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様々な生物の個体群動態（population dynamics）は，数理モデルを用いて

最も頻繁に研究されてきた分野です。漁業や林業における資源管理，農業にお

ける害虫制御，生物多様性の保全といった研究課題は，人間以外の生物を対象

としていますが，人口統計学，集団遺伝学，疫学といった分野では，人間集団

を対象として，数理モデルによる理論的な研究が展開されてきました。 
 

本談話会では，人間集団を対象とする個体群動態の具体的な２つの課題に対

する数理モデルによる数理生物学的な研究について概説することで，その数理

モデリングの一面を紹介します。 

ⅰ) インフルエンザのような感染症流行パターンの社会特性による出現可能性 

ⅱ) 子に対する教育投資への親の意識分布の形成機序。 
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感染症流行の周期的年変動性

(a) 高知県における小児科定点からの麻疹患者報告数の月次変動。1979 年 7 月を第 1 月として，2004 年 2 月 (第 296

月) までのデータ。(b) 日本におけるインフルエンザ罹患者の報告数データ。横軸は西暦。
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感染症流行の周期的年変動性

感染性胃腸炎の定点当たり報告数の週次変動
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研究の焦点

前年の流行により，翌年さまざまな予防対策が促されるため，感

染症が抑制される効果も働いているのではないか？
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研究の焦点

前年の流行により，翌年さまざまな予防対策が促されるため，感

染症が抑制される効果も働いているのではないか？

⇓
前年の感染規模が翌年の感染規模に間接的に影響を及ぼしている
のではないか？



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

インフルエンザワクチン生産量・使用量

(2000) (2001) (2002) (2003) (2004) (2005) (2006) (2007) (2008) (2009) (2010)

インフルエンザワクチン生産量・使用量の経年変動（平成 22 年度インフルエンザワクチン流通状況調査報告書．社団法

人細菌製剤協会）
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マスク生産量

マスク生産（国内生産・輸入）数量の経年変動（一般社団法人日本衛生材料工業連合会）
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モデリング

仮 定仮 定
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モデリング

仮 定仮 定

毎年の感染シーズンにおける感染症伝染ダイナミクスは，
Kermack–McKendrickモデルで記述される。
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モデリング

仮 定仮 定

毎年の感染シーズンにおける感染症伝染ダイナミクスは，
Kermack–McKendrickモデルで記述される。

感染率と回復率は，前年の感染規模に依存して定まる。
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モデリング

仮 定仮 定

毎年の感染シーズンにおける感染症伝染ダイナミクスは，
Kermack–McKendrickモデルで記述される。

感染率と回復率は，前年の感染規模に依存して定まる。

総個体群サイズの変動は無視し，定数とする。
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モデリング

Kermack–McKendrick SIR ModelKermack–McKendrick SIR Model

dS(t)
dt

= −σI(t)S(t)

dI(t)
dt

= σI(t)S(t) − ρI(t)

dR(t)
dt

= ρI(t)
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モデリング

Kermack–McKendrick SIR model による感染症の伝染ダイナミクスが示す時間変動
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モデリング

感染規模R∞感染規模R∞

R∞ = N − (N − I0)e−(σ/ρ)R∞

= N − (N − I0)e−(R0/N)R∞

基本再生産数

R0 :=
σN
ρ
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モデリング

相対感染規模 z := R∞/N相対感染規模 z := R∞/N

With I0/N � 1,

z = 1− e−R0z

R0 ≤ 1 ⇒ z = 0

R0 > 1 ⇒ ∃z > 0
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モデリング

過去の感染規模に対する予防水準の応答過去の感染規模に対する予防水準の応答

k+ 1年目の感染シーズンにおける感染率 σk+1と回復率 ρk+1が
k年目以前の過去の相対感染規模 ζk := {zk, zk−1, . . . }に影響を
受ける：

σk+1 = σ(ζk);
ρk+1 = ρ(ζk).
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モデリング

過去の感染規模に対する予防水準の応答過去の感染規模に対する予防水準の応答

k+ 1年目の感染シーズンにおける感染率 σk+1と回復率 ρk+1が
k年目以前の過去の相対感染規模 ζk := {zk, zk−1, . . . }に影響を
受ける：

σk+1 = σ(ζk);
ρk+1 = ρ(ζk).

k+ 1年目の感染シーズンにおける予防水準は，次のように定義
される ζkの予防水準関数によって表される：

f (ζk) =
ρk+1
σk+1

=
ρ(ζk)
σ(ζk)

=
Nk+1

R0, k+1
.
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モデリング

k年目の感染シーズンに関する基本再生産数

R0, k :=
σkNk

ρk
=

Nk
f (ζk−1)
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モデリング

感染規模の年変動ダイナミクス感染規模の年変動ダイナミクス

zk+1 = 1− e−{Nk/ f (ζk)}zk+1
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モデリング

感染規模の年変動ダイナミクス感染規模の年変動ダイナミクス

zk+1 = 1− e−{Nk/ f (ζk)}zk+1

f (ζk) ≥ Nk ⇒ zk+1 = 0

f (ζk) < Nk ⇒ ∃zk+1 > 0
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モデリング

追加の仮定追加の仮定
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モデリング

追加の仮定追加の仮定

総人口は定数；Nk = N;
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モデリング

追加の仮定追加の仮定

総人口は定数；Nk = N;

予防水準関数 f (ζk)は，任意の j ∈ {k, k− 1, k− 2, . . . }に
対する zjに関して，正かつ非減少；
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モデリング

追加の仮定追加の仮定

総人口は定数；Nk = N;

予防水準関数 f (ζk)は，任意の j ∈ {k, k− 1, k− 2, . . . }に
対する zjに関して，正かつ非減少；

基本再生産数に対する上界

R0,k =
N

f (ζk−1)
< R0 :=

N
f ({0, 0, . . . })

=
N
f0
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モデリング

追加の仮定追加の仮定

総人口は定数；Nk = N;

予防水準関数 f (ζk)は，任意の j ∈ {k, k− 1, k− 2, . . . }に
対する zjに関して，正かつ非減少；

f0 := f ({0, 0, . . . }) < N，すなわち，R0 > 1 ；
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モデリング

追加の仮定追加の仮定

総人口は定数；Nk = N;

予防水準関数 f (ζk)は，任意の j ∈ {k, k− 1, k− 2, . . . }に
対する zjに関して，正かつ非減少；

f0 := f ({0, 0, . . . }) < N，すなわち，R0 > 1 ；

もしも，R0 ≤ 1ならば，任意の k > 0についてR0, k ≤ 1．そ
の場合には，任意の k > 0について zk = 0．
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モデリング

追加の仮定追加の仮定

総人口は定数；Nk = N;

予防水準関数 f (ζk)は，任意の j ∈ {k, k− 1, k− 2, . . . }に
対する zjに関して，正かつ非減少；

f0 := f ({0, 0, . . . }) < N，すなわち，R0 > 1 ；

もしも ζk = {z, z, . . . }かつ ζk+1 = {z, z, z, . . . }ならば，
f (ζk+1) = f (ζk)．
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モデリング

予防水準の指数関数的応答予防水準の指数関数的応答

f (ζk) = f0 exp[αzk + σ(αzk−1) + σ2(αzk−2) + · · · ]

= f0 exp[α
∞

∑
j=0

σ jzk−j]

Remark: f0 < N from the assumption already mentioned.
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数理モデル

zk+1 = 1− exp

[
−R0 zk+1 exp[−α

∞

∑
j=0

σ jzk−j]

]
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数理モデル

−ln(1− zk+1)
zk+1

= R0 exp[−α
∞

∑
j=0

σ jzk−j]
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解析結果

短期社会記憶の場合（σ = 0）短期社会記憶の場合（σ = 0）

zk+1 = 1− exp

[
−R0 zk+1 exp[−α

∞

∑
j=0

σ jzk−j]

]
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解析結果

短期社会記憶の場合（σ = 0）短期社会記憶の場合（σ = 0）

zk+1 = 1− exp
[−R0 zk+1 e−αzk

]
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解析結果

短期社会記憶の場合（σ = 0）短期社会記憶の場合（σ = 0）

−ln(1− zk+1)
zk+1

= R0 e
−αzk
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解析結果

短期社会記憶の場合（σ = 0）短期社会記憶の場合（σ = 0）

短期社会記憶の場合（σ = 0）．N = 1.0, R0 = 5.0, z0 = 0.0.

(a) α = 1.0，平衡点に収束し，毎年同じ規模の流行を繰り返す場合; (b) α = 1.5，中規模

と大規模の流行を繰り返す場合; (c) α = 2.0，流行しない年と大流行する年を繰り返す

場合。
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解析結果

短期社会記憶の場合（σ = 0）短期社会記憶の場合（σ = 0）

定常状態の分岐．(a) α = 1.5; (b) R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

短期社会記憶の場合（σ = 0）短期社会記憶の場合（σ = 0）

定常状態に関するパラメータ (1/R0, α) の分類
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解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

zk+1 = 1− e−{Nk/ f̂ (zk, zk−1)}zk+1

with

f̂ (zk, zk−1) = f0 eα(zk+bzk−1)
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解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 0.1

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

α

定常状態の分岐．R0 = 5.0, N = 1.0.
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解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 0.2

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 0.3
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 0.4
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 0.5
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 0.7
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 0.8
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 0.9
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

社会記憶が過去 2年間のみの場合社会記憶が過去 2年間のみの場合

b = 1.0
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

zk+1 = 1− exp

[
−R0 zk+1 exp[−α

∞

∑
j=0

σ jzk−j]

]



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.1
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.2
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.3
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.4
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.5
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.6
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.7
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.8
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.9
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 1.0
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定常状態の分岐．R0 = 5.0, N = 1.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉
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感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉
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感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.3

20 40 60 80

0.2

0.4

0.6

0.8

1.0

season

感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.4
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感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.5
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感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.6
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感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.7
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感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉
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感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

解析結果

予防水準の指数関数的応答〈一般の場合〉予防水準の指数関数的応答〈一般の場合〉

σ = 0.9
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感染規模の年変動．R0 = 5.0, N = 1.0, α = 5.0.



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part I. 感染症流行パターンと社会応答

結 論

実際のデータに見られるような大流行と小流行の反復を生起させ
る要因の 1つとして，前年以前の感染規模に対する予防水準の応
答を考えうる。

特定の感染症の異なる人口集団における感染規模変動の違いが，
それらの人口集団間の社会・文化的特性に起因する可能性が議論で
きるかもしれない。

具体的な感染症のデータを応用した流行の年変動の理論的な解析
の道具として使えることが期待でき，本研究の今後の課題の一つ
である。

他の種類の「流行」，たとえば，ファッションや音楽などの文化要
素の流行の移り変わりの様相の特性にも，本研究で考察したよう
な数理モデルによる理論的研究が可能かもしれない。



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part II. 教育投資に対する親の意識分布の形成

Part II. 教育投資に対する親の意識分布の形成Part II. 教育投資に対する親の意識分布の形成



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part II. 教育投資に対する親の意識分布の形成

教育投資に対する親の意識分布

0
10
20
30
40
50
60
70
80

ふつうの生活志向 楽しさ志向 勉強志向 学習への関心

（％）
大卒・短大卒の母親

非大卒・非短大卒の母親

13.5

25.4
31.9

27.9
32.8

60.6

48.2
40.5

子についての母親の学力観・勉強観に関するアンケート集計データ．母親の学歴別．（ベネッセ教育研究開発センター,

2011. 第 4 回子育て生活基本調査, 第４章: 子どもの学力・習い事・進路）



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part II. 教育投資に対する親の意識分布の形成

研究の焦点

親は学校や学校外での子の教育へ投資を行うが，そうした
教育投資の家庭における重要度についてはばらつきがある。
そのような教育投資に関する意識の社会での分布はどのよ
うな条件下でどのような性質を持ち得るのだろうか。



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part II. 教育投資に対する親の意識分布の形成

モデリング

　第 n + 1 世代の子が
受ける教育投資のレベル

　第 n世代の親の
教育投資に対する意識

伝達子の変異

　第 n + 1 世代の親の
教育投資に対する意識

伝達子

伝達子前駆伝達子

　　受けた教育投資
によって第 n + 1 世代の
　　子が得る経験
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瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part II. 教育投資に対する親の意識分布の形成

モデリング

伝達子（ミーム；meme）伝達子（ミーム；meme）

伝達子型 第 n 世代の親における存在頻度

WW 教育投資に対する高い意識 an

Ww 教育投資に対する中程度の意識 bn

ww 教育投資に対する低い意識 cn

　　　　　　　　　　　　　　　　ただし，an + bn + cn = 1



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part II. 教育投資に対する親の意識分布の形成

モデリング

前駆伝達子（pre-meme）前駆伝達子（pre-meme）

親の伝達子型の組 子の前駆伝達子型

(WW , WW) 〈WW〉
(ww , ww) 〈ww〉
(Ww , Ww) 〈Ww〉
(WW , Ww) 〈WW〉：〈Ww〉 = α：1− α

(Ww , ww) 〈Ww〉：〈ww〉 = β：1− β

(WW , ww) 〈WW〉：〈Ww〉：〈ww〉 = γ：(1− γ)δ：(1− γ)(1− δ)

α，β，γ，δ は，教育投資に関する意識が両親間で異なる場合により強い意識の側の教育投資が実施される確率．
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モデリング

　第 n + 1 世代の子が
受ける教育投資のレベル

　第 n世代の親の
教育投資に対する意識

伝達子の変異

　第 n + 1 世代の親の
教育投資に対する意識

伝達子

伝達子前駆伝達子

　　受けた教育投資
によって第 n + 1 世代の
　　子が得る経験

an

n

n

n+1

W     w
ν

ω

n+1φ   (〈WW〉)
φ   (〈Ww〉)
φ   (〈ww〉)

n+1

n+1

b
c

a
b
c n+1

n+1
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数理モデル

an+1 = (1− ω)2(an2 + 2αanbn + 2γancn)

+(1− ω)ν{bn2 + 2(1− α)anbn + 2βbncn + 2(1− γ)δancn}
+ν2{cn2 + 2(1− β)bncn + 2(1− γ)(1− δ)ancn}

bn+1 = 2ω(1− ω)(an2 + 2αanbn + 2γancn)

+(1− ω − ν + 2ων){bn2 + 2(1− α)anbn + 2βbncn + 2(1− γ)δancn}
+2ν(1− ν){cn2 + 2(1− β)bncn + 2(1− γ)(1− δ)ancn}

cn+1 = ω2(an2 + 2αanbn + 2γancn)

+ω(1− ν){bn2 + 2(1− α)anbn + 2βbncn + 2(1− γ)δancn}
+(1− ν)2{cn2 + 2(1− β)bncn + 2(1− γ)(1− δ)ancn}
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Part II. 教育投資に対する親の意識分布の形成

数理モデル

an + bn + cn = 1により，

an+1 = (1− ω − ν){(1− 2α)(1− ω)an2 + (1− 2β)νcn2

+2Aancn + 2α(1− ω)an − 2(1− β)νcn} + (1− ω)ν

cn+1 = −(1− ω − ν){(1− 2α)ωan2 + (1− 2β)(1− ν)cn2

+2Bancn + 2αωan − 2(1− β)(1− ν)cn} + ω(1− ν)

A = (γ − α)(1− ω) − (β − γ − δ + γδ)ν

B = (γ − α)ω − (β − γ − δ + γδ)(1− ν)
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解析結果

ω = ν，α = β = γの場合ω = ν，α = β = γの場合

伝達子の変異の確率が等しく，意識がより高い親に従って子の得る経験の質が決まる確率

が，すべての組み合わせにおいて等しい。

親の伝達子型の組 子の前駆伝達子型

(WW , WW) 〈WW〉
(ww , ww) 〈ww〉
(Ww , Ww) 〈Ww〉
(WW , Ww) 〈WW〉：〈Ww〉 = α：1− α

(Ww , ww) 〈Ww〉：〈ww〉 = α：1− α

(WW , ww) 〈WW〉：〈Ww〉：〈ww〉 = α：(1− α)δ：(1− α)(1− δ)
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Part II. 教育投資に対する親の意識分布の形成

解析結果

ω = ν，α = β = γの場合ω = ν，α = β = γの場合

an+1 = (1− 2ω){(1− 2α)(1− ω)an2 + (1− 2α)ωcn2

+2δ(1− α)ωancn + 2α(1− ω)an − 2(1− α)ωcn}
+ω(1− ω)

cn+1 = −(1− 2ω){(1− 2α)ωan2 + (1− 2α)(1− ω)cn2

+2δ(1− α)(1− ω)ancn + 2αωan − 2(1− α)(1− ω)cn}
+ω(1− ω)
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解析結果

ω = ν，α = β = γの場合ω = ν，α = β = γの場合

◎ 伝達子の変異がない場合（ω = ν = 0）

(i) α > 1/2→ (a∗, b∗, c∗) = (1, 0, 0)に収束

(ii) α < 1/2→ (a∗, b∗, c∗) = (0, 0, 1)に収束

(i) (ii)

a
b
c

n

n

n

n n
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1.0
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解析結果

ω = ν，α = β = γの場合ω = ν，α = β = γの場合
◎ 伝達子が必ず変異する場合（ω = ν = 1）

(i) (a∗, b∗, c∗) = (0, 1, 0)は常に局所安定

(ii) 2周期解 (1, 0, 0)�(0, 0, 1)は常に局所安定

a
b
c

n

n

n

(a , b , c ) = (0.3, 0.6, 0.1)0 0 0

n n
0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

(a , b , c ) = (0.8, 0.1, 0.1)0 0 0

α = 0.8，δ = 0.6
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解析結果

ω = ν，α = β = γの場合ω = ν，α = β = γの場合

ω＝１に近い所を拡大
ω

ω

a b c

0.95 0.96 0.97 0.98 0.99 1.00

0.2

0.4

0.6

0.8

1.0
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0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

定常状態の ω ( = ν) に関する分岐図．α = 0.8，δ = 0.6．



瀬野裕美 (情報基礎数理学 IV 分野)

“人間集団における動態特性を数理モデルで考えてみる”

Part II. 教育投資に対する親の意識分布の形成

解析結果

α = β = γの場合α = β = γの場合

0.80 0.85 0.90 0.95 1.00
0.80

0.85

0.90

0.95

1.00

ω

ν
平衡状態

動的状態

定常状態の (ω, ν)–依存性．α = 0.1，δ = 0.1，(a0, c0) = (1.0, 0.0)．
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解析結果

α = β = γの場合α = β = γの場合

0.0 0.2 0.4 0.6 0.8 1.0
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0.4
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0.8

1.0
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1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

α α α

a* b* c*

定常状態のパラメータ α に関する分岐の数値計算．δ = 0.1，ω = 0.98，ν = 0.99，
(a0, c0) = (1.0, 0.0)．
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結 論

伝達子の変異が起こり得ないならば，教育投資に対する意識がより低い親に従って
教育投資レベルが決まりやすい場合は，社会における教育投資に対する意識分布は，
意識が低い親ばかりの状態に陥り，意識がより高い親に従って教育投資レベルが決
まりやすい場合は，意識分布は，意識が高い親ばかりの状態に陥る。

伝達子の変異が起こり得るならば，変異確率が小さい場合は，社会における教育投
資に対する意識分布はある一定の分布に収束し，平衡状態に陥るが，変異確率がか
なり大きい場合は，教育投資に対する意識が高い親が多い状態と，意識が低い親が
多い状態が繰り返される周期変動状態に漸近する可能性がある。

つまり，親が，自らが子ども時代に受けた教育投資レベルと合致しないような教育投資に対する意識を持ちやす
い（社会的）条件下では，社会における親の意識分布には周期的な流行性の変動がみられる可能性が示唆され
た。また，そのような周期的変動は，意識が低い親に従って子の受ける教育投資のレベルが決まりやすい場合
や，意識がより高い親に従って子の受ける教育投資のレベルが決まりやすい場合に起こりやすい。

現実では，社会的状況は時代を経るにつれて変化していくので，変異確率も世代に
依存して変動するだろう。したがって，変異確率の世代に依存する変動（たとえば，
確率的変動）を導入したより発展的な数理モデルを考えることも意味があると考え
られる。

本研究で検討した数理モデルにおいては，伝達子の変異確率が社会環境・生活環境
の影響を反映するパラメータとして与えられているので，異なる地域，国による意
識分布の違いを理論的に扱うための数理モデルとして発展させることも期待できる。
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数理生物学における数理モデリングの考え方の応用できる
生物現象や社会現象の研究は多様です。それぞれの現象に
おいて，どのような側面に焦点をあてるかに依存して，そ
のモデリングの論理的合理性は異なるべきですが，多様な
側面からの理論的な研究により，現象のもつ興味深い特性
が明らかになることはこのような研究における一般的な目
的の一つであり，「喜び」です。
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ご清聴ありがとうございます
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