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Lotka-Volterra competition system
with diffusion

ON:
atl = D1V?N; + (11 — B1N1 — y12N2) Nq
= Dy V2N, + (r2 — B2Na — 121N1) N

D; =20x107% r =10; B1=18 712 =20;
Dy =20x107°% 1 =10; Bp=10; 731 =15
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Lotka-Volterra competition system
with diffusion

N,
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Mobility could be an important factor for the coexistence of com-

peting species.

cf. Shigesada N, Kawasaki K, Teramoto E (1979) Spatial segregation of interacting species. Journal of Theoretical
Biology 79(1): 83-99.

Mimura M, Kawasaki K (1980) Spatial segregation in competitive interaction-diffusion equations. Journal of
Mathematical Biology 9(1): 49-64.

Mimura M, Ei SI, Ikota R (1999) Segregating partition problem in competition-diffusion systems. Interfaces
and Free Boundaries 1(1): 57-80.



Invasion of competitive alien species

“coexistence” => invasion success
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Invasion of competitive alien species

“coexistence” => invasion success

invasion success

“exclusion” of native species = { .
species exchange

invasion failure
resistence of native system

“exclusion” of alien species = {
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Invasion of competitive alien species

Invasion success Threat to

of alien species native ecosystem
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Invasion of competitive alien species

Invasion success Change in

of alien species ecosystem services
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Newly observed fish at Ishinomaki Fish Market HEOEH
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What is “competition”?

A distinctive topic: Different stage-specific alien predator
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What is “competition”?

Inductive definition of “competitive relation” in population dynamics

Relation between two populations with some negative density effects on

the growth of the other population size.

~~ Influence-based
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What is “competition”?

Inductive definition of “competitive relation” in population dynamics

Relation between two populations with some negative density effects on

the growth of the other population size.

Negative density effect on population growth

o Decrease in reproductivity
@ Increase in death rate

o Decrease in survivability
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What is “competition”?

Inductive definition of “competitive relation” in population dynamics

Relation between two populations with some negative density effects on
the growth of the other population size.

Lotka-Volterra competition system with diffusion

= D1V*Ny + (r1 — B1iN1 — 712N2) Ny

~~ Influence-based
= Dy V*Ny + (r2 — BaNa — 121N1) N,




What is “competition”?

Inductive definition of “competitive relation” in population dynamics

Relation between two populations with some negative density effects on

the growth of the other population size.

What reaction induces such a negative
density effect on a population?



What is “competition”?

Causality-based classification of “competitive relation”
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What is “competition”?

Causality-based classification of “competitive relation”
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A distinctive topic: Different stage-specific alien predator

Two predators with different stage-specific predation for a common prey
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A distinctive topic: Different stage-specific alien predator

Two predators with different stage-specific predation for a common prey

reproduction
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A distinctive topic: Different stage-specific alien predator

Prey population dynamics

H,., = F(H,)H,

with the per capita reproduction function

F(H) = H’—"H/ﬁ (ro > 1)

cf. Beverton-Holt model
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A distinctive topic: Different stage-specific alien predator

Prey population dynamics

cf. Beverton-Holt model <> logistic equation model



A distinctive topic: Different stage-specific alien predator

Predator population dynamics

P,

n

+1 — G(Pnlzn)Pn

Z
G(P,, 2,) = 0"
Pn
where Z  is the total amount of preys predated by
the population of predator P at the n th predation sea-
son.




A distinctive topic: Different stage-specific alien predator
Predator population dynamics

P,

n

+1 — G(PnIZn)Pn :pz

n

Z

G(Pn’Zn) :p Pn 4

where Z  is the total amount of preys predated by
the population of predator P at the n th predation sea-
son.




A distinctive topic: Different stage-specific alien predator

Two distinct models for prey-predator population dynamics

Predator P! | Predator P2

Model J native alien

Model A alien native
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A distinctive topic: Different stage-specific alien predator

Models for prey-predator system

Hyp1 = HJ(PrJI)P(Hn)Hn

P;l—l—l :pl{l_HJ(R{)}P(Hn)Hn
H,i1 = F(Is(PA)H,)TIs(P*)H,
Pl =pa{l—TIIa(P})}H,

with the probability of successful escape from the pre-
dation, I1,(P) = e™ %P,

Model J {

Model A {

cf. Nicholson-Bailey model
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A distinctive topic: Different stage-specific alien predator

Models for prey-predator system

hn—l—l —

—e
Model A /¢ 14 e—Pih,
L pﬁ-i-l =ocA(1—e_”9)hn

with non-dimensionalizing transformations.




A distinctive topic: Different stage-specific alien predator

Models for prey-predator population dynamics with invading alien predator
— J A A
Hyp1 = HJ(PH)F(HA(Pn )Hn)HA(Pn )Hn

Py = py{1—I(Py) }F(TLa(P;) Ha) TA(P) Hy

n

Pi?—l—l = pA{l - HA(P1¢)}H71
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Models for prey-predator population dynamics with invading alien predator
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with non-dimensionalizing transformations.
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Models for prey-predator system

;

hn+1
Model J |

J
\ Pni1

( Hyp1 = LA
Model A ! 1+ e Prh,
L Pﬁ+1 = & (1 - e_pg)hn

with non-dimiensionalizing transformations.
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prey-predator system

(a) Model J; (b) Model A, where %] := peaef(ro — 1) is the basic predator
replacement number for predator P°.
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A distinctive topic: Different stage-specific alien predator

Final state after the invasion of alien predator, (a) Model J; (b) Model A
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A distinctive topic: Different stage-specific alien predator

@ The juvenile-specific predator has the invadability higher than
the adult-specific predator.




A distinctive topic: Different stage-specific alien predator

@ The juvenile-specific predator has the invadability higher than
the adult-specific predator.

@ The prey-predator system with the juvenile-specific predator would
be more resistant to the invasion of alien predator.
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@ The juvenile-specific predator has the invadability higher than
the adult-specific predator.

@ The prey-predator system with the juvenile-specific predator would
be more resistant to the invasion of alien predator.

@ The prey-predator system with the adult-specific predator would
be more vulnerable to the invasion of alien predator.




- —— e\,
A distinctive topic: Different stage-specific alien predator

The juvenile-specific predator has the invadability higher than
the adult-specific predator.

The prey-predator system with the juvenile-specific predator would
be more resistant to the invasion of alien predator.

The prey-predator system with the adult-specific predator would
be more vulnerable to the invasion of alien predator.

The persistent prey-predator system would be composed of
the juvenile-specific predator.
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Mathematical model for the
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Mathentsgacal Modelling
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FPoypulafion
Dy

is the nature of the spatio-temporal variation of
biological population size (i.e. density etc.).

Mathents@acal Modelling




Epilogue

Poplilafion
Dy

is the nature of the spatio-temporal variation of
biological population size (i.e. density etc.).
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What mathematical model is
reasonable

from the hiological viewpoint?
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What mathematical structure is
appropriate

for the reasonable modeling?
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Reasonability of modeling depends on

i) purpose of theorstical research;
ii) available data/knowledge/hypothesis;

iil) design of mathematical analysis.
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Lotka-Volterra competition system
with diffusion

ON:
atl = D1V?N; + (11 — B1N1 — y12N2) Nq
= Dy V2N, + (r2 — B2Na — 121N1) N

D; =20x107% r =10; B1=18 712 =20;
Dy =20x107°% 1 =10; Bp=10; 731 =15




Lotka-Volterra competition system
without diffusion

dN-

dtl = (r1 — B1N1 — y12N2) Ny
dN:;

dtz = (r2 — B2N2 — ¥21N1) N,

rp =1.0; p1 =18 12 =2.0;
rp=10; B =1.0; 931 =15



Epilogue

Lotka-Volterra competition system
with diffusion

ON:
atl = D1V?N; + (11 — B1N1 — y12N2) Nq
= Dy V2N, + (r2 — B2Na — 121N1) N

D; =20x107% r =10; B1=18 712 =20;
Dy =20x107°% 1 =10; Bp=10; 731 =15




Epilogue

Lotka-Volterra competition system

oN
a::mWM+m—mM—mMW1
N,
atz = D, V2N, + (12 — BaNa — y21N1) N

r1 =10; By =18 712 =20;
tp =10; B =10; 9231 =15




Epilogue
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Lotka-Volterra competition system
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Lotka-Volterra competition system

N
L = DiV2N; + (11 — B1N1 — 12N2) Ny

oN;
2 — D,V?N, + (r2 — B2N2 — v21N1)N,

r1 =10; By =18 712 =20;
tp =10; B =10; 9231 =15




Epilogue

Lotka-Volterra competition system
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Spatial Segregation{ e
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Lotka-Volterra competition system
without diffusion
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Lotka-Volterra competition system
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Lotka-Volterra competition system
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A trite lesson

Not be tricked by numerics!
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A sophisticated lesson

Adventitious numerics could provide
cues for new scientific idea.
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