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Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 1.5
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Lotka-Volterra competition system
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Spatial Segregation!!
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Coexistence!!
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Mobility could be an important factor for the coexistence of com-

peting species.

cf. Shigesada N, Kawasaki K, Teramoto E (1979) Spatial segregation of interacting species. Journal of Theoretical
Biology 79(1): 83–99.

Mimura M, Kawasaki K (1980) Spatial segregation in competitive interaction-diffusion equations. Journal of
Mathematical Biology 9(1): 49–64.

Mimura M, Ei SI, Ikota R (1999) Segregating partition problem in competition-diffusion systems. Interfaces
and Free Boundaries 1(1): 57–80.
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invasion success
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{
invasion failure
resistence of native system
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Invasion of competitive alien species

Invasion success

of alien species ⇒ Threat to

native ecosystem
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Invasion of competitive alien species

Invasion success

of alien species ⇒ Change in

ecosystem services
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Newly observed fish at Ishinomaki Fish Market

Sebastiscus tertius Cyttopsis rosea
Evistias acutirostris Naso brachycentron

Chimaera phantasma Platax teira

出典：一般社団法人漁業情報サービスセンター 東北出張所　
　　　「変動する三陸～仙台湾の魚たち」　2020.12.23
　　　https://www.jafic.or.jp/information/2020/12/23/509/
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Negative density effect on population growth

Decrease in reproductivity

Increase in death rate

Decrease in survivability
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What is “competition”?What is “competition”?

Inductive definition of “competitive relation” in population dynamics

Relation between two populations with some negative density effects on

the growth of the other population size.

What reaction induces such a negative
density effect on a population?



What is “competition”?What is “competition”?

Causality-based classification of “competitive relation”

A B
–

–
A B

+ +
––

A B

++
––

A B

+
–

–
A B

+

–

–

+
–

A B

+

–

(a) (b-1) (b-2)

(c-1) (c-2) (c-3)

　

exploitative interference

apparent



What is “competition”?What is “competition”?

Causality-based classification of “competitive relation”

A B
–

–
A B

+ +
––

A B

++
––

A B

+
–

–
A B

+

–

–

+
–

A B

+

–

(a) (b-1) (b-2)

(c-1) (c-2) (c-3)

　

exploitative

interference

apparent



What is “competition”?What is “competition”?

Causality-based classification of “competitive relation”

A B
–

–
A B

+ +
––

A B

++
––

A B

+
–

–
A B

+

–

–

+
–

A B

+

–

(a) (b-1) (b-2)

(c-1) (c-2) (c-3)

　

exploitative interference

apparent



What is “competition”?What is “competition”?

Causality-based classification of “competitive relation”

A B
–

–
A B

+ +
––

A B

++
––

A B

+
–

–
A B

+

–

–

+
–

A B

+

–

(a) (b-1) (b-2)

(c-1) (c-2) (c-3)

　

exploitative interference

apparent



What is “competition”?What is “competition”?

Causality-based classification of “competitive relation”

A B
–

–
A B

+ +
––

A B

++
––

A B

+
–

–
A B

+

–

–

+
–

A B

+

–

(a) (b-1) (b-2)

(c-1) (c-2) (c-3)

　

exploitative interference

apparent



A distinctive topic:

Different stage-specific alien predator

A distinctive topic:

Different stage-specific alien predator



A distinctive topic: Different stage-specific alien predatorA distinctive topic: Different stage-specific alien predator

Two predators with different stage-specific predation for a common prey

AdultsOffsprings

Reproduction

Maturation
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Two predators with different stage-specific predation for a common prey

predationpredation

predationpredation

reproduction

SEASONS

reproduction

reproduction



A distinctive topic: Different stage-specific alien predatorA distinctive topic: Different stage-specific alien predator

Prey population dynamics

Hn+1 = F(Hn)Hn

with the per capita reproduction function

F(H) =
r0

1 + H/β
(r0 > 1)

cf. Beverton-Holt model
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Prey population dynamics

cf. Beverton-Holt model ⇔ logistic equation model
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where Zn is the total amount of preys predated by
the population of predator P at the n th predation sea-
son.



A distinctive topic: Different stage-specific alien predatorA distinctive topic: Different stage-specific alien predator

Predator population dynamics

Pn+1 = G(Pn ,Zn )Pn = ρZn

with

G(Pn ,Zn ) = ρ
Zn

Pn
,

where Zn is the total amount of preys predated by
the population of predator P at the n th predation sea-
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Two distinct models for prey-predator population dynamics

Predator PJ Predator PA

Model J native alien

Model A alien native
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Models for native prey-predator system

Model J

{
Hn+1 = ΠJ(PJ

n)F(Hn)Hn

PJ
n+1 = ρJ

{
1 − ΠJ(PJ

n)
}

F(Hn)Hn

Model A

{
Hn+1 = F

(
ΠA(PA

n )Hn
)
ΠA(PA

n )Hn

PA
n+1 = ρA

{
1 − ΠA(PA

n )
}

Hn

with the probability of successful escape from the pre-
dation, Π•(P) = e−a•P.

cf. Nicholson-Bailey model
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Models for native prey-predator system

Model J


hn+1 = e−pJ

n
r0

1 + hn
hn

pJ
n+1 = αJ

(
1 − e−pJ

n
) r0

1 + hn
hn

Model A

 hn+1 =
r0

1 + e−pA
n hn

e−pA
n hn

pA
n+1 = αA

(
1 − e−pA

n
)
hn

with non-dimensionalizing transformations.
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Models for prey-predator population dynamics with invading alien predator
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Bifurcation diagram for native prey-predator system

(a) (b)

(a) Model J; (b) Model A, where R•
0 := ρ•a•β(r0 − 1) is the basic predator

replacement number for predator P•.
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Final state after the invasion of alien predator, (a) Model J; (b) Model A

(a)

o
sc
il
la
to
ry

o
sc
il
la
to
ry

competitive exclusion

coexitence

co
ex

ite
nc

e

competitive exclusion

(b)

invasion failure

invasion failure

extinctive native predator extinctive native predator
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The juvenile-specific predator has the invadability higher than
the adult-specific predator.

The prey-predator system with the juvenile-specific predator would
be more resistant to the invasion of alien predator.

The prey-predator system with the adult-specific predator would
be more vulnerable to the invasion of alien predator.

The persistent prey-predator system would be composed of
the juvenile-specific predator.
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BIOLOGICAL
PROBLEMS

MATHEMATICAL
PROBLEMS

mathematical discussions
biological discussions

mathematical results

mathematical analyses

design of mathematical analyses

mathematical
expressions mathematical

translations

biological
translations

biological
researches

modeling hypotheses
& assumptions

biological hypotheses & assumptions
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基礎的数理モデル
Basic Mathematical Model

発展的数理モデル
Advanced Mathematical Model

応用的
数理モデル

Mathematical Model for Application

数　理
Mathematics

生物学
Biology
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生物現象の知見
の体系化のため
の数理モデル

生物現象の質
的理解のため
の数理モデル

生物現象の量
的理解のため
の数理モデル

具体的な生物現象の特
定の側面を研究するた
めの数理モデル

Mathematical model for the 
systemization of knowledges 
for biological phenomena

Mathematical model for the 
quantitative understanding of 
biological phenomena

Mathematical model for the 
qualitative understanding of 
biological phenomena

Mathematical model for the 
research on a specific 
biological phenomena
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explanation

description

prediction

understanding

experiment

systemization

model development

mathematical interest
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is the nature of the spatio-temporal variation of 
biological population size (i.e. density etc.).
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Hiromi SENO
Research Center for Pure and Applied Mathematics, Department of Computer and Mathematical Sciences

Graduate School of Information Sciences
Tohoku University

What mathematical model is 
reasonable

from the biological viewpoint?
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Hiromi SENO
Research Center for Pure and Applied Mathematics, Department of Computer and Mathematical Sciences

Graduate School of Information Sciences
Tohoku University

What mathematical structure is 
appropriate

for the reasonable modeling?
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[L-1]
dN(t)

dt
=

{
r0 − βN(t)

}
N(t)

[L-2]
dN(t)

dt
= r0

{
1 − N(t)

K

}
N(t)

[L-3]
dN(t)

dt
= r0N(t)− b{N(t)}2

[L-4]
dN(t)

dt
=

{
r0 − βN(t)

}
N(t)− b{N(t)}2

r0: intrinsic growth rate
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Hiromi SENO
Research Center for Pure and Applied Mathematics, Department of Computer and Mathematical Sciences

Graduate School of Information Sciences
Tohoku University

Reasonability of modeling depends on

i)    purpose of theoretical research;
ii)   available data/knowledge/hypothesis;
iii)  design of mathematical analysis.
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Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2
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= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 1.5
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Lotka-Volterra competition system
without diffusion

dN1

dt
= D1∇2 N1+(r1 − β1 N1 − γ12 N2)N1

dN2

dt
= D2∇2 N2+(r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 1.5
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Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 1.5
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Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 1.5
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3× resolution

Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 1.5
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10× resolution

Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 1.5
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Competitive Exclusion!!

Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 1.5
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Spatial Segregation

Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 2.5
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Lotka-Volterra competition system
without diffusion

dN1

dt
= D1∇2 N1+(r1 − β1 N1 − γ12 N2)N1

dN2

dt
= D2∇2 N2+(r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 2.5
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10× resolution

Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 2.5
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Competitive Exclusion!!

Lotka-Volterra competition system
with diffusion

∂N1

∂t
= D1∇2 N1 + (r1 − β1 N1 − γ12 N2)N1

∂N2

∂t
= D2∇2 N2 + (r2 − β2 N2 − γ21 N1)N2

D1 = 2.0 × 10−5; r1 = 1.0; β1 = 1.8; γ12 = 2.0;
D2 = 2.0 × 10−6; r2 = 1.0; β2 = 1.0; γ21 = 2.5
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A trite lesson　

Not be tricked by numerics!
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A sophisticated lesson　

Adventitious numerics could provide
cues for new scientific idea.
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What cue could you find?



　

Thank you for your attention!
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