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ABSTRACT. The effects of a singular (different kind of) patch on the persistence of a population
distributed over patches in one-dimensional environment is studied by the eigenvalue estimation.
The eigenvalue analysis quantitatively shows how population persistence is influenced by a) the
location of the singular patch, b) the difference in the growth and emigration rates from the
corresponding rates in the other patches, and by c) the total number of patches in the system.

1. Introduction

Various theoretical studies on the effect of the patchy environment on population have been
developed (see Levin, 1976a, b, for review). Kierstead and Slobodkin (1953) and Okubo (1982)
studied the population persistence within an isolated patch and established a critical patch size
below which the population becomes extinct (see also Skellam, 1951; Okubo, 1980).
DeAngelis et al. (1979), Vance (1984), and Allen (1983a, b, 1987) analysed the population
dynamics in a patchy environment, making use of "multi-patch" (spatially discrete) systems.
With the same type of a system, May (1974) and Levin (1976b), Zeigler (1977), Travis and Post
(1979), Hirata (1980), and Post ez al. (1983) studied the community dynamics.

Cohen (1972) studied a general linear multi-patch system involving a continuously
time-varying rate of leakage from each patch. He showed that the leakage from each patch has no
influence on the distribution of substance in the system, if and only if the rate of leakage is the
same in all the patches. We shall investigate a system of ordinary differential equations in order
to consider an aspect of population persistence in a multi-patch system containing a-"singular”
patch within which the emigration and growth rates are different from the corresponding rates -
within the other patches. As a consequence of Cohen's result, the existence of a singular patch in
the system is expected to influence the distribution of population and its persistence. In this
paper, we shall describe in detail the analysis of the parameter-dependency of the maximal
eigenvalue of our model. As for the discussion on the biological viewpoint, see Seno (1987).

2, Statement of the Model
We shall focus our attention on a population dynamics modeled by the following system of
ordinary differential equations:

391

R.Trappl (ed.), Cybernetics and Systems '88, 391-398.
© 1988 by Kluwer Academic Publishers.



dn/dt =Mn ,

where n = T(nl. Rgs s Apy_10 By ), and n; is the population density of the i -th patch at time
t. M is an N XN matrix whose ij-element is My, with

my=R—P (i #k), my=R’-P’
My =My =PSR G #k) myyqp=my i, =PSL2,

otherwise, my= 0.
R,P,and S are the rate of population growth within a patch, of emigration from a patch, and of
immigration into the nearest-neighbor patch, respectively. 1-S is the leakage rate of the
migrants. The populations within all the patches, except for the & -th patch, have the same rates,
whereas the population of the k -th patch is assumed to have the growth rate R”, the emigration
rate P’, and the leakage rate 1-S". ‘

If and only if all the eigenvalues of M have negative real parts, then the extinction of
population occurs independently of the initial distribution of population, otherwise population
increases infinitely. Thus we shall estimate the maximum real part of the eigenvalues of M in
order to discuss the dependence of population persistence on parameters.

3. Some Mathematical Results

We shall solve the characteristic equation G (4 ) = det(M-A E ) = 0 for the eigenvalue estimation,
where E is the unit matrix. We shall define the following matrices D, k and I
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’

Expansion of det(D, ,k) is corresponding to that of G (1), where @ =2(R-P-A)/SP and
W’=2(R’-P’-A)/S’P". det({, ) will correspond to G (A)whenR’=R ,P’=P ,and §’=S .
May (1973) applied a useful technique to expand det(7 ):

det(I; ) = sin{(k+1)6 }/sin@, ' ey

where the parameter @ is related to 8 through @ = 2cos@, where € is a complex value in
general. The condition that all the eigenvalues of I} have negative real parts will be given by
cos{/(N+1)} < (P-R )/SP (see May, 1973, Appendix II). We can use the same technique and
expand G (A) for arbitrary R’, P* and S”. We shall expand det(D,, .k) at first by the k -th
column. Then, by some column or row expansions of determinant, det(D,, , ) can be calculated
as a sum of three determinants including diagonally two blocks of the form of I, . We shall use
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the well-known result that the determinant of a diagonal block matrix is equal to the product of
determinants of each block (Bellman, 1970):

det(D, ;) = " det(l,_, Ydet(ly,_, ) —det(l_, Met(Ty_;_, ) — det(l,_, )detly,_,)

Then, using equation (1), we obtain the following expansions:

G A)= @SV 15 2)8 (6 Wsin?0 @
8 (0 ) = w"sink0 )sin{(N-k +1)6 } — sin{(k —1)8 }sin{(N—k +1)8 }-

— sin(k@ )sin{(N-k )8 } 3
2(R —P - A)/SP =2cos6 @
2R-P-A)SP =0". ®

The eigenvalue estimation using this general result is a complicated procedure, and in order to
present its basics we shall study two special cases; a) the central patch is singular, and b) the edge
patch is singular. In both cases, we shall assume that R < P and R’< P”. The reason for this
assumption is as follows. If R > P or R”> P’ holds at least in one patch, then the

population of any patch will finally increase --- no extinction occurs. This is because the
population of a patch overcompensates for the loss due to the emigration.

3.1. SINGULAR CENTRAL PATCH CASE
LetN=2m+1and k=m+1 in (3):
g (6 )=sin{(m+1)6 }-{w sin{(m +1)6 } — 2sin(m6)] .

We shall begin by solving the equation g (8 )=0, 8 € [0, #]. In case of real 0, it is
sufficient to solve g (8 )=0 on [0, ], because the eigenvalue A depends on 6 only through the
cosine function symmetric with respect to & (see equation (4)). From sin{(m +1)8 }=0, m
distinct roots are easily obtained: 8;= jz /(m+1) (j=1,2, ..., m). Using equations (4) and (5),
the equation @ "sin{(m+1)@}—2sin m9 )=0 can be rewritten as:

a=2sin(m0)/sin{(m +1)0 } — 2SP-cos9 /S P". ©)

where a=2{R’~P’~(R— P)}/S’P". We shall denote the righthand side of (6) by £,(6). In
Fig. 1, the graph of pA (6)on [0, =] is shown. Itis easy to see that equation (6) has m —1
distinct roots. For convenience, hereafter we shall set = SP/SP’—m/(m +1). When

¥< 0, the graph of S (@) becomes as in Fig. 1(a). It is clear from the graph that equation (6)
has another root when 1271 < &, or does not have any other real root when «< [2yl. On the
contrary, when 0 < 7y, the graph is as in Fig. 1(b). Equation (6) has two other roots when

a < [2yl, orit has only one other root when 12yl < a. Now, m distinct roots of (6) on

[0, ] can be obtained:

jrlim +1)<0j <@{+Dr/m+1) (=12,..,m-1) )
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Fig. 1. The graph of fc(O) on [0, z] for (a) < 0,and for (b)0 <.
{ 0<8y< n/(m+1) when -2y < a, (8a)
mr/im+1)<6,<=x when o £-27. 8b)

There are 2m +1 roots, since M is the irreducible (2m +1)x(2m +1) matrix. The remaining
roots are obtained from the following two equations:

a=f(n +ip), a=f(ip), ©®

where i is the imaginary unit. Note that both f (7 +ip) and S (i) are real, because
cosip= coshg and sinip= i-sing. The graphs of (z+ip) and f (ip) are shown in
Fig. 2. Itis sufficient to find the positive root ¢ because the eigenvalue A depends on ¢ only
through the hyperbolic cosine function symmetric with respect to zero. From Fig. 2(a), it can be
seen that both equations (9) have the positive root when y<0 and a< [271, while only one
of them has the root when 2yl < o

In such a way, we have obtained all eigenvalues of M. From equation (4),
A =R-P-SPcos@. Since cosd is monotone decreasing on [0, #] and cos@ < 1 < coshg, the
maximum eigenvalue A __is given by

max

{ R -P+SP -coshp* when2y<a (10a)
R—P—SP-cos¢*  when <2y, (10b)
where ¢* is the root of &= f (% + ip) and 6* isequal to 6, givenby (8b).

We shall now establish the condition which assures that all the eigenvalues are negative, in
other words, 4 .. < 0. By equations (10a, b), the condition is interpreted as:

{ coshp* < 8 when B’< (B —1)-SP/S’P’ +m/(m+1) (11a)

-cos* < B when (B = 1)-SP/SP’ + m/(m+1) < f’, (11b)
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Fig. 2. The graphs offc(iql ) and fc(n:+ ip) (@) y<0,and (b)) 0 < 7.
where = (P-R )/SP, B’= (P"-R")/SP’. Both Band §’are not negative, since R < P and
R’< P’, Incase of (8 — 1)-SP/SP’+m/(m +1) < ’, we can define such a 6* that
c0s6*=—f when 0 <B< 1. Then the condition (11b) is rewritten as:
mr/im+1) <6 <0 <nm, (12)

where we used the decreasing monotonicity of the cosine function on [0, 7 ]. Since /e (6)is
monotone increasing on (m=x /(m +1), ] (see Fig. 1), the conditon (12) becomes

f(6*) < f£(6"). Note that f(6%)=a =2BSP/SP-2B’ and

f; (6') Zﬁ SP/S'P=2h (6", ‘Where we shall define h (0) = —sm(mG)/sm{(m+1)9] In

Lhe contrary case, 8/ <(ﬁ =1)-SP/SP’ +m{(m+1), we can define such a positive ¢* that
coshg* =8 when 1< . The condition (11a) becomes

0< gp*< o, (13)
where we used the increasing monotonicity of the hyperbolic cosine function on [0, +00),
f.(m+ip) is monotone mcreasmg on [0, +°0) (Fig.2). Thus, the condition (13) leads to

fc(n+1¢* ) <f (m +ip*). Here S +ip")=2BSP/S’P’-2h A7 +ip*).
Consequemly, the conditon searched becomes

h(8)<B (0SB <1), hfn+ip')<p (1<p). (14)

3.2. SINGULAR EDGE PATCH CASE

By the symmetric nature of the system, we shall assume that the 1-st patch is singular. In this
case, let £ =1in (3):

8 (6)=sinf-[0"sin(N@) ~sin{(N-1)8}] .
We shall solve

o =sin{(N -1)6 }/sin(N8) — 2SP-cos9/SP”. (15)
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Fig. 3. The critical curves in 8 -B” plane for the persistence of population. The region above each
curve is that of the extinction and the below region is that of the persistence. For B and B in the

dark region, there exists a critical location of the singular patch (see following sections).

Equation (15) corresponds to g (0) = 0. Hereafter we shall denote the righthand side of (15) as

£0).
¢ In a similar way as before, N distinct real eigenvalues can be obtained, and

A =

{ R — P + SP-coshg** when 2SP/SP’~(N-1)/N < «
max

R — P — SP.cos@** when a <2SP/SP’—-(N-1)/N,

where @** is the root of = fm+ip) and 6** is the root of a=f,(6)on

((N-1)z /N, n]. The condition for A max < 018

h(6*)<p” (0sB <), he(ﬂ' +ip*)<p’ (1<B),
where%(@) =—sin{(N~1)0 }/sin(N@). 6* and ¢’ are the same as before.
3.3. GENERAL CASE

Because of the symmetric nature of system, we shall consider the case when 1< k S(V +1)/2.
The equation corresponding to g (6) =0 s

a =sin{(k —1)8}/sin(k6) + sin{ (N-k)8)/sin{ (N-k +1)6} — 2SP-cos§/SP". (16)

The roots of (16) can be investigated by a procedure similar to those used in the two special cases.
The resulting condition which assures that all the eigenvalues are negative is

() <B (0<B<1), h(m+ip')<p’ (1<B), an
wherélf;(e ) ==sin{(k-1)6 }/sin(k@) — sin{(N-k)0 }/sin{(N-k +1)6 }. Note that, for a

fixed B, h,(@) is a monotonic function of & : increasing when B < cos{z /(N +1)} and
decreasing when cos{z /(N +1)} < B. Considering this monotonicity, the parameter region
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Fig. 4. The critical curves for different total numbers of patches in case of (a) the location of a
singular patch k = 2 fixed, and (b) the ratio /(N +1) = 1/2 fixed. For a fixed k, the limit curve
approaches (2k—1)/2k at B = 1. For a fixed k/N, it approaches 1 at 8 = 1. The region above each
curve is that of the extincion and the region below it is that of the persistence.

can be divided into the following four sets (see Fig. 3):
i) The region where at least one positive eigenvalue exists independent of any £,
ii) The region where all the eigenvalues are negative, independent of k ,
iii) The region where all the eigenvalues are negative when I <k , and at least one
positive eigenvalue exists when k < k*,
iv) The region where at least one positive eigenvalue exists when Fper <k , and all the
eigenvalues are negative when k < k**.
Next we turn our attention to the dependence of conditon (17) on the total number of patches. In
Fig.3, the asymptotic line 8= cos{x /(N— +1)} comes closer to S =1 as the number N
increases. If we let N —oo, with fixed k , the asymptotic line monotonically approaches =1
and the critical curve °=h,(z +ip") monotonically converges to
2B’ = sinh{(k —1)¢*}/sinh(kp”) + exp(-9"). See Fig. 4(a). On the other hand, if we let the
ratio /N be constant (for example, 1/2), then 3= h (7 +ip" ) monotonically converges to
9B’ = exp(-@*) as N —oo (Fig. 4(b)). This indicates that when the parameters f§ and f” lie
between two critical curves of the total patch number N —1 and N , then either all the
eigenvalues are negative if the total patch number N satisfies N < N, or at least one positive
eigenvalue appears if N, <N (see Fig. 4).

4, Conclusions

1) The more centrally located a singular patch is, the greater is its effect on the maximal
eigenvalue, especially in the parameter regions iii) and iv) mentioned above. The persistence of
population seriously depends on the location of a singular patch.

2) In some cases, there exists a critical total number of patches. If the actual number is
below it, all the eigenvalues are negative. In the other cases, there is no such a critical total
number of patches and there is at least one positive eigenvalue independently of the system size,
even if there are only negative eigenvalues when every patch is identical (see Fig. 3). The effect
of a singular patch may stabilize the persistence of population.
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The technique and results of our analysis may be profitably applied to other models in
various contexts: for example, multi-membrane system, information flow in a cellular network,
seed dispersal, plankton dispersal, desease epidemic (see also Seno, 1987).
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