Population dynamics modeling on the invasion of alien competitor

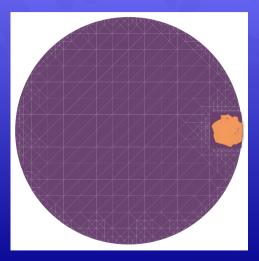
— Some remarks on the reasonability —

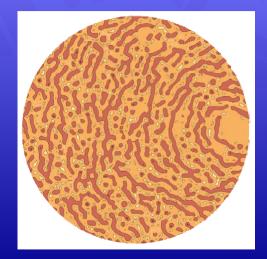
瀬野裕美 Hiromi Seno

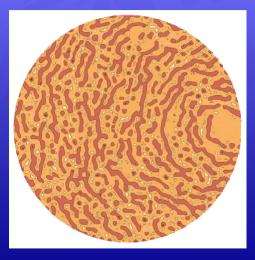
東北大学大学院情報科学研究科

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

FOR: MathBio Workshop: Shape and Movement in Life Sciences, March 25, 2025, ダイワロイネットホテル仙台西口 PREMIER



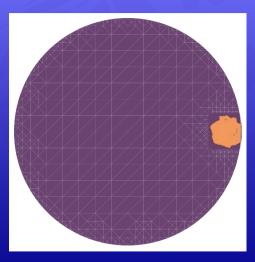




Lotka-Volterra competition system with diffusion

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

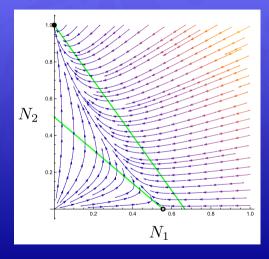
 $\frac{D_2 = 2.0 \times 10^{-6}}{r_2 = 1.0}; \quad \frac{r_1}{r_2} = 1.0; \quad \frac{r_1}{r_2} = 1.5$



$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$
$$D_1 = 2.0 \times 10^{-5}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \end{cases}$$

$$D_2 = 4.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5$$

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ \frac{D_1 - 2.0 \times 10^{-5}}{D_2}; r_1 = 1.0; \beta_1 = 1.8; \gamma_{12} = 2.0; \\ D_2 = 4.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5 \end{cases}$$

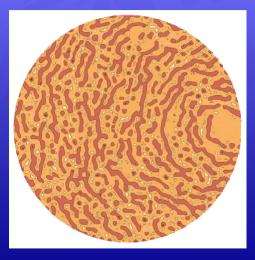


Lotka-Volterra competition system without diffusion

$$\begin{cases} \frac{dN_1}{dt} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{dN_2}{dt} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ \end{cases}$$

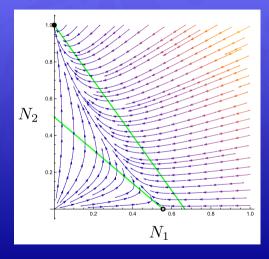
 $D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5$

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ \frac{D_1 - 2.0 \times 10^{-5}}{D_2}; r_1 = 1.0; \beta_1 = 1.8; \gamma_{12} = 2.0; \\ D_2 = 4.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5 \end{cases}$$



$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

$$D_2 = 2.0 \times 10^{-6}; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 1.5$$



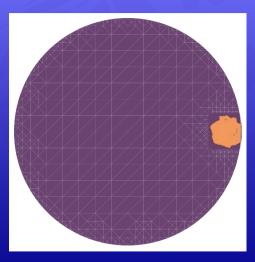
Lotka-Volterra competition system without diffusion

$$\begin{cases} \frac{dN_1}{dt} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{dN_2}{dt} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ \end{cases}$$

 $D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5$

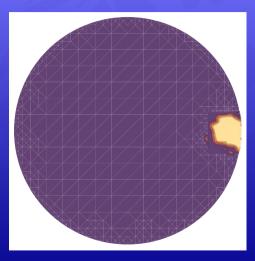
$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ D_1 = 2.0 \times 10^{-3}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \end{cases}$$

$$D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5$$



$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

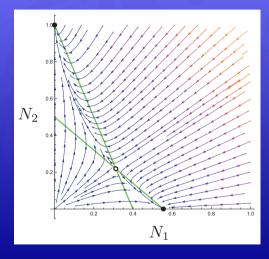
$$D_1 = 2.0 \times 10^{-5}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \\ D_2 = 2.0 \times 10^{-6}; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 2.5 \end{cases}$$



$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

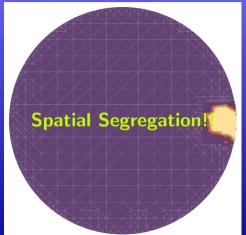
$$D_1 = 2.0 \times 10^{-5}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0;$$

$$D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 2.5$$



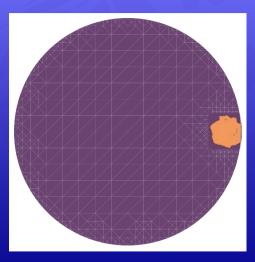
Lotka-Volterra competition system without diffusion

$$\begin{cases} \frac{dN_1}{dt} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{dN_2}{dt} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$



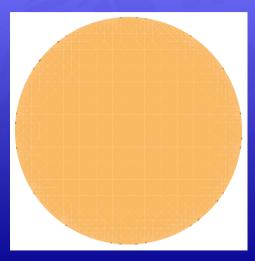
$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ \end{cases}$$

$$\begin{aligned} D_1 = 2.0 \times 10^{-8}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \\ D_2 = 2.0 \times 10^{-6}; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 2.8 \end{cases}$$



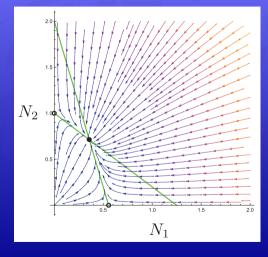
$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

$$D_1 = 0.20; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 0.5; \\ D_2 = 0.02; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 0.8 \end{cases}$$



$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

$$D_1 = 0.20; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 0.5; \\ D_2 = 0.02; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 0.8 \end{cases}$$



$$\begin{cases} \frac{dN_1}{dt} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{dN_2}{dt} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

$$D_1 = 0.20; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 0.5; \\ D_2 = 0.02; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 0.6 \end{cases}$$

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ \frac{\partial N_2}{\partial t} = 0.20; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 0.5; \\ D_2 = 0.02; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 0.8 \end{cases}$$

Mobility could be an important factor for the coexistence of competing species.

cf. Shigesada N, Kawasaki K, Teramoto E (1979) Spatial segregation of interacting species. *Journal of Theoretical Biology* 79(1): 83–99.

Mimura M, Kawasaki K (1980) Spatial segregation in competitive interaction-diffusion equations. *Journal of Mathematical Biology* **9**(1): 49–64.

Mimura M, Ei SI, Ikota R (1999) Segregating partition problem in competition-diffusion systems. *Interfaces and Free Boundaries* 1(1): 57–80.

Invasion of competitive alien species

"coexistence" \Rightarrow invasion success

Invasion of competitive alien species

"coexistence" \Rightarrow invasion success"exclusion" of native species \Rightarrow \Rightarrow invasion success
species exchange

Invasion of competitive alien species

"coexistence" \Rightarrow invasion success

"exclusion" of native species $\Rightarrow \begin{cases} \text{invasion success} \\ \text{species exchange} \end{cases}$

"exclusion" of alien species

 $\Rightarrow \left\{ \begin{array}{l} \text{invasion failure} \\ \text{resistence of native system} \end{array} \right.$

Invasion of competitive alien species

Invasion success of alien species

Threat to native ecosystem

Invasion of competitive alien species

Invasion success of alien species

Change in ecosystem services

Newly observed fish at Ishinomaki Fish Market

新顔の魚たちー石巻魚市場

新顔の魚たち

ウッカリカサゴ 2020/2/14 ^{Sebastiscus tertius}

カゴマトウダイ 2020/4/2 ^{Cyttopsis rosea}

テングダイ2020/9/17 Evistias acutirostris オニテングハギ2020/9/28 Naso brachycentron

ギンザメ2020/10/14 Chimaera phantasma

ツバメウオ2020/10/14 Platax teira

出典:一般社団法人漁業情報サービスセンター 東北出張所 「変動する三陸〜仙台湾の魚たち」 2020.12.23 https://www.jafic.or.jp/information/2020/12/23/509/

What is "competition"?

A distinctive topic: Different stage-specific alien predator

Epilogue

Inductive definition of "competitive relation" in population dynamics

Relation between two populations with some negative density effects on the growth of the other population size.

→ Influence-based

Inductive definition of "competitive relation" in population dynamics

Relation between two populations with some negative density effects on the growth of the other population size.

Negative density effect on population growth

- Decrease in reproductivity
- Increase in death rate
- Decrease in survivability

Inductive definition of "competitive relation" in population dynamics

Relation between two populations with some negative density effects on the growth of the other population size.

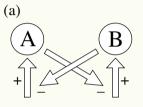
$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases} \longrightarrow \text{Influence-based}$$

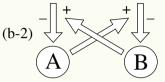
Inductive definition of "competitive relation" in population dynamics

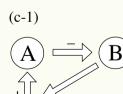
Relation between two populations with some negative density effects on the growth of the other population size.

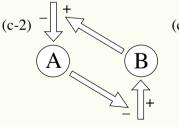
What reaction induces such a negative density effect on a population?

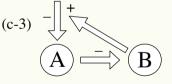
Causality-based classification of "competitive relation"



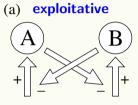


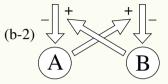


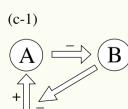


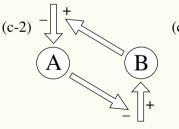


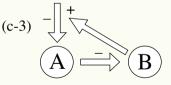
Causality-based classification of "competitive relation"





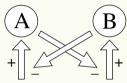




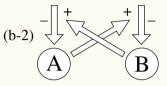


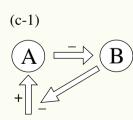
Causality-based classification of "competitive relation"

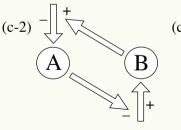
(a) **exploitative**

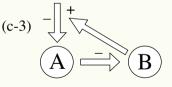


(b-1) interference





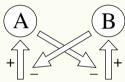




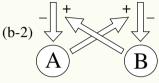
What is "competition"?

Causality-based classification of "competitive relation"

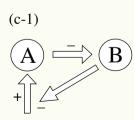
(a) **exploitative**

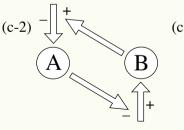


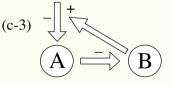
(b-1) interference



apparent







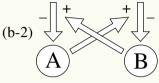
What is "competition"?

Causality-based classification of "competitive relation"

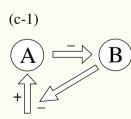
(a) **exploitative**

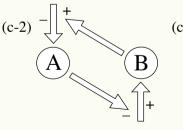


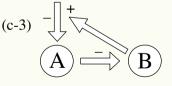
(b-1) interference



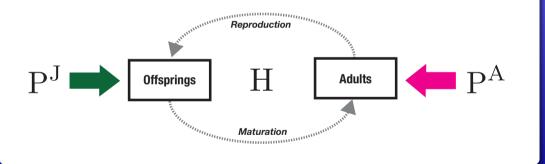
apparent



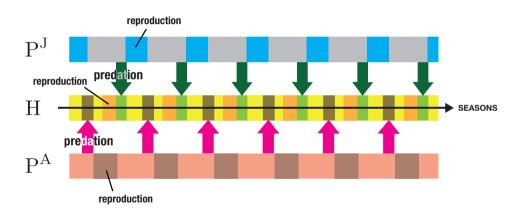




Two predators with different stage-specific predation for a common prey



Two predators with different stage-specific predation for a common prey



Prey population dynamics

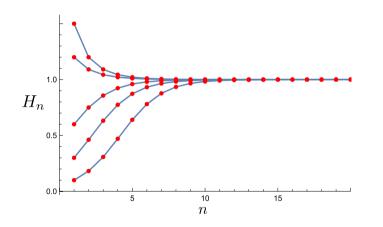
$$H_{n+1}=F(H_n)H_n$$

with the per capita reproduction function

$$F(H) = rac{r_0}{1 + H/eta} \quad (r_0 > 1)$$

cf. Beverton-Holt model

Prey population dynamics



cf. Beverton-Holt model ⇔ logistic equation model

Predator population dynamics

$$P_{n+1} = G(P_n, \mathcal{Z}_n)P_n$$

with

$$G(P_n, \mathcal{Z}_n) = \rho \frac{\mathcal{Z}_n}{P_n},$$

where Z_n is the total amount of preys predated by the population of predator P at the *n* th predation season.

Predator population dynamics

$$P_{n+1} = G(P_n, \mathcal{Z}_n)P_n = \rho \mathcal{Z}_n$$

with

$$G(P_n, \mathcal{Z}_n) = \rho \frac{\mathcal{Z}_n}{P_n},$$

where Z_n is the total amount of preys predated by the population of predator P at the *n* th predation season.

Two distinct models for prey-predator population dynamics

	Predator P ^J	Predator P ^A
Model J	native	alien
Model A	alien	native

Models for native prey-predator system

Model J
$$\begin{cases} H_{n+1} = \Pi_{J}(P_{n}^{J})F(H_{n})H_{n} \\ P_{n+1}^{J} = \rho_{J}\{1 - \Pi_{J}(P_{n}^{J})\}F(H_{n})H_{n} \end{cases}$$
$$Model A \begin{cases} H_{n+1} = F(\Pi_{A}(P_{n}^{A})H_{n})\Pi_{A}(P_{n}^{A})H_{n} \\ P_{n+1}^{A} = \rho_{A}\{1 - \Pi_{A}(P_{n}^{A})\}H_{n} \end{cases}$$

with the probability of successful escape from the predation, $\Pi_{\bullet}(P) = e^{-a_{\bullet}P}$.

cf. Nicholson-Bailey model

Models for native prey-predator system

Model J
$$\begin{cases} h_{n+1} = e^{-p_n^J} \frac{r_0}{1+h_n} h_n \\ p_{n+1}^J = \alpha_J (1-e^{-p_n^J}) \frac{r_0}{1+h_n} h_n \\ \end{pmatrix} \\ \\ Model A \begin{cases} h_{n+1} = \frac{r_0}{1+e^{-p_n^A}h_n} e^{-p_n^A} h_n \\ p_{n+1}^A = \alpha_A (1-e^{-p_n^A}) h_n \end{cases}$$

with non-dimensionalizing transformations.

Models for prey-predator population dynamics with invading alien predator

$$\begin{cases} H_{n+1} = \Pi_{J}(P_{n}^{J})F(\Pi_{A}(P_{n}^{A})H_{n})\Pi_{A}(P_{n}^{A})H_{n} \\ P_{n+1}^{J} = \rho_{J}\{1 - \Pi_{J}(P_{n}^{J})\}F(\Pi_{A}(P_{n}^{A})H_{n})\Pi_{A}(P_{n}^{A})H_{n} \\ P_{n+1}^{A} = \rho_{A}\{1 - \Pi_{A}(P_{n}^{A})\}H_{n} \end{cases}$$

Models for prey-predator population dynamics with invading alien predator

.

$$\begin{cases} h_{n+1} = e^{-p_n^{J}} \frac{r_0}{1 + e^{-p_n^{A}} h_n} e^{-p_n^{A}} h_n \\ p_{n+1}^{J} = \alpha_J (1 - e^{-p_n^{J}}) \frac{r_0}{1 + e^{-p_n^{A}} h_n} e^{-p_n^{A}} h_n \\ p_{n+1}^{A} = \alpha_A (1 - e^{-p_n^{A}}) h_n \end{cases}$$

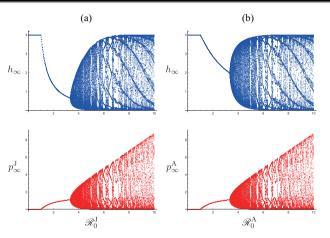
with non-dimensionalizing transformations.

Models for native prey-predator system

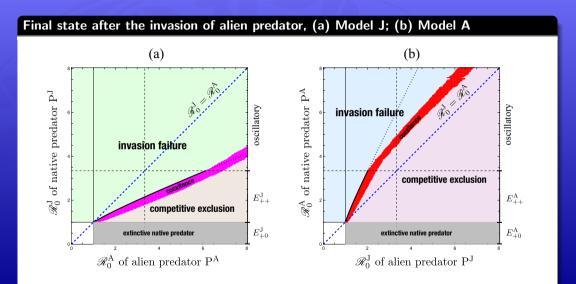
Model J
$$\begin{cases} h_{n+1} = e^{-p_n^J} \frac{r_0}{1+h_n} h_n \\ p_{n+1}^J = \alpha_J (1-e^{-p_n^J}) \frac{r_0}{1+h_n} h_n \end{cases}$$
$$Model A \begin{cases} h_{n+1} = \frac{r_0}{1+e^{-p_n^A}h_n} e^{-p_n^A} h_n \\ p_{n+1}^A = \alpha_A (1-e^{-p_n^A}) h_n \end{cases}$$

with non-dimiensionalizing transformations.

Bifurcation diagram for native prey-predator system



(a) Model J; (b) Model A, where $\mathscr{R}_0^{\bullet} := \rho_{\bullet} a_{\bullet} \beta(r_0 - 1)$ is the basic predator replacement number for predator P^{\bullet} .

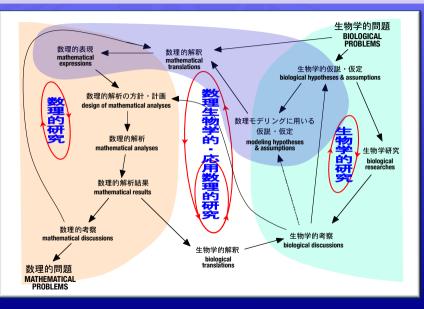


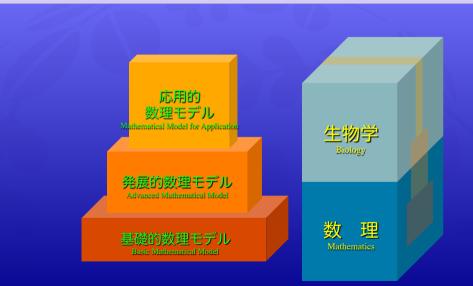
• The juvenile-specific predator has the invadability higher than the adult-specific predator.

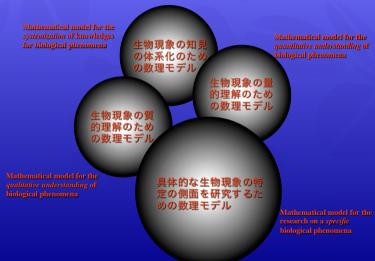
- The juvenile-specific predator has the invadability higher than the adult-specific predator.
- The prey-predator system with the juvenile-specific predator would be more resistant to the invasion of alien predator.

- The juvenile-specific predator has the invadability higher than the adult-specific predator.
- The prey-predator system with the juvenile-specific predator would be more resistant to the invasion of alien predator.
- The prey-predator system with the adult-specific predator would be more vulnerable to the invasion of alien predator.

- The juvenile-specific predator has the invadability higher than the adult-specific predator.
- The prey-predator system with the juvenile-specific predator would be more resistant to the invasion of alien predator.
- The prey-predator system with the adult-specific predator would be more vulnerable to the invasion of alien predator.
- The persistent prey-predator system would be composed of the juvenile-specific predator.







Biological Phenomena

Mathematical Modelling

Population Dynamics

is the nature of the spatio-temporal variation of biological population size (i.e. density etc.).

Mathematical Modelling

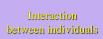
繁殖 reproduction 闘争 fighting 競争 competition 共生 mutualism 捕食 predation 寄生 parasitism etc.

Population Dynamics

is the nature of the spatio-temporal variation of biological population size (i.e. density etc.).

Mathematical Modelling

Population Dynamics



Mathematical Modelling

繁殖 reproduction 關争 fighting 算令 prevation 寄生 parasitism etc.

between individuals

Population Dynamics

Mathematical Modelling

繁殖 reproduction 副争 fighting () 算争 fighting () prevation 寄生 parasitism etc.

What mathematical model is reasonable from the biological viewpoint?

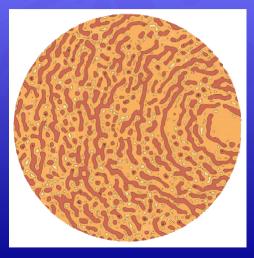
What mathematical structure is appropriate for the reasonable modeling?

$$\begin{bmatrix} L-1 \end{bmatrix} \quad \frac{dN(t)}{dt} = \{r_0 - \beta N(t)\}N(t)$$
$$\begin{bmatrix} L-2 \end{bmatrix} \quad \frac{dN(t)}{dt} = r_0 \{1 - \frac{N(t)}{K}\}N(t)$$
$$\begin{bmatrix} L-3 \end{bmatrix} \quad \frac{dN(t)}{dt} = r_0 N(t) - b\{N(t)\}^2$$
$$\begin{bmatrix} L-4 \end{bmatrix} \quad \frac{dN(t)}{dt} = \{r_0 - \beta N(t)\}N(t) - b\{N(t)\}^2$$

 r_0 : intrinsic growth rate

Reasonability of modeling depends on

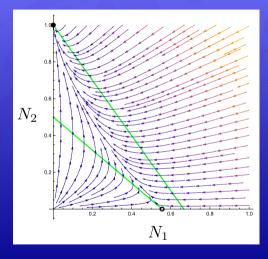
i) purpose of theoretical research;
ii) available data/knowledge/hypothesis;
iii) design of mathematical analysis.



Lotka-Volterra competition system with diffusion

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

 $\frac{D_2 = 2.0 \times 10^{-6}}{r_2 = 1.0}; \quad \frac{r_1}{r_2} = 1.0; \quad \frac{r_1}{r_2} = 1.5$

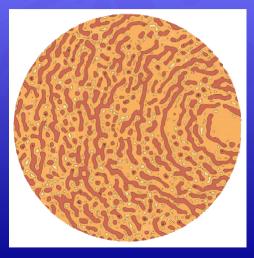


Lotka-Volterra competition system without diffusion

$$\begin{cases} \frac{dN_1}{dt} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{dN_2}{dt} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

$$D_1 = 2.0 \times 10^{-5}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0;$$

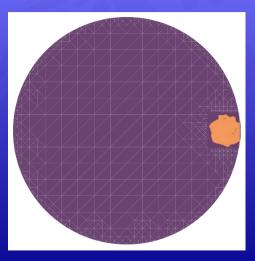
 $D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5$



Lotka-Volterra competition system with diffusion

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

 $\frac{D_2 = 2.0 \times 10^{-6}}{r_2 = 1.0}; \quad \frac{r_1}{r_2} = 1.0; \quad \frac{r_1}{r_2} = 1.5$



$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$
$$D_1 = 2.0 \times 10^{-5}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \end{cases}$$

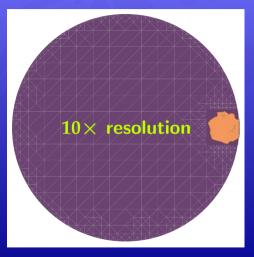
$$D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5$$

Lotka-Volterra competition system with diffusion

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

$$D_1 = 2.0 \times 10^{-5}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0;$$

 $D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 1.5$



$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

$$\frac{D_1 = 2.0 \times 10^{-5}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \\ D_2 = 2.0 \times 10^{-6}; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 1.5 \end{cases}$$

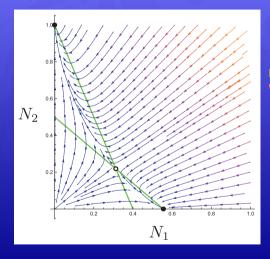
Lotka-Volterra competition system with diffusion

 $= 2.0 \times 10^{-1}$

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ \frac{D_1 = 2.0 \times 10^{-3};}{D_2 = 2.0 \times 10^{-3};} \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \\ D_2 = 2.0 \times 10^{-3}; \quad r_2 = 1.0; \quad \beta_2 = 1.0; \quad \gamma_{21} = 1.5 \end{cases}$$

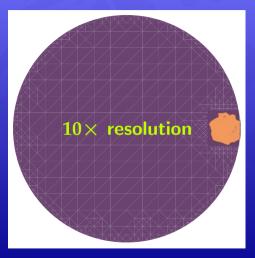
$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ D_1 = 2.0 \times 10^{-5}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \end{cases}$$

$$D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 2.5$$



Lotka-Volterra competition system without diffusion

$$\begin{cases} \frac{dN_1}{dt} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{dN_2}{dt} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$



$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \\ D_1 = 2.0 \times 10^{-3}; \quad r_1 = 1.0; \quad \beta_1 = 1.8; \quad \gamma_{12} = 2.0; \end{cases}$$

$$D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 2.5$$

Lotka-Volterra competition system with diffusion

$$\begin{cases} \frac{\partial N_1}{\partial t} = D_1 \nabla^2 N_1 + (r_1 - \beta_1 N_1 - \gamma_{12} N_2) N_1 \\ \frac{\partial N_2}{\partial t} = D_2 \nabla^2 N_2 + (r_2 - \beta_2 N_2 - \gamma_{21} N_1) N_2 \end{cases}$$

 $D_2 = 2.0 \times 10^{-6}; r_2 = 1.0; \beta_2 = 1.0; \gamma_{21} = 2.5$

A trite lesson

Not be tricked by numerics!

A sophisticated lesson

Adventitious numerics could provide cues for new scientific idea.

find?

Thank you for your attention!

