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As a mathematical model for the biological aggregation phenomena, we consider a density-
dependent diffusion equation system with a potential term without growth term and focus on
their stationary solutions to investigate the effect of density-dependency type of diffusion and
potential on them. The model is applied to analyze a type of fish grouping, "shoaling". The
result gives a new information to understand the phenomenon. -

Introduction

In the last decades, some density-dependent diffusion equations were
investigated to reveal some of their interesting features different from those of
density-independent diffusion equations (Shigesada et al., 1979; Mimura, 1980;
Namba, 1980, 1989; Teramoto and Seno, 1988; Seno, 1989, 1991c). For a
review of prototypes of studies on density-dependent diffusion equations, see
Okubo (1980).

In some cases, it is very difficult to deal analytically with dynamical

!

aspects of density-dependent diffusion system, so that it cannot help
sirhulating'mair‘lly by computers. On the other hand, although the dynamical
aspect is worth while being investigated, the stationary solution may
sometimes be sufficient to give interesting results to contribute to
understanding of a biological phenomenon (Teramoto and Seno, 1988; Seno,
1990, 1991a, 1991b). Despite that very few biological systems could be
regarded stationary, a stationary solution in a model may be useful as an
approximation to consider a quasi-stationary biological system.
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Fig. 1. Category of Fish Grouping (after Pitcher, 1986).

As an application of density-dependent diffusion model for the real
phenomeno, we will deal with a type of fish grouping. Fish grouping is very
frequently observed in nature. Each grouping might have its behavioral reason
in the biological sense (Shaw, 1978; Partridge, 1982; Pitcher, 1986). It is often
called "shoaling" or "schooling" (see Fig. 1). Following Parr (1927), Breder
(1954), and Okubo et al. (1977), we consider the stabilized shoal size in terms
of the balance of two counteracting forces uaggregating and dispersing ones
(see Fig. 2). 'However, differently from them, we shall not consider the shoal
size to be the result of the two counteracting forces among individual fish.
Instead, our purpose is to discuss shoal size as resulting from two
counteracting forces on each individual (Seno, 1990, 1991b). The model is
applied to analyze the data for the shoaling of cichlid fish, Lepidiolamprologus
elongatus, in Lake Tanganyika'(Nakai, private communication). The result

gives a new information to consider the shoaling.
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AGGREGATION
FORCE

Fig. 2. Modelling of biological aggregation pattern formation.

MODELLING ASSUMPTION

Aggregating Force: An aggregating force is assumed to be directed to the
center of aggregating group. We can consider an environmental potential
which has its minimum at the center and produces a force directed to it (see’
Fig. 2).

Dispersing Force: We can assume that the density-depéndency of diffusivity is
a consequence of intraspecific competition for food among fish in the shoal. At
a site in the shoal, the higher the density is, the stronger is the tendency to
avoid staying there. /

Group Size: The total population of shoaling fish is assumed to be conserved
for a considered group. No reproduction, no migration, or no predation are
assumed in the considered shoal.
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MODEL

At first, we consider a shoal in 2-dimensional space. Since the
aggregating force is assumed to be directed to the grouping center and its
strength is assumed to depend only on the distance from the center. Our
model is described as follows (Seno, 1990, 1991b):

a—’;=—div.]

J (1)

J=_5(%)f"gradn—ngradU' (2)

n is the population density at a site in the space and at time ¢. J is the flux of
population density which is the 2-dimensional vector. The first term of the
right-hand side of (2) represents the density-dependent diffusion force, which
becomes stronger as the density gets higher. 9 is the diffusivity when # is
equal to k¥ which represents a conventional reference density. The power m is
the index of strength of density-dependency of the diffusion. The second term
means the aggregating force directed to the grouping center. U is a scalar
function of only the distance from the origin which corresponds to the center of
shoaling fish.

To consider the size of stabilized shoal, we shall investigate the
stationary solution of our model, given by solving J = 0. In addition, the
conservation of total population in the shoal implies the following:

r*
2 f n*.rdr=N
0

b

~ where N is a constant of group size, and the factor 27 is resulted from
integration with respect to the angle expanded by the shoal around the nest.
r* is an unknown constant which denotes the edge of the distribution n*, that
is, the shoal size. Thus, the special following relation is required:

n*(r¥) = 0. ;



The existence of such a finite r* is a characteristic nature of density-dependent
diffusion (Okubo, 1980). At last, we can obtain

n* = (M_gfn_)l/m. (U(r*) - U(r)>1/m

s gy = N 5 |
fo {U(r*)-U(r))/ 'rdr—EE- (——)

In the case of 3-dimensional space, the same argument can be applied,
while the aggregating group has the shape of 3-dimensional ball and the
attractive force directed to the center of the ball works on each individual in it.
The resulted equation is fundamentelly the same as above, except for the
following conservation relation:

" 1/m
j <U(”*)—U(r)}l/m-r2dr=/_v__.( 5 )
0 4T

A Special Environmental Potential: U(r) = sgn(y)-k r¥, where k is a positive
constant. Although vy is also a real constant, the characteristic of considered
potential field so significantly depends on the sign of y that we should consider
separately the cases of positive and negative 7, especially in terms of the
embodied distribution n*, which can be obtained in a explicit form (Seno, 1990,
1991b). The individual distribution in the aggregating pattern is determined by
those parameters y and m (Seno, 1990; see Fig. 3). However, independently
the sign of v, the relation between the shoal size r* and the group size N can

be expressed in the following form:

r* o N +Y/m), (3)

where d =2 and d = 3 respectively in 2-dimensional case and in 3-dimensional
case. We will use this proportional relation to investigate the data of the
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Fig. 3. Parameter dependency of the shape of stationary distribution of the model (Seno, 1990).

shoaling of cichlid fish, Lepidiolamprologus elongatus, in Lake Tanganyika,
observed by Nakai (1991, private communication).

ANALYSIS ON THE DATA OF A SHOALING

A detail data of the shoaling of cichlid fish, Lepidiolamprologus
elongatus, in Lake Tanganyika is obtained by the observasion (Nakai, private
communication). It will be expected that some photographs of the shoal give
the information of the distribution of fish in the shoal. But, now, we deal only
with the data of the group size and the shoal size, which are easier to be
estimated than the fish distribution in the shoal. We will use the relation 3)
and estimate the slope of the line fitted to the graph of log(the spatial size of
shoal)-log(the group size), and lastly calculate the value y/m (Fig. 4; Fig. 5).
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Fig. 4. Data of the shoaling of cichlid fish, Lepidiolamprologus elongatus, in Lake Tanganyika.
The vertical axis is of the group size, while the horizontal is of the spatially horizontal size, that

is, the 2-dimensional extension length of the shoal.
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Fig. 5. Data of the shoaling of cichlid fish, Lepidiolamprologus elongatus, in Lake Tanganyika.
The vertical axis is of the group size, while the horizontal is of the 3-dimensional shoal size,
which is the radius of the ball corresponding to the shoal. The radius <r> is calculated regarding
| the shoal as the ball which has the volume equivalent to that of the ellipsoid of revolution given

by the data on the size of shoaling.
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Fig. 6. y/m estimated for the data of the shoaling of cichlid fish, Lepidiolamprologus elongatus,
in Lake Tanganyika. The result of t-test is shown: *: p < 0.01; **: p < 0.02; ***: p < 0.03; non-

significant in the age 0-9 class of 2-dimensional model case.

The result is shown in Fig. 6. It is shown that the value y/m does not
seem to have any significant variation in the period later after the appearance
of shoaling, while it may take a significantly different value in the earlier period
after the appearance of shoaling. This means that the ratio (the strength of
aggregation tendency)/(the strength of dispersal) is almost constant during the
period of shoaling. It is observed that the shoal disappears at a morning for
those fish to disperse away. Although the quantity y/m might be expected to
characterize the intrinsic tendency of shoal and to make the indication of the
disappearance of shoal, it is not. The reason may be that y and m are
contemporarily decreasing as the fish in the shoal grows. Another possible
reason is that the statistical operation enshadows the variation of the quantity,
because the dealt data involves so various observed shoals that some
disappear in the ealier age class and the others in the later age class. The
analysis on the density distribution in the shoal is necessary, made use of this
model.



CONCLUSION

The model introduced here is shown to be useful to investigate the
aggregation phenomena in nature. It is so simple and so fundamental that it
may give the information on the phenomena as the zenoth approximate
analysis. Such information is sometimes still useful to consider the real
phenomena. The shoaling of cichlid fish, Lepidiolamprologus elongatus, in
Lake Tanganyika, is the case. Moreover, it is easy to improve the model to fit
the characteristics of the considered real phenomenon. Thus, it is expected
that the analysis on the data by this model gives some new information for
various kinds of real phenomena. ‘
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