members
remained. All the unsophisticated embers will be either reformed members or rejecters in the final
state. It implies that each unsophisticated member has once accepted either the disinformation
or the counter information. A numerical calculation is shown in Figure 6.1.

Social damage As shown in Figure 6.2(a), a larger p makes X∗ smaller. The rejecters in final
state Y ∗ can be regarded as how many unsophisticated members have been saved by the counter
information. It has a peak which means that with a certain p value, the netizen community will
have the largest amount of unsophisticated members saved by counter information. However,
this does not means that the p value at the peak is “optimal”. A larger p also makes the total
sophisticated population size (1− p)N smaller, that is the why a large p may make Y ∗ small.

Dependence of the risk In this system, the risk of unsophisticated members can be denoted
by

X∗

(1− p)N
,

which can be regarded as the probability for an unsophisticated member to be cheated by
disinformation. As shown in Figure 6.2(b), the risk is monotonically decreasing in terms of
p. As p value gets larger, the risk of an unsophisticated member will decrease. However, an
infimum of the risk can be found. Even if p is sufficiently large and close to 1, which means that
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Figure 6.2: Parameter dependence of final size and risk in terms of p for the system (3.1),
numerical calculation with N = 1.0, β = 1.0, κ1 = κ2 = κ3 = κ, γκ = 0.8, σκ = 1.5, α = 5.0,
δ = 6.0, B0 = 1.0× 10−7, R0 = 0.0.

almost everyone in the netizen community is sophisticated, the non-zero risk still exists for the
unsophisticated members.

In Appendix I, we apply fast process assumption for the limit of risk as p → 1. Under the
fast process assumption, we find the analytical expression for the case that κ3 = 0:

X∗

(1− p)N
→ 1

1 + κ2ασN/βδ
, as p → 1.

In this fast process assumption, we assume that the state transition between A-S (sophisticated
rejoinder and unconcerned unsophisticated members) and R-Y (unsophisticated rejoinder and
rejecter) are much faster than transition between other states. In this special consideration, the
value 1/(1 + κ2ασN/βδ) can be regarded as the limit of the risk for the case that reformed
members release no counter information.

This result is under a rather special condition, but it can be regarded as an implication
for the existence of the infimum of risk. In a more general case, from Figure 6.2(b), we know
that the risk cannot be suppressed to 0. Although sophisticated members can reduce the risk
of unsophisticated members, there exists a lower boundary of the risk. Even if the proportion
of sophisticated members is sufficiently large (p → 1), the risk cannot be reduced towards 0,
unsophisticated members are not safe.

Social damage in netizen community with no voluntary sophisticated members In
Section 4, we conducted analysis on the netizen community with no voluntary sophisticated
members by setting a fixed proportion of sophisticated members (p). Since a larger p means less
unsophisticated members (1− p)N , it can be inferred that a larger p also makes social damage
X∗ smaller. As for the risk of unsophisticated members, we will show a numerical calculated
example.

From Figure 6.3, the p value has some influence on the risk of unsophisticated members.
This influence is not significant unless p is sufficiently large. It is understandable, since the
contribution of p value is to change the population size of unsophisticated members. Hence, the
p may not have a strong relation to the risk as the sophisticated members do not involved in the
dynamics. It seems that when p value large, the p dependence will be stronger. This is because
in the calculation, we manually set a positive initial value of B0 and R0 that does not change
by p. If p becomes large, then the unsophisticated population size (1 − p)N will be small. It
has the similar result as “to amplify the initial value of B0 and R0”. For the same reason, it
is also possible that the p-dependence of the risk is not decreasing, but increasing. As shown
in Figure 6.3(b), it is possible to have some situation that a larger p brings higher risk to the
unsophisticated members.
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Figure 6.3: An example of numerical calculated risk in terms of p for the system (4.3), with
N = 1.0, β = 1.0, κ1 = κ3 = κ, γκ = 0.8, α = 5.0, δ = 6.0, B0 = 1.0 × 10−7, R0 = 1.0 × 10−8,
(a) σκ = 0.8, (b) σκ = 1.2.

7 Concluding remarks

In this work, we have analysed the social damage by the disinformation of different communities.
For the netizen community without voluntary sophisticated members, there needs to have some
“external” source of counter information, such as some initial spreader of counter information. In
these cases, the social damage depends on the members’ release and acceptance of disinformation
and counter information. Generally speaking, if members in the netizen community have a
stronger tendency to release or accept the disinformation, the social damage will be greater. If
the netizens are more willing to release or accept the counter information, the social damage will
be released. We also compare the analytical results of social damage between different cases. The
netizen community with stiff believers will suffer greater social damage. For the case with naive
members indifferent to the counter information, it is important to have some unsophisticated
members who release counter information (reformed members).

Then we turn to the communities with sophisticated members releasing counter information.
These communities do not necessarily need an “external” source of counter information. The
sophisticated members can identify disinformation and generate counter information themselves.
From the numerical calculation, we find that a community with a larger proportion of sophis-
ticated members can better defend the disinformation. As for the unsophisticated members,
their risk also becomes less in a community with more sophisticated members. However, the risk
cannot be sufficiently small, there exists an infimum of the risk. This type of condition can be
considered when most members can distinguish the disinformation. For example, some scams
do not sound real, most members will not believe them. But the targets of scams are those
members who cannot distinguish them. Even though the proportion of these unsophisticated
members is relatively small in the community, they still have a positive chance of being cheated
by the disinformation.
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Appendix A Proof of Theorem 4.1

Convergence of final state

From the model (4.1), we can see that

dU

dt
+

dB

dt
+

dR

dt
= 0.

It means the sum U+B+R is constant for any t > 0, and is equal to the initial sum U0+B0+R0 =
(1− p)N .
We can factorize dU/dt by U by following equation:

dU

dt
= {−βB − σκ1R}U,

where the term −βB − σκ1R is linear of B and R. Therefore, if the initial condition follows
U0 > 0, B0 > 0, R0 > 0, we have

U > 0, B > 0, R > 0 for any t > 0.

Since U +B +R(1− p)N , we have B < (1− p)N , which means B is bounded above. From the
equation, dB/dt > 0. Therefore, B is monotonically increasing and bounded above. Then,

B → B∗ as t → ∞.

For the same argument,
R → R∗ as t → ∞.

As for U , we have
dB

dt
= βBU.

The final size satisfies dB/dt → 0 as t → ∞. We already know B → B∗, therefore,

U → 0 as t → ∞.

Hence, the final state of is (U,B,R) → (0, B∗, R∗).

Derivation of equation (4.2)

Conserved quantity For convenience of expression, we denote ρ := β
σκ1

. From equation
(4.3), we have the differential equation

dB

dR
=

ρB

R
.

Then we can derive the solution
B

B0
=

( R

R0

)ρ

. (A1)

This equation holds for any t ≥ 0.
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Equation of final state Since B → B∗, R → R∗, and B∗+R∗ = (1−p)N , we may substitute
them in the equation (A1), then we can get the equation determines the final size:

(1− p)N = R∗ +B0

(R∗

R0

)ρ

. (A2)

Existence and uniqueness of root in equation (4.2)

Firstly, we may define a function

f1(z) = z +B0

( z

R0

)ρ

− (1− p)N,

with the domain of f1(z) to be z ∈ [R0, (1− p)N ]. The root R∗ of Equation (4.2) satisfies

f1(R
∗) = 0.

We want to show the root R∗ is existed and unique.
Let us prove the root R∗ exists in (R0, (1− p)N). This can be done by considering value of

f(R0) and f((1− p)N):

f1(R0) = R0 +B0

(R0

R0

)ρ

− (1− p)N = R0 +B0 − (1− p)N < 0.

From the meaning, R0 +B0 is the initial believer and rejecter. Their sum must be less than the
total population (1− p)N .

f1((1− p)N) = (1− p)N +B0

( (1− p)N

R0

)ρ

− (1− p)N =
( (1− p)N

R0

)ρ

> 0.

We get f(R0) < 0 and f((1− p)N) > 0. Since the function f1(z) is continuous in [R0, (1− p)N ],
there must exist R∗ ∈ (R0, (1− p)N) such that f1(R

∗) = 0.
Then, we will prove the uniqueness of the root. Since

df1(z)

dz
= 1 +

B0

Rρ
0

ρzρ−1 > 0,

f1(z) is monotonically increasing in terms of z. Therefore, the root of f1(z) = 0 is unique.

Appendix B Proof of Theorem 4.2

By using similar argument as Appendix A, we have the positivity for each state in finite time:

U > 0, B > 0, R > 0, X > 0 for any t > 0.

We can find (omitted here) from the equations that both R and X are monotonically increasing
and bounded above. Hence, we have the positivity of the value R∗ and X∗:

R → R∗ > 0, X → X∗ > 0 as t → ∞. (B1)

As for U , we will show the convergence using proof by contradiction. Since we have

dU

dt
= −βBU − σ(κ1R+ κ3X)U ≤ −σκ1RU,

if U → U∗ > 0, the term σκ1R
∗U∗ < 0. It will cause the negativity for the final state:

lim
t→∞

dU

dt
≤ −σκ1R

∗U∗ < 0.
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This violates the definition of the final state that

lim
t→∞

dU

dt
= 0.

Hence, it is impossible to have U → U∗ > 0, the value of U must converge to 0:

U → 0 as t → ∞. (B2)

As for the final state of B, we have

dB

dt
= {βU − γ(κ1R+ κ3X)}B.

Since U → 0 and R → R∗, there exists a finite time T such that

βU − γκ1R < −1

2
γκ1R, for any t > T.

Then, we have

dB

dt
= {βU − γ(κ1R+ κ3X)}B < −1

2
γκ1RB, for any t > T.

If B → B∗ > 0, we will have

lim
t→∞

dB

dt
< −1

2
γκ1R

∗B∗ < 0.

It violates the definition of the final state. Hence, the value of B must converge towards 0:

B → 0 as t → ∞. (B3)

From (B1), (B2) and (B3), we have shown The final state of system (4.3) is

(U,B,R,X) → (0, 0, R∗, X∗), as t → ∞.

Appendix C Proof of Corollary 4.1

Derivation of equation (4.4)

Conserved quantity with κ3 = 0, γ = σ For calculation convenience, let us define φ := B/U
which is the ratio of believer over naive members. We can get the differential equation

dX

dR
=

γ

σ

B

U
= φ. (C1)

As for the variable φ, we could get

dφ

dR
= φ

d lnφ

dR
= φ

d(lnB − lnU)

dR

From the system (4.3) and the further assumption κ3 = 0, γ = σ, we have:

d lnB

dt
= βU − γ(κ1R+ κ3X) = βU − σκ1R;

d lnU

dt
= −βB − σ(κ1R+ κ3X) = −βB − σκ1R.
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Therefore, we have

dφ

dR
= φ

d(lnB − lnU)

dR

= φ
βU − σκ1R− (−βB − σκ1R)

σκ1RU

= φ
β(U +B)

σκ1RU

= φ
β(U + φU)

σκ1RU

=
βφ(1 + φ)

σκ1R

For convenience of calculation, we may define

ρ :=
β

σκ1
.

We can solve the ODE by following steps:

dφ

dR
= ρ

φ(1 + φ)

R
dφ

φ(1 + φ)
= ρ

dR

R(dφ
φ

− dφ

1 + φ

)
= ρ

dR

R

d{lnφ− ln(1 + φ)} = ρ d lnR

d
(
ln

φ

1 + φ

)
= ρ d lnR

ln
φ

1 + φ
− ln

φ0

1 + φ0
= ρ(lnR− lnR0)

φ

1 + φ
=

φ0

1 + φ0

( R

R0

)ρ

Consider the initial condition φ0 = B0/U0 when t = 0, we have

φ

1 + φ
=

B0/U0

1 +B0/U0

( R

R0

)ρ

=
B0

U0 +B0

( R

R0

)ρ

= c1R
ρ, (C2)

where

c1 =
B0

(U0 +B0)R
ρ
0

; ρ =
β

σκ1
.

From (C1), dX
dR = φ, X can be expressed by

X =

∫ R

R0

φdR.

From (C2), the equality φ = c1R
ρ(1 + φ) holds. We can use them to obtain an equation that

includes X and R. We notice that∫ R

R0

φdR =

∫ R

R0

c1R
ρ(1 + φ)dR

= c1

∫ R

R0

RρdR+ c1

∫ R

R0

RρφdR

= c1
1

ρ+ 1

(
rρ+1 −Rρ+1

0

)
+ c1

∫ R

R0

RρφdR.
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We notice that there exists a recurrence relation for any k ≥ 1:∫ R

R0

φR(k−1)ρdR =

∫ R

R0

c1R
kρ(1 + φ)dR

= c1

∫ R

R0

RkρdR+ c1

∫ R

R0

RkρφdR

= c1
1

ρ+ 1

(
rρ+1 −Rρ+1

0

)
+ c1

∫ R

R0

RkρφdR

Hence, we have

X =

∫ R

R0

φdR =

M∑
n=1

1

nρ+ 1
cn1

(
rnρ+1 −Rnρ+1

0

)
+ cM1

∫ R

R0

RMρφdR.

We will examine if the residual term cM1
∫ r

r0
rMρφdr converge to 0 as M → ∞. Since dR/dt > 0,

φ > 0 and
dφ

dR
=

βφ(1 + φ)

σκ1R
,

it is clear that dφ/dt > 0. From (C2), the relation

φ

1 + φ
= c1R

ρ

holds. Since R → R∗, Hence there exists a value φ∗ which satisfies

φ∗

1 + φ∗ = c1R
∗ρ (C3)

and is finite. Since dφ/dt > 0, the value φ∗ can be regarded as an upper bound of φ.
As for the residual term, we have

cM1

∫ R

R0

RMρφdR =

∫ R

R0

(c1R
ρ)MφdR

=

∫ R

R0

(
φ

1 + φ

)M

φdR

<

∫ R∗

R0

(
φ∗

1 + φ∗

)M

φ∗dR

=

(
φ∗

1 + φ∗

)M

φ∗(R∗ −R0).

Since both φ∗ and (R∗ −R0) are finite, we have

lim
M→∞

(
φ∗

1 + φ∗

)M

φ∗(R∗ −R0) = 0.

The residual term also goes to 0 as M → ∞.

lim
M→∞

cM1

∫ R

R0

RMρφdR ≤ lim
M→∞

(
φ∗

1 + φ∗

)M

φ∗(R∗ −R0) = 0.

Therefore, we can use an infinite series to express X and R:

X =

∞∑
n=1

1

nρ+ 1
cn1

(
Rnρ+1 −Rnρ+1

0

)
. (C4)
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Value of the final state The value of the final state (R∗, X∗) satisfies the equation (C4),
and their sum is the total unsophisticated population R∗ +X∗ = (1− p)N . We can substitute
R with R∗, X with (1− p)N −R∗ to get the following equation about the final state that only
includes R∗:

(1− p)N −R∗ =

∞∑
n=1

1

nρ+ 1
cn1

(
R∗nρ+1 −Rnρ+1

0

)
.

Note that in the infinite series, if we let n = 0, it will be (R∗ −R0), we can get the equation

(1− p)N = R0 +

∞∑
n=0

1

nρ+ 1
cn1

(
R∗nρ+1 −Rnρ+1

0

)
.

By substituting the parameters c1 = B0

(U0+B0)R
ρ
0
and ρ = β

σκ1
, we have:

(1− p)N = R0 +

∞∑
n=0

1

nρ+ 1

{ B0

(U0 +B0)R
ρ
0

}n(
R∗nρ+1 −Rnρ+1

0

)
= R0 +

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n{
R∗

(R∗

R0

)nρ

−R0

}
= R0 +

∞∑
n=0

1
nβ
σκ1

+ 1

( B0

U0 +B0

)n{
R∗

(R∗

R0

) nβ
σκ1 −R0

}
,

which is shown in equation (4.4).

Existence and uniqueness of the root for equation (4.4)

Possible range of R∗ We may use the similar method to the proof in Appendix A. Firstly,
we need to figure out the possible range of R∗. From (C4), we have

c1R
∗ρ < 1.

This gives an upper bound of R∗:

R∗ <
( 1

c1

)1/ρ

= R0

(U0 +B0

B0

)1/ρ

.

From the positiveness of X∗ and X∗ +R∗ = (1− p)N , we have

R∗ < (1− p)N.

Both the conditions need to be satisfied. We can find the condition of initial value B0, R0 that
makes (1/c1)

1/ρ < (1− p)N :( 1

c1

)1/ρ

= R0

(U0 +B0

B0

)1/ρ

< (1− p)N, if B0 >
rρ0{(1− p)N −R0}

{(1− p)N}ρ
.

The calculation is shown in the following steps:

R0

(U0 +B0

B0

)1/ρ

< (1− p)N

R0

{ (1− p)N −R0)

B0

}1/ρ

< (1− p)N

R0{(1− p)N −R0}1/ρ < (1− p)NB
1/ρ
0

B
1/ρ
0 >

R0{(1− p)N −R0}1/ρ

(1− p)N

B0 >
rρ0{(1− p)N −R0}

{(1− p)N}ρ
.
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Similarly, we can also get the condition for (1/c1)
1/ρ > (1− p)N . Then, we can write down the

possible range of R∗. {
R∗ ∈ [R0, (1/c1)

1/ρ] if B0 >
rρ0{(1−p)N−R0}

{(1−p)N}ρ ;

R∗ ∈ [R0, (1− p)N ] if B0 ≤ rρ0{(1−p)N−R0}
{(1−p)N}ρ .

where

c1 =
B0

(U0 +B0)R
ρ
0

; ρ =
β

σκ1
.

Existence of root We can define a function

f2(z) = R0 +

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n{
z
( z

R0

)nρ

−R0

}
− (1− p)N,

with the domain of f2(z){
z ∈ [R0, (1/c1)

1/ρ] if B0 >
rρ0{(1−p)N−R0}

{(1−p)N}ρ ;

z ∈ [R0, (1− p)N ] if B0 ≤ rρ0{(1−p)N−R0}
{(1−p)N}ρ .

We want to find the positivity of the function f2(z) in the lower bound and upper bound of z.
For z = R0,

f2(R0) = R0 +

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n{
R0

(R0

R0

)nρ

−R0

}
− (1− p)N

= R0 +

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n{
R0 −R0

}
− (1− p)N

= R0 − (1− p)N

< 0.

As for upper bound of z, firstly let us consider that case z∗ ∈ [R0, (1/c1)
1/ρ], when the initial

condition satisfies B0 >
rρ0{(1−p)N−R0}

{(1−p)N}ρ .

f2((1/c1)
1/ρ) = R0 +

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n{( 1

c1

)1/ρ( (1/c1)1/ρ
R0

)nρ

−R0

}
− (1− p)N

= R0 +

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n{( 1

c1

)1/ρ( 1

c1

)n( 1

R0

)nρ

−R0

}
− (1− p)N

= R0 +

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n{
R0

(U0 +B0

B0

)1/ρ(U0 +B0

B0

)n

−R0

}
− (1− p)N

= R0 +

∞∑
n=0

1

nρ+ 1
R0

(U0 +B0

B0

)1/ρ

−
∞∑

n=0

1

nρ+ 1

( B0

U0 +B0

)n

R0 − (1− p)N

The value diverges to +∞. This is because the sum of infinite series

∞∑
n=0

1

nρ+ 1
R0

(U0 +B0

B0

)1/ρ

= R0

(U0 +B0

B0

)1/ρ ∞∑
n=0

1

nρ+ 1
= +∞

is infinite, since

∞∑
n=0

1

nρ+ 1
= 1 +

∞∑
n=1

1

nρ+ 1
≥ 1 +

∞∑
n=1

1

nρ+ n
= 1 +

1

1 + ρ

∞∑
n=1

1

n
= +∞.
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Meanwhile, the sum of another infinite series converge to finite value.

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n

R0 <

∞∑
n=0

( B0

U0 +B0

)n

R0 =
1

1− B0

U0+B0

R0 =
U0 +B0

U0
R0

There is no singular point of function f2(z) in range [R0, (1/c1)
1/ρ], it is continuous in (R0, (1/c1)

1/ρ).
We already have f2(R0) < 0 and f2((1/c1)

1/ρ) > 0, therefore, it has a root R∗ ∈ (R0, (1/c1)
1/ρ)

that makes f2(R
∗) = 0.

In another case with B0 ≤ rρ0{(1−p)N−R0}
{(1−p)N}ρ , we may consider the value of f2(z) at the upper

bound of z as (1− p)N . If we consider the term that n = 0 of the infinite series in f2(z), we can
get:

1

nρ+ 1

( B0

U0 +B0

)n{
z
( z

R0

)nρ

−R0

}
= z −R0 when n = 0.

Then, we can consider the positiveness of f2((1− p)N).

f2((1− p)N) = R0 +

∞∑
n=0

1

nρ+ 1

( B0

U0 +B0

)n{
(1− p)N

( (1− p)N

R0

)nρ

−R0

}
− (1− p)N

= R0 + {(1− p)N −R0}+
∞∑

n=1

1

nρ+ 1

( B0

U0 +B0

)n{
(1− p)N

( (1− p)N

R0

)nρ

−R0

}
− (1− p)N

=

∞∑
n=1

1

nρ+ 1

( B0

U0 +B0

)n{
(1− p)N

( (1− p)N

R0

)nρ

−R0

}
> 0.

We also showed that f2(R0) < 0 and f2((1−p)N) > 0, therefore, it has a root R∗ ∈ (R0, (1−p)N)
that makes f2(R

∗) = 0.

Uniqueness of root The uniqueness of root of f2(z) can be proved since

df2(z)

dz
=

∞∑
n=0

( B0

U0 +B0

)n( z

R0

)nρ

> 0.

This means that f2(z) monotonically increases in terms of z in its domain. It is impossible to
have more than one root.

Appendix D Proof of Corollary 4.2

Derivation of equation (4.5)

Conserved quantity with κ1 = κ3, γ = σ and β = σκ1. We denote φ = B/U and the
system (4.3) has

dX

dR
=

γ

σ

B

U
= φ.

By using similar method to Appendix C, we can get:

dφ

dt
= φ

d lnφ

dt
= φ

d(lnB − lnU)

dt
= φβ(U +B).

dφ

d(R+X)
=

φβ(U +B)

σκ1(R+X)(U +B)
=

βφ

σκ1(R+X)
= ρ

φ

R+X
,
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where ρ = β/σκ1. Then, we can get a conserved quantity which includes φ and R+X.

dφ

d(R+X)
= ρ

φ

R+X

dφ

φ
= ρ

d(R+X)

R+X

d lnφ = ρd ln(R+X)

lnφ− lnφ0 = ρ{ln(R+X)− ln(R0 +X0)}

ln
φ

φ0
= ρ ln

R+X

R0 +X0

φ

φ0
=

( R+X

R0 +X0

)ρ

φ = φ0

( R+X

R0 +X0

)ρ

Considering the initial condition φ0 = B0/U0 and X0 = 0, we have

φ =
B0

U0

(R+X

R0

)ρ

= c2(R+X)ρ, (D1)

where

c2 :=
B0

U0R
ρ
0

.

We can then substitute the equation X =
∫ R

R0
φdR by φ = c2(R + X)ρ. In this work, we

consider the parameters under constraint β = σκ1 which means ρ = 1. Hence, we can use
φ = c2(R+X). We can derive the expression with R and X as below:

X =

∫ R

R0

φdR

=

∫ R

R0

c2(R+X)dR

= c2

∫ R

R0

RdR+ c2

∫ R

R0

XdR

=
1

2
c2

(
R2 −R2

0

)
+ c2

∫ R

R0

XdR

=
1

2
c2

(
R2 −R2

0

)
+ c2

(
[XR]RR0

−
∫ X(R)

X(R0)

RdX
)

=
1

2
c2

(
R2 −R2

0

)
+ c2XR− c2

∫ X(R)

X(R0)

RdX,

=
1

2
c2

(
R2 −R2

0

)
+ c2XR− c2

∫ R

R0

φRdR.

We notice that the last term −c2
∫ R

R0
φRdR can further be expanded in similar method. We can
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find the recurrence relation as follow:∫ R

R0

φRn−1dR =

∫ R

R0

c2(R+X)Rn−1dR

= c2

∫ R

R0

RndR+ c2

∫ R

R0

XRn−1dR

=
1

n+ 1
c2

(
Rn+1 −Rn+1

0

)
+

1

n
c2

∫ R

R0

XdRn

=
1

n+ 1
c2

(
Rn+1 −Rn+1

0

)
+

1

n
c2

(
[XRn]RR0

−
∫ X(R)

X(R0)

RndX
)

=
1

n+ 1
c2

(
Rn+1 −Rn+1

0

)
+

1

n
c2XRn − 1

n
c2

∫ R

R0

φRndR.

If we let the first integration term
∫ R

R0
φdR is n = 1, the general form of the integration term

can be expressed by

(−1)n+1 1

(n− 1)!
cn−1
2

∫ R

R0

φRn−1dR.

We can write the expression of X by the sum up to M terms:

X =

M∑
n=1

(−1)n+1 1

(n− 1)!
cn−1
2

{ 1

n+ 1
c2

(
Rn+1 −Rn+1

0

)
+

1

n
c2XRn

}
+ (−1)M+1 1

M !
cM2

∫ R

R0

φRMdR

=

M∑
n=1

(−1)n+1 c
n
2

n!

{ n

n+ 1
(Rn+1 −Rn+1

0 ) +RnX
}
+ (−1)M+1 1

M !
cM2

∫ R

R0

φRMdR

We need to verify if the the residual term converges to 0 as M → ∞. It can be seen that

1

M !
cM2

∫ R

R0

φRMdR <
1

M !
cM2

∫ (1−p)N

R0

φ∗{(1−p)N}MdR =
1

M !
cM2 φ∗{(1−p)N−R0}{(1−p)N}M ,

since R < (1− p)N and φ ≤ φ∗. We can use the ratio test to verify that

lim
M→∞

1
(M+1)!c

M+1
2 φ∗{(1− p)N −R0}{(1− p)N}M+1

1
M !c

M
2 φ∗{(1− p)N −R0}{(1− p)N}M

= lim
M→∞

c2(1− p)N

M + 1
= 0.

which means

lim
M→∞

1

M !
cM2 φ∗{(1− p)N −R0}{(1− p)N}M = 0.

Therefore, we have

lim
M→∞

(−1)M+1 1

M !
cM2

∫ R

R0

φRMdR = 0.

Hence, we can write the conserved quantity of X and R.

X =

∞∑
n=1

(−1)n+1 c
n
2

n!

{ n

n+ 1
(Rn+1 −Rn+1

0 ) +RnX
}
. (D2)

Final state As for the final size, we can use substitute the value of final state R∗ and X∗ in
equation (D2) and X∗ = (1− p)N −R∗.

(1− p)N = R∗ +

∞∑
n=1

(−1)n+1 c
n
2

n!

{ n

n+ 1
(R∗n+1 −Rn+1

0 ) +R∗n{(1− p)N −R∗}
}
. (D3)

We can be rewrite the equation by substituting c2 = B0

U0R0
.

(1− p)N = R∗ +

∞∑
n=1

(−1)n+1 1

n!

(B0

U0

)n{
(1− p)N

(R∗

R0

)n

− 1

n+ 1
R∗

(R∗

R0

)n

− n

n+ 1
R0

}
. (D4)
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Expression of X∗ We can rewrite the equation (D4) as:

(1− p)N = R∗ +

∞∑
n=1

(−1)n+1 1

n!

(B0

U0

)n
{
(1− p)N

(R∗

R0

)n

− 1

n+ 1
R∗

(R∗

R0

)n

− n

n+ 1
R0

}

= R∗ +

∞∑
n=1

(−1)n+1 1

n!

(B0R
∗

U0R0

)n

(1− p)N −
∞∑

n=1

(−1)n+1 1

n!

(B0R
∗

U0R0

)n 1

n+ 1
R∗

−
∞∑

n=1

(−1)n+1 1

n!

(B0

U0

)n n

n+ 1
R0.

The infinite series of the right hand side can be applied with Taylor’s expansion:

ex =

∞∑
n=0

xn

n!
.

We can get the sum of infinite series from n = 1 and n = 2:

∞∑
n=1

xn

n!
= ex − 1,

∞∑
n=2

xn

n!
= ex − 1− x,

which will be used in the following step. Then, We transform the three terms with infinite series
one by one.
The first infinite series term:

∞∑
n=1

(−1)n+1 1

n!

(B0R
∗

U0R0

)n

(1−p)N = −(1−p)N

∞∑
n=1

(−1)n
1

n!

(B0R
∗

U0R0

)n

= (1−p)N
{
1−exp

(
−B0R

∗

U0R0

)}
The second term:

−
∞∑

n=1

(−1)n+1 1

n!

(B0R
∗

U0R0

)n 1

n+ 1
R∗ = −R∗

∞∑
n=1

(−1)n+1 1

(n+ 1)!

(B0R
∗

U0R0

)n

= −R∗ U0R0

B0R∗

∞∑
n=1

(−1)n+1 1

(n+ 1)!

(B0R
∗

U0R0

)n+1

= −R0
U0

B0

∞∑
n=2

1

n!

(
− B0R

∗

U0R0

)n

= −R0
U0

B0

{
exp

(
− B0R

∗

U0R0

)
− 1−

(
− B0R

∗

U0R0

)}
= −R0

U0

B0
exp

(
− B0R

∗

U0R0

)
+R0

U0

B0
−R∗.
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The third term:

−
∞∑

n=1

(−1)n+1 1

n!

(B0

U0

)n n

n+ 1
R0 =

∞∑
n=1

(−1)n
1

n!

(B0

U0

)n(
1− 1

n+ 1

)
R0

= R0

∞∑
n=1

1

n!

(
− B0

U0

)n

−R0

∞∑
n=1

1

(n+ 1)!

(
− B0

U0

)n

= R0

∞∑
n=1

1

n!

(
− B0

U0

)n

+R0
U0

B0

∞∑
n=1

1

(n+ 1)!

(
− B0

U0

)n+1

= R0

∞∑
n=1

1

n!

(
− B0

U0

)n

+R0
U0

B0

∞∑
n=2

1

n!

(
− B0

U0

)n

= R0

{
exp

(
− B0

U0

)
− 1

}
+R0

U0

B0

{
exp

(
− B0

U0

)
− 1−

(
− B0

U0

)}
= R0 exp

(
− B0

U0

)
−R0 +R0

U0

B0
exp

(
− B0

U0

)
−R0

U0

B0
+R0

= R0 exp
(
− B0

U0

)
+R0

U0

B0
exp

(
− B0

U0

)
−R0

U0

B0

Thus, we have

(1− p)N = R∗ + (1− p)N
{
1− exp

(
− B0R

∗

U0R0

)}
−R0

U0

B0
exp

(
− B0R

∗

U0R0

)
+R0

U0

B0
−R∗ +R0 exp

(
− B0

U0

)
+R0

U0

B0
exp

(
− B0

U0

)
−R0

U0

B0

= (1− p)N −
{
(1− p)N +R0

U0

B0

}
exp

(
− B0R

∗

U0R0

)
+

(
R0 +R0

U0

B0

)
exp

(
− B0

U0

)
0 = −

{
(1− p)N +R0

U0

B0

}
exp

(
− B0R

∗

U0R0

)
+

(
R0 +R0

U0

B0

)
exp

(
− B0

U0

)
.

Then, we can get an expression of R∗ in terms of R0:{
(1− p)N +R0

U0

B0

}
exp

(
− B0R

∗

U0R0

)
=

(
R0 +R0

U0

B0

)
exp

(
− B0

U0

)
exp

(
− B0R

∗

U0R0

)
exp

(
− B0

U0

) =
R0 +R0

U0

B0

(1− p)N +R0
U0

B0

e

(
−B0

U0

)(
R∗
R0

−1
)
=

R0 +R0
U0

B0

(1− p)N +R0
U0

B0(
− B0

U0

)(R∗

R0
− 1

)
= ln

R0 +R0
U0

B0

(1− p)N +R0
U0

B0

R∗

R0
= 1− U0

B0
ln

R0 +R0
U0

B0

(1− p)N +R0
U0

B0

Since

R∗ = R0 +R0
U0

B0
ln

(1−p)N
R0

+ U0

B0

1 + U0

B0

(D5)

and (1− p)N = R∗ +X∗ are satisfied for the final state, we have

(1− p)N = X∗ +R0 +R0

U0

B0
ln

(1−p)N
R0

+ U0

B0

1 + U0

B0

as shown by equation (4.5).
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Range of the root for equation (4.5)

We want to verify that the range of X∗ in equation (4.5) satisfied X∗ ∈ (0, (1−p)N−R0). From
(D4), it is easily to see that X∗ < (1 − p)N − R0. We will show that X∗ > 0 in the following
parts. For simplicity, let us denote

u =
U0

B0
; v =

(1− p)N

R0
; x∗ =

X∗

R0
=

(1− p)N −R∗

R0
.

We have u > 0 and v > 1 which represent the initial state. Then, the equation (4.5) becomes

v = x∗ + 1 + u ln
v + u

1 + u
.

We want to show that x∗ > 0 which means X∗ > 0. Since

ln
v + u

1 + u
= ln

(v − 1) + (1 + u)

1 + u
= ln

(
1 +

v − 1

1 + u

)
<

v − 1

1 + u
<

v − 1

u
,

we have

u ln
v + u

1 + u
< v − 1

x∗ = v − 1− u ln
v + u

1 + u
> 0.

Therefore, X∗ ∈ (0, (1− p)N −R0).

Appendix E Proof of Corollary 4.3

We denote the root R∗ of equations (4.2) is R∗
1, the root of equations (4.4) is R∗

2. We want to
show that given same parameters, the relation

R∗
1 < R∗

2

always holds.

Proof For convenience, let’s define ρ = β/σκ. We also define the two equations correspond to
(4.2) and (4.4):

g1(y) = y +B0

( y

R0

)ρ

;

g2(y) = y +

∞∑
n=1

1

nρ+ 1
cn1

(
ynρ+1 −Rnρ+1

0

)
.

From (4.2), g1(R
∗
1) = (1− p)N ; from (4.4), g2(R

∗
2) = (1− p)N .

We know that g′1(y) > 0, g′2(y) > 0 in their domain. Hence, if we find g2(R
∗
1) < (1− p)N , it

means that g2(R
∗
1) < g2(R

∗
2), which implies R∗

2 > R∗
1.

g2(R
∗
1) = R∗

1 +

∞∑
n=1

1

nρ+ 1
cn1

(
R∗

1
nρ+1 −Rnρ+1

0

)
= R∗

1 +

∞∑
n=1

1

nρ+ 1

( B0

(U0 +B0)R
ρ
0

)n(
R∗

1
nρ+1 −Rnρ+1

0

)
= R∗

1 +

∞∑
n=1

1

nρ+ 1

( B0

U0 +B0

)n{(R∗
1

R0

)nρ

R∗
1 −R0

}
= R∗

1 +

∞∑
n=1

1

nρ+ 1

( B0

U0 +B0

)n{( (1− p)N −R∗
1

B0

)n

R∗
1 −R0

}
.
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Since R∗
1 satisfies g1(R

∗
1) = (1− p)N , which means

(1− p)N = R∗
1 +B0

(R∗
1

R0

)ρ

,(R∗
1

R0

)ρ

=
(1− p)N −R∗

1

B0
.

We have

g2(R
∗
1) = R∗

1 +

∞∑
n=1

1

nρ+ 1

( B0

U0 +B0

)n{( (1− p)N −R∗
1

B0

)n

R∗
1 −R0

}
< R∗

1 +R∗
1

∞∑
n=1

1

nρ+ 1

( B0

U0 +B0

)n( (1− p)N −R∗
1

B0

)n

= R∗
1 +R∗

1

∞∑
n=1

1

nρ+ 1

( (1− p)N −R∗
1

U0 +B0

)n

< R∗
1 +R∗

1

∞∑
n=1

1

ρ+ 1

( (1− p)N −R∗
1

U0 +B0

)n

= R∗
1 +R∗

1

∞∑
n=1

1

ρ+ 1

( (1− p)N −R∗
1

(1− p)N −R0

)n

= R∗
1 +R∗

1

1

ρ+ 1

(1− p)N −R∗
1

R∗
1 −R0

≤ R∗
1 + (1− p)N −R∗

1, if
R∗

1

R0
≥ 1 +

1

ρ
,

= (1− p)N.

The condition
R∗

1

R0
≥ 1 + 1

ρ is satisfied for our initial value B0, R0 sufficiently small. Because if
R∗

1

R0
< 1 + 1

ρ , according to the equation (4.2), we have

B∗
1

B0
=

(R∗
1

R0

)ρ

<
(
1 +

1

ρ

)ρ

< e,

where B∗
1 is the final size of believer in terms of R∗

1 by equation (4.2). Then, we can get:

B0

B∗
1

>
1

e
and

R0

R∗
1

>
ρ

ρ+ 1
.

Since B∗
1 +R∗

1 = (1− p)N ,
B0 +R0

(1− p)N
> min

{1

e
,

ρ

ρ+ 1

}
.

This implies that at least one of the initial values B0, R0 must be relatively large, which conflicts

with our assumption that they are sufficiently small. Hence, the condition
R∗

1

R0
≥ 1+ 1

ρ is satisfied.

We can safely come to the result that g2(R
∗
1) < (1− p)N .

Since R∗
2 satisfies g2(R

∗
2) = (1 − p)N and the function g2 is monotonically increasing in its

domain, we could obtain the result:
R∗

1 < R∗
2.

Then, the social damage B∗
1 from equation (4.2) and X∗

2 form (4.4) have:

B∗
1 > X∗

2 .
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Appendix F Proof of Corollary 4.4

We denote the root of equation (4.4) with β = σκ1 is R∗
21, the final state expressed by equation

(4.5) is R∗
3. We want to show that given same parameters, the relation

R∗
21 < R∗

3

holds.

Value of R∗
21 We can rewrite the equations (4.4) with β = σκ1 to the form without infinite

series:

(1− p)N = R0 +

∞∑
n=0

1

n+ 1

( B0

U0 +B0

)n{
R∗

(R∗

R0

)n

−R0

}
. (F1)

Notice that the infinite series in the right hand side can be substituted by Taylor’s expansion

ln(1− x) =

∞∑
n=1

−xn

n
, for |x| < 1.

We can the transform the equation (F1) by the following steps:

(1− p)N = R0 +

∞∑
n=0

1

n+ 1

( B0

U0 +B0
· R

∗

R0

)n

R∗ −
∞∑

n=0

1

n+ 1

( B0

U0 +B0

)n

R0

= R0 +R∗ (U0 +B0)R0

B0R∗

∞∑
n=0

1

n+ 1

( B0

U0 +B0
· R

∗

R0

)n+1

−R0
U0 +B0

B0

∞∑
n=0

1

n+ 1

( B0

U0 +B0

)n+1

= R0 +R0
U0 +B0

B0

∞∑
n=1

1

n

( B0

U0 +B0
· R

∗

R0

)n

−R0
U0 +B0

B0

∞∑
n=1

1

n

( B0

U0 +B0

)n

= R0 +R0
U0 +B0

B0

{
− ln

(
1− B0

U0 +B0
· R

∗

R0

)}
−R0

U0 +B0

B0

{
− ln

(
1− B0

U0 +B0

)}
= R0 +R0

U0 +B0

B0
ln

1− B0

U0+B0

1− B0

U0+B0
· R∗

R0

= R0 +R0
U0 +B0

B0
ln

U0

U0 +B0 −B0R∗/R0
.

One important thing is that the root of (4.4) satisfies (C2), which has

B0

U0 +B0

( R

R0

)ρ

=
φ

1 + φ
< 1,

where ρ = β
σκ and φ = B

U . Here, we let ρ = 1 for the prerequisite β = σκ1, R = R∗ for the final
state, then we have

B0

U0 +B0

(R∗

R0

)
< 1,

R∗ < R0
U0 +B0

B0
.

This is an important property about the size of the root in equation (4.4).
Thus, we have

R0 +R0
U0 +B0

B0
ln

U0

U0 +B0 −B0R∗
21/R0

= (1− p)N

and

R∗
21 < R0

U0 +B0

B0
. (F2)
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Comparison between R∗
21 and R∗

3 For simplicity, let us denote

u =
U0

B0
; v =

(1− p)N

R0
; x∗

21 =
R∗

21

R0
; x∗

3 =
R∗

3

R0
.

It is clear that u > 0, v > 1. We can see that x∗
21 satisfies:

1 + (1 + u) ln
u

1 + u−R∗/R0
= v.

We may define an equation g3(x) by

g3(x) = 1 + (1 + u) ln
u

1 + u− x
.

Then, we have
g3(x

∗
21) = v.

We can easily find that g′3(x) > 0. Therefore, if we can find that g3(x
∗
3) > v = g3(x

∗
21), it will

be equivalent to R∗
3 > R∗

21.

x∗
3 =

R∗
3

R0
= 1 + u ln

v + u

1 + u
.

Substitute this expression of x∗
3 in g3(x), we have

g3(x
∗
3) = 1 + (1 + u) ln

u

1 + u ln v+u
1+u

= 1 + (1 + u) ln
1

1− ln v+u
1+u

= 1− (1 + u) ln ln
e(1 + u)

v + u
.

Notice that in order to make the term ln ln e(1+u)
v+u meaningful, it requires

ln
e(1 + u)

v + u
> 0

e(1 + u)

v + u
> 1

e(1 + u) > v + u

v < e + (e− 1)u.

This means that if v ≥ e + (e− 1)u, then the expression of g3(x
∗
3) will be meaningless. In fact,

if we let v ≥ e + (e− 1)u, then we have

x∗
3 = 1− u ln

1 + u

v + u
≥ 1 + u.

The inequality x∗
3 ≥ 1 + u means that R∗

3 satisfies

R∗
3 ≥ R0

(
1 +

U0

B0

)
= R0

U0 +B0

B0
.

From (F2), we have

R∗
21 < R0

U0 +B0

B0
≤ R∗

3, when v ≥ e + (e− 1)u.

As for the case with 1 < v < e + (e− 1)u, we may define a function

g4(u, v) = 1− (1 + u) ln ln
e(1 + u)

v + u
− v,

with u > 0, 1 < v < e + (e− 1)u. It comes from g4(u, v) = g3(x
∗
3)− v. If g4(u, v) > 0, it means

that g3(x
∗
3) > v and g3(x

∗
3) > g3(x

∗
21). The value of g4(u, v) at the boundary v = 1 is

g4(u, 1) = 1− 1 = 0.
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We can also find that

∂g4(u, v)

∂v
= −(1 + u)

1

ln e(1+u)
v+u

v + u

e(1 + u)

−e(1 + u)

(v + u)2
− 1

=
1

1 + ln 1+u
v+u

1 + u

v + u
− 1

>
1

1+u
v+u

1 + u

v + u
− 1

= 0.

This implies that for any 1 < v < e + (e − 1)u, we have g4(u, v) > 0. Thus, g3(x
∗
3) > v.

Since we have g3(x
∗
21) − v and g′3(x) > 0, we can conclude that x∗

3 > x∗
21 is true for the case

1 < v < e + (e− 1)u. Therefore, we have proved that

R∗
21 < R∗

3

is always satisfied for any cases. Then, the social damage X∗
21 from equation (4.4) and X∗

3 form
(4.5) have:

X∗
21 > X∗

3 .

Appendix G Proof of Theorem 5.1

Since X monotonically increasing and bounded above (X ≤ (1− p)N),

X → X∗ as t → ∞. (G1)

As for the final state of U and B, it depends on the value of κ3. Firstly, we use proof by
contradiction to show that B → 0.

Case of κ3 = 0

When κ3 = 0, we have
dU

dt
+

dB

dt
= −γκ2AB. (G2)

If B → B∗ > 0, from
dA

dt
= αBS − δA and S +A = pN,

we have

αB∗S∗ − δA∗ = 0

αB∗(pN −A∗)− δA∗ = 0

αB∗pN = δA∗ + αB∗A∗

A∗ =
αB∗

δ + αB∗ pN.

We have shown that if B → B∗ > 0, the, A → A∗ > 0. From (G2), we have

lim
t→∞

dU

dt
+

dB

dt
= −γκ2A

∗B∗ < 0.

This violates the final state. Hence, it is impossible that B converges to a positive value B∗,

B → 0 as t → ∞. (G3)

Since B∗ = 0, we have

A∗ =
αB∗

δ + αB∗ pN =
α · 0

δ + α · 0
pN = 0,
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which means that
A → 0, S → pN as t → ∞. (G4)

As for U , we use the proof by contradiction again. From the system (5.1) and the condition
κ3 = 0, we have

dB

dt
= {βU − γκ2A}B.

We may assume that U → U∗ > 0. As we already know that A → 0, there exists a finite time
T such that

βU − γκ2A > 0, for any t > T.

Note that T is finite, this means that the value of B at time T is positive. From the argument
above, we have

B > B(T ), for any t > T.

However, we already proved that B → 0 in (G3). This contradiction implies that U → U∗ > 0
is false, U can not converge to a positive value U∗. Therefore,

U → 0 as t → ∞. (G5)

The argument above have proved the final state of case κ3 = 0.

Case of κ3 > 0

In the case that κ3 > 0, the method is a little bit different. From the system (5.1), we have

lim
t→∞

dX

dt
= lim

t→∞
γ(κ2A+ κ3X)B ≥ lim

t→∞
γκ3XB and lim

t→∞

dX

dt
= 0.

Since X → X∗ > 0, B must go to 0, which means

B → 0 as t → ∞. (G6)

Using similar argument as (G4), we can also obtain the result that A → 0, S → pN .
As for U , we use a different method by considering the following relation:

dU

dX
=

−βBU

γ(κ2A+ κ3X)B
= − βU

γ(κ2A+ κ3X)
≥ − βU

γκ3X
.

dU

U
≥ − β

γκ3

dX

X
.

Then, we have this relationship:

d lnU ≥ − β

γκ3
d lnX. (G7)

We may consider a time t′ > 0. At that time t = t′, the state of system is

(U,B,X, S,A) = (U ′, B′, X ′, S′, A′),

where the value X ′ > 0. Then consider the time t > t′, from (G7), we have

lnU − lnU ′ ≥ − β

γκ3
(lnX − lnX ′)

U

U ′ ≥
( X

X ′

)− β
γκ3

U ≥ U ′
( X

X ′

)− β
γκ3
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This equation holds for the final state (t → ∞). Hence, we have the following relationship:

U∗ ≥ U ′
(X∗

X ′

)− β
γκ3

.

This value of lower bound depends on the selection of time t′. Any way, it shows that there
exists a lower bound of U∗, which is positive. Since U in monotonically decreasing and have a
positive lower bound, we can say that

U → U∗ as t → ∞. (G8)

From (G1), (G3), (G4) and (G5), (G6) and (G8), we have shown the final state for the case
κ3 > 0:

(U,B,X, S,A) → (U∗, 0, X∗, pN, 0), as t → ∞,

where the value of U∗ follows {
U∗ = 0, if κ3 = 0;

U∗ > 0, if κ3 > 0.

Appendix H Proof of Theorem 6.1

In the system (3.1), we can see that X is monotonically increasing and bounded above, which
means

X → X∗ as t → ∞. (H1)

As for the final state of other variables, it also depends on the value of κ3.

Case of κ3 > 0

It is easier to consider the case κ3 > 0 in the beginning. From the equation

dU

dt
= −βBU − σ(κ1R+ κ2A+ κ3X)U ≤ −σκ3XU,

we can see that U → 0. Otherwise, dU/dt will be negative in the final state. Since

dB

dt
= {βU − γ(κ1R+ κ2A+ κ3X)}B ≤ (βU − γκ3X)B,

if B → B∗, it causes

lim
t→∞

dB

dt
≤ lim

t→∞
(βU − γκ3X)B = −γκ3X

∗B∗ < 0.

It violates the final state, which means B → B∗ is impossible. Hence, we have B → 0.
Then, we consider the sum of R and Y :

dR

dt
+

dY

dt
= σ(κ1R+ κ2A+ κ3X)U.

It is positive in finite time, since all the variables are positive in finite time. Therefore, the sum
R+Y is monotonically increasing and bounded above, it will converge to a positive value. From
the system,

dY

dt
= δR− αBY.

Since limt→∞
dY
dt = 0,

δR∗ − αB∗Y ∗ = 0

R∗ =
α

δ
B∗Y ∗

R∗ = 0,
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since we know that B∗ = 0. This show that R → 0. We already have the sum of R + Y will
converge to a positive value, it implies Y → Y ∗ > 0.

We already proved the convergence of U , B, R, X and Y . As for S and A, since B → 0, we
can get A → 0 and S → 0 by using the similar arguments as Appendix (G).

Case of κ3 = 0

In the case that κ3 = 0, we will use proof by contradiction. Firstly, let us assume that U →
U∗ > 0. From

dU

dt
= {−βB − σ(κ1R+ κ2A)}U,

we have −βB − σ(κ1R+ κ2A) → 0. Otherwise, it will be impossible for U → U∗. This implies

B → 0 and κ1R+ κ2A → 0.

However, as shown in
dB

dt
= {βU − γ(κ1R+ κ2A)}B, (H2)

it is impossible to make B → 0. This is because we already have U → U∗ > 0 and kappa1R +
κ2A → 0. Hence, there exists a time T such that

βU − γ(κ1R+ κ2A) > 0, for anyt > T.

The value B > 0 in finite time, therefore, for any t > T , dB/dt > 0. It is impossible to make
B → 0. This contradiction implies our assumption U → U∗ > 0 is false,

U → 0 as t → ∞.

Then, we can consider the B. If B → B∗ > 0, it brings out R → R∗ > 0, A → A∗ > 0 (using
the similar arguments as case κ3 > 0). However, according to equation (H2),

lim
t→∞

dB

dt
= lim

t→∞
{βU − γ(κ1R+ κ2A)}B = −γ(κ1R

∗ + κ2A
∗)B∗ < 0,

since we already know U → 0. This violates the definition of final state. Therefore, the assump-
tion B → B∗ > 0 is false,

B → 0 as t → ∞.

We already show that X → X∗, U → 0 and B → 0. As for the convergence of other states,
it can be proven in the same argument as the case κ3 > 0.

Appendix I Application of fast process assumption

When the proportion of sophisticated members p is sufficiently large that makes 1/(1− p) ≫ 1,
the risk of unsophisticated members seems converge to a certain value. We will apply fast
process assumption to verify this property for the case that reformed members releasing no
counter information (κ3 = 0). In this case, the rejoinders R and A are responsible for the
spreading of counter information.

The fast process assumption is based on the assumption that state transition between some
states are much faster than in other states. For example, we may assume that the state transition
of sophisticated members are much faster, since their state transition is not caused by “change
of belief”. They change from “unconcerned” state to rejoinder is like an activation of voluntary
behaviour, it can be much easier than the unsophisticated members who need to accept new
information. Also, we may assume the expected duration of sophisticated rejoinder state is also
short. For these sophisticated members, the counter information is only an alarm that do not
bring new knowledge or new ideas. It may not occupy their brain for long time and easily be
forgotten. Hence, it is reasonable that the states transition of sophisticated members are easier
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and faster. With this assumption, we regard the state “unconcerned”(S) and “sophisticated
rejoinder” (A) are fast process, and apply the quasi-stationary state approximation (QSSA)
method.

From the model (3.1), we assume dS/dt ≈ 0 and dA/dt ≈ 0:

αBS − δA ≈ 0.

Then we can get the expression of A:

A ≈ αB

αB + δ
pN. (I1)

Under the fast process assumption, the sophisticated rejoinder population A can be expressed
by the density of believers B and other parameters. As B changes, the value of A changes much
quickly to keep the value of A close to the equilibrium αB

αB+δpN . We can use it to reduce the
dimension of the original model, and conduct analysis on a simplified system. Note that the fast
process assumption requires α and δ are much larger than other parameters.

We also assume the unsophisticated rejoinder R is a fast process, and have dR/dt ≈ 0:

dR

dt
= σ(κ1R+ κ2A)U − δR+ αBY ≈ 0.

Since U +B+R+X+Y = (1−p)N always holds, Y = (1−p)N − (U +B+R+X), we can get

R ≈ σAU + αB{(1− p)N − U −B −X}
αB + δ − σU

.

As for the concentration of counter information κ1R+ κ2A, we have

κ1R+ κ2A ≈ κ1αB

(
1 + κ2−κ1

κ1
p
)
N − (U +B +X)

αB + δ − σκ1U
.

The expression includes three variables U,B,X, we may denote it as a function g(U,B,X).
Thus, we obtain a model based on the QSSA with only three variables U,B,X:

dU

dt
= −βBU − σg(U,B,X)U ;

dB

dt
= βBU − γg(U,B,X)B;

dX

dt
= γg(U,B,X)B.

Let us consider the limit of g(U,B,X) as p → 1 which makes 1/(1− p) ≫ 1.

lim
p→1

g(U,B,X) =
κ2αN

δ
B = ωB,

where ω = κ2αN/δ is a constant. This implies that as p → 1, the concentration of counter
information converges to ωB, which is proportional to the density of believers.

Then we can construct a system with this limiting condition. Here we use the term (Û , B̂, X̂)
to represent the limiting system of p → 1.

dÛ

dt
= −βB̂Û − σωB̂Û ;

dB̂

dt
= βB̂Û − γωB̂2;

dX̂

dt
= γωB̂2.
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It can be found that the equation

dÛ

d(B̂ + X̂)
= −β + σω

β

holds for any t ≥ 0. Since we know that Û → 0, B̂ → 0, we could derive the final size

X̂∗ =
β

β + σω
Û0 + B̂0

which is the final size of the limit system. If we let B̂0/Û0 → 0, the result becomes

X̂∗ ≈ β

β + σω
(1− p)N =

(1− p)N

1 + κ2ασN/βδ
.

As p → 1, we have

X∗ → X̂∗ ≈ (1− p)N

1 + κ2ασN/βδ

and the risk of unsophisticated members

X∗

(1− p)N
→ X̂∗

(1− p)N
≈ 1

1 + κ2ασN/βδ
.

In this part, we use the limiting system which is the limit for sufficiently large p that 1/(1−
p) ≫ 1 based on the fast process assumption. The risk in the limiting system converge to a
value that can be expressed by the parameters κ2, α, β, σ, δ and N . This implies that as p → 1,
the risk of the QSSA system converges to this value. This is a positive value, and hence the
risk cannot be suppress to sufficiently small. Interestingly, this value includes almost all the
parameters except γ. It implies that the limit of risk is independent with the value of γ.
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