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A Density-dependent Diffusion Model on Biological
Aggregation Phenomena: An Analysis on Fish Shoaling

Hiromi SENO

Information Processing Center of Medical Sciences, Nippon Medical School
Sendagi 1-1-5, Bunkyo-ku, 113 Tokyo
Japan

生物集合に関する密度依存型拡散方程式モデル
: ある群魚 (shoaling)についての考察

日本医科大学基礎医学基礎医学情報処理室 瀬野裕美

As a mathematical model for the biological aggregation phenomena, we consider a density-
dependent diffusion equation system with a potential term without growth term and focus on
their stationary solutions to investigate the effect of density-dependency type of diffusion and
potential on them. The model is applied to analyze a type of fish grouping, ”shoaling“. The
result gives a new information to understand the phenomenon.

Introduction

In the last decades, some density-dependent diffusion equations were
investigated to reveal some of their interesting features different from those of
density-independent diffusion equations (Shigesada et al., 1979; Mimura, 1980;

Namba, 1980, 1989; Teramoto and Seno, 1988; Seno, 1989, $1991c$). For a
review of prototypes of studies on density-dependent diffusion equations, see
Okubo (1980).

In some cases, it is very difficult to deal analytically with dynamical
aspects of density-dependent diffusion system, so that it cannot help
simulating mainly by computers. On the other hand, although the dynamical
aspect is worth while being investigated, the stationary solution may
sometimes be sufficient to give interesting results to contribute to

understanding of a biological phenomenon (Teramoto and Seno, 1988; Seno,

1990, $1991a,$ $1991b$). Despite that very few biological systems could be

regarded stationary, a stationary solution in a model may be useful as an
approximation to consider a quasi-stationary biological system.
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Fig. 1. Category of Fish Grouping (after Pitcher, 1986).

As an application of density-dependent diffusion model for the real
phenomeno, we will deal with a $ty$pe of fish grouping. Fish groupi $ng$ is very
frequently observed in nature. Each grouping might have its behavioral reason
in the biological sense (Shaw, 1978; Partridge, 1982; Pitcher, 1986). It is often
called $|shoaling^{\dagger t}$ or \dagger ’schooling’’ (see Fig. 1). Following Parr (1927), Breder
(1954), and Okubo et al. (1977), we consider the stabilized shoal size in terms

of the balance of two counteracti $ng$ forces aggregating and dispersing ones
(see Fig. 2). (However, differently from them, we shall not consider the shoal

size to be the result of the two counteracting forces among individual fish.
Instead, our purpose is to discuss shoal size as resulting from two

counteracting forces on each individual (Seno, 1990, $1991b$). The model is
applied to analyze the data for th$e$ shoaling of cichlid fish, Lepidiolamprologus
elongatus, in Lake Tanganyika (Nakai, private communication). The result
gives a new information to consider the shoaling.
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Fig. 2. Modelling of biological aggregation pattern formation.

MODELLING ASSUMPTION

Aggregating Force: An aggregating force is assumed to be directed to the
center of aggregating group. We can consider an environmental potential
which has its minimum at the ce$n$ter and produces a force directed to it $(see^{\cap}$

Fig. 2).

Dispersing Force: We can assume that the density-dependency of diffusivity is
a consequence of intraspecific competition for food among fish in the shoal. At
a site in the shoal, the higher the density is, the stronger is the tendency to

avoid staying there.

Group Size: The total population of shoaling fish is assumed to be conserved
for a considered group. No reproduction, $no$ migration, or no predation are
assumed in the considered shoal.
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MODEL

At first, we consider a shoal in $2-\dim e$nsional space. Since the
aggregating force is assumed to be directed to the grouping center an$d$ its
strength is assumed to depend only on the distance from the center. Our
$mode1$ is described as follows (Seno, 1990, $1991b$):

$\frac{\partial n}{\partial t}=-divJ$

(1)

$J=-6(\frac{n}{\kappa})^{m}$ grd $n-n$ gral U. (2)

$n$ is the population density at a site in the space and at time $t$ . $J$ is the flux of
population density which is the 2-dimensional vector. The first term of the
right-han$d$ side of (2) represents the density-dependent diffusion force, which
becomes stronger as the density gets higher. 6 is the diffusivity when $n$ is
equ $a1$ to $\kappa$ which represents a conventional reference density. The power $m$ is

the index of strength of density-dependency of the diffusion. The second term

means the aggregating force directed to the grouping center. $U$ is a scalar

function of only th$e$ distance from the origin which corresponds to the center of
shoaling fish.

To consider the size of stabilized sho$a1$ , we shall investigate the
stationary solution of our model, given by solving $J=0$ . In addition, the

conservation of total population in the shoal implies the following:

2$\pi\int_{0}^{r^{*}}n^{*}\cdot rdr=N$

where $N$ is a constant of group size, and the factor $2\pi$ is resulted from

integration with respect to the $an$gle expanded by the shoal around the nest.
$r^{*}$ is an unknown constant which denotes the edge of the distribution $n^{*}$ , that
is, the shoal size. Thus, the special following relation is required:

$n^{*}(r^{*})=0$ .
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The existence of such a finite $r^{*}$ is a characteristic nature of density-dependent

diffusion (Okubo, 1980). At last, we can obtai $n$

$n^{*}=( \frac{m\kappa^{m}}{6})^{1/m}\cdot\{U(r^{*})-U(r)\}^{1/m}$

$\int_{0^{r^{*}}}\{U(r^{*})-U(r)\}^{1/m}\cdot rdr=\frac{N}{2\pi}\cdot(\frac{6}{m\kappa^{m}})^{1/m}$

In the case of 3-dimensional space, the same argument can be applied,

while the aggregating group has the shap$e$ of 3-dimensional ball and the
$a$ttractive force directed to the center of the ball works on each individual in it.
The resulted equation is fundamentelly the sam$e$ as above, except for the
following conservation relation:

$\int_{0}^{r^{*}}\{U(r^{*})-U(r)\}^{1/m}\cdot r^{2}dr=\frac{N}{4\pi}\cdot(\frac{6}{m\kappa^{m}})^{1/m}$

A Special Environmental Potential: $U(r)=sgn(\gamma)\cdot kr^{\gamma},$ $w$here $k$ is a positive
constant. Although $\gamma$ is also a real constant, the characteristic of considered
potenti $a1$ field so significantly depends on the sign of $\gamma$ that we should conside$r$

separately the cases of positive and negative $\gamma$, especially in terms of the

embodied distribution $n^{*}$ , which can be obtained in a explicit form (Seno, 1990,
$1991b)$ . The individual distribution in the aggregating pattern is determined by
those parameters $\gamma$ and $m$ (Seno, 1990; see Fig. 3). However, independently
the sign of $\gamma$, the relation between $t$he shoal size $r^{*}$ and the group size $N$ can
be expressed in the following form:

$r^{*}\propto N^{1/(d+\gamma/m)}$

’ (3)

where $d=2$ an$dd=3$ respectively in 2-dimensional case and in 3-dimensional
case. We will use this proportional relation to investigate the data of the
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$\gamma$

Fig. 3. Parameter dependency of the shape of stationary distribution of the model (Seno, 1990).

shoaling of cichlid fish, Lepidiolamprologus elongatus, in Lake Tanganyika,
observed by Nakai (1991, private communication).

ANALYSIS ON THE DATA OF A SHOALING

A detail $d$ata of the shoaling of cichlid fish, Lepidiolamprologus
elongatus, in $Lake$ Tanganyika is obtained by th$e$ observasion (Nakai, private
communication). It will be expected that some photographs of the shoal give
the information of the distribution of fish in the shoal. But, now, we deal only
with the data of the group size and the shoal size, which are easier to be
estimated than the fish distribution in the shoal. We will use the relation (3)
and estimate the slope of the line fitted to the graph of $\log(the$ spatial size of
$shoal)-\log$ ($the$ group size), and lastly calculate the value $\gamma/m$ (Fig. 4; Fig. 5).
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Fig. 4. Data of th$e$ shoaling of cichlid fish, Leptdiolamprologus elongatus, in Lake Tanganyika.

The vertical axis is of the group size, while the horizontal is of the spatially horizontal size, that

is, the 2-dimensional extension length of the shoal.
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Fig. 5. Data of the shoaling of cichlid fish, Lepidiolamprologus elongatus, in Lake Tanganyika.

The vertical axis is of the group size, while the horizontal is of the 3-dimensional shoal size,

which is the radius of the ball corresponding to the shoal. The radius $<r>is$ calculated regarding

the shoal as the ball which has the volume equivalent to that of the ellipsoid of revolution given

by the data on the si$ze$ of shoaling.
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Fig. 6. $\gamma/m$ estimated for the data of the shoaling of cichlid fish, Lepidiolamprologus elongatus,

in Lake Tanganyika. The result of t-test is shown: $*:p<0.O1;**:p<0.02;***:p<0.03$ ; non-
significant in th$e$ age 0-9 class of 2-dimensional $mode1$ case.

The result is shown in Fig. 6. It is shown that the value $\gamma/m$ does not

seem to have any significant variation in th$e$ period later after the appearance
of shoaling, while it may take a significantly different value in the earlier period
after the appearance of shoaling. This means that the ratio (the strength of
aggregation tendency)/(the strength of dispersal) is almost constant during the
period of shoaling. It is observed that the shoal disappears $at$ a morning $f_{0}^{\cap}r$

those fish to disperse away. Although the quantity $\gamma/m$ might be expected to
$ch$aracterize the intrinsic tendency of shoal and to mak$e$ the indication of the
disappearance of shoal, it is not. The $re$ason may be that $\gamma$ an$dm$ are
contemporarily decreasing as the fish in the shoal grows. Another possible
reason is that the statisti $c$al operation enshadows the variation of the quantity,
because the dealt $d$ata involves so various observed shoals that some
disappear in the ealier age class and the others in the later age class. The

analysis $on$ the density distribution in the shoal is necessary, made use of this
mode1.
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CONCLUSION

The model introduced here is shown to be useful to investigate the
aggregation phenomena in nature. It is so simple and so fundamental that it
may give the information on the phenomena as the zenoth approximate
analysis. Such information is sometimes still useful to consider the real
phenomena. The shoaling of cichlid fish, Lepidiolamprologus elongatus, in
Lake Tanganyika, is the case. Moreover, it is easy to improve the model to fit
the $ch$aracteristics of the considered real phenomenon. Thus, it is expected
that the analysis on the data by this model gives some new information for

various kinds of $re$al phenomena.
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