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Generic SIR model

ds(t)

=B~ AS(t) —usS(t)
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Generic SIR model

as(t)

5~ = B— AS(t) —psS(t)

A = A(S,I,R): Force of infection
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Generic SIR model

dil—(tt) = B — AS(#) — usS(t)

dI(t) _
—ar =

AS(t) — qI(t) — (1)
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Generic SIR model

dil_(tt) = B — AS(t) — usS(t)

Al _

- AS(£) — gI(£) — mI(t)

RO _ 9I(t) — xR (1)
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Generic SIR model

as(e) _

> — AS(})

Al _

- AS() — q1(2)

RO _ 11
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Generic SIR model

dS(t) _
dt
dI(t)
at

R 1 (1)

— AS(#)

AS(t) —qI(t)

d
S{S(8) +1(t) + R(1)} =0
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Generic SIR model

ds(t) _
at
dI(t)
at

— AS(2)

AS(t) — gI(t)

L o

S(t) + I(t) + R(t) = N

(time-independent constant total population size)
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Kermack-McKendrick SIR model

dS(t) _
3 = —pBI(t)S(t)

d{d_@ = BI(t)S(t) — qI(¢)

R _ a1(2)
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Kermack-McKendrick SIR model

dS(t) _
3 = —pBI(t)S(t)

ar(t) _

S = RIS —al(1)

RO _ 10
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Kermack-McKendrick SIR model

as(t) _
S = —pI)S(t)

d{d_(tt) = BI(t)S(t) — qI(¢)

R 71(t)
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Kermack-McKendrick SIR model

as(t) _
—r = —BL()S(t)

d;_(tt) = BI(t)S(t) — qI(t)
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Kermack-McKendrick SIR model

as(t) _
= —pBI(t)S(t)

””d_(tt) = BI(t)S(t) — qI(t)

1 ds(t)

it S

as(t)  dI(t) g
FTRET: B S(t) dt
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Kermack-McKendrick SIR model

dS(t) _
= —pBI(t)S(t)

d{d_(tf) = BI(t)S(t) — qI(t)

L5y +1() — 2 1ogs(n)} = 0




Epidemic dynamics model

Kermack-McKendrick SIR model

as(t) _
— = —BL(1)S(t)

d{d_(tt) = BI(t)S(t) — qI(¢)

S(t)+ I(t) — % log S(t) = const.
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Kermack-McKendrick SIR model

ds(t)
3 = = —pI(t)S(t)

d;_(tt) = BI(t)S(t) — qI(t)

Conserved quantity of Kermack—McKendrick SIR model

S(t) + I(t) — %logS(t) =5(0)+1(0) — 9 10g 5(0)
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Kermack-McKendrick SIR model

Conserved quantity of Kermack—McKendrick SIR model

S(t) +I(t) — %logS(t) = 5(0) + 1(0) — T 10g S(0)

p
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Kermack-McKendrick SIR model

Conserved quantity of Kermack—McKendrick SIR model

S(t) +1(t) — T10g8(t) = 5(0) + 1(0) — L10g 5(0)

p p
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Kermack-McKendrick SIR model

Conserved quantity of Kermack—McKendrick SIR model

S(t) +I(t) — %logS(t) = 5(0) + 1(0) — T 10g S(0)

p
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Kermack-McKendrick SIR model

Final size equation for Kermack—McKendrick SIR model

ng Seo = S(0) + I(0) —

B log S(0)
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Kermack-McKendrick SIR model

S(0) > => I(t) increases in the early period

of disease invasion;

> 4
p

S(O) 1 => I(t) monotonically decreases
3 .
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Kermack-McKendrick SIR model

B

—S8(0) >1 = I(t) increases in the early period
q of disease invasion;

B

; S(0) <1 = I(t) monotonically decreases.
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Kermack-McKendrick SIR model

B

—S8(0) >1 = I(t) increases in the early period
q of disease invasion;

B

? S(0) <1 = I(t) monotonically decreases.

Basic reproduction number for Kermack—McKendrick SIR model
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Kermack-McKendrick SIR model

Ky >1 => I(t) increases in the early period
of disease invasion;

Xy <1 = I(t) monotonically decreases.

Basic reproduction number for Kermack—McKendrick SIR model
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In the biological context, the basic reproduction number
% is defined as the expected number of new cases of

an infection caused by an infective individual, in a pop-

ulation consisting of susceptible contacts only.
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Basic reproduction number %,

In the biological context, the basic reproduction number
% is defined as the expected number of new cases of

an infection caused by an infective individual, in a pop-

ulation consisting of susceptible contacts only.

2% The definition is independent of the epidemic situation in the population!

%y >1 = The number of infectives (likely) increases;

Zy <1 = The number of infectives decreases.
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Basic reproduction number %,

In the biological context, the basic reproduction number
% is defined as the expected number of new cases of

an infection caused by an infective individual, in a pop-

ulation consisting of susceptible contacts only.

X The definition is independent of the epidemic situation in the population!

The number of infectives increases. = %y > 1;

The number of infectives decreases. = %y <1 (likely)
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Basic reproduction number %,

Kermack-McKendrick SIR model

ds(t) _
TR —pBI(t)S(t)

d;_(tt) = BI(t)S(t) — qI(t)
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Basic reproduction number %,

Kermack-McKendrick SIR model

e

= BL)S() —qI(t)
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Basic reproduction number %,

Kermack-McKendrick SIR model

ai) _

i = 1{L s -1
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Basic reproduction number %,

Kermack-McKendrick SIR model

‘ﬂd—(tt) — q{g S(£) —1}1(t)

B

;S(t) >1 = I(t) increases;

gS(t) <1 = I(t) decreases.
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Basic reproduction number %,

Kermack-McKendrick SIR model

28 _

2 = {£ s -1}10)

Effective reproduction number Z%; for Kermack—McKendrick SIR model
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Basic reproduction number %,

Kermack-McKendrick SIR model

28 _

2 = {£ s -1}10)

Effective reproduction number Z%; for Kermack—McKendrick SIR model

:@t = ES(i’) S @0 =
q q




William Ogilvy Kermack Anderson Gray McKendrick
(26 April 1898 — 20 July 1970) (8 September 1876 — 30 May 1943)
References: Davidson, J. N. (1971) "William Ogilvy Kermack. 1898-1970". Biographical Memoirs

of Fellows of the Royal Society, 17: 399-429. doi:10.1098/rsbm.1971.0015;
http://www-history.mcs.st-and.ac.uk /Biographies/McKendrick.html
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* Kermack, W, McKendrick, A (1991) Contributions to the mathematical
theory of epidemics — I. Bulletin of Mathematical Biology, 53(1-2): 33-55.
doi:10.1007 /BF02464423.

Reprinted from
the Proceedings of the Royal Society, Vol. 115A, pp. 700-721 (1927)

¢ Kermack, W, McKendrick, A (1991) Contributions to the mathematical
theory of epidemics — Il. The problem of endemicity. Bulletin of
Mathematical Biology, 53(1-2): 57-87. doi:10.1007 /BF02464424.
Reprinted from
the Proceedings of the Royal Society, Vol. 138A, pp. 55-83 (1932)

® Kermack, W, McKendrick, A (1991) Contributions to the mathematical
theory of epidemics — Ill. Further studies of the problem of endemicity.
Bulletin of Mathematical Biology, 53(1-2): 89-118.
doi:10.1007 /BF02464425.
Reprinted from
Proceedings of the Royal Society, Vol. 141A, pp. 94-122 (1933)
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Figure 1. Deaths from plague in the island of Bombay over the period 17 December
1905 to 21 July 1906. The ordinate represents the number of deaths per week, and
the abscissa denotes the time in weeks. As at least 80-90% of the cases reported
terminate fatally, the ordinate may be taken as approximately representing dz/d¢ as
a function of ¢. The calculated curve is drawn from the formula:

dz

- 2 -
Y=g 890 sech?(0.2t-3.4).
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Figure 1. Deaths from plague in the island of Bombay over the period 17 December
1905 to 21 July 1906. The ordinate represents the number of deaths per week, and
the abscissa denotes the time in weeks. As at least 80-90% of the cases reported
terminate fatally, the ordinate may be taken as approximately representing dz/dz as
a function of . The calculated curve is drawn from the formula:

d
y= H§ = 890 sech?(0.2t— 3.4).
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* H. Inaba, Age-Structured Population Dynamics in Demography and
Epidemiology, Springer, Singapore, 2017.

o WERA - EFR—F - BEHAX, HEEYFES [RRE] —BEETL
FRIT DR —, HITHAR, R=R, 2017.

o BREEEYER (R), ™8u O¥EEYF (BIHX BERESE) vV —
AEBEYFER, £ 1%, HIHER, RR, 2008.

o TRIESH, BEPEOHIEET IV, ¥R, =R, 2008.
o TRES, BIBAOZ, REKXZHIRS, R, 2002.
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Kermack-McKendrick SIRS model

Susceptible Infective

S

|

Removed/Recovered




Epidemic dynamics model

Kermack-McKendrick SIRS model

as() _

) = —pI(n)s(t) + wR(t)
dI(t) _

= BI()S() — a1(t)

"”:lgf) — q1(t) — wR(¢)
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Kermack-McKendrick SIRS model

ds(t)
— = —BI(1)S(2) + wR(t)

)

L= BI(DS(H) —q1(1)

dR(t) _

. 71(£) — wR(?)

S(t) + I(t) + R(t) = N
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Kermack-McKendrick SIRS model | %, := ﬁ N

q

ds(t)
— = —BI(1)S(1) + wR(t)

ai(t) _

Sl = BIH)S(H) — q1(h)

dR(t) _

P gI(t) — wR(t)

S(t) +I(t) + R(t) = N
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Kermack-McKendrick SIRS model | %, := B N

dil_(tt) = —BI(t)S(t) + w{N — S(t) — I(£)}

d;_(tt) —  BI(D)S(t) — qI()
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Kermack-McKendrick SIRS model | %, := E N

Fo<1 = (5(1),1(1) =, (N,0)
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Kermack-McKendrick SIRS model | %, := ﬁ N

A <1 = (5(0,1(0) =, (N,0)

Ao>1 = (5(6),1(0) 7,5 1)

_1—1/%
- 1+ glw
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Kermack-McKendrick SIRS model | %, := ﬁ N

Ko <1 = (S(t),I(t)) tjoo(N,O) (SRR EFHE)

e-free equilibrium state

Fo>1 = (5(0,1(0) 7, (F 1)
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Kermack-McKendrick SIRS model | %, := ﬁ N

Ko <1 = (S(t),I(t)) = > (N,0) IERERETH

e-free equilibrium state

Ko >1 = (S(t),1(t)) = (Z I*) (B R TR
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Kermack-McKendrick SIRS model

(5(0),1(0), R(0))
= (0.99N, 0.01N, 0.0).




Epidemic dynamics model

Force of infection
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Force of infection

Kermack—McKendric model
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Kermack—McKendric model
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Kermack—McKendric model
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Force of infection

Kermack—McKendric model
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Force of infection

Vector-borne disease transmission (mass-action type)
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Force of infection

Vector-borne disease transmission (mass-action type)
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Force of infection

Vector-borne disease transmission (mass-action type)

Carrier vector
Susceptible ®T>\ Non-carrier vector

r [ 1]
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A model for the vector-borne disease transmission
= —BuV(t)S(t) + wR(t)
BuV(t)S(t) — qI(t)

qI(t) — wR(t)

= Q— BmI(t)U(t) — SU(t)

BmI(t)U(t) — SV (t)




Epidemic dynamics model

A model for the vector-borne disease transmission
= —BuV(t)S(t) + w{N —S(t) — I(t)}

BuV (t)S(t) — q1(t)

B0 { % ~v(D)} - ov(n
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A model for the vector-borne disease transmission
= —BuV(t)S(t) + w{N —S(t) — I(t)}

BuV (t)S(t) — qI(t)

Bl { % V(D)) - ov(n

Basic reproduction number

() ()

human infection by production of carrier
a carrier vector vectors by an infective
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o Route of disease transmission;
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Route of disease transmission;
Condition of public health;

Condition of medical treatment;

Cultural/social custom in the daily life;
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Various factors on the epidemic dynamics

Route of disease transmission;
Condition of public health;
Condition of medical treatment;

Cultural/social custom in the daily life;

Social response under the cultural/political /economic
background.




H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology,
Springer, Singapore, 2017.

RERA - EBR—E - BEAX, WEEYFER [RFAR] —BRETTIEROEE—, #i1
iR, 3R, 2017.

HEHME, BOEEYFHEE [ERE] —B0ETTILENOMS—, HITHIR, 5K, 2016.

L.J.S. Allen, £YHFAF] — ZRFER - WP AEAOERISOF7 7O—F —, HIIH
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TREES, BUEDHIEET L, SBAE, R, 2008.
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