
1 – 1 人口変動

5 差分モデル

生物個体群における繁殖過程のほとんど
は，時間的に離散な単位（季節，生育段階，
年齢など）による制約を受けており，個体
群サイズの時間変動が，連続時間ではなく，
ある時間ステップ（第○回目の季節，第○
世代の第△生育段階，第○齢など）による
離散的な時系列として存在する例は少なく
ない．ある時間ステップによる離散的な時
系列として現れるそのような個体群サイズ
変動に対する数理モデリングとして，離散
時間型数理モデルは 1つの選択肢である．
差分方程式による数理モデル
時系列 k 番目の個体群サイズを Nk と表

せば，Nk から Nk+1 への個体群サイズ変化
は，その単位時間ステップ内における個体
群サイズ増減に関わる因子の働きにより，
差分方程式として，

Nk+1 − Nk = Ψk (Nk ,Nk−1, . . . )

の形で表現できる．適当な初期条件とこの
ような差分方程式によって時系列 {Nk }∞k=0
が定まるとき，上式は離散力学系（discrete
dynamical system）を定めるという．
上の差分方程式による数理モデルで最も

単純なものは，Ψk = Ψ(Nk ) の場合，つま
り，k 番目から k + 1番目の時系列に至る単
位時間ステップにおける個体群サイズ変化
分が k 番目の個体群サイズ Nk のみによっ
て定まる場合である．そのような離散時間
型数理モデルとして次のロジスティック写
像（logistic map）はよく知られたものの一
つである．

xk+1 = a (1 − xk ) xk

この数理モデルは，常微分方程式によるロ

ジスティック方程式との関連で離散型ロジ
スティック方程式と呼ばれることもある．
1970 年代前半に，英国の数理生物学者 R.
May（1936–2020）がこの離散時間型数理モ
デルについて行った数理的研究は，今では数
理的概念として通用となったカオス（chaos）
研究の格好の素材となるその特性を明らか
にし，多くの研究者をカオス理論の研究に
誘うこととなったことで知られる．ただし，
先立つ 1960年代に，森下正明や J. Maynard
Smith が同じ数理モデルを用いた数理生物
学的研究を発表していた．
一方，1953年に，Fujita and Utidaは，世

代分離型の数理モデル

Nk+1 =

(
1

b + cNk
− σ

)
Nk

を用いて，マメ類につくマメゾウムシの個
体数密度変動の実験データを解析する先駆
的な研究を行った．また，時間離散型数理
モデル

Nk+1 =
Nk

a + bNk

は，1957年に R. J. H. Bevertonと S. J. Holt
により水産学応用の研究に用いられ，今日，
しばしば，Beverton–Holtモデルと呼ばれる．
数理的には，この Beverton–Holtモデルが常
微分方程式によるロジスティック方程式に
対応する離散時間型数理モデルを表す差分
方程式である．これら以外にも，漁業資源
管理における成熟魚類の貯蔵量に関する問
題に適用された Ricker–Moranモデルなど，
よく知られた離散時間型数理モデルは少な
からずある．
個体群ダイナミックスの数理モデル解析に

おいて，平衡状態の存在性や安定性について
調べることは必須である．平衡状態 N = N∗

の局所安定性は，平衡状態近傍における摂
動 nk = Nk −N∗ の変動を調べることによっ
て解析できる．そして，特に，Ψk = Ψ(Nk )

16 1. 生態・環境
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図 1 Nicholson–Bailey モデルによる個体群サイズ
変動例（口絵 1 参照）

H0 = 1.0；P0 = 1.0；r = 1.3；α = 0.5；θ = 0.9；
b = 0.5．

の形の離散時間型数理モデルについては，
大域安定性の解析手法として有効な蜘蛛の
巣図法（cobwebbing method）もあり，局所
安定性解析と相補的に用いることで定常状
態や時系列の特性について数理的に調べる
ことが比較的容易である．
複数種相互作用モデル
宿主–寄生者，あるいは，餌–捕食者の個体

群ダイナミックスについて，オーストラリア
の昆虫学者 A. J. Nicholson（1895–1969）と
物理学者 V. A. Bailey（1895–1964）が 1930
年代に発表した次の数理モデルは，現在，複
数種相互作用ダイナミックスについての基
本モデルとして Nicholson–Baileyモデルと
呼ばれている（特に θ = 0の場合）．

Hk+1 = re−αPk Hk

Pk+1 = θPk + b(1 − e−αPk )Hk

この数理モデルでは，寄生者個体群サイズ
P は，ゼロ（絶滅）に漸近するか，宿主個
体群サイズ H とともに徐々に無限大に向か
う励起振動を伴う変動を示す（図 1）．
宿主–寄生者ダイナミックスモデルを含む

2 種以上の個体群の相互作用を含む数理モ
デルの平衡状態については，局所安定性解
析は可能ながら，蜘蛛の巣図法のような大
域安定性を調べる通用の解析手法は存在し

ないので，個々の数理モデルの特性に応じ
た数理的手法を工夫することが必要である．
ハイブリッドモデル
差分方程式による数理モデリングにおい
ては，単位時間ステップにおける個体群ダ
イナミックスの詳細は，差分方程式を記述
する関数 Ψに埋め込まれる．一方，単位時
間ステップにおける個体群ダイナミックス
（の一部）を微分方程式による数理モデルで
陽に与える数理モデリングも可能であり，そ
の場合，Ψは，微分方程式による単位時間
ステップ内の個体群ダイナミックスによっ
て定まる最終（例えば，平衡）状態が定め
る値により次の時間ステップの個体群サイ
ズを定めるものとなる．そのように離散時
間と連続時間によるダイナミックスを合理
的に複合した数理モデルは，しばしば，ハ
イブリッドモデルと呼ばれる．例えば，連
続空間内での相互作用を積分で組み込んだ
差分方程式による数理モデルもその一種で
ある． （瀬野裕美）
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9 – 3 最適化と動的最適化

13 ダイナミックプログラミング

有限または無限の段階による決定の連鎖
において何らかの目的関数（例えば，利得，
損失など）の最適化（最大化あるいは最小
化）問題を扱う数理的手法の一つがダイナ
ミックプログラミング（dynamic program-
ming: DP，動的計画法）である．ある段階
における選択肢の決定が引き続く段階にお
ける選択肢の決定系列に影響を及ぼす場合
に，多段階の決定系列全体についての目的
関数の最適化は，必ずしも，各段階毎におけ
る選択決定による各段階での目的関数の最
適化の系列を与えるものとはならない．R.
E. Bellman（1920–1984）がこのような問題
を扱う数理的手法として開発したのが DP
である．
状態変数
多段階の選択決定において，各段階にお

ける選択は，選択を行う主体の「状態」に
依存すると仮定する．この主体の状態を表
す変数を状態変数と呼ぶ．ある段階におけ
る状態変数の値は，その段階までの選択決
定によって定まる．よって，多段階の決定
系列が各段階における「状態」の系列を生
成し，決定系列は初段階における状態にも
依存する．一般に，主体の状態を表す状態
変数は 1つとは限らない．
最適性の原理
多段階の選択決定に対する最適決定系列

に含まれる連続する部分系列は，その部分系
列の最初の段階における状態から始まる決定
系列として最適になっていることをBellman
は「最適性の原理（principle of optimality）」
と呼んだ．最適性の原理が成り立つために
は，ある段階において選択を行う主体の状

態が引き続く段階における決定系列の最適
性を定め，その段階における状態がそれま
での決定系列がどのようなものであったか
にはよらないこと（マルコフ的性質）が必
要である．一般に，最適性の原理が成立し
ない問題は DPでは取り扱えない．
不変埋没原理
最適決定系列における各段階での選択決

定を求めるために，DPでは全ての段階の選
択決定を定めることが必要となる．この考
え方を不変埋没原理（invariant imbedding）
と呼ぶ．（選択肢は各段階における状態に依
存するとしても）各段階における選択決定
は別の段階における選択決定と共通の特性
を持つ選択決定問題を考えるわけなので，
最適決定系列において連なる段階の選択決
定が満たすべき関係を再帰式として表現す
ることにより数理的な問題を設定すること
が DPによる数理モデリングの本質である．
多くの場合，DPにおける数理的な問題は後
ろ向き再帰式（後進漸化式）として表現さ
れる．
後ろ向き再帰式
DP に特有の後ろ向き再帰式は形式的に

次のように定式化できる．
fk (xk ) = max

s
Φ(ρk (s), fk+1(xk+1(s)))

ここで，xk（状態変数が複数ならベクトル）
は k 段階目において選択決定を行う前の主
体の状態変数であり，k + 1 段階目の選択
決定前の状態変数 xk+1(s) は k 段階目にお
ける選択決定 s によって定まる（マルコフ
的性質）． fk (xk ) は，総段階 n による決定
の連鎖において，k 段階目における状態変
数 xk に対して，k 段階目から n 段階目ま
での最適な決定系列を定める最適値関数で
ある．選択決定の系列によって定まるある
量を最適化するという目的を，DPでは，各
段階における状態によって定まる最適な選
択についての基準を与える最適値関数 f の

470 9. 数理モデルの解析方法
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存在を仮定して，その関数を回帰的に定め
るという数理的問題として表現する．
最適値関数 fk (xk ) は k 段階目における

選択決定 s により定まるが， fk+1(xk+1(s))
は状態変数 xk+1(s) によってのみ定まる最
適な決定系列を定めるものなので，最適値
関数 fk (xk )による k段階目における最適な
選択決定 sと fk+1(xk+1(s))を結びつける目
的関数は，一般に，Φ(ρk (s), fk+1(xk+1(s)))
と表すことができ，最適値関数 fk (xk ) は，
目的関数 Φの値を最大（あるいは最小）に
する s を与えるものでなければならない．
再帰式に現れる関数 ρk (s) は，最適な決定
系列の k 段階目における選択決定が sであ
る場合に，k + 1 段階目以降の最適値関数
fk+1(xk+1(s))と k段階目以降の最適値関数
fk (xk )の値のずれを表すものである．どの
ような問題を考えるかに依存するが，目的
関数 Φ は，和 ρk (s) + fk+1(xk+1(s)) や積
ρk (s) fk+1(xk+1(s))の形をとることが多い．
上の再帰式の数理的な取り扱いにおいて

は，まず，最終段階，n 段階目における最
適な選択決定を可能な状態変数 xn の関数
として定める．一般に，最終段階における
選択決定は引き続く段階がないという特殊
性から，考えている問題に従った最適な選
択決定を定めることができる． fn (xn )の値
が決まれば，後ろ向き再帰式（k = n − 1）
により n − 1段階目の選択決定を定めるこ
とができ，回帰的に，より早い段階におけ
る選択決定を順次定めることができる．
理論・数理生物学における DPの応用
動物の連鎖行動に関する最適性について

の理論研究に関する DPを応用した数理モ
デリングは，MangelとClarkが 1988年に書
いた本によってその手法が合理的に整備さ
れ，その後，様々な動物行動の適応性に関す
る考察に応用されてきた．Mangelと Clark
の本では，体力と相談しながらの餌場選択

行動，ライオンによる狩り行動，昆虫の繁
殖行動，プランクトンの垂直分布の季節変
動，鳥類における親の世話と仔数，クモや
猛禽類における移動行動などの具体的な例
が取り上げられている．動物行動の問題を
含む生物学の問題については，目的関数 Φ
として，例えば，将来期待される繁殖成功
度を与える関数が使われる． （瀬野裕美）
文 献
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口絵 1 Nicholson–Bailey モデルによる個体

群サイズ変動例．（p.17，1-1 節 5 項） 

H0 = 1:0；P0 = 1:0；r = 1:3；_ = 0:5；_ = 

0:9；b = 0:5． 
口絵 2 気候モデルと地球システムモデルの基本構

造（p.64，1-3 節 26 項） 

口絵3 脳－身体－環境の相互作用を通して

知能の原理を探るロボット研究（p.198，4-3

節14項） 

口絵4 拡張ドメインでのTuring パタ

ーン形成（p.231，5-2節7項） 

口絵5 遺伝子発現の時間によるTuring パターンにおける

影響（p.231，5-2節7項） 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

口絵7 細胞のシグナル分子への応答（p.234，5-

2節9項） 

(a) シグナル濃度の時間変動に対する適応応答．

(b) シグナル濃度勾配中の細胞の応答．(c) LEGI 

モデル．(d)シグナル勾配下の細胞内で活性因子

は勾配，抑制因子は一様分布する結果R の活性

状態も勾配を作る． 

 

口絵8 ゼブラフィッシュおよびメダカで見

られる錐体モザイク（p.247，5-3節15項） 

口絵9 後腸の形態形成過程とそのシミュレ

ーション結果（p.248，5-3節16項） 

口絵6 体表パターンのい

ろいろな例（p.232，5-2節

8項） 

上段左から，シマウマの縞

模様，ニワトリの羽毛形成

パターン“Ho et al.1)（CC 

BY 4.0）を改変”，フグの

迷路模様．下段左から，キ

リンの網目模様，クジャク

の目玉模様，ヒトの指紋パ

ターン． 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

口絵10 上皮細胞に働く力のベイズ推定

（p.255，5-4節19項） 

a：単層上皮における力と形の逆問題のベイズ

推定による定式化．b：力のベイズ推定法．細

胞輪郭が標識された画像データから画像解析に

より，細胞結節点の座標と結合関係を抽出する

（左）．細胞接着面の張力と細胞の圧力差の相

対値のマップ（中と右）．カラーバーは力の大

きさを示す．画像はショウジョウバエ蛹期の翅

上皮． 

 

口絵12 蕁麻疹の病理生理的予測の仕

組み（p.286，6-2節11項） 

 

口絵13 蕁麻疹の数理モデルと皮疹の再現（p.287，6-2節

11項） 

(A) 数理モデルの基本構造，(B) 抑制関数，(C) 蕁麻疹患

者の皮疹の形状（上段）と数理モデルでの再現（下段）． 

口絵11 骨のリモデリング・代謝

のダイナミックス3)（p.261，5-4

節22項） 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

口絵14 1 細胞状態の分岐の模式図

（p.344，7-1節4項） 

口絵15 （上）大腸菌の中心炭素代謝経路，（下）

緩衝構造の入れ子関係（本文説明を参照）

（p.371，7-3節16項） 

口絵16 GBIF から提供されているオカレンスデータの分布（p.418，8-2節14項） 

 

口絵17 多様体学習による可視化例（p509，10-2節11項） 

3 次元の元データ（左）と対応するMDS とtSNEの結果（右）． 


