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ABSTRACT. Mathematical models of aggregation of biological organisms
in one dimensional space are discussed taking into account the density
dependent dispersive motion and the environmental potential field.
Introducing three types of potential functions, the stationary distri-
butions are analytically obtained for a single and mutually exclusive
two-species populations.

1. INTRODUCTION

The aggregation phenomena of organisms and the formation of their dist-
ribution patterns can be widely observed in various biological systems,
an aggregated or a clumped distribution of animals or plants, and the
cell association due to the chemotaxis or mutual cohesive interactions
of the cells. More interesting phenomena are the pattern formations of
organisms or cells of two kinds of species, under the effect of inter-
specific collective interactions, for examples, spatial segregation of
habitat observed in the community of two similar species of animals or
plants and phase separation of differentiated cells in the culture solu-
tion.

Here we shall present the mathematical models which phenomenologi-
cally describe these phenomena, using a nonlinear diffusion model which
we previously used in the discussion on density dependent dispersive
motion of insects (N. Shigesada, K. Kawasaki and E. Teramoto 1978, and
N. Shigesada 1980). In the equation of continuity

3 n(x,t) = - div J(x,t) (1.1)
at
we considered the flow given by
J(x,t) = - grad{{a+Bn(x,t)In(x,t)] - n(x,t)grad U(x)
(1.2)

where n(x,t) is the population density, a+Bn(x,t) corresponds to the
density dependent diffusion coefficient and U(x) is the environmental

potential function.
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If we consider the one-dimensional case, the flow can be written as

can(x,t)

J(x,t) = - ™

- n(x,t) -{U(x)+28n(x, 1)}, (1.3)
where it is seen that the density dependent term of the dispersion
coefficient can be expressed also in terms of density dependent potent-
ial function. The stationary distribution of the equation (1.1) is
given by the solution of J(x,t)=0, that is

n(x)
n(0)

and it can be shown that the solution of (1.4) is globaly stable under
some suitable conditions. Here it should be noticed that when a=0, we
have two solutions of J(x,t)=0,

n(x) =0 and 28{n(x)-n(0)} = -{U(x)-U(0)}. (1.5)

In the following discussions, we use these equations to discuss the
stationary aggregation patterns, by introducing special types of potent-
ial functions.

a log + 28{n(x)-n(0)} = -{U(x)-U(0)}, (1.4)

2. AGGREGATION OF A SINGLE SPECIES POPULATION

Here let us consider the aggregation patterns of a sigle species popu-~
lation in the one-dimensional space, by introducing three types of
symmetric potential functions which qualify the environmental condition
and generate the initiative force of aggregation.

CASE A. U(x) = kx2

At first, we consider the square potential field which produces the
increasing force with distance from the origin. Though this potential
field of the harmonic oscillator seems to be unrealistic in the biologi-
cal systems especially at a far distance, it can be used to discuss the
local properties of aggregation phenomena.

(A-a) a£0 and B=0. In this case of density independent
diffusion, equation (1.4) apparently gives the normal distribution (Bol-
tzmann distribution)

n{x) = (v/7)

where v=k/a¢ and N is the total number of individudls.

2
1/2N e V¥ for —o<x<e , (2.1)

(A-b) a=0 and B#O0. Contrarily if we consider only the dens-
ity dependent term of diffusion coefficient, we have the spatially
bounded distribution instead of the normal distribution with infinite
tails (Fig. 1).

n(x) = u(x*z-xz) for —x*<xX<xH,

=0 for |x|>x*,

(2.2)

where
1/3
u = k/28 and x* = (3N/4yp) . (2.3)
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ux) = b U - £y

n{x)

\al_O , B=0

S~
x* X
Fig. 1. Potential and distribution fupction Fig. 2. Potential and distribution function
of CASE A, of CASE B.

CASE B. U(x) = kx2(1+x2)'l

This potential function gives square potential field near the origin,
but the attractive force does not reach far distance, and the individuals
at a distance are hard to recognize the existence of this favorable spot.

(B-a) a#£0 and B=0. If we consider the ordinary density in-
dependent dispersion, there is always the possibility that any indivi-
dual has a chance to move out of the potential valley and finally the
population spreads over the infinite space, thus we have no localized
stationary distribution and the solution is given by

n(x) = 0 for  —w<x<=, (2.4)
(B-b) a=0 and B#£0. In this case, there exists the critical
distribution function, which is given by
nc(x) = |.|(1+x2)_1 for —w<x<e, (2.5)
and the critical population size
Nc = um. (2.6)

When the population size is larger than this critical value, only Nc

individuals can occupy the area around the potential valley with the
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critical distribution n (x) and excess number of individuals leak out of
the valley and spread over the infinite space.
When N<N_ they can establish a bounded aggregation (Fig. 2),

n(x) = u{(l+x2)-1—(l+x*2)-l} for —Xx*<x<x*, (2.7)
=0 for | x|>x*,
where x* is determined by the equation
f(x*) = arctan x* - x*(1+x*2)-'1 = N/2u. (2.8)
CASE C. U(x) = kiK|x|~ fcl)xln(x,t)dx}

This density dependent potential function indicates that there is
a maximum critical density K and the potential is given by the number of
allowable vacant rooms S(x) in the inside space as shown in Fig. 3, and
if the space is over crowded it acts as repulsive force. Because of the
symmetry property of the potential function, we shall consider only
positive part of space x.

(C-a) a#£0 and B=0 In this case, we have the differential
equation
o) _iken(x) In(x). (2.9)

The solution of this equation is given by, for sufficiently large value
of N, -1
vK(x—N/ZK)}

n(x) = K{l+e for  O%x<=. (2:10)
This is the well known Fermi distribution, and v=k/a.
(C-b) a=0 and B#0. From J(x,t)=0, we have
dn
n(x) =0 _df:_x')_ = -u{K—n(?c)},

and for large value of N we have

X ’ X
Fig. 3. Vacant room potential and distribution function of CASE C.
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k(1 - e H(X*=%),

0 for X>x*,

n(x) for 0<x<x*,

{2.11)

i}

where
x* = (N/2K) + (1/un). (2.12)

3. TWO SPECIES POPULATION WITH EXCLUSIVE INTERFERENCE

Here we shall consider the stationary distribution of two species popu-
lation, assuming that both species have a preference for similar enviro-
ment and the predominant species 1 exerts the repulsive pressure on the
species 2. The population flows of these two species are given by

J1(xnt)

] 2 9
- a_x{slnl(x;t) } - n,(x,t)a Ul(x)y

3 2 3 (3.1)
Jo(x,t) = = silﬁznz(x,t) } - nz(x,t)E;{Uz(X)+Yn;(x,t)}.

where we assumed a,=a,=0 and the repulsive pressure of species 1 is re-
presented by an additional term yn,(x,t) in the potential function for

species 2. The stationary distributions are again given by the solut-
ions J,(x,t)=J,{x,t)=0.
CASE A. U,(x) = k,x2 and U,(x) = k2x2.
The solution n (x) is given by (2.2), that is
2 2
n, (x) = u, (x;=-x") for —X, <xX<x, , (3.2)
=0 for 1x1>x,, '
where
1/3
b, = k,/28, and x, = (3N,/4n) Y5,

The differential equation J,(x,t)=0 can be analysed by substituting
(3.2) for n,(x) and we can obtain the following results depending upon
the population size N, and the values of the parameters

B = u,/u, and I = u,v/k,.
(A1) r <1. When y<k,/u,, the effect of environmental attr-
active force dominate the pressure of species 1 and species 2 can also

occupy the central area. The stationary distribution n,(x) is given by
a monotone decreasing function of the distance |x| from the origin.

(Al-i) N,/N,< B(1-T).

n,(x) = uz(l-r)(xéz— x2) for —X3<X<XY, (3.3)
=0 for Ix|2x) .

where

u, = k,/28,  and xy = (3N,/4u,(2-)13 < «,.
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(A1-ii) N,/N,>B(1-T).

n,(x) = n,(0) - uz(l-I‘)x2 for -X, SX<K, ,
= pz(xf - x2) for X, <|x|<x,, (3.4)
=0 for |x]>%,,
where
3 3N, [N 1/3
X, = [x” + H:{ﬁla - B(1-T)}] > Xy
2 2
n,(0) = p,(x; - I'xy).
(A2) r>1. vWhen Y>k,/u,, the population of species 2 is

pushed out of the central part of potential valley by the repulsive
pressure of species 1 and the distribution function n,(x) is given by a
concave function in the interval (-x,,x,).

(A2-i)  N,/N,>Br(/T-1). In this case, the stationary distri-
bution is also given by equations (3.4) and it has a finite positive
value at the origin.

(A2-ii) N,/N,<Br(/T-1). The stationary distribution n,(x)
splits into two parts and, in general, it approaches different unsymme-
trically separated distribution, depending upon the initial distribution
n,(x,0). Especially if N,/N,<Br(v/T-1)/2 and the initial distribution
is located only at one side of region x>0 or x<0, it can not squeese
through the barrier of species 1. Each of the separated distribution
has the pattern given by

n,(x) =0 for  O<x<x,,
= uz(r—l)(x2 - Xq) for  x,<x5x,,
= u,(xf - ) for  x,<x<x,, (3.5)
=0 for X>X, .

Fig. 4 shows the distribution patterns in four cases discussed
above and the domains of these characteristic patterns in the parameter
space are shown in Fig. 5.

(A2-1¢)

CASE A2

Fig. 4. Distribution functions n‘(x) and “2(") of CASE A.
Four types of patterns of nz(a) for given n'(x) are shown,
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CASE B. (VLN
U, (x) = k,x2(1+x2) 71
and > > -1 {A1-11) (A2-1)
U,(x) = k,x (14x") .
The potential valley prese-
nted by these functions have the (A1-1) e
limiting carrying capacities. -7
As we have shown in the last se- f"’4]u4U
ction, when the population size L
N, is smaller than the critical 1 r
value N,.=u,n, the stationary
distribution nl(x) is given by Fig. 5. Domains of four types of distribution patterns.
n(x) = ((LexD) e (L)Y for 0g|x|<x,,
=0 for 1x]>%, . (3.6)
where
f(x,) = arctan x, - xl(1+x€)-l = N,/2u,. (3.7)

When N,>N,., n,(x,t) finally approaches the same critical distrib-
ution (2.5) of the population size N,., which is obtained by taking the
limit x,+® in (3.6) and (3.7). On the other hand, the critical popula-
tion size N,. is determined depending upon the population size N, and
the value of parameter T=u,Y/k,.

(B1) r <1. When y<k,/u,, the distribution has a maximum at
the origin just as the case of square potential (Al) and we have the
following solutions n,(x).

(Bl1-i)  N,/u,<(1-T)N,/u,.

n,(x) = uz(l-r){(1+x2)—1— (1+x52)-1} for 0<|x|<x) ,
=0 for |x|>x} ,
(3.7)
where xj is determined by
f(x}) = N/2(1-T)y,.
(Bl-ii) (l—r)Nx/ux<N2/Uz£ﬂ_rNx/P]=N2c(N|ar)/Uz'
n,(x) = n,(0) - p,(l-F)x2(1+x2)—1 for  0<|x|2x,,

n,(0) - uz{x2(1+x2)_1— rx?(1+x?)-l} for x,<|x|<x,,
0 for |x|>x

(3.8)

where

n,(0) = pz{x§(1+x§)_l- Px?(l+x€)—l},
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f(xz) = (Nz/auz) + P(Nl/UI)- (3.9)

Here, taking the limit x,*«, we can obtain the critical distribut-
ion of species 2. From (3.11) and f(«)=n/2, the critical population
size of species 2 for given values of N, and I'<l is given by

Nao(Ny,T) = wp{m = T(N,/uy)}. (3.10)

(B2) r>u. In this case the distribution function (3.8)
becomes concave function in the interval (-x,,x,).

(B2-i) Fx€(1+x?)_1<x§(1+xf)-l. Here x, and x, are determined
as functions of N,/u, and N,/u, bythe equations (3.7) and (3.9) respect-
ively and it is easily seen that this condition holds only when x, 51/
v/T-1. The domain in (N,/u,,N,/u,) space in which this condition holds
is shown in Fig. 7. The upper boundary of this domain which gives the
critical size of species 2 is again expressed by the same equation with
(3.10). The stationary distribution n,(x) is also given by (3.8) which
has finite positive value at x=0 in this case.

(B2-ii) rx?(1+x?)‘l>xf(1+xf)‘l. In this case the distribution
of species 2 splits into two parts and we have
n,(x) =0 for O0f%|x|{<x,,

uz(r—l){(1+x%)_1- (14x2)7Y} for Xo<|x|<x,,

(3.11)
= uz{(1+x2)-1- (1+x§)_1} for x,<|x|<x,,
=0 for [x|>x%,,
where x, and x, are determined by the equations
2 2,-1 2 2,-1 2 2,-1
(P-1)x5(1+xy) = x7(14x7) = x3(1+x3) (3.12)

(Pfl)f(xu) + f(x,) - I'f(x,) = N,/2u,.

It can be also shown that, when x,>1//F:I, the critical size of species
2 is determimed by taking the limit x,+=,

Noo(N,,T)/u, = 7 — 2Tf(x,) + 2(F-1)f(x,). (3.13)

The distribution patterns discussed above are shown in Fig. 6 and
their domains in (N,/u,,N,/p,) space are shown in Fig. 7 with the
critical size N,q(N,,T).

Ix|
CASE C. U, (x) = k[K|x| - !0 n, (x,t)dx],
[x]

U, (x) = k[K|x| - J, {n, (x,t)+n, (x,t)}dx].

Here, for simplicity, we use the same values of parameters for both
species, B,=B,=B, k,=k,=k, n,=n,=k/2B=p and T=yp/k. We assume also that
the species 1 can invade the room which is being already occupied by the
species 2 and puts the pressure on them.
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CASE B1 CASE B2
Fig. 6. Distribution functions nl(x) and nz(x).of
CASE B. Four types of patterns of nzix) for given
ny(x) are shown,

HZC(NI‘F)

(B1-i1)

(B1-1)

Ny Ny /i Nyl Ny /iy
CASE B1 CASE B2
Fig. 7. Domains of four types of patterns_ of distribution nz(x).

As we have shown in the last section (C-b), the solution n,(x) is
given by

n, (x) = K{1 - e_u(x‘_X)} for  0<x<x,,

(3.14)

0 for X>X, ,

where
x, = (N,/2K) + (1/p).

In the present case, the species 1 puts the repulsive pressure on
the species 2 through the contest of room occupation, even if =0, and
the species 2 scarecely get into the central part of potential valley.
n,(x) is obtained as follows.

(c1) (r-1)ux, < 1.
n,(x) = F(x) for 0<x<x,.
= G(x) for x,<x<x,, (3.15)
=0 for X>X,
where

Bix) = ke WXe=RIENC ALY 150 ) Geoxd ],
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k(1 - e M (Xex)y

G(x) =
x, = (N,+N,)/2K + (T/u) + (1-T)x,e "*1,
(c2) (r-1)ux, > 1.
n,(x) = 0 for  0Sx<x,,
= F(x) for  xo<x<x,, (3.16)
= G(x) for  x,<x%x,,
=0 for X>Xg .
where
Xo = x, - 1/u(r-1),
xz = (Ny#N;)/2K + (T/w) + (1/u)(r-1) (1-e~ Y/ (T=1)y

The distribution patterns given by equations (3.15) with I'=0 and
(3.16) with P=1.5 are shown in Fig. 8.
"ny(x) ‘ n,(x)

g

Fig. 8. Distributions n](x) and nz(x) of CASE C.
4. DISCUSSION

The stationary distribution patterns of biological aggregation, which
are derived by the density dependent dispersive motion under the envi-
ronmental attractive potential field, were studied using three types of
potential functions, (A) square potential (B) local square potential
valley and (C) density dependent vacant room potential.

It has been shown that, if we consider ordinary density independent
dispersive motion (B8=0), the population can not be stuck in the finite
range of space by the attractive potential force and it approaches a
stationary distribution with infinite tails, except when the potential
valley is spatially bounded by the infinite walls of potential barriers.
Especially, in the case (B) of local potential valley, whole population
gradually spreads out over infinite space and the aggregation pattern
which could be temporarily realized finally disappears. On the other
hand, when we consider only the density dependent term of dispersive
coefficient (a=0), the population can forms a spatially bounded aggrega-
tion pattern without dropouts, except the case of local potential valley,
in which only restricted number (N<N;) of individuals can remain in the
aggregation surrounding the bottom of valley.
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The stationary aggregation patterns of two species populations
with interspecific interference were also studied assuming that both
species have a preference for similar environmental condition, but the
predominant species 1 exerts the repulsive pressure on the Species 2.
The populations of two species show different spatial patterns, depend-
ing upon the value of T'=(k,/28,k,)y, where v is the parameter specific
to the repulsive pressure of the predominant species 1. As shown in
Figs. 4 and 5 (also in Figs. 6 and 7), the effect of the repulsive
pressure appears explicitly when T'>1, however when the weaker species 2
has a certain degree of population size, they can intrude into the
central part of potential valley.

Finally, as the examples, the time development of the distributions
of two species in the cases (Al-i) and (A2-i) are shown in Fig. 9.

CASE A2-1

Fig. 9. Time development of distribution patterns
of two species populations {case A).
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