
Theoretical Biology

Hiromi Seno

A Primer 
on Population 
Dynamics 
Modeling
Basic Ideas for Mathematical 
Formulation



Theoretical Biology

Series Editor

Yoh Iwasa, Kyushu University, Fukuoka, Japan



The “Theoretical Biology” series publishes volumes on all aspects of life sciences
research for which a mathematical or computational approach can offer the appro-
priate methods to deepen our knowledge and insight.

Topics covered include: cell and molecular biology, genetics, developmental
biology, evolutionary biology, behavior sciences, species diversity, population
ecology, chronobiology, bioinformatics, immunology, neuroscience, agricultural
science, and medicine.

The main focus of the series is on the biological phenomena whereas mathe-
matics or informatics contribute the adequate tools. Target audience is researchers
and graduate students in biology and other related areas who are interested in
using mathematical techniques or computer simulations to understand biological
processes and mathematicians who want to learn what are the questions biologists
like to know using diverse mathematical tools.



Hiromi Seno

A Primer on Population
Dynamics Modeling
Basic Ideas for Mathematical Formulation



Hiromi Seno
Graduate School of Information Sciences
Tohoku University
Sendai, Japan

ISSN 2522-0438 ISSN 2522-0446 (electronic)
Theoretical Biology
ISBN 978-981-19-6015-4 ISBN 978-981-19-6016-1 (eBook)
https://doi.org/10.1007/978-981-19-6016-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2022, corrected publication 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore


 -151 2878 a -151 2878 a
 
https://doi.org/10.1007/978-981-19-6016-1


Preface

This is one of the introductory books about the mathematical models of population
dynamics in mathematical biology. However, the purpose of this book is not
to simply give literacy about how to analyze mathematical models. This book
focuses on the biological meaning/translation of mathematical structures involved
in mathematical models. In some recent usages of the mathematical model simply
with computer numerical calculations (especially by some researchers out of math-
ematical science), the model includes some inappropriate mathematical structure
with respect to the reasonability of modeling for the biological problem under
investigation. For students and researchers who study or use a mathematical model,
it is very important and helpful to understand what mathematical structure could be
regarded as reasonable for the model with respect to the relation to the biological
assumptions about the problem under investigation.

Since the detailed arguments about the meaning of mathematical modeling are
the principal purpose of this book, to which most of the pages are devoted, the
description of mathematically detailed nature of some models is actually skipped,
leaving it to some appropriate textbooks or literatures. Instead, the arguments about
the mathematical modeling necessarily require some mathematical tools/techniques
which correspond to those necessary for analyzing the model as well. Readers may
get the knowledge of such mathematical fundamentals even just in the principal
arguments of mathematical modeling described in this book and furthermore in the
arguments to show the mathematical features of introduced models.

Understanding the biological meaning of mathematical modeling for the simple
models treated in this book could necessarily contribute to the modification or
expansion for readers to derive a specific/original mathematical model for a
biological problem in an appropriate way, that is a reasonable modeling. The
description of mathematical contents is not mainly for the readers with a background
in mathematics but for those with the other background.

Until today, biology has extended its horizon to a wider spectrum of time
and space. So has done mathematical biology, since many biological problems
are emerging on the table for the theoretical and mathematical consideration
in biological, medical, and social sciences. Mathematical models on population
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dynamics have been developed very rich in mathematical biology, and they provide
the basics of mathematical modeling for a variety of new problems in biology. This
book is expected to give a chance for readers to consider what is the important aspect
to construct a reasonable model and how we could reasonably design mathematical
modeling for a biological problem.

Mathematical biology is an interdisciplinary field emerged from a complex of
mathematics, physics, chemistry, and biology. It has been trying to theoretically
clarify the scientifically significant aspect of the biological problem. The research
in mathematical biology mostly takes the following steps:

1. To clarify what aspect of the biological problem is considered
2. To choose the biological factors important for the theoretical consideration of the

problem
3. To set up necessary hypotheses/assumptions about the nature of chosen biologi-

cal factors and the relation among them
4. To give the reasonable mathematical expression of those hypotheses/assumptions
5. To construct the mathematical model with mathematically expressed hypothe-

ses/assumptions
6. To design the mathematical analysis and choose the necessary mathematical

technique according to the constructed mathematical model, taking account of
the biological problem specified in the first step and the mathematical structure
of the constructed model

7. To carry out the mathematical analysis and get the necessary mathematical results
on the nature of model

8. To argue the relation of obtained mathematical results to the biological problem
9. To integrate the obtained mathematical results and discuss the biological meaning

about the problem

The above steps from 1 to 5 are important subjects focused in this book. Usually it
would not be easy to proceed with the above steps in the listed order. For example, at
the step 5, it is likely that an additional factor may become necessary to be involved
in the model. In such a case, we need to go back to the step 2. Further, at the step 8, it
may be found that there is a logical inconsistency to the hypotheses/assumptions set
up at the step 3. In such a case, it is necessary to reconsider the steps 4 and 5. Most
research projects would take such a way of progress with back-and-forth steps.

In some cases, the biological conclusion derived from the obtained mathematical
results may contain something inconsistent to the result obtained by the biological
research. Even in such a case, it is little scientific to regard such a mathematical
model as useless or nonsense. As long as the mathematical model is reasonably
constructed based on the appropriate biological hypotheses/assumptions, such an
inconsistent part of the obtained conclusion could be useful to imply that the
applied hypotheses/assumptions may contain a biological discrepancy, or that the
structure of mathematical model may not be appropriate from the viewpoint of
reasonable modeling. Hence such a conclusion may be potentially able to reveal a
non-trivial debating point about the biological problem or mathematical modeling.
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Mathematical Results

Mathematical Modeling

Mathematical Analysis

Biological Problem

Mathematical Model

Mathematical
 Translation/Denotation

Biological TranslationBiological
 Hypothesis/Assumption

The arguments on such a subject arisen in the research in mathematical biology
could provide a scientific feedback from mathematical science to biology.

There are a variety of mathematical models in mathematical biology, some of
which may require a specific mathematical knowledge in order to understand them.
In this book, we shall consider only classic models with simple mathematical
structure, most of which can be analyzed with fundamental mathematical methods.
At the same time however, all of them are the important basics for the mathematical
models in modern researches, and they contain the essence of reasonable modeling
common to every research in mathematical biology.

This book consists of two parts, Part I as the main contents and Part II as the
important supplement to the main. Actually Part II is not the appendix to the main.
It contains not only the fundamentals to understand the mathematical aspect in the
main contents but also the further information to understand better the modeling
in the main. However, readers may be able to read Part I without referring Part II,
and most part of Part II independently of Part I. Part I and II consist of ten and five
chapters, respectively.

In Chap. 1, we shall see the reasonable modeling with the geometric progression.
The model is expressed as a recurrence relation as the discrete time population
dynamics which generates a sequence of numbers that means the population size.
This chapter is to introduce some simple ideas to bridge the biological factor to the
mathematical formula. At the same time, biologically essential factors of population
dynamics are mathematically introduced step by step in the model described by a
recurrence relation of the seasonal change of population size, and given are some
mathematical/numerical examples about the contribution of such biological factors
to the dynamical nature. Readers may need to get their own idea connecting the
biological factor to the mathematical formula in order to understand the modeling
and models in this chapter.

In Chap. 2, we shall introduce the density effect in population dynamics, as the
expansion of discrete time linear models in Chap. 1. The introduced density effect
could be intraspecific, interspecific, or both. As an intraspecific density effect, we
shall consider the Allee effect, and as an interspecific density effect, the interspecific
competition and the prey-predator or host-parasite relation. Moreover, we shall
consider the effect of harvesting/culling on population dynamics too. Then we
give some arguments on the problem of maximum yield or benefit, related to the
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mathematical fundamental in bioeconomics. Further in the last section of Chap. 2,
we shall describe the other type of modeling for discrete time population dynamics,
since we do not want to make readers get only a typical idea about the modeling
for discrete time population dynamics. The ideas described in the part would be
expandable to the construction of another sophisticated model for a discrete time
population dynamics.

Chapters 11 and 12 of Part II are closely related to Chaps. 1 and 2, and are
referred section by section according to the necessity to understand the contents
in Chaps. 1 and 2. Especially Chap. 11 gives the fundamentals of mathematical
analysis on the discrete time nonlinear population dynamics model, that is, of the
qualitative analysis on the discrete time dynamical system.

Chapter 3 is about the idea to mathematically derive continuous time models
from discrete time models in Chaps. 1 and 2. Each derived model is written as
an ordinary differential equation, since we focus on the model of single species
population dynamics in this chapter. Logistic equation appears first in this chapter,
although its modeling and nature will be described in the subsequent chapters
again, Chaps. 4 and 5. Besides, as the basic idea to understand the meaning of
time derivative in the population dynamics modeling, we describe the concept of
momesntal velocity of population size change. It is the essential aspect for the
continuous time population dynamics model and is very likely to be thought little in
the biological translation of the mathematical results obtained for a continuous time
model. In most cases of biological phenomena, a continuous time modeling with the
momental velocity of a biological quantity like population size could be regarded as
a mathematical approximation or simplification.

In Chap. 4, we shall describe the fundamental modeling with the birth-death
stochastic process. The idea and concept of such a modeling are very important
to understand the meaning of modeling even about the deterministic mathematical
model which superficially seems not to have any relation to the stochasticity in the
phenomenon. In almost all modelings for population dynamics, the deterministic
model could be actually regarded as an approximation to describe an important
aspect of the phenomenon under investigation. To understand the reasonability of
a deterministic structure introduced in the model, it would be necessary and useful
to know its relation to a stochastic process behind mathematical modeling. For this
reason, this chapter contains the idea and concept essential throughout the contents
of this book. As the simplest and most important stochastic process, Poisson process
is introduced and used in some parts of this book. Chapter 15 of Part II serves to
provide the mathematical fundamentals about it.

Chapters 5–10 of Part I are about continuous time models. Topics in these
chapters may be popular in the other textbooks on mathematical population
dynamics. Readers may easily refer to the corresponding topic in such a textbook in
order to get some related mathematical or biological details. As mentioned above,
we shall focus on the modeling itself to provide a chance for readers to consider the
meaning of mathematical model.

Chapter 5 is on the continuous time modeling for single-species population
dynamics. The content serves readers with the essential idea to introduce a
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density effect in mathematical modeling. The idea in this chapter becomes basic
to understand the modelings in the subsequent chapters. As a specific topic, we
describe the modeling of what is called metapopulation dynamics model too.

Chapter 6 is devoted to the description of the idea to model the interspecific
reaction for the continuous time population dynamics model. The contents could
be rarely found in the other textbooks, though the topic itself is very popular in
mathematical biology.

Chapters 7 and 8 are about the competition and prey-predator dynamics,
respectively. They are very popular topics in ecology and mathematical biology. In
this book, we shall see also some related classic theoretical topics which have been
rarely described in recent textbooks. They may have a potential to provide cues for
readers to expand the idea for a new modeling about population dynamics.

Chapters 13 and 14 of Part II are to provide the necessary least knowledge about
the fundamental mathematical theories to understand or find the dynamical nature
of continuous time models. Although readers who want to know more precisely or
deeply the mathematical detail about them may feel discontent with the description
in these chapters, it is very easy to find some other literatures about what to be
known.

Chapters 9 and 10 are about the modeling of population dynamics with a hetero-
geneous structure of population. After the general overview of such a heterogeneous
structure of population, we shall describe the mathematical modeling and models of
epidemic dynamics in Chap. 9, since it can be regarded as a typical and familiar
example of population dynamics with heterogeneity within the population.

As a classic and popular heterogeneity in a population, we shall describe the
modeling and models about population dynamics with age structure in Chap. 10.
Both discrete and continuous time modelings are considered, and we shall give
arguments on the mathematical relation between them too.

Some chapters are accompanied by some exercises shown in the related sections.
They are not simply for the practice or trial about the related topic but for the
further information useful to readers’ understanding of the contents better. The
satisfactory answers are given at the end of each chapter, which may be regarded
as the supplementary description of the topic in the main text.

As mentioned at the beginning, this book focuses on the description of mathe-
matical modelings in population dynamics, and the analysis of model is secondary
for the purpose of this book. However, the dynamical nature of every mathematical
model is described in a necessary manner, and we shall give the biological meaning
of the mathematical results obtained by the analysis of the model. Such a translation
of mathematical results to the biological meaning is regarded as an important
aspect of mathematical modeling too, since it must be the inverse of modeling
to construct a model. Hence we consider it important to describe the biological
meaning of mathematical nature of the model for the purpose to give readers the
idea of reasonable mathematical modeling. For this reason, readers must find a
lot of mathematical contents even in the description only about the mathematical
modeling itself.
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Although this book deals with only classic models in population dynamics, I
shall expect that readers could get a cue or idea about the reasonable modeling for
population dynamics, following the spirit of (On-Ko-Chi-Shin in Japanese
pronunciation; a phrase originated from the ancient Chinese book Lunyu (Analects
of Confucius)), that is, “visiting old, learn new.” Further I hope that readers could
find something interesting about mathematical modeling.

Most of the contents in this book are based on the arguments of my books
published by Kyoritsu Shuppan in Japan and also on the discussion in courses
given at Hiroshima University, Nara Women’s University, and Tohoku University in
my career. I thank everyone for the support, encouragement, and inspiration about
my accomplishment of them. Without them, I could not have completed writing
this book. My specific interest in the reasonability of mathematical modeling has
been nurtured through my communication with many SENPAI (elder colleagues)
before and after my professional career. First, I am sincerely grateful to the SENPAI
of Teramoto laboratory in Kyoto University, Nanako Shigesada, Hisao Nakajima,
Norio Yamamura, Kohkichi Kawasaki, Toshiyuki Namba, Yoh Iwasa, Masahiko
Higashi, Takenori Takada, Masayuki Kakehashi, Hiroyuki Matsuda, Takashi Saito,
Kennosuke Wada, Tamiki Umeda, and Yasushi Harada. The discussion and com-
munication with them during and after my student days certainly made my interest
in modeling come into bud and grow. In the same period onward, Ei Teramoto and
Masaya Yamaguti had been supporting and mentoring me as the great forerunners
in Japanese mathematical biology. Further, during my stay at Dipartimento di
Matematica ed Applicazioni, Università degli Studi di Napoli Federico II in 1987–
1989, Luigi M. Ricciardi and Aniello Buonocore gave me experiences especially
on some topics related to the stochastic process. On the way back to Japan from
Italy in 1989, I got the chance to visit Akira Okubo, Donald L. DeAngelis, and
Bernard C. Patten in USA, whose support and suggestions were instructive for my
future research and direction even in my short stay at each of them. Masayasu
Mimura much supported my professional career and influenced my clarifying the
research interest and direction through many personal communications with him.
Horst Malchow is my old friend, colleague, and collaborator with whom I had
many occasions to discuss the reasonability of mathematical modeling. So are
Sergei Petrovskii and Frank Hilker. Yasuhisa Saito and Kazunori Sato are Japanese
colleagues and longtime friends in mathematical biology too.

Last but not least, I am especially indebted to Yoh Iwasa’s invitation and
continuous encouragement, and to the patience and flexibility of the editorial team
at Springer for my writing of this book during the period with some hindrances by
the COVID-19 pandemic and earthquakes around my living place.

Sendai, Japan Hiromi Seno
June 2022
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Chapter 1
Application of Geometric Progression

Abstract In this first chapter, we shall see the reasonable modeling with the
geometric progression. The model is expressed as a sequence of numbers for the
discrete time population dynamics. This chapter is to introduce some simple ideas
to bridge the biological factor to the mathematical formula. At the same time,
the biologically essential factors about population dynamics are mathematically
introduced step by step in the model described by a recurrence relation of the
seasonal change of population size, and given are some mathematical/numerical
examples of the contribution of such factors to the dynamical nature. The readers
may need to get an own idea connecting the biological factor to the mathematical
formula in order to understand the models in this chapter.

1.1 Geometric Growth Model

Geometric progression has been used as a mathematical model for population
dynamics, appeared even in WAZAN (old Japanese mathematics). It is said that it
appeared first in the arithmetic book (JINKOUKI) (1627) written by
(YOSHIDA, Mitsuyoshi) (1598–1673). For the mathematical modeling, he assumed
the followings:

• In January, a couple of rats come to a house, and have twelve newborns.
• The sex ratio at birth is 1:1, that is, the half of newborns are female.
• Every newborn can mature till the next month, and have the fertility same as the

parent.
• Breeding couples are necessarily formed between the newborns of same genera-

tion.
• Each couple has twelve newborns every month with even sex ratio.
• The death is ignored for one year.

The problem he gave was how many rats inhabit in this family after one year.
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4 1 Application of Geometric Progression

The assumption means a population with the inbreeding. The inbreeding
increases the probability of inheritance of a lethal gene to the offspring.
Although it could be regarded as disadvantageous in an evolutionary sense,
it may be advantageous with respect to the probability to form the breeding
couple. Actually, not a few species of animal and plant take the inbreeding
strategy, which have been biologically studied. Even in human history, the
inbreeding appeared for a social or cultural reason.

Let us consider the monthly variation about the number of couples under the
above assumptions. In February, the initial couple and new 12/2 = 6 couples of its
offspring have newborns. In this case, the next generation consists of 12 × 7 = 84
newborns. They become additional 84/2 = 42 couples. In March, 1 + 6 + 42 = 49
couples have newborns. Although you may continue this step-by-step calculation
to get the answer for the problem, let us construct a mathematical model by a
mathematical formula to express the way of calculation.

Let us denote the number of reproductive couples in the nth month (n =
1, 2, . . . , 12; the first month is January) by cn. Then the number of newborns in the
nth month is given by 12cn, so that the number of new couples by them becomes
12cn/2 = 6cn. Therefore, the number of reproductive couples in the (n+1)th month
satisfies the following equality: cn+1 = cn + 6cn = 7cn. This recurrence relation
indicates that the sequence is a geometric progression with the common ratio 7.

The general term for the recurrence relation becomes cn = c1 × 7n−1. Since
c1 = 1 from the assumption, we can find that c12 = 711. Hence, in the twelvth
month, since each of 711 couples has twelve newborns, we have 2×711+12×711 =
2 × 712 = 27, 682, 574, 402 rats in this family after one year.

As in this illustrative example, when the sequence of the temporal variation about
the number of biological organisms follows a power of a certain positive constant a,
it is called geometric growth.

Could you think the obtained number of rats more than 27 billion is
unrealistic? First of all, it is a narrow view to simply compare to the reality.
The modeling requires assumptions to construct the mathematical model.
Even though the assumptions are set up from the knowledge about the
real phenomenon, the model should not be considered as identical to the
phenomenon, since the modeling is necessarily based on a certain number
of assumptions chosen a priori. The mathematical model should be regarded
as a reference for the scientific consideration on the reality, and as a thought
experiment. The answer of a huge number for the above problem could imply
the possibility of unexpectedly rapid growth in the number of rats. If the rats
are pests inhabiting in ordinary houses, it is important to consider what this
result would indicate, aside from the accuracy of the number as the answer.
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Exercise 1.1 As a more general modeling, assume that the number of newborns
per couple is 2k with a given positive integer k. With the same assumptions used in
the above, construct the recurrence relation with respect to the number of couples
cn, and derive the formula to give the total number of rats in December. How much
does it become for k = 1 that is the least number of newborns satisfies the above
assumptions?

1.2 Immature Period

For the geometric growth model in the previous section, it was assumed that the
newborn can mature till the next month. In this section, we modify this assumption,
and see how the structure of mathematical model is changed.

Case of Two Months for Maturation
Let us assume that the maturation takes two months. Besides, we assume that the
initial couple of rats is mature and reproductive. As in the previous section, let
us consider the monthly variation about the number of reproductive couples. In
February, there appear the initial mature couple and their twelve newborns which are
still immature. Thus, only the initial mature couple can have the newborns. From the
assumption, this mature couple can produce twelve newborns again in February. In
March, the rats born in January become mature and form six reproductive couples.
Therefore, seven couples can produce 12×7 = 84 newborns in this month. Although
this is the similar arguments applied for the previous case, let us make the difference
clearer by the mathematical modeling now.

It is reported that the rat takes two or three months for the maturation, and
the mature female can have 5–10 newborns in average. The maturation period
and the number of newborns must necessarily depend on the environmental
condition.

Let us denote the number of reproductive couples in the nth month by cn as
before, and additionally the number of newborns in the nth month by rn. By these
definitions, we have rn = 12cn. The number of reproductive couples in the (n+1)th
month is given by the sum of the reproductive couples in the nth month and the
new reproductive couples generated by those born in two month ago, that is, by the
newborns rn−1 in the (n− 1)th month. Hence, the following equation holds:

cn+1 = cn + rn−1

2
.
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From the relation rn = 12cn, we can obtain the following recurrence relation in
terms of the number of reproductive couples:

cn+1 = cn + 6cn−1. (1.1)

Note that this equation can be applied only for n ≥ 2.
Since this is a homogeneous second order linear difference equation, we can

solve and obtain the general term, making use of the characteristic equation
(Sect. 11.1). From the characteristic equation λ2 − λ − 6 = (λ + 2)(λ − 3) = 0,
we can transform the Eq. (1.1) to cn+1 + 2cn = 3(cn + 2cn−1) and equivalently to
cn+1 − 3cn = −2(cn − 3cn−1) which are in the form of geometric recurrence with
respect to cn + 2cn−1 and cn − 3cn−1. Since c1 = 1 and c2 = 1, we can easily
obtain the following expression of general term, making use of these transformed
recurrence equations:

cn = 3n − (−2)n

5
.

Now, from this general term, we can immediately obtain the number of repro-
ductive couples in November as c11 = (311 + 211)/5 = 35, 839, and that in
December as c12 = (312 − 212)/5 = 105, 469. Hence, by summing up the
mature rats of reproductive couples, the immature rats born in November, and
the newborns in December, we have the total number of rats in December as
2 × c12 + 12 × c11 + 12 × c12 = 1, 906, 634. This is about 0.007% of the case
in the previous section. We note how the maturation speed would be significant
about the reproduction.

Case of Three Months for Maturation
Next, let us consider the case where it takes three months for the maturation after
the birth. It is easy to derive the following recurrence relation by the same way as
that for (1.1):

cn+1 = cn + 6cn−2, (1.2)

where n ≥ 3. From this recurrence relation with the early sequence of c1 = c2 =
c3 = 1, we can obtain the sequence of the temporal variation {cn}: {1, 1, 1, 7, 13, 19,
61, 139, 253, 619, 1453, 2971}. Therefore, in December, the family of rats becomes
2 × c12 + 12 × c10 + 12 × c11 + 12 × c12 = 66, 458 which is obtained by summing
up the mature rats of reproductive couples, the immature rats born in October and
November, and the newborns in December. This is about 3.5% of the number in the
previous case of two months for the maturation. We see again how the maturation
speed would be significant about the reproduction.
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There are some different derivation ways and mathematical expression of the
general term for (1.2). Since the characteristic equation for (1.2) becomes
λ3 − λ2 − 6 = 0, which has one real and two imaginary roots, the expression
of the general term must become less simple than that for the previous case.
For instance, we can give the following expression:

cn = b1 λ
n
r +

(
6

λr

)n/2 (
b2 cos nθ + b3 sin nθ

)
(n ≥ 3),

where λr = (α2 +α+1)/(3α) ≈ 2.21878, α = (82−9
√

83)1/3 ≈ 0.182694,
and tan θ = −√

3 (1 + α)/(1 − α) where π/2 < θ ≈ π − 1.19117 < π .
Coefficients b1, b2 and b3 are determined by c4 = 7, c5 = 13 and c6 = 19
with α. Since

√
6/λr ≈ 1.64444 < λr, the first term of right side becomes

principal for sufficiently large n. That is, for sufficiently large n, the sequence
{cn} can be approximated well by a geometric growth with the common ratio
λr.

1.3 Fibonacci Sequence

Here let us consider again the case of two months for the maturation, and change the
assumption about the number of newborns per couple from twelve to two, which is
the least number that does not violate the other assumptions (Fig. 1.1).

In this case, we have the following recurrence relation instead of (1.1):

cn+1 = cn + cn−1 (1.3)

This indicates that the sequence {cn} is what is called Fibonacci sequence. From
c1 = 1 and c2 = 1 of the assumption for modeling, it becomes {1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144}.

This kind of sequence was considered by Leonardo Fibonacci1 (c. 1170–c. 1240),
and he used the sequence for an example about the temporal variation about
the number of rabbits with the assumptions corresponding to those set up by us
here. The general term for the recurrence relation (1.3) was given by a famous

1 The actual name was Leonardo da Pisa, while Fibonacci was his nickname. It is said that a
historian of mathematics in the nineteenth century made the mistake about his name and it has
become popular.



8 1 Application of Geometric Progression

January February March April May

Fig. 1.1 Illustrative variation about the number of rats in Sect. 1.3

mathematician and physicist Daniel Bernoulli (1700–1782) [1]:

cn = 1√
5

(
1 + √

5

2

)n
− 1√

5

(
1 − √

5

2

)n
. (1.4)

You can easily derive this formula with roots of the characteristic equation λ2 −λ−
1 = 0 (Sect. 11.1). In this case, the number of rats (or rabbits) in the family becomes
2 × 144 + 2 × 89 + 2 × 144 = 754 in December.

Fibonacci sequence has been attracting many scientists, because there are a
variety of examples observed in nature. For well-known example, we can find
it for the spatial configuration of seeds of pineapple, pinecone, and sunflower,
or the number of leaves or branches in their arrangement per around stem.
You can find the other examples about the Fibonacci sequence and the golden
ratio in [2]. We can see from (1.4) that cn+1/cn → (1 + √

5)/2 ≈ 1.61803 as
n → ∞. The number (1 + √

5)/2 is what is called “golden ratio” observable

(continued)
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in many parts of architecture and art as it is consciously used or eventually
appears. Related to this fact, we can find many artificial structures containing
a Fibonacci sequence.

The general term (1.4) for the recurrence relation (1.3) can be written as

cn = 1√
5

(
1 + √

5

2

)n [
1 −

(
1 − √

5

1 + √
5

)n]
.

Since
∣∣(1 − √

5)/(1 + √
5)
∣∣ < 1, we note that

cn ≈ 1√
5

(
1 + √

5

2

)n

for sufficiently large n, and the sequence {cn} can be approximated well by a
geometric growth with the golden ratio as the common ratio.

1.4 Life Span

In this section, let us consider the influence of life span on the population dynamics
by the geometric progression. Up to now, we assumed to ignore the death for one
year, though it is not negligible when we consider the geometric growth model for
the longer period.

Assume again that it takes only one month for the maturation as we did about the
original model. The newborn in a month becomes mature and reproductive in the
next month. First, let us consider the simplest case of two months for the life span.
This means that a mature rat one month after its birth produces twelve newborns
per couple, and does so again one month later. Then it dies. Now let us assume in
addition that the initial couple consists of mature rats one month after their birth.

The biologically estimated life span of rat is 1–3 years. It significantly
depends on the environmental condition. If there are some operations for the
extermination, like the introduction of an enemy (e.g., cat), the ‘averaged’ life
span could become shorter. We reconsider such an influence of environmental
condition in the next section.

With these assumptions, we have reproductive couples of rats one month after
their birth and of those two months after it in every month. Let denote the number
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of the former couples by xn, that of the latter by yn, and the number of newborns
by rn for the nth month. Repeated calculations with these assumptions give the
following result:

n 1 2 3 4 5 6 7 8 9 10 11 12

xn 1 6 42 288 1980 13,608 93,528 642,816 4,418,064 30,365,280 208,700,064 1,434,392,064

yn 0 1 6 42 288 1980 13,608 93,528 642,816 4,418,064 30,365,280 208,700,064

rn 12 84 576 3960 27,216 187,056 1,285, 632 8,836,128 60,730, 560 417,400,128 2,868,784,128 19,717,105,536

an 14 96 660 4536 31,176 214,272 1,472,688 10,121,760 69,566,688 478,130,688 3,286,184,256 22,585,889,664

In this table, an denotes the number of rats in the family at the end of nth month.
Since any rat dies after making reproduction twice, we have an = 2xn + rn.
The above result indicates that the number of rats becomes near 22.6 billions in
December. This is smaller than the number in the case without death, while it is
still huge, in contrast to the case with a longer period for the maturation. So it may
seem that the influence of life span on the population dynamics with the geometric
progression would be weaker than that of maturation period, though we will see that
this result significantly depends on the number of newborns per couple. The number
12 is too big as argued later.

From the assumptions, we can obtain the following relations among xn, yn and
an: xn+1 = rn/2; yn+1 = xn; rn = 12(xn + yn). Thus, since the number of
reproductive couples in the nth month is cn = xn + yn, we can derive the following
recurrence relation about the number of couples from these relations:

cn+1 = 6(cn + cn−1). (1.5)

With c1 = 1 and c2 = 7, the general term becomes

cn = 5 + √
15

60

(
3 + √

15
)n + 5 − √

15

60

(
3 − √

15
)n

(Sect. 11.1). Besides, from the relation an = rn−1 + rn = 12(cn−1 + cn) which can
be derived by the relations shown in the above, we can obtain the following general
term about the total number of rats in each month:

an = 15 + 4
√

15

15

(
3 + √

15
)n + 15 − 4

√
15

15

(
3 − √

15
)n

(n ≥ 2).

As easily seen, the recurrence relation (1.5) is mathematically similar to (1.3)
for Fibonacci sequence. Actually, if we change the assumption on the number of
newborns per couple from 12 to 2 (Fig. 1.2), that is the same as about Fibonacci
sequence model, the population dynamics model considered here becomes (1.3)
again, so that the monthly variation about the number of couples becomes a
Fibonacci sequence. Remark however that we have now c1 = 1 and c2 = 2,
differently from the previous case of Fibonacci sequence with c1 = c2 = 1, and the
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January February March April May

Fig. 1.2 Illustrative variation about the number of rats with two month life span and two newborns
per couple in Sect. 1.4

sequence {cn} becomes {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233} and consequently
a12 = 2 × (233 + 144) = 754. The general term for this sequence is necessarily
different from (1.4).

In this section, we needed to take account of age structure in the family. In
such a case, we must consider the monthly variation of age distribution, that
is, the numbers of newborns (age 0), mature rats one month after their birth
(age 1) and those two months after it (age 2) respectively. This is because we

(continued)
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must take account of how many rats disappear from the family by the death.
Therefore, the temporal variation of age distribution in the family determines
the nature of the temporal variation of family size. As shown below, we can
consider the temporal variation of the age distribution itself with vector and
matrix formulas, while we used some relations of the age structure to derive
the recurrence relation about {cn} in the above description.

As before, let denote the number of rats of age 0 by rn, that of age 1 by xn,
and that of age 2 by yn for the nth month. We can express the age distribution
by the following column vector fn

fn :=
(
xn

yn

)

Once the numbers xn and yn are determined, we can find the number rn from
the relation rn = 12(xn + yn). Hence, it is satisfactory to consider the age
distribution defined by the two dimensional vector fn. From those relations
obtained before, we can derive the following recurrence relation with a 2 × 2
matrix to give the monthly variation of the age distribution:

fn+1 =
(

6 6
1 0

)
fn. (1.6)

Hence, denoting the above matrix by A, we have fn = An−1f1.
We have the characteristic equation λ2 − 6λ − 6 = 0 with respect to

the eigenvalue λ for the matrix A. This characteristic equation is the same
with that for the recurrence relation (1.5). It is mathematically reasonable
consequence, since the arguments is for the same mathematical model. The
eigenvalues are λ± = 3 ± √

15. Therefore, using the right eigenvectors
T(6,−λ−) and T(6,−λ+) for eigenvalueλ+ and λ− respectively, we can define
the 2 × 2 matrix

P :=
(

6 6
−λ− −λ+

)
,

and have

P−1AP =
(
λ+ 0
0 λ−

)
.

(continued)
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From this equation, we can derive

An = P

(
λn+ 0
0 λn−

)
P−1.

Since f1 = T(x1, y1) = T(2, 0) from the assumption for the modeling, we can
derive the general term of fn, that is, those of xn and yn. In this way, the use
of vector and matrix may simplify the construction and analysis for the more
general model. We shall revisit such a modeling with vector and matrix in
Sect. 10.1.

1.5 Survival Probability

Differently from the previous section to introduce the ‘life span’ in the modeling,
we introduce the ‘survival probability’ now. It means at the same time to introduce
the death probability. Some readers might have felt strange or unrealistic about
the previous assumption that the rat must necessarily die just two months after its
birth. Such feeling is acceptable because we are considering the ecology of a rat.
However, in reality, it is known that there are many animals and plants which have
such a life history with a definite life span. There are a variety of plant species
categorized as the annual plant, for example. They have definitely one year life span
after germination, and every individual dies after the reproduction with seedling etc.

In contrast, it may be possible to think that the biological population would
generally consist of individuals, some of which live longer than others. In such a
population, the ‘life span’ could be defined as the ‘mean life span’ or ‘expected
life span’ which is determined consequently from the accumulation of life histories
about all members of the population. Such a ‘life span’ should be clearly distin-
guished from the ‘life span’ in the previous section.

In biology, there are concepts of physiological life span and ecological life span.
The physiological life span means the maximal period in which the organism could
physiologically maintain the homeostasis as living state. The ecological life span
means the period in which the organism could keep the life, determined by all
environmental factors to affect the life/death. Although the actual physiological life
span may be defined under the environment specified for each organism, it may be
defined in the most rigorous sense as the maximal period for the life in the ideal
environmental condition for the survival of the organism.
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To keep the living state, any organism needs the homeostasis. The homeostasis
requires to maintain the activity of cells in vivo. Some cells such as blood cells
(hematocyte) and skin cells (chrotoplast) are consumed for the homeostasis.
They are thus to be renewed by repeating cell division. It is known for
some cells that there is a physiological system to limit how many times it
could produce the daughter cell by the division. It is clear that, if the stem
cell to renew the above-mentioned consumed cells would be a cell that has
such a limit for the number of division times, the limit would determine the
physiological life span. The human marrow cell is a stem cell for the blood
cells with such a nature. Some cancer cells, like famous HeLa cell, are known
as those in which the physiological system to limit the number of division
times has broken down.

Modeling in the previous sections introduced only the physiological life span. In
this section, we are going to consider the ecological life span with the introduction
of survival probability. As mentioned in the above, this is to introduce a death
probability as well, while we shall not care about the cause of death. The decrease of
population size due to the death is essential for the biological population dynamics.

Ecological Assumptions
To introduce the survival probability in the modeling, we need to generalize the
modeling of typical geometric growth model and add an ecological assumption first.

breeding season breeding season breeding season breeding season

As shown in the above figure, let us assume that the unit year consists of the alternate
breeding and non-breeding seasons, like that for most of biological populations,
while the time unit was a month for the geometric growth model in the previous
sections.

Mathematical modeling in this section will be based on the following assump-
tions:

• Each reproductive couple producesm newborns at the breeding season.
• The sex ratio at birth is 1:1.
• Newborn becomes mature and reproductive until the next breeding season.
• Formation of the reproductive couple occurs just before the breeding season.
• All reproductive couples at each breeding season disappear (die) in the subse-

quent non-breeding season and before the next breeding season.
• The death in the breeding season is ignored.
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• The death probability for the newborn during the non-breeding season is
constant, independently of year and sex.

• The survival and reproduction are independent of the population size, that is, are
not affected by the population density (i.e., no density effect).

The assumptions except for those related to the death probability are similar to those
for the geometric growth model considered in the previous sections. It is important
to set up the breeding and non-breeding seasons for the following modeling. The
assumptions about the period for the maturation of newborn and the disappearance
of reproductive couples mean that the physiological life span is set up as a year.
Since we ignore the death in the breeding season, it may be regarded as an
assumption that only the death of immature individual is taken into account.

The last assumption in the above is to ignore the dependence of death probability
and fertility on the shortage of food or on the degradation of environment under the
high population density. We will consider the further modeling taking account of
such an effect by modifying the assumption in the next chapter.

Mathematical Modeling
Let us denote the survival probability in the non-breeding season by σ (0 < σ ≤ 1).
The death probability is given by 1 − σ in the non-breeding season. When σ = 1,
the model becomes the previous geometric growth model. With cn defined as the
number of reproductive couples at the nth season, we have the number of newborns
at the season mcn from the above assumptions. The expected number of these
newborns which can survive and mature until the next breeding season is given
by σmcn, so that they forms σmcn/2 reproductive couples. Since their parents die
out before the subsequent breeding season from the assumption, the reproductive
couples at the (n+1) th breeding season are formed only by those mature newborns.

As a result, we have the following recurrence relation of geometric growth model
in this section:

cn+1 = σmcn

2
(n = 1, 2, · · · ). (1.7)

The general term is given by

cn =
(σm

2

)n−1
c1 (n = 1, 2, · · · ).

Therefore, we find that, if σm/2 < 1, the population goes extinct since cn
approaches zero as n gets larger.
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The net reproduction rate or net replacement rate is defined in ecology as the
expected number of mature females produced by a mature female. The value
σm/2 in the above mathematical model means the net reproduction rate. The
condition that σm/2 < 1 means that the expected number of reproductive
couples produced by a reproductive couple or that of mature females produced
by a mature female is smaller than one. Therefore, if the condition holds every
year, the population eventually goes extinct.

There is the other ecological rate called gross reproduction rate, which
is defined as the expected number of mature females produced by a mature
female without taking account of the death. The gross reproduction rate can
be regarded as the supremum of the net reproduction rate in terms of the death.
The value m/2 corresponds to it in the above mathematical model.

Mean Life Span
How can we find the mean life span for the population governed by the mathematical
model (1.7)? Let us take year as the time unit, and consider that the individual who
successfully becomes mature has the unity life span, since the mature individual
dies after the reproduction. For an individual who dies before the maturation, let
us simply consider its life span zero. With the survival probability σ and the death
probability 1 − σ in the period for the maturation, we have the expected number
of successfully mature individuals σm and that of individuals which die before the
maturation (1 − σ)m for m newborns. Hence, we can define the mean life span
for the population governed by the mathematical model (1.7) by {1 × σm + 0 ×
(1 − σ)m}/m = σ in the unit of year. Therefore, the ecological life span for the
population is now given by σ .

Generationally Overlapping Reproduction
Let us consider the modeling without the above assumption of the physiological
life span. This means to omit the assumption “Reproductive couples at each
breeding season disappear (die) before the next breeding season.” Thus, every
individual of the population is exposed only to the death in the non-breeding season.
Some of reproductive individuals can survive through the non-breeding season
subsequent after their reproduction. Differently from the previous model in which
every individual can pass the breeding season only once, some individuals can now
pass several breeding seasons in their life. In biology, the organism which makes
reproduction only once in the life is called semelparity, while one which can make
reproduction more than once is called iteroparity.

Now we have to take account of the other matters related to this modification in
the modeling for the iteroparity. At the breeding season, the reproductive individuals
have different generations, that is, different ages, while they had the same gener-
ation/age in the previous model. Such a reproduction by individuals of different
generations/ages is called generationally overlapping reproduction in biology. In
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comparison, the reproduction only by individuals of the same generation/age is
sometimes called generationally non-overlapping reproduction. We need some
new assumptions for the generationally overlapping reproduction at each breeding
season of our model.

Additionally to previous assumptions except for that omitted in the above, we
take the following new assumptions:

• The death probability and fertility are independent of age.
• Every reproductive couple is dissolved just after the breeding season.
• The formation of reproductive couple is independent of the age of mature

individual, so that the couple formation between different generations is possible.

With these assumptions, the number of reproductive couples at the nth breeding
season is given by the half of the number of mature individuals alive just before the
nth breeding season. Note that every alive individual just before the breeding season
is now assumed to be mature.

From the assumptions that the sex ratio at birth is 1:1 and the death rate is
independent of the sex, we can estimate the sex ratio of mature individuals, that
is, the operational sex ratio as 1:1 in the following way. Let us denote the number
of female newborns at the nth breeding season by Fn. When they mature at the
beginning of the (n + 1) th breeding season after one year, the expected number
becomes σFn. The same arguments can be applied for the male newborn, and it is
concluded that the expected number of mature males is the same with that of mature
females, since the number of male newborns at the nth breeding season is equal to
Fn from the assumption about the sex ratio at birth 1:1. Further, these arguments
can be applied also for the older mature females/males at each breeding season.
Consequently, with the mathematical induction, we can find that the operational sex
ratio in the present model is necessarily given as 1:1 for any breeding season.

Individuals alive just before the (n + 1) th reproduction season consist of
those which become mature after their birth at the nth reproduction season and
those which are mature individuals surviving after their reproductive activity at
the nth reproduction season. With the number of reproductive couples at the nth
reproduction season cn, the number of mature individuals at the nth reproduction
season is given by 2cn. Thus we have the expected number of mature individuals
which survive until the (n + 1) th reproduction season as σA · 2cn, where σA is
the survival probability for the mature individual in the non-breeding season. The
survival probability of the immature individual in the non-breeding season is now
given by σJ, different from σA in general. Since the number of newborns at the nth
reproduction season is mcn, the number of those which can survive till the next
reproduction season and become mature is given by σJmcn. Therefore, the sum
2σAcn + σJmcn gives the number of individuals alive just before the (n + 1) th
reproduction season, and finally we obtain the following recurrence relation:

cn+1 = 1

2

(
2σAcn + σJmcn

) =
(
σA + σJm

2

)
cn. (1.8)
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Consequently, from the arguments same as for the previous model, we find that
the population goes extinct if and only if σA + σJm/2 < 1. Note that the present
model (1.8) becomes equivalent to the previous one with σA = 0. Thus, we
can regard the present model (1.8) as a model including and generalizing the
previous (1.7).

At the end of this section, let us consider the mean life span for the population
governed by the model (1.8). As before, we regard the life span for the individual
died before the maturation as zero. The probability that an individual dies after
passing k reproduction seasons is given by

(
1 − σA

)
σk−1

A σJ (k ≥ 1). (1.9)

We regard the life span of such an individual as k. Hence, by the standard
mathematical definition of the expected value, we can calculate the mean life span
as follows:

∞∑
k=1

k
(
1 − σA

)
σk−1

A σJ = σJ

1 − σA
. (1.10)

Exercise 1.2 Show that the net reproduction rate for the population governed by
the model (1.8) becomes

σJm

2

1

1 − σA
. (1.11)

1.6 Sexual Difference

Up to now, we have been considering the mathematical modeling with the assump-
tion that there is no difference between female and male with respect to the
survival and death. For most organisms, this is not applicable even in any sense of
approximation. Moreover, there are many animals and plants which has the sex ratio
at birth or the operational sex ratio significantly different from 1:1. Biologists try
to understand such a biased sex ratio as an evolutionary strategy established in the
evolutionary process to have the larger number of offsprings. In this section, without
stepping into such an argument from the viewpoint of evolutionary biology, we are
going to consider the mathematical modeling of a population dynamics introduced
such a biased sex ratio.

Additional Ecological Assumptions
To consider the case of a biased sex ratio, we need an additional assumption about
the formation of reproductive couple, since the female and male numbers are not
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the same. We add the following assumption to the previous assumptions about the
formation and dissolution of reproductive couple:

• Reproductive couples are generated among mature individuals as many as
possible.

From the previous assumptions, the formation of reproductive couples is at the
beginning of the reproduction season. By the above new assumption, if the mature
males are more than the mature females, the number of reproductive couples
becomes equal to the number of mature females.

To avoid much complicatedness, let us assume here the followings:

• The survival probability in each non-breeding season is independent of whether
the individual could form a couple or not at the previous breeding season.

• The survival probability of immature individual is independent of the sex.

Let us denote the survival probabilities of mature female and male respectively by
σF and σM. The sex ratio at birth is now given by ω : 1 − ω, where ω is the female
ratio at birth. When ω > 1/2, the number of female newborns is greater than that of
male.

Mathematical Modeling
For a reasonable step of mathematical modeling, let us denote the numbers of mature
females and males at the nth breeding season by Fn and Mn respectively. Since
the number of newborns at the nth breeding season is given by mcn as before, the
number of female newborns is ωmcn, and that of male is (1−ω)mcn with the female
ratio ω at birth.

Note that the number of mature individuals at the nth breeding season must
be greater than or equal to 2cn, that is, Fn + Mn ≥ 2cn. There may be some
mature (only female or male) individuals which could not form couples from the
assumption given in the above. Some such uncoupled mature individuals may join
the reproduction at the subsequent breeding season if they can survive until it. From
the assumption added in this section, the number of reproductive couples is equal
to the smaller in the numbers of mature females and males: cn = min[Fn,Mn].
Thus, the number of uncoupled mature (only female or male) individuals is given
by max[Fn,Mn] − cn.

The mature individuals at the nth breeding season consist of those which were
born at the (n − 1) th breeding season and became mature and those which were
mature at the (n−1) th breeding season and could survive to the nth breeding season.
Thus, with the survival probabilities σJ, σF and σM for the immature individual, the
mature female and male respectively, we can obtain the following mathematical
model by the recurrence relations:

Fn+1 = σFFn + σJωmmin[Fn,Mn];
Mn+1 = σMMn + σJ(1 − ω)mmin[Fn,Mn],

(1.12)
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with the initial mature individuals 2c1 as in the previous geometric growth model.
This initial number 2c1 indicates that the population dynamics begins with the initial
number of reproductive couples c1, and F1 = M1 = c1 since we assume that the
numbers of mature females and males are equal to c1 at the initial.

Population Dynamics
As shown by numerical examples in Fig. 1.3, the population dynamics governed
by (1.12) becomes approximated well by a geometric growth for sufficiently large n.
To consider this nature, let us put Fn ≈ F ∗λn and Mn ≈ M∗λn with undetermined
positive constants F ∗ andM∗. From (1.12), we can easily find that

λ =
{
λF := σF + σJωm if F ∗ < M∗;
λM := σM + σJ(1 − ω)m if F ∗ > M∗,

and that λF < λM if and only if F ∗ < M∗, while λF > λM if and only if F ∗ > M∗.
Besides, F ∗ = M∗ if and only if λF = λM. From these results, the population
dynamics for sufficiently large n can be regarded as following

(Fn,Mn) ≈ (F ∗{min[λF, λM]}n, M∗{min[λF, λM]}n) . (1.13)

Therefore, the population geometrically grows if and only if both of λF and λM
are greater than 1 (Fig. 1.3b). If one of λF and λM is less than 1, the population
geometrically goes extinct (Fig. 1.3a).

The parameter λF (resp. λM) means the expected number of mature females
(resp. males) at the next breeding season, which are produced by a mature female
(resp. male) at each breeding season. It is defined by adding the expectation σF
(resp. σM) of a mature individual surviving until the next breeding season to the
number of newborns produced by it. From this definition, we can see that λF does
not correspond to the net reproduction rate (see p. 16), but does to the sum of the
net reproduction rate and the expectation σF. Hence, let us call hereafter λF and λM
respectively female replacement rate and male replacement rate.

When the female replacement rate λF < 1, each mature female at every
breeding season can produce mature females less than one in mean at the next
breeding season, so that the number of mature females is expected to decrease
season by season. From the assumption about the couple formation, the number
of reproductive couples decreases at the same time, independently of the value of
the male replacement rate λM. This situation causes the seasonal decrease in the
total number of newborns to make the population go extinct. These arguments can
be applied for the case where λM < 1 (see Fig. 1.3a).

Let us see the sex ratio in the mature individuals including uncoupled at the
breeding season. As Fig. 1.3 indicates, it gradually approaches a certain constant,
independently of which the population can persist or goes extinct. From the above
feature of the population dynamics, we can obtain the following mathematical
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Fig. 1.3 Numerical example of the temporal variation about the numbers of mature females and
males, Fn and Mn, and that about the female ratio in the mature individuals Fn/(Fn +Mn) for the
population dynamics governed by (1.12). (λF, λM) = (a) (1.225, 0.925); (b) (1.1, 1.05), with (a)
ω = 0.5; (b) ω = 0.4. Commonly, (F1,M1) = (1, 1); m = 5; σJ = 0.25; σF = 0.6; σM = 0.3.
The ordinate of the upper graphs for Fn and Mn has a common logarithmic scale

result:

Fn

Fn +Mn → σJm

σJm+ σM − σF
ω if and only if λF > λM;

Fn

Fn +Mn → 1 − σJm

σJm+ σF − σM
(1 − ω) if and only if λF < λM,

as n → ∞. This result shows how the operational sex ratio is determined as the
consequence of the population dynamics with given sex ratio at birth and survival
probabilities. Note that, when λF or λM is less than one, the population goes extinct
over time. In such a case, the above convergence of the operational sex ratio is
just a mathematical result, because the reproduction becomes impossible so that the
population dynamics breaks down.

As for the special case where λF = λM = λ, the model (1.12) becomes
mathematically simpler. Especially when F1 = M1 = c1, we can easily find with
the mathematical induction that Fn = Mn = c1λ

n−1 for any n ≥ 1. Thus, the
operational sex ratio is kept as 1:1 at every season. For more general case where
F1 	= M1, we can prove that, if Fn > Mn for some n, then Fk > Mk for any k > n.
Further, in such a case, since we have Fk+1 −Mk+1 = σF(Fk −Mk) for k > n, it
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Fig. 1.4 Dependence of the female replacement rate λF and the male replacement rate λM on the
sex ratio at birth ω for the model (1.12). The solid line indicates min[λF, λM]. Numerically drawn
with m = 5; σJ = 0.25; σF = 0.7; σM = 0.4

is concluded that Fn −Mn → 0 as n→ ∞. With these arguments, we can find that
the operational sex ratio necessarily approaches 1:1 when λF = λM = λ. This result
is consistent with the meaning of the female/male replacement rates λF and λM.

In these arguments, we have seen that the population dynamics is determined
by the female/male replacement rates λF and λM. These replacement rates linearly
depend on the female ratio at birth ω. Indeed, λF is linearly increasing while λM is
linearly decreasing in terms of ω (Fig. 1.4). When the population is persistent, that
is, if λF > 1 and λM > 1, its geometric growth has a velocity determined by the
smaller of λF and λM.

This result can be regarded as consistent with the meaning of the female/male
replacement rates λF and λM, and the assumptions for the model (1.12). When
the population grows, the total number of newborns is determined by the number
of reproductive couples, while the number of reproductive couples is determined
by the smaller number of mature females and males. Therefore, the velocity of
the population growth is determined by the sex of which the number of mature
individuals is smaller.

Dependence on Sex Ratio at Birth
With those results obtained in the previous sections, we are briefly going into the
discussion from the viewpoint of evolutionary biology on the nature of population
dynamics governed by the model (1.12).

From the viewpoint of selfish gene in biology, the appearance of a characteristic
(phenotype) dominant in a population is regarded as the establishment of a gene
which governs the phenotype, or as the spread of the gene over the population. The
phenotype different from the dominant one is going to disappear in generational
time scale without its establishment in the population. The process of such an
establishment and disappearance leads to the evolution, which is called natural
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selection. The kinetics of the natural selection relies on the population dynamics.
The disappearance of a phenotype can be translated as the extinction of individuals
with the corresponding gene from the population, while the establishment can be
done as the persistent frequency of individuals with the corresponding gene in the
population. If the individual with a phenotype can produce offsprings more than
those produced by the others with any phenotype different from it, the phenotype
can be established in the population.

Now let us briefly go into such an evolutionary viewpoint for the dependence
of the population dynamics governed by (1.12) on the sex ratio at birth. The sex
ratio at birth is certainly one of phenotypes characterizing a biological population.
As we have seen in the previous section, the persistence/extinction of a population
significantly depends on it. Only when the sex ratio at birth satisfies the condition
that λF > 1 and λM > 1, the population can persist and grow.

Further, supposing two different strains with respect to the replacement rates λF
and λM, we can say that the strain with the larger min[λF, λM] could have the larger
subpopulation than the other, because the velocity of the growth is determined by
it. From the evolutionary viewpoint, this means that the strain with the sex ratio at
birth to make the value min[λF, λM] larger could be established in the population,
provided that any feature other than the sex ratio at birth is common.

The strain is similar to the family lineage in human society. We are now
considering the family line inheriting a gene which determines the sex ratio
at birth. A different strain may appear in the same population, for example,
by a mutation stochastically occurred in the genetic process, or by a mixture
(for example, caused by a change of the geographic configuration) of different
strains which were independent before.

Based on these arguments, we could assume that the evolutionary process favors
to select the larger min[λF, λM]. By the result obtained in the previous section, it
becomes the largest when λF = λM. A strain with the sex ratio at birth to satisfy
this condition can be regarded as one having the growth velocity larger than any
other strain. Thus such a strain can have the frequency larger than the others, and
evolutionarily become established in the population.

For the present model given by (1.12), when every member has the sex ratio at
birth to satisfy λF = λM, the population is said to be at the evolutionarily stable
state (ESS), because any other strain with different sex ratio at birth cannot increase
its frequency, as long as any other phenotype is common.

Let us consider the feature of such a population at the ESS. As already seen,
the operational sex ratio becomes 1:1 in the population. From the assumptions for
the model (1.12), this is the situation such that there does not exist any uncoupled
mature individual at the breeding season. This can be regarded as ideal from the
standing point of the reproductive individual and the viewpoint of selfish gene, since
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any offspring can make the reproduction when it survives and matures. This kind of
evolutionary consideration on the sex ratio has been dealt by what is sometimes
called “Fisher’s theory” in biology, which essentials were discussed and established
by Sir Ronald A. Fisher (1890–1962). It explains that the operational sex ratio under
the simplest situation becomes 1:1 at the ESS.

As for the model (1.12), we can find that the condition λF = λM > 1 is fulfilled
by the sex ratio at birth satisfying

1 − σF

σJm
< ω = 1

2

(
1 − σF − σM

σJm

)
< 1 − 1 − σM

σJm
.

It is intuitively obvious that the sex with the lower survival probability needs to have
the larger sex ratio at birth in order to lead to the operational sex ratio 1:1. From the
above condition, we can see that the bias in the sex ratio at birth becomes smaller as
the expected number of survival and mature offsprings per couple σJm gets larger.
In contrast, as the expected number of survival and mature offsprings per couple is
smaller, the bias becomes more striking. The former case could correspond to a case
where the number of newborns is huge even with their small survival probability, or
a case where the survival probability of newborn is sufficiently large, for example,
due to the parental care, even with a small number of newborns.

We must note that the above conclusion significantly depends on the assumption
about the reproduction for the model (1.12): The reproduction is possible only by the
formation of couple with a female and a male. About many species, the energetic
requirement for the reproduction is bigger for the female than that for the male,
since the energetic cost to produce the gamete is generally smaller for the male (e.g.,
sperm or pollen) than for the female (e.g., egg or ovule). For this reason, from the
viewpoint of selfish gene aimed to produce offsprings as many as possible, it would
be likely for a male to have children with more than one females. Even when the
reproduction is done only with the couple formation, there are ecological examples
to allow the existence of uncoupled individuals, like what is called “helper” in some
bird species. Therefore, the operational sex ratio 1:1 is not always established in
the evolution, even though the reproduction is possible only by the formation of
reproductive couple.

In this section, we briefly went into the evolutionary problem on the sex
ratio at birth. The modern theory on the sex ratio has been systemized
and sophisticated with the accumulated researches on a variety of species
in history. In general, we need to take account of a trade-off relation of
one phenotype to the other phenotype. The benefit by one phenotype may
cause a loss for the other. It is likely that the difference in the sex ratio at
birth would be reflected to a difference in the survival probability for the
immature individual (σJ). For example, the sex ratio at birth could have a close

(continued)
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relation to the energetic investment by the parent to the offspring (for example,
embodied with the egg size). In the modern biology, the evolutionarily stable
state is considered in general as attainable under such a trade-off relation
between phenotypes. For the readers interested in the mathematical modeling
for this kind of evolutionary aspect, for example, see [3–5].

Answer to Exercise

Exercise 1.1 (p. 5)

Along the same arguments in the main text, we can get the recurrence relation
cn+1 = (k + 1)cn, that leads to cn = (k + 1)n−1. Thus, in December, the family
consists of 2 × (k + 1)11 + 2k × (k + 1)11 = 2 × (k + 1)12 individuals. For k = 1
that gives the least number of newborns satisfies the above assumptions, it becomes
213 = 8, 192. How do you think about this result? More realistic?

Exercise 1.2 (p. 18)

As defined at p. 16, the net reproduction rate is given by the expected number of
mature females produced by a mature female. Let us consider a mature female at
a breeding season, which is born at the previous breeding season and successfully
survives to become mature in the subsequent breeding season.

From the same arguments as for the probability (1.9), we have the probability
that the mature female dies after passing k reproduction seasons is given by

(
1 − σA

)
σk−1

A (k ≥ 1). (1.14)

This is the probability that a female makes the reproduction k times in the life span.
The female which makes the reproduction k times produce km newborns, that is,

km/2 female newborns. Thus, the expected number of produced mature females by
such a female is given by σJkm/2 because of the death probability 1 −σJ before the
maturation. Hence, with the probability (1.14), we can derive the net reproduction
rate as the expected number of mature females produced by a mature female, making
use of the mathematical definition of expected value given by

∞∑
k=1

σJ
km

2
· (1 − σA

)
σk−1

A ,

and get the result (1.11).
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The net reproduction rate (1.11) can be translated as the product of the expected
number of mature females produced by a mature female per breeding season and the
expected survival duration of a female after the maturation. Actually, from (1.14),
the latter expected value can be given by

∞∑
k=1

k · (1 − σA
)
σk−1

A = 1

1 − σA
,

and the former is given by σJm/2.
Same as the argument in p. 16 for the previous model (1.7), the condition that the

net reproduction rate (1.11) is less than one is equivalent to that σA + σJm/2 < 1
derived from the recurrence relation (1.8).
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Chapter 2
Influence From Surrounding

Abstract In this chapter, we shall introduce the density effect in the population
dynamics, as the expansion of discrete time linear models in Chap. 1. The introduced
density effect could be intraspecific, interspecific, or both. As the intraspecific
density effect, we shall consider the Allee effect, and as the interspecific one, the
interspecific competition and the prey-predator or host-parasite relation. Moreover,
we shall consider the effect of harvesting/culling on the population dynamics too.
Then we give some arguments on the problem of maximum yield or benefit, related
to the mathematical fundamental in bioeconomics. Further, in the last section of
this chapter, we shall describe the other type of modeling for the discrete time
population dynamics, since we do not want to make the readers get a fixed idea
about the modeling for the discrete time population dynamics. The ideas shown in
the part would be expandable to the construction of another sophisticated model for
a discrete time population dynamics.

Every mathematical model in the previous chapter characteristically had a mathe-
matical nature of geometric progression, even though they had different formulas
depending on different assumptions for the modeling. Such a mathematical nature
arose fundamentally from the feature that the number of newborns per couple m
and the survival probability σ are constant independently of the situation in the
population.

In reality, the life of biological population necessarily affects the environment
surrounding it. While the population dynamics clearly depends on the environmental
condition, the environmental change by the life of the population has a feedback
effect on the population dynamics. It is very likely that such a feedback effect
appears on the number of newborns or the survival probability. Investigation and
analysis on such an effect would be one of important research subjects in ecology.

In this chapter, we shall consider some basic mathematical modelings about the
influence on the reproduction and survival from the surrounding condition within
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the same population, the interaction with another population, and the external force
to affect the population dynamics.

2.1 Negative Density Effect

Let us consider again the mathematical modeling for the geometric growth
model (1.7) with the generationally non-overlapping semelparity, introduced at
p. 15 in the previous chapter. To simply introduce an influence of the surrounding
in the modeling, we modify the last assumption “The survival and reproduction are
independent of the population size” introduced at p. 14 in Sect. 1.5 as follows:

• The reproduction is influenced by the population size, while the survival is
independent of it.

A cause of such an influence of the population size on the fertility is the
dependence of the energy gain for the reproduction on the population size, as
mentioned in many textbooks on ecology (for example, see [3, 17, 24, 29, 48,
56, 66]). For example, under a situation that the amount of food is limited in the
habitat, the larger population size leads to the smaller expected amount of food
per individual, which necessarily makes the portion of gained energy to allocate for
the reproduction smaller, subsequently declining the fertility. The similar arguments
would be applicable for the death (or survival) probability. However, the correlation
of the environment to it must be different from that to the fertility. For the sake of
simplicity, we shall introduce here only the influence on the fertility, ignoring that
on the death probability in the modeling of this chapter.

It is more accurate in an ecological sense to consider that the influence is not
from the number of individuals in the population but from the population density.
This is because the influence of the surrounding is mainly determined by the number
of neighboring individuals, so that it gets stronger as the distance from neighbor
individuals is smaller. Briefly, the per capita fertility significantly depends on the
population density. Such an influence of the population density on the population
dynamics (not only about the reproduction) is generally called density effect in
ecology.

Now, with the new assumption given in the above, we modify the geometric
growth model (1.7) as follows:

cn+1 = σm(an)cn

2
(n = 1, 2, · · · ), (2.1)

where an denotes the total number of mature individuals at the nth breeding season.
From the assumption for the geometric growth model (1.7), we have an = 2cn,
so that we introduce the number of newborns m per couple in this modeling by a
function of the total number of mature individuals an.



2.1 Negative Density Effect 29

In this book, we have been using the word “number” to explain the variable
in the population dynamics from the first chapter. More precisely, it should
be “number density” from the theory of population dynamics. This means
that we had better mostly translate “number” into “number density”, for
example, about the definitions of cn and an. The number density is defined
as the expected or averaged “number” per area or per volume in general. Its
value naturally depends on the unit of area or volume. For the mathematical
modeling, we remark that the value of number density becomes fractional
in general, and it is generally treated as a real number if we would need to
consider the value itself.

The reason why the number of newborns m is given by a function not of
the number of couples cn but of the number of mature individuals an is as
follows: The amount of energy available for the reproduction is determined by the
surrounding condition before the breeding season. As mentioned in the above, the
higher population density makes the energy gain available for the reproduction per
individual smaller, so that it is reasonable to consider that the number of newborns
per couple is given by a decreasing function of the population density. This negative
correlation gives the negative density effect on the number of newborns per couple.
In the following part, we shall see some mathematical models with a given function
for it.

In this type of modeling to describe a sequence of temporally changing value,
the value at the next time step would depend on the whole past sequence as the
most general influence from the population size. When a model is given by
a recurrence relation to determine the next value from the past sequence, the
recurrence relation can be said that it defines a discrete dynamical system if
the recurrence relation determines a unique sequence with a given appropriate
initial value. The recurrence relation itself may be called discrete dynamical
system. For the introduction of discrete dynamical system, the reader can refer
to [16, 19, 20, 36], and for the more advanced mathematical description, can
see [11, 53].

2.1.1 Beverton-Holt Type Model

First let us introduce the following function defining the influence of the number of
mature individuals an on the number of newborns per couplem:

m(an) = m0

1 + (an/α)θ = m0

1 + (2cn/α)θ , (2.2)
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Fig. 2.1 Parameter dependence of the density effect (2.2) from the number of mature individuals
a on the number of newborns per couple m

where m(0) = m0 means the physiological upper bound for the number m, that is,
the number of newborns produced when no density effect works. Parameters α and θ
characterize the relation between the numbers of newborns and mature individuals,
as explained more in the below.

Some readers getting accustomed with the modeling may feel strange on
the above explanation “the number of newborns produced when no density
effect works”. It is very natural. Because the situation without density effect
corresponds to the case of an = 0, which means that there is no mature
individual, that is, no couple. In such a case, the reproduction is impossible.
As a reasonable way to understand it, we must consider the case where
an = 2cn is sufficiently small. In a mathematical sense, we need to consider
the limit of cn → 0 instead of cn = 0. In a biological sense, it takes natural to
suppose a certain upper bound for the number of newborns per couple under
some density effect to suppress the number. In the mathematical modeling
with (2.2), it is introduced by m0.

As shown by Fig. 2.1, the parameter θ characterizes the sensitivity of the number
of newborns per couple m to the number of mature individuals a. For sufficiently
small θ , the value of m becomes much small even for a range of small a, while it
has relatively little relation to a for a range of large a. In such a case, the number of
newborns per couplem has strong sensitivity to the number of mature individuals a
when a is small, and has weak sensitivity to it when a is large.

In contrast, for sufficiently large θ , the value of m has the weak density effect
from the mature individuals when a is less than α, and is relatively near to the
physiological upper bound. It becomes much small by the strong density effect when
a is more than α. In such a case, the parameter α can be regarded as the critical value
for the number of mature individuals a with respect to the density effect from the
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mature individuals. If we consider the mathematical limit of α → ∞ for (2.2), we
can find that m converges to the value m0 in case of no density effect from the
mature individuals. This is consistent with the meaning of α as the critical value for
a with respect to the density effect.

For the intermediate value of θ (for example, θ = 1), the number of newborns
per couple m has an intermediate sensitivity to the number of mature individuals a,
and it changes necessarily little for any little change of a.

With the density effect function (2.2), the recurrence relation (2.1) becomes

cn+1 = ℛ0cn

1 + (2cn/α)θ , (2.3)

where ℛ0 := σm0/2 means the net reproduction rate expected when the density
effect is absent (refer to the definition of the net reproduction rate at p. 16 of
Sect. 1.5). More precisely it means the physiological upper bound for the net
reproduction rate under the density effect given by (2.2), since the actual net
reproduction rate is determined under the density effect.

Especially the mathematical model (2.3) with θ = 1 is frequently called
Beverton-Holt model after the work applied for the fishery problem by Raymond
(Ray) J.H. Beverton (1922–1995) and Sidney J. Holt (1926–2019) in 1957 [5]. It is
investigated more mathematically by M.P. Hassell in 1975 [23].

Substituting xn = 2cn/α for (2.3), we can obtain

xn+1 = ℛ0xn

1 + xθn
. (2.4)

This is the discrete time model investigated by Maynard et al. [59] and
Bellows [4] as a modification of Beverton-Holt model. On the other hand,
the substitution of ζn = (2cn/α)θ for (2.3) leads to

ζn+1 = ℛθ
0ζn

(1 + ζn)θ . (2.5)

This is a special case of the model investigated by M.P. Hassell [23] as the
other modification of Beverton-Holt model. Since α is a positive constant,
the sequences of xn, ζn, and cn qualitatively have the equivalent nature in a
mathematical sense. The nature of the sequences {xn} and {ζn} is determined
by parameters ℛ0 and θ , and is independent of α. Thus the qualitative nature
of the sequence {cn} is independent of α too. In the above arguments, the
parameter α is an important constant to characterize the density dependence
of the population dynamics given by (2.3), while it does not play any role to
determine the qualitative nature of the sequence {cn}.
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Fig. 2.2 Temporal sequences by the population dynamics model (2.3). Numerical calculations for
different value of ℛ0 with θ = 4.0 and 2c1/α = 0.1

Mathematical Features
As shown by numerical calculations in Fig. 2.2, the population dynamics by the
recurrence relation (2.3) does not cause any unbounded increase of the population
size. With the local stability analysis and the cobwebbing method introduced in
Sect. 12.1, it is easy (whereas required a careful investigation of different cases) to
mathematically show the following features of the model (2.3):

• The population size monotonically decreases to go extinct if and only if ℛ0 ≤ 1.
• When θ ≤ 1, cn monotonically approaches c∗ := (ℛ0 − 1)1/θα/2 if and only if

ℛ0 > 1.
• When θ > 1, cn monotonically approaches c∗ if and only if 1 <ℛ0 ≤ θ/(θ−1).
• When 1 < θ ≤ 2, cn approaches c∗ with a damped oscillation if and only if

ℛ0 > θ/(θ − 1).
• When θ > 2, cn approaches c∗ with a damped oscillation if and only if θ/(θ −

1) <ℛ0 ≤ θ/(θ − 2).
• When θ > 2, cn does not approach any specific value but keep changing if and

only if ℛ0 > θ/(θ − 2).

The damped oscillation means the oscillation which oscillatory range gradually
subsides toward zero as time goes. The above features about the temporal variation
of the number of reproductive couples can be correspondingly applied for the
temporal variation of the population size itself.

The above description about the features of the model (2.3) with ℛ0 > 1
is not exact in a mathematically rigorous sense. Because there are countable
set of initial values c1 from which the sequence {cn} remains a constant (i.e.,

(continued)
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Fig. 2.3 Parameter dependence of the behavior of the population dynamics by (2.3)

the initial value) or becomes a repeated number of constants (i.e., a periodic
solution). However, any such sequence is unstable, and any perturbation
makes the sequence have a corresponding feature given in the above. Since
we are considering the recurrence relation (2.3) as a mathematical model of
population dynamics, any such unstable state is generally negligible for the
theoretical discussion with the biological meaning of the mathematical feature
about the model, even though some mathematician might criticize for it.

Figure 2.3 shows the above features in the parameter space of (θ,ℛ0). When
θ ≤ 1, the variation is necessarily monotonic, while, when θ > 1, an oscillatory
variation appears for a large ℛ0 (see Fig. 2.2). Further, we can find that, when the
population does not go extinct but persists with ℛ0 > 1, an oscillatory variation
appears for a large θ .

These results imply that the appearance of an oscillatory variation requires large
θ and ℛ0. Large θ corresponds to the case where the number of newborns is much
sensitive to the density of mature individuals, as described before. Therefore, we
may consider the kinetics of such an oscillatory variation as a process accompanying
the decrease of population size due to the severe density effect, the subsequent
acute moderation in the density effect with the high sensitivity to it, and the fast
recovery of population size with the large reproductive faculty. Especially, since the
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Fig. 2.4 Sequences {cn} by Beverton-Holt model (2.3) with θ = 1. Numerically drawn for five
different initial values of 2c1/α when ℛ0 = 2.0. The carrying capacity is given as 2c∗/α − ℛ0 −
1 = 1.0

oscillatory variation cannot occur with small θ , we find that the high sensitivity of
the reproduction to the density effect is essential for the oscillatory variation.

For Beverton-Holt model (2.3) with θ = 1, the sequence {cn} monotonically
approaches c∗ := max

[
0, (ℛ0 −1)α/2

]
from any positive initial value c1 (Fig. 2.4).

That is, the number of mature individuals an in Beverton-Holt model monotonically
approaches a∗ := max

[
0, (ℛ0 − 1)α

]
for any positive initial value a1.

Exercise 2.1 For Beverton-Holt model (2.3) with θ = 1, show by the cobwebbing
method that the sequence {cn} monotonically approaches zero when ℛ0 ≤ 1, and
(ℛ0 − 1)α/2 when ℛ0 > 1, independently of the initial value c1 > 0.

Carrying Capacity
In an ecological sense, the equilibrium value a∗ for the population governed by
Beverton-Holt model (2.3) with θ = 1 can be regarded as carrying capacity for
the population dynamics. The carrying capacity is defined as the upper limit of
the population size supported by the environment in which the population inhabits,
following its own population dynamics. As illustrated by Fig. 2.4, the population
with the size beyond the carrying capacity cannot be supported by the environment,
so that it gradually declines toward the carrying capacity by the reduction of the
surplus.

In most cases, the definition of carrying capacity does not take account of
the influence by the other populations (as described in the later sections) in
the same environment. This means that the carrying capacity is defined under
the condition without any influence by the other populations. However, any

(continued)
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biological population dynamics in nature is necessarily under such influences
and affected also by some other factors related to the population dynamics.
For example, the influence of some enemies may make the population size
smaller than the carrying capacity, and the availability of resource (e.g., light,
water, food, etc.) for the reproduction may not be stationary. The actual
population size must be determined under such influences, while it would
be theoretically worth while to consider the upper bound even for such a
population size. Thus the carrying capacity is used to be theoretically defined
with the ideal condition without any influence from the other populations. It
should be remarked that the population dynamics may not keep the population
size at a certain value even under such an ideal condition, and may cause
a persistent oscillatory variation of the population size, when the carrying
capacity cannot be defined well as a certain value.

Actually, the carrying capacity cannot be defined in some theoretical
population dynamics. The geometric growth model discussed in the previous
section does not have any carrying capacity, since the growth of population
size is unbounded, which might be mathematically said that the carrying
capacity is infinite. As mentioned above, the natural population size neces-
sarily has the upper bound. However, it is not appropriate to regard such a
model without it as nonsense. It is certainly thoughtless for the theoretical
consideration on the population dynamics. Each theoretical consideration
focuses on an aspect of the population dynamics, for example, illuminating
a biological problem. From this standpoint, the theoretical model like the
geometric growth model could not be regarded as null only for the reason
that it causes the unbounded growth of population size, or that the carrying
capacity cannot be defined. Such a way of thought itself is nonsense from the
viewpoint of science.

Bifurcation Diagram
For the population dynamics model (2.3), we have seen the appearance of a persis-
tently oscillatory variation as shown by Fig. 2.2. The nature of such an oscillatory
variation significantly depends on parameters θ and ℛ0. When ℛ0 = 2.33, it
approaches what is called period-2 solution which repeats two different values A
and B as ABABAB · · · (see Sect. 12.1.4). When ℛ0 = 3.00, it approaches a
period-4 solution, and when ℛ0 = 7.00, it does a period-3 solution. Further, when
ℛ0 = 4.00, it approaches an aperiodic oscillatory variation.

We can obtain a mathematical diagram which shows such a parameter depen-
dence of the characteristics of oscillatory solutions. It is called bifurcation diagram.
In this book, we do not go into the mathematically rigorous treatment of the
bifurcation diagram, but use the numerically (i.e., approximately) drawn bifurcation
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Fig. 2.5 Numerically drawn bifurcation diagram for the population dynamics model (2.3) in terms
of the bifurcation parameter ℛ0

diagram as a useful information to discuss the mathematical nature of population
dynamics model.

The lower three bifurcation diagrams of Fig. 2.5 for the population dynamics
model (2.3) include the above-mentioned persistently oscillatory behavior of the
sequence {cn} in the range of ℛ0 > θ/(θ − 2). The outline of the numerical
calculation to draw the bifurcation diagram for (2.3) in Fig. 2.5 is as follows:

1. Choose a value of ℛ0.
2. Give the initial value 2c1/α = 0.1.
3. Determine the value 2c200/α by recurrently using (2.3).
4. Make a set of values {2cn/α} from n = 201 to n = 400 again by recurrently

using (2.3).
5. Plot all values of the set against the value of ℛ0.
6. Choose a different value of ℛ0, and repeat this process from step 2.

The essence of this process is to plot 200 points against each chosen value of
ℛ0. When the population size approaches a unique positive value, they apparently
appears a single point. When it approaches a period-2 solution, they apparently
appears two points, and when it does a period-4 solution, they does four points,
and so on.

As already seen, there does not appear any persistently oscillatory variation
when θ ≤ 2. Hence in such a case, the plot in the bifurcation diagram appears
a single point against each value of ℛ0, as shown in the upper three diagrams
of Fig. 2.5. The digram is composed only with a curve or line. In contrast, when
θ > 2, the sequence {cn} may approach a persistently oscillatory variation (Fig. 2.3).
Actually the bifurcation diagrams in Fig. 2.5 indicate that the population dynamics
model (2.3) brings periodic solutions with doubling the period like period-2, period-
4, period-8, period-16, and so on, as ℛ0 gets larger. This type of parameter
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dependence of the periodic solutions is called period-doubling bifuration (see
Sect. 12.1.5).

Further we can see a part of dense plots for further large ℛ0 in Fig. 2.5, which
may include a chaotic variation which is an aperiodic and persistent oscillatory
variation. In the chaotic variation, the sequence {cn} consists of all different values.
That is, mathematically it does not approach any periodic solution but continues
to change without taking the value same as any of past values. This is the case of
ℛ0 = 4.00 in Fig. 2.2. The population dynamics with the parameter values to cause
such a chaotic variation can be characterized by a specific feature called initial value
sensitivity. It means that arbitrary slight difference in the initial value eventually
generates a significant difference in the variation.

The above description about the chaotic variation follows the mathematical
theory of the chaos, which has been developed in the dynamical system
theory of mathematics and related mathematical sciences. In any numerical
calculation, we cannot avoid the round error which may reveal the limitation
of numerical approach to the mathematical problem. While the chaotic
dynamical system has the feature of initial value sensitivity, a numerical
calculation of number sequence like the above may hit a value same as one
in the past due to such a numerical error. We know that the modern computer
provides a very high accuracy out of our ordinary sense. Hence such a case
caused by the round error would be considered as very rare case. Naturally
from the scientific viewpoint, we could not deny such a possibility, and hence
it is an important mathematical problem to show the existence of chaotic
variation by mathematical analysis.

Moreover, the numerically drawn bifurcation diagram in Fig. 2.5 cannot
show periodic solutions with any much long period. Especially for ℛ0 >

θ/(θ − 2) when θ > 2, it is likely that the numerical calculation could not
plot every value appearing in the sequence. For this reason, such a numerical
bifurcation may be regarded as just an approximation with experimental
numerical calculations, and thus it is sometimes called orbit diagram in
contrast with the bifurcation diagram.

On the other hand, Fig. 2.5 may be regarded as an approximated expression
of the ω-limit set drawn by numerical experiments too. The ω-limit set for the
initial value c1 means the set of values which the sequence {cn} approaches as
n → ∞. When it approaches a unique value, the ω-limit set consists of only
the value. When it approaches a period-k solution, it consists of k different
values composing the periodic solution. When the sequence shows a chaotic
variation, the ω-limit set consists of the infinite number of values and is called
strange attractor. The reader can get the further mathematical detail about
these kinds of feature in the dynamical system, for example, in [11, 16, 25, 62].
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As numerically exemplified by the sequence when ℛ0 = 7.00 in Fig. 2.2 and
by the bifurcation diagram when θ = 4.0 and 5.0 in Fig. 2.5, the existence of a
period-3 solution is implied. The period-3 solution has an important meaning in
mathematical science, since a theorem called Sharkovskii theorem proves that any
periodic solution exists if a period-3 solution exists (see Sect. 12.1.5). It must be
remarked that the existence of a periodic solution does not necessarily mean the
approach of sequence to it. It is possible that the sequence does not approach an
existing periodic solution. Such a periodic solution is mathematically identified
as unstable. On the other hand, if there is a periodic solution which the sequence
approaches, it is mathematically identified as asymptotically stable.

The description of “unstable” and “asymptotically stable” here is much rough
in a mathematical sense, while it would be very important for the reader to get
a closer image about such concepts of stability. As for the more mathematical
concept of stability, refer to Sect. 12.1.1.

2.1.2 Ricker Model

Next let us consider the following function of negative density effect on the number
of newborns per couplem:

m(an) = m0 e−γ an, (2.6)

by which m is monotonically decreasing in terms of the density of mature
individuals an. Parameter m0 means the physiological upper bound for the number
of newborns per couple, same as for Beverton-Holt type model. Parameter γ
characterizes the sensitivity of m to the density of mature individuals according to
the density effect. As shown in Fig. 2.6, the larger γ means the stronger sensitivity
of m such that the higher density of mature individuals causes the steeper decrease
in the number of newborns per couple.

The population dynamics model (2.1) with the density effect function (2.6) is
today called Ricker model after its application for the fishery problem by William
E. Ricker (1908–2001) in 1954 [52]:

cn+1 = ℛ0cne−2γ cn, (2.7)

where ℛ0 := σm0/2 means the net reproduction rate expected when the density
effect is absent, as before.
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Fig. 2.6 Parameter dependence of the density effect function (2.6) for the number of newborns
per couple m

Fig. 2.7 Numerically drawn bifurcation diagram for Ricker model (2.7) in terms of the bifurcation
parameter ℛ0

In 1950, Patrick A.P. Moran (1917–1988) considered the same model [41].
Hence, this model is sometimes called Ricker-Moranmodel too. Its mathemat-
ical nature was studied earlier by MacFadyen [35], and later in a well-known
work by May and Oster [39].

As clearly seen from the bifurcation diagram of Fig. 2.7, Ricker model (2.7)
shows the parameter dependence of a period-doubling bifurcation toward the chaotic
variation, same as for Beverton-Holt type model (2.3) with θ > 2. The essential
features of population dynamics by Ricker model (2.7) are as follows:

• The population size monotonically decreases to go extinct if and only if ℛ0 ≤ 1.
• cn monotonically approaches c∗ := (1/2γ ) lnℛ0 if and only if 1 < ℛ0 ≤ e ≈

2.71828.
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• cn approaches c∗ with a damped oscillation if and only if e < ℛ0 ≤ e2 ≈
7.38906.

• cn does not approach any specific value but keep changing if and only if ℛ0 > e2.

These features can be mathematically shown with the local stability analysis and
the cobwebbing method (refer to Chap. 12.1).

It is remarked that the parameter γ has no relation to the above features. That is,
for each value of ℛ0, the sequence {cn} has the same qualitative nature for any
different value of γ . The reason is the same as that mentioned in p. 31 for the
parameter α of Beverton-Holt type model (2.3).

Ricker model is sometimes referred as a mathematical model for the fish
population dynamics with the filial cannibalism, whereas it may not be
necessarily related to such a cannibalism. We can derive Ricker model from a
population dynamics modeling with the filial cannibalism as follows.

Let Ak denote the density of mature (reproductive) individuals just before
the kth breeding season, and Jk do the density of immature individuals just
after the kth breeding season, which now corresponds to the offsprings born
at the kth breeding season. We assume that the immature individual can
become mature just before the next breeding season. Let T denote the length
of non-breeding season, and t do time in the non-breeding season after the kth
breeding season. J (t) and A(t) respectively denote the densities of immature
and mature individuals at time t . Now let us consider the following ordinary
equation as the population dynamics model within the non-breeding season:

dJ (t)

dt
= −δJ(t)J (t)− κ(t)A(t)J (t), (2.8)

where δJ(t) and κ(t) are positive functions of time t which respectively
denote the natural death rate and the coefficient of filial cannibalism by
mature individuals at time t . Although we give them as time-dependent
functions, they may be time-independent constants as the simpler modeling.
In this continuous time model by the ordinary differential equation (2.8),
the interaction between immature and mature individuals is introduced by
the mathematical modeling with the mass action assumption described in
Sect. 6.1. With a different assumption about the interaction, the result of the
following arguments could be changed more or less.

The temporal change of the density of mature individuals is assumed to be
given by a certain function of time t , A(t) = Ãkψ(t) with a monotonically
decreasing non-negative function ψ(t) such that ψ(0) = 1 and ψ(T ) ≥ 0,
where Ãk = A(0) denotes the density of mature individuals just at the end
of the kth breeding season. Due to the natural death, the density of mature
individuals must monotonically decrease in the non-breeding season.

(continued)
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By substituting A(t) for (2.8), we can easily (and mathematically) solve
the ordinary differential equation (2.8), and get the following solution (refer
to Sect. 13.1):

J (t) = Jk exp

[
−
∫ t

0
δJ(τ )dτ −

∫ t

0
κ(τ )A(τ)dτ

]

= Jk exp

[
−
∫ t

0
δJ(τ )dτ − Ãk

∫ t

0
κ(τ )ψ(τ)dτ

]
.

As a result, we can obtain the density of immature individuals J (T ) just
before the k + 1 th breeding season:

J (T ) = Jke
−δ̂JT−κ̂ ÃkT , (2.9)

where

δ̂J = 1

T

∫ T

0
δJ(τ )dτ ; κ̂ = 1

T

∫ T

0
κ(τ )ψ(τ)dτ.

Now let σA the survival rate of mature individual within the breeding sea-
son, and then we have Ãk = σAAk. Besides, with the averaged reproduction
rate per mature individual rk at the kth breeding season, we have Jk = rkAk.
Since Ak+1 = A(T ) + J (T ) from the assumption about the maturation, we
find the following equation from A(t) and (2.9):

Nk+1 = σAAkψ(T )+ rkAke−δ̂JT−κ̂σAAkT . (2.10)

If we assume the generationally non-overlapping reproduction, then it must
be satisfied that A(T ) = 0, that is, ψ(T ) = 0. In this case, the recurrence
relation (2.10) becomes mathematically equivalent to Ricker model (2.7).

2.1.3 Logistic Map Model

As a mathematical modeling to introduce the negative density effect on the number
of newborns, let us consider here the following piece-wise linear function:

m(an) =
⎧⎨
⎩
m0

(
1 − an

ac

)
(an < ac);

0 (an ≥ ac).
(2.11)
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Fig. 2.8 The density effect function (2.11) for the number of newborns per couple m

As clearly indicated by Fig. 2.8 of the density effect function (2.11), this modeling
introduces an assumption that the reproduction becomes impossible with a strong
negative density effect when the density of mature individuals a is beyond a
threshold ac.

Some may consider the smooth function for the density effect as for Beverton-
Holt type model and Ricker model better than the piece-wise and non-smooth
function like (2.11). Such a way of thought could not be regarded as
reasonable. It is most important what function would be reasonable from the
biological viewpoint to introduce the essential nature of density effect. The
smoothness of the function is not necessarily important for the reasonability
of mathematical modeling.

For some plant population, it is a well-known example that the population
becomes extinct without any successful flowering or seedling when the
planted density is too high. For Beverton-Holt type model and Ricker model,
a positive reproductive success, that is, a positive number of newborns
is assumed for any density of mature individuals. This may be regarded
as a strong mathematical simplification/idealization/approximation from the
reasonability of modeling, in comparison with the modeling with a certain
threshold density like (2.11). It depends on the biological nature of consid-
ered/assumed population which modeling for the density effect would be
more reasonable.

The population dynamics model (2.1) with the density effect function (2.11) is
given by the following recurrence relation:

cn+1 =
⎧⎨
⎩
ℛ0

(
1 − cn

cc

)
cn (cn < cc);

0 (cn ≥ cc),
(2.12)
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Fig. 2.9 Temporal sequences by the population dynamics model (2.12). Numerical calculations
for different values of ℛ0. Only in case of ℛ0 = 1.5, the sequences for three different initial value
c1/cc = 0.1, 0.49, and 0.867 are shown, while the other cases are commonly for c1/cc = 0.1

where ℛ0 := σm0/2 means the net reproduction rate when the density effect is
absent as before, and cc := ac/2. It is biologically nonsense unless 0 < c1 < cc for
the initial value c1. When c1 ≥ cc, that is, when a1 ≥ ac, the population immediately
goes extinct since it cannot make reproduction at all.

As the fundamental features of the sequence {cn} by the recurrence rela-
tion (2.12), we can easily find the followings:

• When ℛ0 < 4, it holds that 0 < cn < cc for any finite n if 0 < c1 < cc.
• When ℛ0 > 4, we have cn = 0 for some n > 1 for any positive c1 	= (1 −

1/ℛ0)cc.

Therefore, when ℛ0 > 4, the population necessarily goes extinct (Fig. 2.9).1 From
the above mathematical features, as long as considering the model (2.12) for the
biologically reasonable initial value c1 such that 0 < c1 < cc when ℛ0 ≤ 4, the
model can be described in the following simpler form:

cn+1 = ℛ0

(
1 − cn

cc

)
cn. (2.13)

It is necessary to consider the model of this recurrence relation under the constraint
that ℛ0 ≤ 4, because it is mathematically proved that cn cannot be beyond cc from
the initial value c1 such that 0 < c1 < cc if and only if ℛ0 ≤ 4 (Exercise 2.2
below). The recurrence relation (2.13) is equivalent to what is today called logistic
map.

Exercise 2.2 About the logistic map (2.13), show that cn is non-negative for any
n > 1 from any positive initial value such that 0 < c1 < cc if and only if ℛ0 ≤ 4.

1 Rigorously saying in a mathematical sense, the extinction occurs except when the initial value
belongs to a measure–zero set. However, in numerical calculations to get the sequence {cn}, it
eventually occurs (refer to the arguments in p. 37).
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Logistic map has become well-known by some pioneer works by a mathematical
biologist Robert M. May (1936–2020) on the mathematical nature of the recurrence
relation (2.13) in the early 1970s [37, 38]. His works inspired many researchers
in mathematical sciences, and a variety of his and the others’ subsequent works
contributed to the great development in dynamical system theory [2].

The logistic map appears in most of text books on mathematical biology and
on dynamical system theory. In such literatures, only the recurrence relation
mathematically equivalent to (2.13) is described, and there does not make
any mention of the mathematical model (2.12) in general. Instead they may
remark that the case of cn > cc is nonsense as a mathematical model for
population dynamics since the right side of (2.13) then becomes negative.
Only such a description would be unsatisfactory about the reasonability as a
mathematical modeling. When ℛ0 > 4, the recurrence relation (2.13) with
the initial value satisfying 0 < c1 < cc generates a sequence {cn} such that
a negative number cn appears for a certain finite n = n�, and it becomes
negative for any n > n�, diverging toward negative infinity. However, as
long as considering the logistic map (2.13) as a mathematical model with the
confinement for the initial value c1 and parameter ℛ0 as given in the above
Exercise 2.2, it could be a reasonable mathematical model for population
dynamics.

The logistic map model (2.12) has the following characteristics about the
population dynamics (for the detail, refer to Sects. 12.1.3, 12.1.4, and 12.1.5):

• When ℛ0 ≤ 1, the population size monotonically decreases to go extinct.
• When 1 < ℛ0 ≤ 2, the number of reproductive couples cn monotonically

approaches (1 − 1/ℛ0)cc.
• When 2 <ℛ0 ≤ 3, cn approaches (1 − 1/ℛ0)cc with a damped oscillation.
• When 3 <ℛ0 ≤ 4, cn does not approach any specific value and keep changing.
• When ℛ0 > 4, cn goes extinct after a finite number of irregular changes.

As a specific case, when 3 < ℛ0 ≤ 1 + √
6 ≈ 3.44949, cn approaches a

period-2 solution which repeats the following two values (refer to Sect. 12.1.4 and
Exercise 12.2 therein):

cc

2

[
1 + 1

ℛ0
±
√(

1 + 1

ℛ0

)(
1 − 3

ℛ0

)]
. (2.14)

As expected from numerically obtained temporal sequences in Fig. 2.9, and
as indicated by the numerically obtained bifurcation diagram in Fig. 2.10, the
logistic map model (2.12) has the parameter dependence with the period-doubling
bifurcation as well as Ricker model, in which the chaotic variation can appear. The
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Fig. 2.10 Numerically drawn bifurcation diagram for the logistic map model (2.12) in terms of
the bifurcation parameter ℛ0. The right figure is the magnification about the range [3, 4] of ℛ0

previous mathematical works have shown that the chaotic variation can appear only
for ℛ0 > 3.569945 · · · (for example, see [11, 16, 25, 53, 62]). As a specific case,
a period-3 solution can appear for ℛ0 = 3.839 (see also Fig. 12.5 in p. 393 of
Sect. 12.1.5).

The popular naming logistic map for the recurrence relation (2.13) is asso-
ciated with the works by the famous mathematical biologist Robert M. May
in which the following population dynamics model of ordinary differential
equation (a continuous time model) was referred as the origin for it [37, 38]:

dN(t)

dt
= r
{

1 − N(t)

K

}
N(t), (2.15)

whereN(t) is the population density at time t . Parameters r andK are positive
constants which mean the intrinsic (natural) growth rate and the carrying
capacity respectively (the detail explanation will be given in Sect. 5.3).
This model is well-known as logistic equation (refer also to Sect. 3.3.2).
The recurrence relation (2.13) can be derived by a simple time-discretizing
approximation of the ordinary differential equation (2.15), as described in
Sect. 5.5. The time-discretization is an approximation of the time derivative
in the left side of (2.15) by replacing it with the simple difference {N(t +
h)− N(t)}/h which appears in the mathematical definition of the derivative.
This replacement leads to a recurrence relation which determines the value
N(t + h) at the future by period h from the value N(t) at time t . It is
mathematically equivalent to (2.13). It was known in the numerical theory that
the simple time discretization with a much large value of time step h results
in the sequence of valueN not only quantitatively but also qualitatively much
different from the solution N(t) of the ordinary differential equation (2.15).
Such a qualitatively different behavior by the sequence of value N was

(continued)
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regarded just as inappropriate as the approximation for the solution N(t)
of the ordinary differential equation (2.15). Robert M. May was interested
in such a variety of different behaviors, and developed the research on the
recurrence relation from the viewpoint of mathematical biology.

Moreover, the ordinary differential equation (2.15) can be rewritten as

d lnN(t)

dt
= r
{

1 − N(t)

K

}
.

The same time-discretizing approximation of this equation leads to the
recurrence relation mathematically equivalent to Ricker model, as argued
in Sect. 5.5. For this reason, we may understand that both of the logistic
map and Ricker model correspond to the recurrence relations derived by the
simple time-discretization of the logistic equation 2.15. This fact implies the
qualitative coincidence about the characteristics of the logistic map model and
Ricker model.

Today many literatures refer to the logistic map as the discrete time model
corresponding to the logistic equation (continuous time model) (2.15). This
would be because of the naming itself, and we must pay attention to such a
reference in order to avoid a misunderstanding.

The solution N(t) of logistic equation (2.15) monotonically approaches
the value K for any positive initial value N(0) (see Fig. 2.11). In contrast,
the recurrence relation derived by the simple time-discretization may show
a periodic sequence or chaotic variation with sufficiently large value of time
step h, as seen for (2.13). Such a behavior of the sequence cannot be regarded
as any approximation of the solution N(t), as mentioned above. It can be
mathematically shown that the sequence monotonically approaches K only
when h ≤ 1/r .

As shown in Sect. 5.4, Beverton-Holt model can be regarded as the discrete
time model corresponding to the logistic equation (2.15) in a mathematically
exact sense. That is, the sequence generated by Beverton-Holt model has
the mathematical characteristics same as the solution of logistic equation, as
seen from Figs. 2.4 and 2.11. It is actually possible to make the mathematical
correspondence between parameters of their equations (Sect. 5.4). Therefore,
it is the most reasonable to say that the discrete time model corresponding
to the logistic equation is Beverton-Holt model, while the logistic map
model (2.13) and Ricker model (2.7) are discrete time models derived from
the logistic equation, which are not exactly what correspond to it.

In this Sect. 2.1, we have seen the mathematical model (2.1) with the density
effect on the number of newborns m by three classic types of the function.
Mathematically, for any density effect function m that is monotonically decreasing
in terms of an, it can be shown that the model (2.1) has the following features:
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Fig. 2.11 Numerically drawn temporal variations of N(t) for the logistic equation (2.15) with six
different initial values of N(0). r = 1.2; K = 1.2. Note the similarity to Fig. 2.4

• When ℛ0 := σm(0)/2 ≤ 1, the population size monotonically decreases to go
extinct.

• The number of reproductive couples approaches a certain positive value only
when ℛ0 > 1.

Therefore, in fact these features appear commonly for three mathematical models
considered in this section.

2.2 Positive Density Effect

In some cases, the reproduction rate per individual or per reproductive couple
is increasing in terms of the population density. For example, the low density
of mature individuals makes harder the formation of reproductive couple or the
possibility to find a preferable feeding place. These factors possibly cause the
positive correlation between the population density and reproduction rate. It is
likely also that the higher population density may decrease the risk of fatal event
like the predation. The alarm call becomes more effective for escaping from
the predator as the population density gets larger. In general, the behavior of
nearby individuals may be helpful to get an information about the preferability of
surrounding environment. In contrast, as argued in the previous section, the higher
population density necessarily causes the degradation of environmental quality and
the stronger interaction between individuals which could result in the decrease of
the reproduction rate per individual/couple.

In this Chap. 2, we are considering the population dynamics with the repro-
duction only by the formation of reproductive couple. In our modeling, a positive
density effect may be reflected to the number of newborns per reproductive couple
as well as the negative density effect. The positive density effect is then given
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by the positive correlation such that the higher (resp. lower) density of mature
individuals results in the larger (resp. smaller) number of newborns per couple. The
reproduction success could be regarded as the consequence of an integration of such
positive and negative density effects.

2.2.1 Allee Effect

From the arguments in the above, we can assume the density effect function for the
number of newborns per couple such that it takes the maximum at an intermediate
density below which it is increasing (the case of undercrowding), and beyond which
it is decreasing (the case of overcrowding) in terms of the density.

Following this assumption, we shall consider here the density effect function
given by

m(an) = mop

(
an

aop

)
e1−an/aop . (2.16)

As shown in Fig. 2.12, the number of newborns per couple takes the maximummop
when the number of mature individuals is aop.

For this type of density dependence, the increase of the reproduction rate per
individual in terms of the population density is classically called Allee effect. In
other words, if the reproduction rate per individual decreases as the population
density gets smaller, it can be called Allee effect. This naming is after the works
by a famous animal ecologist Warder C. Allee (1885–1955). For the density effect
function (2.16), the Allee effect appears for the density of mature individuals less
than aop. It may be sometimes called Allee’s principle that there is an optimum
density about the density effect, which is now given by aop for the modeling
with (2.16).

The Allee effect indicates a positive correlation of the reproduction rate per
individual to relatively lower population density. The positive correlation of
the velocity of the density change to the population density is not the Allee
effect. Besides the Allee effect does not necessarily mean that the density
effect could be expressed by a unimodal function of the population density.
Moreover, the Allee effect does not necessarily induce the extinction for
sufficiently lower population density, although the Allee effect is frequently
mentioned as a factor to cause such an extinction as we will see also about
our model in this section.
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Allee Effect

Fig. 2.12 The density effect function (2.16)

The recurrence relation (2.1) with the density effect function (2.16) leads to the
following population dynamics model:

cn+1

cop
= ℛop

(
cn

cop

)2

e1−cn/cop, (2.17)

where cop = aop/2. The parameter ℛop := σmop/2 means the maximal net
reproduction rate attained when the number of reproductive couples is cop, that is,
when the number of mature individuals is aop.

For the population dynamics model (2.17), the population extinction depends on
the initial value of c1. As shown by numerical example in Fig. 2.13, too small or
too large initial value of c1 causes the population extinction. The population can
persist only when the initial value of c1 is in an intermediate range. This nature can
be regarded as what is called bistability, with which the dynamics has alternative
characteristics depending on the initial value. 2

2 More generally, if there are more than two different characteristics depending on the initial value,
such a nature is called multi-stability.
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Fig. 2.13 Temporal sequences by the population dynamics model (2.17). Numerical calculations
for different initial values of c1/cop when ℛop = 2

The population dynamics model (2.17) has the following features:

• When ℛop < 1, the population size monotonically decreases to go extinct.
• When ℛop = 1, the population size monotonically decreases to go extinct if
c1 < cop or c1 > κ1cop ≈ 3.51286 cop, while the number of reproductive couples
cn monotonically approaches cop if c1 ≥ κ1cop. Here κ1 is given by the root more
than 2 about the equation κ2

1 e1−κ1 = 1.
• When 1 < ℛop ≤ e/2 ≈ 1.35914, the population size monotonically decreases

to go extinct if c1 < κucop or c1 > κccop, while cn monotonically approaches
κscop if κucop < c1 ≤ κccop. Here κu and κs are roots for the equation
ℛopκ e1−κ = 1 such that 0 < κu < 1 < κs . κc is the root more than 2 for
the equation

2 ln(ℛopκc)+ 2 − κc − ℛopκ
2
c e1−κc = 0.

• When e/2 < ℛop ≤ e2/3 ≈ 2.46302, the population size monotonically
decreases to go extinct if c1 < κucop or c1 > κccop, while cn approaches κscop
with a damped oscillation (see Fig. 2.13) if κucop < c1 ≤ κccop.

• When e2/3 < ℛop ≤ ℛop ≈ 7.22207, the population size monotonically
decreases to go extinct if c1 < κucop or c1 > κccop, while cn does not approach
any specific value but keeps changing (see Fig. 2.14) if κucop < c1 ≤ κccop. ℛop
is the root of the following equation:

ln

[
e ln(2ℛop)− ℛop

4(ℛop)3

]
+ 4ℛop

e
= 0.

• When ℛop >ℛop, cn becomes less than κucop after a finite number of changes,
and approaches zero, that is, the population goes extinct (see Fig. 2.14).

These features can be mathematically shown with the local stability analysis and
the cobwebbing method (refer to Chap. 12.1). Figure 2.15 shows an integration of
the above features. As seen from the figure, the population can persist only for an
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Fig. 2.14 Temporal sequences by the population dynamics model (2.17). Numerical calculations
for different values of ℛop with the initial value c1/cop = 0.3

Fig. 2.15 Dependence of the population dynamics by (2.17) on the parameter ℛop and initial
value of c1/cop. The vertical axis is in the logarithmic scale. The population can persist only for
the filled region
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Fig. 2.16 Numerically drawn bifurcation diagram according to the persistent case for the popula-
tion dynamics model (2.17) in terms of the bifurcation parameter ℛop

intermediate range of the parameter ℛop, 1 < ℛop ≤ ℛop, and the initial value
of c1, κucop < c1 ≤ κccop. Moreover, from the numerically obtained bifurcation
diagram shown in Fig. 2.16, we can find the period-doubling nature again about the
parameter dependence.

2.2.2 Scenarios of Extinction with Allee Effect

The population dynamics model (2.17) is characterized by the nature such that the
population size monotonically decreases to go extinct for the initial value of c1 less
than κucop or larger than κccop. For example, if the hunting results in the number
of reproductive couples less than κucop, the Allee effect causes the population
extinction (Fig. 2.17a-3). In such a case, the population extinction is driven by
the population dynamics itself once a human interference generates the causal
condition. For the other example, suppose an introduction of excessive number of
grazing animals into an island. The population dynamics by (2.17) results in the
earlier death of most introduced animals and the subsequent extinction (Fig. 2.13)
unless there is no appropriate management of the number of animals.

On the other hand, such a scenario implies the possible artificial management
for the conservation of an endangered biological population. If the likelihood
of extinction follows the Allee effect, the artificial introduction of individuals to
increase a population size could lead to its autonomous persistence (Fig. 2.17b-
3). From the other viewpoint, for a pest population, a human operation to reduce
the population size to less than a certain level once could induce its autonomous
population extinction (Fig. 2.17a-3), if the population dynamics follows the Allee
effect. In such a case, when the human operation cannot make the population size
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Fig. 2.17 Temporal sequences by the population dynamics model (2.17). Numerical calculations
with ℛop = 1.2. (a) c1/cop = 0.6; (b) c1/cop = 0.5. (a-1) with no human interference, the
population approaches an equilibrium value; (a-2) the population size is artificially reduced by 70
% at n = 10; (a-3) the population size is artificially reduced by 75 % at n = 10. (b-1) with no
human interference, the population goes extinct; (b-2) the population size is artificially doubled at
n = 10; (b-3) the population size is artificially tripled at n = 10

sufficiently small, the population recovers to the previous size after the operation
(Fig. 2.17a-2).

In contrast, the scenario of population extinction when ℛop > ℛop must take
account of the other factor. For such a large value of ℛop, we can suppose a
sufficiently large physiological upper bound for the number of newborns per couple
mop. It would be the population with a sufficiently high fertility. Although such a
high fertility could cause the effective growth of population, the net growth rate is
determined with the density effect. Too high fertility could cause a rapid increase
of the population size, which leads a strong density effect to induce the subsequent
drastic decrease of the population size (the case of ℛop = 7.3 in Fig. 2.14). Such a
drastic decrease of the population size could not be compensated by the high fertility
but cause the way to the extinction by the Allee effect.

To make the conservation of an endangered population with such a high
fertility, it would not be the fundamental resolution to artificially increase
the population even though it could become a recovery of the population
size only for a while. For the population dynamics model (2.17), if it would
be possible to make ℛop sufficiently small, the population can persist. Thus
one choice is to reduce the survival probability of immature individual σ .
For example, the artificial culling of individuals before the breeding season
by an appropriate proportion would be effective to induce the population

(continued)
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persistence. Such a persistence could be regarded as a sort of coexistence
of human and wild organism, because the coexistence could become possible
only with an artificial operation for the wild population. Today many wild
animals live in or around the environment of human community. It is likely
that the persistence of such an animal population would rely on the human
activity.

2.2.3 Weak Allee Effect

The population dynamics by (2.17) with the Allee effect has a bistable nature such
that the population goes extinct when the initial value of c1 is sufficiently small.
However, generally the Allee effect itself does not necessarily bring such a bistable
nature in the population dynamics. The Allee effect introduced by the density effect
function (2.16) can be regarded as strong enough to cause such a bistable nature
which may cause the extinction depending on the initial value.

In this section, let us consider a mathematical modeling for the density effect
function about the number of newborns per couple, which can introduce a weak
Allee effect, given by

m(an) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m0 + (mop −m0)
( an
aop

)
(0 < an ≤ aop);

− mop

ac − aop
(an − ac) (aop < an < ac);

0 (an ≥ ac),

(2.18)

where mop > m0 > 0 (Fig. 2.18). This modeling for the density effect function is
similar with that of the logistic map model in the previous section. It is assumed
that the fertility is lost due to the overcrowding and the population extinction occurs
when the density of mature individuals is beyond a threshold value ac.

The recurrence relation (2.1) with the density effect function (2.18) makes the
following population dynamics model:

cn+1

cop
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ℛ0

{
1 +

( ℛop

ℛ0
− 1
)( cn
cop

)}( cn
cop

)
(0 < cn ≤ cop);

ℛop

cc/cop − 1

( cc
cop

− cn

cop

)( cn
cop

)
(cop < cn < cc);

0 (cn ≥ cc),

(2.19)

where cop = aop/2 and cc = ac/2. The parameter ℛ0 := σm0/2 means the net
reproduction rate when the density effect is absent, and ℛop := σmop/2 does the
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Fig. 2.18 The density effect function with a weak Allee effect (2.18)

maximal net reproduction rate when the number of reproductive couples is cop. Note
that cc > cop and ℛop >ℛ0.

The population dynamics model (2.19) has the following features:

• When ℛop < 1, the population size monotonically decreases to go extinct.
• When ℛ0 ≥ 1, the population goes extinct after a finite number of changes for

ℛop ≥ cc/cop if cc/cop ≤ 2, or for ℛop ≥ 4(1−cop/cc) if cc/cop > 2. Otherwise
when ℛ0 ≥ 1, the population persists.

• When ℛ0 < 1 < ℛop, the population goes extinct after a finite number of
changes for ℛop ≥ cc/cop if cc/cop ≤ 2, or for ℛop ≥ 4(1 − cop/cc) if cc/cop >

2. Besides, there is a critical value ℛc such that the number of reproductive
couples monotonically decreases to go extinct after a finite number of changes
for ℛc < ℛop < cc/cop if cc/cop ≤ 2, or for ℛc < ℛop < 4(1 − cop/cc) if
cc/cop > 2. Otherwise when ℛ0 < 1 < ℛop, the population dynamics is in a
bistable situation, so that the population persists or monotonically goes extinct
after a finite number of changes, depending on the initial value of c1.

As seen in Fig. 2.19, there are two scenarios of the population extinction. One is
by the Allee effect leading to a much low fertility due to a much small population
size. This is similar to that for the previous model (2.17). The other is by the
overcrowding to cause the loss of fertility, like that of the logistic map model (2.12)
with ℛ0 > 4.

For the population dynamics model (2.19) with ℛ0 ≥ 1, there is no possibility
of the former case about the population extinction, that is, of the extinction caused
by the Allee effect (upper numerical examples in Fig. 2.19). Since the Allee effect
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Fig. 2.19 Temporal sequences by the population dynamics model (2.19)

works in the population dynamics, this is regarded as the situation with a weak Alee
effect in comparison with the previous model (2.17).

As for the latter case about the population extinction, it arises from the modeling
of the density effect function (2.18). Therefore, the reason why the latter case of
the population extinction does not occur but only the former does in the previous
model (2.17) is for the modeling of the density effect function given by (2.16). It is
important to distinguish one from the other of these two scenarios of the population
extinction. Without such a distinction, those two population dynamics models would
appear only to have similar characteristics.

In contrast to the previous model (2.17), the model (2.19) is composed with the
density effect function (2.18) that has the higher degree of freedom according to
the number of involved parameters. Actually the characteristics of the density effect
function (2.18) are determined by four independent parametersm0,mop, aop and ac,
while that of (2.16) are by two parameters mop and aop. Such a higher degree of
freedom leads for the model (2.19) to have a diversity of nature wider than that for
the model (2.17). This is clearly expressed also by the bifurcation diagram given in
Fig. 2.20.

When the population goes extinct with ℛop > 1 for ℛ0 < 1 and cc/cop <

3/2, the temporal variation is necessarily chaotic, and there does not occur
the variation toward neither periodic oscillation nor equilibrium, as seen from
the bifurcation diagram given in Fig. 2.20. Further, we note that there does
not appear the period-doubling bifurcation for ℛ0 < 1 and cc/cop < 2. This
nature is different from that for the previous model (2.17), and can be regarded
as one due to the difference in the mathematical modeling about the density
effect function with a different degree of freedom.

Such a bifurcation without period-doubling similarly appears for what is
today called tent map described in Sect. 12.1.6 (see also Fig. 12.10 therein).

(continued)
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Fig. 2.20 Numerically drawn bifurcation diagram for the population dynamics model (2.19) in
terms of the bifurcation parameter ℛop

Actually, the tent map mathematically corresponds to the model (2.19) with
ℛop = ℛ0 and cop = cc/2. Moreover, we will see another similar bifurcation
for a prey-predator population dynamics model in Sect. 2.4.3 too.

2.2.4 Reproduction Curve

The curve of the relation between population sizes of the kth (parent) and k + 1
th (offspring) generations is called reproduction curve. When the reproduction
curve is monotonically increasing like Fig. 2.21a, the density dependence for such
a reproduction curve is called contest type. In contrast, when it is a single humped
curve that shows the maximal population size of the k+1 th generation for a specific
intermediate size of the kth, it is called scramble type [46].

The contest type of density dependence may be observed in the case when the
population growth can be regarded as a type of “playing musical chairs”. If the
survival and reproduction require a certain least condition, and if every individual
uses the environment to satisfy the condition, the environment limits the number
of individuals which can satisfy it. This means that there exists an upper bound
Nmax for the number of survival and reproductive individuals. If the population size
is beyond Nmax, the surplus number of individuals beyond Nmax cannot satisfy
the condition for the survival and reproduction. This means that the population
can grow up over the upper bound Nmax while the surplus cannot survive or
make reproduction in the same environment. The environment allows at most Nmax
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Fig. 2.21 Shapes of the reproduction curve (return map) for different models, (a) Beverton-Holt
type model (2.3) with θ ≤ 1; (b) Beverton-Holt type model (2.3) with θ > 1; (c) Ricker
model (2.7); (d) logistic map model (2.12); (e) model with Allee effect (2.17); (f) model with
weak Allee effect (2.19). Only the reproduction curve of (a) is of the contest type, while the others
are of the scramble type

individuals the survival and reproduction. Therefore, in other words, the survival
and reproduction follow the rule of all-or-none for each individual’s survival and
reproduction in the population under the contest type of density dependence. In this
case, only when the parent population size is less than the upper bound Nmax, the
offspring population size becomes larger as the parent population size gets larger.
When the parent population size is beyond Nmax, the offspring population size
cannot beyond a certain supremum.

The scramble type of density dependence may appear when the above assump-
tion that every individual tends to use the environment for satisfying a certain
least condition about the survival and reproduction could not be applied for the
population dynamics. For instance, we can consider the case when the fertility is
significantly affected by the density effect to reduce the number of offsprings for
every individual, even if every individual could get the same amount of resource
from the environment. In case of the contest type of density dependence, this
cannot necessarily hold, since some individuals can get the resource for the survival
and reproduction while the other cannot. In case of the scramble type of density
dependence, the population may grow even when the per capita fertility is reduced
by the density effect, because the population growth is based on the total number
of offsprings produced by all parents. However, too high density induces a severe
effect on the per capita fertility and results in the decline of population size at the
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next generation, since the mean number of offsprings per parent becomes much
small even with a large number of parents in the population. This is the case of
scramble type of density dependence.

2.3 Competition

Until here we have considered the density effect from the population density
within the same population. There may be the other density effect from a different
population, which is caused by a certain direct or indirect interaction between
individuals belonging to different populations. In such a case, the individual of
each population undergoes the density effect not only from the density of its own
population but also from the density of the other.

Now let us consider two populations which uses a common resource relevant
to the reproduction. As such a resource, the reader may imagine a food or some
other environmental factors. In case of plant, the water or light is the limiting factor
for the growth and reproduction, and can be regarded as such resources common
among different plant species in the same habitat. For some nesting animals, the
place favorable for the nesting would be such a common resource.

In such a situation, the use of the resource by one population could lower
the efficiency of its use by the other. Thus, these two populations are under
the competition about the resource. This kind of competitive relation is called
exploitative competition in ecology. Such a competitive relation is induced by the
indirect interaction between individuals of two populations through the use of a
common resource. For this reason, the exploitative competition is regarded as a sort
of indirect effect in a wide sense, and is an indirect competition.

In contrast, the direct competition is defined by a direct interaction between
individuals of different populations, and frequently called interference competition
in ecology. For example, the fight between individuals about a common resource
may affect the survival and reproduction rates. In the environment with rich
resource, the effect of exploitative competition could be weak, whereas that of
interference competition would be still considerable between populations which
have strong direct interaction such as fight.

For example, when a waste or chemical substance (e.g., allelopathic,
pheromonic or hormonic matter) produced by one population can affect the
growth rate of the other population, such an interspecific relation could not be
regarded as direct interference in general. Because the former population does
not have any direct interference to the latter, but only the substance produced
by the former affects the latter. It is clear that this relation is not exploitative.
In a wider sense, this interspecific relation may be regarded as an interference

(continued)
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Fig. 2.22 Schematic figure of competitive relation between two populations. (a) (indirect)
exploitative competition; (b-1) direct interference competition; (b-2) indirect interference com-
petition; (c-1) population A poses a direct interference effect to B, while B does an indirect
(exploitative) effect to reduce the gain for A; (c-2) population A poses an indirect (exploitative)
effect to reduce the gain for B, while B does an indirect interference effect to increase the
loss for A; (c-3) population A poses a direct interference effect to B, while B does an indirect
interference effect to increase the loss for A. In (c-1) and (c-2), the competitive relation itself is
neither exploitative nor inference, but their combination. The relation of (c-3) gives an example of
interference competition consisting of direct and indirect effects

competition (see Fig. 2.22). Although the interspecific competition is one of
important topics in the textbook of ecology, its mathematical modeling would
not have been discussed with respect to this kind of qualitative difference
about the competition.

In more general sense, the competitive relation between populations can be
regarded as the relation such that the interaction causes the reduction of the
reproduction rate for each individual in both populations. The effect from the other
population can be treated as a negative density effect to cause the reduction of
the reproduction rate. In this section from this viewpoint, we shall consider the
mathematical modeling for the population dynamics of two competing populations
along the framework in the previous sections.

Let us apply the assumptions same as in Sect. 2.1 for the population dynamics
without the other population. Same as before, we assume that the number of
newborns per couple is determined by the density effect also from the other
population, by the following mathematical modeling:

⎧⎪⎨
⎪⎩
un+1 = σ1m1(an, bn)un

2

vn+1 = σ2m2(an, bn)vn

2

(n = 1, 2, · · · ), (2.20)
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where un and vn are the expected numbers of reproductive couples belonging to the
population 1 and population 2 respectively in the nth breeding season.m1 andm2 are
the expected numbers of newborns per couple for each population. Variables an and
bn are the expected numbers of mature individuals belonging to each population in
the nth breeding season. From the assumption for the geometric growth model (1.7),
we have an = 2un and bn = 2vn. The survival probability per individual in the non-
breeding season is given by σ1 and σ2 respectively for each population. Since we are
going to consider the competition between two populations, the number of newborns
per couple has a negative correlation to the density of the other population.

2.3.1 Leslie-Gower Model

In this section, we shall consider the following mathematical modeling which can
be regarded as an expansion of Beverton-Holt model (2.2) with θ = 1 in Sect. 2.1.1
to the competitive relation between two populations:

⎧⎪⎨
⎪⎩
m1(an, bn) = m10

1 + β11an + β12bn
;

m2(an, bn) = m20

1 + β21an + β22bn
,

(2.21)

where m01 and m02 are respectively the physiological upper bound for the number
of newborns per couple of each population, which means the number of newborns
per couple when the density effect is absent. The positive parameter βij (i, j = 1, 2)
reflects the severity of density effect on the number of newborns in population i from
the density of mature individuals in population j , or the sensitivity of the number of
newborns in population i to the density effect from population j .

The population dynamics model is given by (2.20) with (2.21) and expressed as
the following paralleled recurrence relations:

⎧⎪⎪⎨
⎪⎪⎩
an+1 = ℛ01an

1 + β11an + β12bn
;

bn+1 = ℛ02bn

1 + β21an + β22bn
,

(2.22)

where ℛ01 := σ1m01/2 and ℛ02 := σ2m02/2 are the net reproduction rate for each
population when any density effect is absent. Note that these recurrence relations
are about the number of mature individuals instead of the number of reproductive
couples in the previous sections.

This population dynamics model is called Leslie-Gower model. The parameters
β12 and β21 are sometimes called interspecific competition coefficient. In contrast,
the parameters β11 and β22 are called intraspecific competition coefficient. Follow-
ing to this meaning of the parameter βii (i = 1, 2), the parameter α in Beverton-Holt
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model (2.2) with θ = 1, the parameter γ in Ricker model (2.7), and the parameter ac
in the logistic map model (2.12) of Sect. 2.1 may be called intraspecific competition
coefficient.

The model (2.22) gives the population dynamics governed by Beverton-Holt
model when two populations are independent of each other or when one of them
is absent. As described in Sect. 2.1, when ℛ01 ≤ 1, population 1 monotonically
goes extinct when population 2 is absent. When population 2 presents, the density
effect from it further reduces the number of newborns per couple in population 1, so
that population 1 must monotonically go extinct. This arguments imply that, when
ℛ0i ≤ 1 (i = 1, 2), the population i must monotonically go extinct. On the other
hand, it is easily understood that, when one of two populations goes extinct, the
other population approaches the population dynamics with the other population’s
absence, which is governed by Beverton-Holt model. Therefore, when one of two
populations goes extinct, the size of the other population must approach a non-
negative value determined by the parameters, as shown about Beverton-Holt model
in Sect. 2.1.1.

In contrast, when ℛ01 > 1 and ℛ02 > 1, population 1 approaches a∗ := (ℛ01 −
1)/β11, while population 2 does b∗ := (ℛ02−1)/β22 if they are independent of each
other. However, it is not trivial what occurs when they are in the competitive relation
through the interspecific density effect. When ℛ01 > 1 and ℛ02 > 1, the two
species population dynamics model (2.22) has the following features, depending on
the strength of interaction between two populations:

• When β11a
∗ > β12b

∗ and β22b
∗ > β21a

∗, where it holds that β11β22 −β12β21 >

0, the numbers of mature individuals an and bn respectively approach the
following positive values a∗∗ and b∗∗:

(a∗∗, b∗∗) =
(β22(β11a

∗ − β12b
∗)

β11β22 − β12β21
,
β11(β22b

∗ − β21a
∗)

β11β22 − β12β21

)

In this case, two population coexist.
• When β11a

∗ > β12b
∗ and β22b

∗ < β21a
∗, population 2 goes extinct, while

population 1 approaches a∗. In this case, population 2 is induced to go extinct
by the density effect from population 1. Population 1 beats population 2 at the
competition, and persists.

• When β11a
∗ < β12b

∗ and β22b
∗ > β21a

∗, population 1 goes extinct, while
population 2 approaches b∗.

• When β11a
∗ < β12b

∗ and β22b
∗ < β21a

∗, where it holds that β11β22 −β12β21 <

0, one of two populations goes extinct while the other approaches a positive
equilibrium (a∗ or b∗), depending on the initial values of a1 and b1.

In the first case, two populations approach a coexistent state (Fig. 2.23c), and in
the second and third cases, one of them is forced to go extinct by the competition
while the other wins the competition and persists (Fig. 2.23a, b). In the fourth case,
the population dynamics has a bistable nature, and the fate of each population
depends on the initial condition given by (a1, b1) (Fig. 2.23d).
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Fig. 2.23 Orbits with the sequence of (an, bn) for two populations by the Leslie-Gower
model (2.22). Numerical calculations with some different initial conditions. (β12, β21) =
(a) (5.0, 0.2); (b) (2.0, 0.6); (c) (2.0, 0.2); (d) (10.0, 2.0); (β11, β22) = (1.0, 2.0); (ℛ01,ℛ02) =
(3.0, 2.0)

Focusing on the interspecfic competition coefficients β12 and β21 which reflect
the strength of density effect on the other population, the above nature implies
that the coexistence can be established when they are sufficiently small, that is,
when the interspecific competition is sufficiently weak. In contrast, when they
are sufficiently large, that is, when the interspecific competition is severe, the
coexistence is impossible and the bistable situation appears. In this way, the density
effect of the competitive relation between two populations may cause the extinction
of one of them. 3

Ecological researchers have studied the difficulty of the coexistence of
competing species in many cases. Joseph Grinnell (1877–1939) was one
of them to clearly mention it [18]: Two species with the completely same
niche cannot coexist at the same habitat, where niche is defined as an index

(continued)

3 The nature of Leslie-Gower model (2.22) qualitatively corresponds to that of Lotka-Volterra two
species competition model in Sect. 7.1.
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to indicate the population’s characteristics with respect to the use of the
non-organic and biological environment, and is sometimes explained as the
functional role played by the population (species) within the ecosystem.
Georgy F. Gause (1910–1986) published the experimental result supporting
the competitive species’ exclusion implied by the theoretical discussion on
the Lotka-Volterra competition system (see Sect. 7.1), making use of well-
designed experiments with paramecium and yeast species [14]. Gause’s claim
is well-known today as Gause’s competitive exclusion principle or Gause’s
law.

2.3.2 Ricker Type of Competition Model

Leslie-Gower model (2.22) is regarded as an expansion of Beverton-Holt
model (2.2) with θ = 1 to the two species competition system. In this section,
let us see the other model of two species competition system with a different type of
density effect function as a comparison to it. We shall consider here the following
density effect functions as the expansion of that for Ricker model described in
Sect. 2.1.2:

⎧⎨
⎩
m1(an, bn) = m10 e−γ11an−γ12bn;
m2(an, bn) = m20 e−γ21an−γ22bn,

(2.23)

where parameters γ12 and γ21 are the coefficients of interspecific competition,
while γ11 and γ22 are those of intraspecific competition. With these density effect
functions, the population dynamics model (2.20) leads to the following two species
competition system:

⎧⎨
⎩
an+1 = ℛ01 an e−γ11an−γ12bn;
bn+1 = ℛ02 bn e−γ21an−γ22bn,

(2.24)

where ℛ01 := σ1m01/2 and ℛ02 := σ2m02/2 are respectively the net reproduction
rates for each population when any density effect is absent, as before. For this model,
when the other population is absent or two populations are independent of each
other, the population dynamics has characteristics by Ricker model.

Since a chaotic variation may occur with the period-doubling structure in Ricker
model as described in Sect. 2.1.2, it is expected that the population dynamics
model (2.24) could have similar nature. Actually the bifurcation diagram shown
in Fig. 2.24 indicates that two competing populations could coexist with a periodic
or chaotic variation in some cases.
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Fig. 2.24 Numerically drawn bifurcation diagram for the two species competition model (2.24)
in terms of the bifurcation parameter ℛ02 (γ12 = 0.1) and γ12 (ℛ02 = 18.17). ℛ01 = 6.05;
(γ11, γ21, γ22) = (0.2, 0.1, 0.2)

Mathematically cumbersome details aside, the population dynamics model (2.24)
has characteristics similar to Leslie-Gower model (2.22) according to the coexis-
tence of two competing populations. The coexistence can be established only when
the competitive relation is sufficiently weak. When it is much strong, a bistability
appears and the coexistence becomes impossible. In contrast to the coexistence for
Leslie-Gower model, the model (2.24) shows a variety of coexistent patterns.

Figure 2.25 shows a numerical example of the temporal sequence for the number
of mature individuals (an, bn) when their coexistence is possible. At the coexistent
state, they approach a period-4 solution (Fig. 2.25c). In this numerical example, if
two populations are independent of each other, population 1 approaches a period-2
(Fig. 2.25a), while population 2 leads to a chaotic variation (Fig. 2.25b). Like this
case, it is not trivial at all what pattern appears at the coexistent state under the
competitive relation. It is an interesting mathematical problem.

Figure 2.26 shows a numerical example of the temporal sequence for the number
of mature individuals (an, bn) when the population dynamics is bistable. Depending
on the initial condition, one of two population goes extinct. When population 2
goes extinct, population 1 approaches the positive value (1/γ11) lnℛ01, while,
when population 1 goes extinct, population 2 approaches a chaotic variation. Like
this bistability, the population dynamics model (2.24) could have a variety of
combination of locally asymptotically stable states (in a wide sense). It would be
an interesting mathematical problem what combination of states can appear at the
bistable situation too.
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(a)

(b)

(c-1)

(c-2)

Fig. 2.25 Temporal sequences for the number of mature individuals (an, bn) by the population
dynamics model (2.24). (ℛ01,ℛ02) = (11.02, 14.88); (γ11, γ12, γ21, γ22) = (0.3, 0.1, 0.1, 0.2);
(a) (a1, b1) = (7.992, 0.0); (b) (a1, b1) = (0.0, 0.0135); (c) (a1, b1) = (7.992, 0.0135)

)b()a(

Fig. 2.26 Temporal sequences for the number of mature individuals (an, bn) by the population
dynamics model (2.24) when it has a bistable structure. It depends on the initial condition which
population goes extinct. (ℛ01,ℛ02) = (6.05, 14.88); (γ11, γ12, γ21, γ22) = (0.1, 0.2, 0.2, 0.1);
(a) (a1, b1) = (27.0, 8.10); (b) (a1, b1) = (27.0, 8.37)

2.4 Enemy

The relation between prey and predator is one of typical interaction in ecosystem.
The enemy for one species is defined as the other species which causes the death of
individual of the former species. The enemy is not necessarily a predator. A parasite
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or parasitoid may be the enemy. For a parasite or parasitoid, the prey is in general
called host.

Prey-predator or host-parasite relation can be modeled by a density effect with
a biased nature. Predator/parasite can get an energetic benefit from the prey/host,
while the prey/host is exploited by the predator/parasite with the death or a loss of
energy. In contrast, two competing species are damaging to each other.

In this section, we shall consider a mathematical modeling of a prey-predator
or host-parasite relation by introducing the effect of enemy in the survival rate
for the prey, making use of the geometric growth model (1.7). Let us consider the
modeling such that the survival probability for the population of prey or host (say
prey hereafter) σ is negatively correlated to the number of mature enemy individuals
pn as a result of the interspecific reaction:

cn+1 = σ(pn)mcn

2
, (2.25)

where the survival probability is given by σ(pn), a monotonically decreasing
function of pn. With the same assumptions in Sect. 1.5, we are going to consider
a population dynamics with generationally non-overlapping reproduction. Since σ
is defined as the survival probability in non-breeding season, it is now assumed
that the prey becomes the victim of enemy in the non-breeding season. The value
σ(0) = σ0 means the survival probability when the enemy is absent.

Although the survival probability for the prey population σ is given above
as a function of the number of mature enemy individuals only, the survival
probability σ could have a relation to the population size of prey cn. In such
a modeling, σ must be given as a function of pn and cn: σ = σ(pn, cn).
The higher prey density could attract the enemies and increase the risk of
enemy’s attack. On the other hand, the higher prey density would cause the
faster spread of an alarm signal over the prey population, for example, by an
alarm call against the enemy. Such the faster spread of an alarm signal could
reduce the probability of the success of enemy’s attack.

Furthermore, such a much high prey density would lead to the saturation
of the frequency of enemy’s attacks per unit time. This is because each attack
must take time so that the number of attacks per enemy per unit time has an
upper bound. Hence, when the prey density is much high, the frequency of
enemy’s attacks would be large, while it is saturated with an upper bound.
Such a relation of the frequency of enemy’s attacks to the prey density is what
is called functional response of the enemy in ecology [61]. In this section,
for the simplicity, we do not introduce any factor related to the functional
response of enemy in the modeling. We shall consider its modeling later in
Sect. 8.1.
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2.4.1 Dynamics of Enemy Population

From (2.25), the death probability in the non-breeding season between the nth and
n+ 1th breeding seasons is now given by 1 − σ(pn). Thus, the expected number of
deaths of the immature preys becomes {1 − σ(pn)}mcn in the non-breeding season.
Let us consider the death due to some reasons other than the enemy, and here call
it the natural death. The natural death probability can be defined by 1 − σ0, since
σ0 means the survival probability when the enemy is absent. Hence the expected
number of deaths with some reasons other than the enemy is given by (1 − σ0)mcn.
Therefore, the expected number of deaths by the enemy is given by

Zn := {1 − σ(pn)
}
mcn − (1 − σ0)mcn = {σ0 − σ(pn)

}
mcn. (2.26)

Now we shall consider the modeling for the dynamics of enemy population,
taking the simplest assumptions for it:

• The enemy reproduction is possible only by victimizing the prey.
• The growth rate of enemy population is determined by the number of victimized

preys.

With the first assumption, the enemy population is assumed to go extinct if the
prey population is absent. For this reason, the enemy may be regarded as a kind
of predator, called specialist,4 or monophagous predator especially in ecology. In
contrast, if a predator uses some different species of prey, it is called generalist or
polyphagous predator.

With the second assumption, let g(Zn, pn) denote the reproduction rate per
enemy by predation/parasitism in the non-breeding season between the prey’s
nth and n + 1th breeding seasons. We take here a general assumption that the
reproduction rate per enemy depends on the density pn with the intraspecific density
effect. Thus we have g(Zn, pn)pn as the expected total number of enemy newborns
produced by the predation/parasitism in the non-breeding season between the prey’s
nth and n+1th breeding seasons. Now the population dynamics of enemy is given by

pn+1 = (1 − μ)pn + g(Zn, pn)pn, (2.27)

where μ is the death probability for the mature enemy until the next season (0 <
μ ≤ 1). As described in Sect. 1.5, this assumption indicates that the mean life span
of enemy after the maturation is given by (1 − μ)/μ. For a simplicity of formula,
let us consider that the survival probability of enemy newborn is incorporated in the
function g, while we shall still call g the reproduction rate per enemy hereafter.

4 In the more precise definition, a predator which eats a specific part of prey is called specialist too.
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The function g may be consider to provide a modeling for what is called
numerical response of the enemy population in ecology [61], in contrast to
functional response mentioned in the first part of this section. The numerical
response means here the change in the population size of enemy as a result of
the predation/parasitism for the prey (refer to Sect. 8.1).

The recurrence relation (2.27) implies that the enemy population dynamics obeys
the following assumptions:

• Enemy newborn can become mature until the next season for the preda-
tion/parasitism;

• Mature enemy can repeatedly make the reproduction if it survives until the next
season;

• The fertility is the same even at the repeated reproduction.

Although the reproduction rate per enemy g may depend on the digestive
efficiency and the prey’s physiological resistance, we consider here the simplest
modeling. Since the averaged amount of feed per enemy is given by Zn/pn, we
now define the function g as

g(Zn, pn) := ρ
Zn

pn
. (2.28)

This definition means the modeling assumption that the expected reproduction rate
per enemy is proportional to the averaged amount of feed per enemy. The parameter
ρ is the coefficient to convert the amount of feed to the fertility, and is sometimes
called (energy) conversion coefficient in the arguments of population dynamics
modeling for the prey-predator relation.

By these mathematical modelings with (2.25)–(2.28), we can derive the follow-
ing population dynamics model governing the temporal variation of enemy and prey
populations:

⎧⎪⎨
⎪⎩
an+1 = σ(pn)man

2
;

pn+1 = (1 − μ)pn + ρ

2

{
σ0 − σ(pn)

}
man,

(2.29)

where an = 2cn means the number of mature individuals in the prey population as
before. This population dynamics model is about the temporal sequence of mature
individuals for the enemy and prey. In the subsequent sections, we are going to
consider the mathematical modeling about the interaction between the enemy and
prey populations, and give the survival probability σ(pn).
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2.4.2 Nicholson-Bailey Model

Let q denote the probability that an enemy succeeds in the predation/parasitism
when it finds a prey individual. Then (1 − q)j gives the probability that a prey
individual can escape from the enemy after it is found by the enemy only j times.
Now for simplicity, we assume that the prey individual is not damaged by the attack
of enemy when it can escape from it. Then σ0(1 − q)j gives the probability that a
prey individual can make the reproduction in the subsequent breeding season after
being found by the enemy only j times in the non-breeding season before it, since
the natural survival probability that the prey individual survives except for the death
by the predation/parasitism is given by σ0. The case of j = 0 means when a prey
individual does not encounter the enemy at all in the non-breeding season, so that
the survival probability of such a prey individual is given by σ0.

Let �n(j) denote the probability that a prey individual encounters the enemy
only j times in the non-breeding season between the nth and n + 1th breeding
seasons. From the above arguments, we can define the survival probability σ(pn)
for the prey in the non-breeding season as

σ(pn) := σ0

∞∑
j=0

(1 − q)j�n(j). (2.30)

We shall introduce here a Poisson distribution for the probability�n(j):

�n(j) := (λpn)
j

j ! e−λpn (j = 0, 1, 2, . . . ), (2.31)

where �n(0) = e−λpn . This is the Poisson distribution with the intensity λpn (see
Fig. 15.1 of Sect. 15.2) [33]. As described in Chap. 15, the introduction of the above
Poisson distribution represents the assumption that the prey’s encounter with the
enemy in the non-breeding season occurs with the likelihood same at any moment.
That is, the prey’s encounter with the enemy follows a Poisson process with the
intensity λpn. Poisson process is regarded as one of the simplest assumptions for
randomly occurred events [1, 12].

Substituting (2.31) for (2.30), we can get

σ(pn) = σ0 e−λpn
∞∑
j=0

{(1 − q)λpn}j
j ! = σ0 e−qλpn. (2.32)
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As a result, the population dynamics model (2.29) becomes

⎧⎨
⎩
an+1 = ℛ0e−qλpnan;
pn+1 = (1 − μ)pn + ρℛ0

(
1 − e−qλpn)an,

(2.33)

where ℛ0 := σ0m/2 is the net reproduction rate of prey when the enemy is absent.
This population dynamics model (2.33) is today called Nicholson-Bailey model,

which is usually referred in case of μ = 1 when the enemy follows the
generationally non-overlapping reproduction. This naming is after the work on the
prey-predator population dynamics model by Australian entomologist Alexander J.
Nicholson (1895–1969) and physicist Victor A. Bailey (1895–1964) in 1930s [45,
47].

Nicholson-Bailey model has the following nature:

• When ℛ0 ≤ 1, both of prey and enemy populations go exinct.
• When ℛ0 > 1, both of prey and enemy populations show an excited oscillation.

Since the prey population goes extinct when ℛ0 ≤ 1 even though the enemy is
absent, the enemy population must go extinct at the same time. In contrast, when
ℛ0 > 1, the temporal variation of population size has an oscillatory behavior in
which the amplitude gradually becomes larger, that is called excited oscillation.
Especially for Nicholson-Bailey model (2.33), the excitation of oscillation is
unbounded so that the population diverges. Such a divergence of the population size
originates from the nature of prey population dynamics. When the enemy is absent,
the prey population dynamics follows the geometric progression and unboundedly
increases.

When ℛ0 > 1 for Nicholson-Bailey model (2.33), the population sizes
of prey and enemy do not become zero, that is, do not go extinct in a
mathematical sense. However, as seen in Fig. 2.27, their population sizes
become much small in some seasons. In an ecological sense, such a much
small population size implies a high risk of population extinction due to
some causes unexpectedly or stochastically arisen (e.g., climate or artificial
event) in the environment, which especially lead a significant influence on the
reproduction. Such an extinction is sometimes mentioned as the extinction
due to the demographic stochasticity or the ecological disturbance. From
this nature of the temporal variation by Nicholson-Bailey model (2.33), the
population dynamics is characterized by a high risk of extinction. According
to this arguments on the likeliness of extinction, there are mathematical
concepts called persistence, uniform persistence, and permanence, which
are sometimes significant for the theoretical discussion in ecology. For their

(continued)
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Fig. 2.27 Temporal sequence by Nicholson-Bailey model (2.33). Numerically drawn with
(a1, p1) = (2.0, 1.0); ℛ0 = 1.3; qλ = 0.2; μ = 0.9; ρ = 0.3

mathematically rigorous definitions in the dynamical system theory, the reader
can refer to [27, 60, 65] for instance.

When their definitions are applied for the population dynamics model,
the persistence means that the temporal variation of population size from the
positive initial value keeps positive for any finite time. Thus, the population
dynamics with Nicholson-Bailey model (2.33) has the persistence. In contrast,
the uniform persistence requires that the population size keeps beyond a
certain positive value for any finite time after sufficiently long transition
phase. The permanence requires that the population size keeps staying in a
certain finite range for any finite time after sufficiently long transition phase.
The population dynamics with the uniform persistence or permanence has
the nature of persistence. But the inverse does not necessarily hold. The
population dynamics with Nicholson-Bailey model (2.33) does not have the
nature of the uniform persistence or permanence.

It should be remarked that the mathematically defined permanence does
not necessarily deny the risk of extinction mentioned in the above. The
population dynamics with the uniform persistence must be regarded as having
relatively smaller risk of the above-mentioned extinction in comparison to one
only with the persistence, whereas it depends on the detail of the permanence
itself characterizing the population dynamics.
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2.4.3 Synergy with the Density Effect for Prey

From the standing point that the divergence of the temporal variation of population
size for Nicholson-Bailey model (2.33) is caused by the nature of geometric growth
for the prey population, a theoretical question reasonably arises: What nature could
appear when the prey population dynamics is self-regulated by a density effect
within the population (for example, by the intraspecific competition)?

In this section, we consider the following mathematical model with the density
effect on the number of newborns for the population dynamics model (2.29):

⎧⎪⎨
⎪⎩
an+1 = σ(pn)m(an)an

2

pn+1 = (1 − μ)pn + ρ

2

{
σ0 − σ(pn)

}
m(an)an

(2.34)

Further, we shall now introduce (2.32) for the survival probability σ(pn) of prey
individual in the non-breeding season, and (2.2) with θ = 1 for the density effect
function m(an) about the number of prey newborns. Then we have the following
population dynamics model:

⎧⎪⎨
⎪⎩
an+1 = ℛ0e−qλpn an

1 + an/α ;

pn+1 = (1 − μ)pn + ρℛ0
(
1 − e−qλpn) an

1 + an/α ,
(2.35)

where ℛ0 := σ0m0/2 which means the net reproduction rate of prey when
the enemy and the density effect are absent. This model can be regarded as a
combination of Nicholson-Bailey model (2.33) and Beverton-Holt model (2.3)
with θ = 1. The number of mature prey individuals monotonically approaches
a∗ := max

[
0, (ℛ0 − 1)α

]
when the enemy is absent, as described in Sect. 2.1.1.

Now in the population dynamics governed by (2.35), the prey population undergoes
a random predation/parasitism (introduced as Poisson process). It must be remarked
that the smaller α means the stronger density effect for the prey population.

The population dynamics model (2.35) has the following nature:

• When ℛ0 ≤ 1, both of prey and enemy populations go extinct.
• When 1 < ℛ0 ≤ 1 + μ/(qλρα), the enemy population goes extinct, while the

prey population persists and the number of mature prey individuals an approaches
(ℛ0 − 1)α.

• When ℛ0 > 1 + μ/(qλρα), prey and enemy populations coexist.

As shown in Fig. 2.28 about the parameter dependence of population dynamics, too
strong density effect in the prey population makes the enemy population go extinct.

Further from the bifurcation diagrams in Fig. 2.29, it can be seen that the numbers
of prey and enemy can show oscillatory sequences at the coexistent state, which
amplitude is suppressed more by the stronger density effect. Since Nicholson-
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Coexistence

Enemy’s extinction

Prey’s extinction

Fig. 2.28 Parameter dependence of the population dynamics by (2.35)

Fig. 2.29 Numerically drawn bifurcation diagrams for the population dynamics model (2.35) in
terms of the bifurcation parameter ℛ0 with α = 1.0, and α with ℛ0 = 7.5. Commonly, qλ = 0.5;
μ = 0.8; ρ = 1.0

Bailey model (2.33) shows a divergent amplitude of oscillatory sequence which
corresponds to the model (2.35) without the density effect in the prey population
(i.e., mathematically the case of α → ∞), this result implies that the density effect
in the prey population gives a secondary effect counteracting the oscillatory feature
of population dynamics to suppress such an excitation of oscillation. Moreover, the
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Fig. 2.30 Temporal sequences by the population dynamics model (2.35). The right figure shows
the plots of (an, pn) from n = 500 to n = 1000 in the phase plane. The plots appears on a certain
closed curve. Numerically drawn with ℛ0 = 7.5; qλ = 0.5; α = 1.0; μ = 0.8; ρ = 1.0

bifurcation diagram indicates that only an intermediately strong density effect can
stabilize the population dynamics to make the prey and enemy populations approach
a stationary state with positive values.

The bifurcation diagram in Fig. 2.29 implies a specific bifurcation structure
from the equilibrium to a chaotic variation, which is called Neimark-Sacker
bifurcation, Saker-Neimark bifurcation, Naimark-Sacker bifurcation (spelled
differently), secondary Hoph bifurcation, or torus bifurcation [55]. It is
different from the bifurcation structure with period-doubling appeared in
Sect. 2.1. As shown by Fig. 2.30, the chaotic variation appeared for the
population dynamics model (2.35) is characterized by a bounded irregular
oscillation with group-wave-like repeated swellings. The repeated swellings
are not periodical in the rigorous mathematical sense, but may be regarded as
quasi-periodic. We can see such a group-wave-like (quasi-periodic) repeated
swellings in plots of (an, pn) in Fig. 2.30.
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2.5 Harvesting/Culling

Human activities have been affecting the population dynamics to reduce a number
of individuals in a biological population. Hunting, fishery, and harvesting are such
examples. The other example is the application of a pesticide. Differently from the
influence by the enemy population, such an artificial reduction of population size
does not have any feedback effect on the strength of the effect itself in principle.
Aside from some industrial or ethical reasons, there is no autonomous feedback
relation between the strength of human activity and the size change of an affected
population. We know in history not a few examples such that a unilateral reduction
of biological population caused the extinction or endangered situation.

On the other hand, the operation of harvesting/culling may have an aspect to
manage the biological resource. Some may be for the purpose of conserving an
endangered population, and the other may be for the purpose of controlling the size
of another population interacting the targeted one.

As seen in the previous section, the feedback relation between the effect to reduce
the prey population size and the enemy population dynamics would be an important
factor to cause an oscillatory variation in the temporal sequence. In this section, we
shall consider how the artificial harvesting/culling could affect the characteristics of
the population dynamics.

Let us consider again the framework of modeling for the geometric growth
model (1.7). We shall consider the population dynamics with the generationally
non-overlapping reproduction. For the harvesting/culling, we add the following
assumption:

• The harvesting/culling occurs only once just before the breeding season.

With this assumption for the harvesting/culling, let us proceed our modeling with the
density effect on the number of newborns per couplem, as applied for the geometric
growth model (2.1) in Sect. 2.1.

As known well for the cultivation of vegetable and fruit in agriculture, the
appropriate culling can make the growth or the yield (amount of net reproduction)
larger. In such a case, the culling operation could be regarded as an effective
control of the negative density effect considered in Sect. 2.1. The operation of
harvesting/culling serves to reduce the population density and suppress the negative
density effect, so that the net reproduction rate per couple or per individual
increases.

As in Sect. 2.1, the density effect on the number of newborn per couple m is
regarded as an effect on the gained energy per individual for the reproduction.
The gained energy per individual could depend on the influence from surroundings,
for example, competition about some resources (e.g., food, light, and water), fight
between individuals about the territory or the mate, or stress to keep a caution
around, etc.
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In this section, we shall consider the following model with the above assumption:

an+1 = σm
(
(1 − h)an

)
(1 − h)an

2
, (2.36)

where the parameter h (0 < h < 1) is the reduction ratio of mature individuals by
the harvesting/culling. Now an denotes the number of mature individuals without
the harvesting/culling just before the nth breeding season. The expected number of
individuals reduced by the harvesting/culling just before the nth breeding season is
given by han, and the expected number of mature individuals in the nth breeding
season becomes (1 − h)an. Hence the expected number of couples is given by
(1 − h)an/2. When the population is a biological resource, an is its amount
subject to the harvesting. The recurrence relation (2.36) expresses the effect of the
harvesting/culling at each year on the amount of the biological resource at the next
year.

Mathematically, with the replacement by bn = (1 − h)an, the relation (2.36)
can be expressed as that about the sequence {bn}, which becomes equivalent to the
recurrence relation (2.1) in Sect. 2.1. However, as a mathematical model for the
consideration on the effect of harvesting/culling, it is still necessary to clarify the
dependence of the nature of population dynamics on the parameter h, and discuss
the effect of harvesting/culling on the population dynamics.

2.5.1 Beverton-Holt Type Model with Harvesting/Culling

Let us consider here the following population dynamics model of the recurrence
relation (2.36) with the density effect function (2.2) of Beverton-Holt model (2.3)
with θ = 1 in Sect. 2.1.1:

an+1 = ℛ0(1 − h)an
1 + (1 − h)an/α , (2.37)

where ℛ0 := σm0/2 as before. From the nature of Beverton-Holt model, we know
that this population dynamics model (2.37) has the following nature:

• When (1−h)ℛ0 ≤ 1, the population size monotonically decreases to go extinct.
• When (1 − h)ℛ0 > 1, the number of mature individuals an monotonically

approaches a∗ := {ℛ0 − 1/(1 − h)}α.

As indicated by the bifurcation diagram in Fig. 2.31, the larger reduction ratio h
by the harvesting/culling makes the equilibrium value for an smaller. If the reduction
rate h is beyond the critical value hc := 1 − 1/ℛ0, the population extinction is
induced by the harvesting/culling.
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Fig. 2.31 Numerically drawn bifurcation diagrams for the population dynamics model (2.37) in
terms of the bifurcation parameter h. Y ∗ := ha∗; ℛ0 = 10.0; α = 0.5. Here hc = 0.9 and
hMSY = 1 − 1/

√
10 ≈ 0.6838

2.5.2 Maximum Sustainable Yield

The yield by harvesting/culling may be important in some arguments on its
efficiency. For our model (2.37), the yield at the nth season is defined by Yn :=
han, where we regard the amount of reduced number of individuals as the yield
itself. From the above mentioned nature of the population dynamics, the yield at
equilibrium Y ∗(h) is given by Y ∗(h) := ha∗ = h

{
ℛ0 − 1/(1 − h)}α. The bifur-

cation diagram in Fig. 2.31 clearly indicates the existence of the harvesting/culling
operation to maximize the yield at equilibrium. We can easily find that the yield at
equilibrium Y ∗ takes the maximal value Y ∗(hMSY) = (

√
ℛ0 − 1)2α = α/(1 −

hMSY)
2 when the reduction rate h is

hMSY := 1 − 1√
ℛ0
. (2.38)

In the theory of bioeconomics, the maximum yield Y ∗(hMSY) is especially called
maximum sustainable yield (MSY).

2.5.3 Cost for the Harvesting/Culling

With the results about the model (2.37), let us go into the further modeling, taking
account of the cost for the harvesting/culling operation. For example, the efficiency
of the pesticide use significantly depends on the used amount and the quality which
requires a cost. Such a cost counteracts the agricultural purpose of the pesticide
use to reduce the damage on the yield gained by the cultivation. In fishery, the cost
depends on the fishing period and manpower. The larger yield necessarily increases
the cost for the harvesting. Hence, in order to maximize the profit, the maximization
of yield would not be necessarily suitable for the agricultural purpose, and it is
necessary to take account of the cost about the yield.
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As we now consider the maximization of the profit, let us call h harvesting rate
hereafter. We shall consider the modeling with the following simple assumptions:

• The expected earnings per unit yield are given by a constant p.
• The cost for the harvesting operation is proportional to the harvesting rate h.

From these assumptions, the total earnings from yield Y are given by pY , and the
cost for the harvesting operation with h is now given by ηh. The positive constant η
may depend on the characteristics of harvesting operation.

Now, with these modelings for Beverton-Holt type model with harvesting (2.37),
the profit P∗(h) by the harvesting with harvesting rate h at the equilibrium is
formulated as

P∗(h) := pY ∗(h)− ηh = ph
(
ℛ0 − 1

1 − h
)
α − ηh. (2.39)

Since it is reasonable to consider this problem when the population is persistent by
itself, we will consider hereafter only the situation with ℛ0 > 1.

Mathematical investigation of the profit P∗(h) brings us the following results:

• When ℛ0 − η/(pα) ≤ 1, we have P∗(h) ≤ 0 for any h > 0.
• When ℛ0 − η/(pα) > 1, P∗(h) takes the maximum P∗(hMEY) =
p{√ℛ0 − η/(pα) − 1}2α = p{hMEY/(1 − hMEY)}2α for

h = hMEY := 1 − 1√
ℛ0 − η/(pα) .

• When ℛ0 − η/(pα) > 1, we have P∗(h) > 0 for

h < hs := 1 − 1

ℛ0 − η/(pα) ,

while we have P∗(h) < 0 for h > hs.

The first result indicates that the harvesting results in a deficit when the cost for the
harvesting is relatively large (with large η), or when the earnings is expected poor
(with small p). Further, if the population has unsatisfactory fertility (with small ℛ0),
the profit cannot be obtained. Such a biological population cannot be regarded as a
profitable natural/agricultural resource.

Figure 2.32 shows a numerical example of the h-dependence of the profit P∗(h)
at the equilibrium for Beverton-Holt type model with harvesting (2.37). It is a case
where ℛ0 − η/(pα) > 1 when the earnings is expected. As shown in Fig. 2.32, we
find a specific harvesting rate hMEY with which the profit takes the maximum. As
the harvesting rate h gets larger than hMEY, the profit P∗(h) becomes smaller. In the
theory of bioeconomics, the yield with the harvesting rate hMEY to maximize the
profit is called maximum economic yield (MEY). The harvesting with h > hMEY is
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Fig. 2.32 The h-dependence of the profit P∗(h) at the equilibrium for Beverton-Holt type model
with harvesting (2.37). Numerical example with ℛ0 = 10.0; α = 2.0; p = 1.0; η = 10.0. In this
figure, hs = 0.8; hc = 0.9; h∗

MEY ≈ 0.5528

further called economic overexploitation. For the population dynamics model (2.37),
the maximum economic yield Y ∗(hMEY) at the equilibrium is given by

Y ∗(hMEY) = hMEY

(
ℛ0 − 1

1 − hMEY

)
α

=
(

1 − 1√
ℛ0 − η/(pα)

)(
ℛ0 −

√
ℛ0 − η

pα

)
α. (2.40)

With the harvesting rate large enough to satisfy that h > hs, the profit becomes
negative even though the population does not go extinct. With such a too large
harvesting rate, the population size a∗ at the equilibrium becomes much small, so
that the earnings become smaller than the harvesting cost.

From the analysis in the above, we can find the nature of the profit P∗(h)
at the equilibrium for Beverton-Holt type model with harvesting (2.37), and
summarize it as Fig. 2.33. It can be mathematically proved that hMEY < hMSY < hc,
as shown by Fig. 2.33. This means that the harvesting with hMSY to maximize the
maximum sustainable yield Y ∗(hMSY) is necessarily an economic overexploitation.
The harvesting with hMSY can maximize the yield Y ∗ at the equilibrium, while it
cannot maximize the profit P∗. Although the larger yield would be usually regarded
as the better result of the harvesting, it is not appropriate from the viewpoint of the
profit maximization.

As long as the harvesting is controlled to maximize the yield (h → hMSY),
the population would be less likely to go extinct with the harvesting for the
model (2.37), and we may keep using it as the biological resource. However, it
may cause the situation of deficit (P∗(hMSY) < 0). Such a case occurs for the
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Populatio
n extin

ctio
n

Fig. 2.33 Parameter dependence of the profit P∗(h) at the equilibrium for Beverton-Holt type
model with harvesting (2.37)

model (2.37) under the condition that

η

pα
<
√
ℛ0
(√

ℛ0 − 1
)
,

that is,

ℛ0 <ℛMSY := 1

4

(
1 +

√
1 + 4η

pα

)2

. (2.41)

In contrast, if ℛ0 > ℛMSY, then the harvesting for the purpose to maximize the
yield becomes a sustainable resource use to get a profit P∗(hMSY) > 0.

Consequently, from the condition (2.41), we find the following three conditions
necessary for the sustainable resource use with the harvesting purposed to maximize
the yield:

1. The population has a sufficiently large net reproduction rate ℛ0.
2. The cost for the harvesting is sufficiently small (sufficiently small η).
3. The expected earnings per unit yield p are sufficiently large.

The first biological condition may be controlled, for example, by the environmental
conservation or the artificial incubation. The improvement or innovation for the
harvesting can reduce the cost. The expected earnings per unit yield may be
increased by improving the process of commercialization of the yield or adding
some value to the final good. It is clear that the sustainable use of a biological
resource requires a well-designed management integrating biological, agricultural,
engineering, and economical researches.
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2.5.4 Ricker Type Model with Harvesting/Culling

Clearly from the arguments in Sect. 2.1, the characteristics of the population
dynamics significantly depend on the nature of density effect involved in it. As a
simple example, let us see here the following population dynamics with a harvesting
effect (2.36), accompanied by the density effect function (2.6) of Ricker model (2.7):

an+1 = ℛ0(1 − h)ane−γ (1−h)an. (2.42)

The population dynamics governed by (2.42) has some interesting characteristics
different from those for (2.37):

• When h ≥ hc := 1 − 1/ℛ0, the population goes extinct.
• When 1 − e/ℛ0 ≤ h < hc, the number of mature individuals an monotonically

approaches a∗ := ln{(1 − h)ℛ0}/{γ (1 − h)}.
• When 1 − e2/ℛ0 ≤ h < 1 − e/ℛ0, an approaches a∗ with a damped oscillation.
• When h < 1 − e2/ℛ0, an keeps changing without approaching any specific

value.

These follows the characteristics of Ricker model (2.7) in Sect. 2.1.2.
As indicated by Fig. 2.34, we can further find the following results on the

population size at n → ∞:

• When 1 < ℛ0 ≤ e ≈ 2.71828, the number of mature individual an
monotonically approaches a∗, which is decreasing in terms of h.

• When ℛ0 > e, the supremum of an as n→ ∞ becomes maxumum for

h = h∗
P := 1 − e

ℛ0
. (2.43)

The value a∞ for h = h∗
P corresponds to the case where an monotonically

approaches a∗, and coincides to the maximum of a∗ in terms of h.

Fig. 2.34 Numerically drawn bifurcation diagrams for the population dynamics model (2.42) in
terms of the bifurcation parameter h. Y∞ := ha∞; ℛ0 = 20.0; γ = 1.0. Here h∗

P ≈ 0.8641;
hc = 0.95; hMSY ≈ 0.8795
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It is now shown that the harvesting operation could maximize the equilibrium
population size at a specific harvesting rate h = h∗

P for the model (2.42), differently
from the model (2.37) for which the equilibrium population size is monotonically
decreasing in terms of h as shown by Fig. 2.31.

The existence of such a specific harvesting to maximize the population size
could be related to the resurgence problem in the pest control with a pesticide.
As an important problem for the agriculture, the pest control has been studied
experimentally and theoretically [21, 26, 28, 32, 40, 44, 49, 51, 64]. In the
application of a pesticide, there are some cases such that the pesticide is
effective only in the early stage of its application, and the pest density revives
later to become higher than before. Such a phenomenon is called resurgence,
and has been studied in different aspects [8–10, 15, 22, 64]. DeBach [9]
defined it in a narrow sense as the pest population’s unexpected and rapid
revival by the decrease of the enemy population due to the pesticide applied
for the pest. Today it frequently means a paradoxical increase of the pest
density under an operation of the pest control. In this meaning, there are
different causes of the resurgence such as the pesticide-resistance appeared
in the pest, the increase in the preferability of the crop by the pesticide (called
trophobiosis) [7], and the pest’s fertility risen by the stimulus of sublethal
pesticide dose (called hormesis or homoligosis) [30, 34, 43]. In contrast, for
the population dynamics by (2.42), a possible cause of a resurgence is implied
not by such a specific cause but by a balance of the density effect.

When the harvesting is for the yield of a biological resource, it is important to
consider the yield Yn(h) := han for the population dynamics (2.42). We can find
the following nature of the yield Y∞(h) as n → ∞ (see Fig. 2.34):

• The supremum of Y∞(h) becomes maximum for h = hMSY which is determined
by the unique positive root of the following equation with ℛ0 > 1:

ln
{
(1 − hMSY)ℛ0

}− hMSY = 0.

• It is necessarily satisfied that hMSY > h
∗
P.

• The number of mature individuals an monotonically approaches equilibrium a∗
for the harvesting rate h = hMSY.

The profit P∞(h) as n → ∞ with the harvesting rate h has characteristics as
shown in Fig. 2.35. The earnings are possible only for an intermediate range of
harvesting rate. With smaller or larger harvesting rate out of the range, the profit
results in a deficit. This is different from the nature of the model (2.37) for which
the earnings is necessarily obtained for the harvesting rate less than a critical value,
that is, for h < hs (see Fig. 2.32).
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Fig. 2.35 The h-dependence of the profit P∞(h) at the equilibrium for the model (2.42).
Numerical example with ℛ0 = 20.0; γ = 1.0; p = 1.0; η = 6.5. In this figure, hc = 0.95;
h∗

MEY ≈ 0.8665

Fig. 2.36 Parameter dependence of the profit P∗(h) at the equilibrium for the model (2.42). (a)
γη/p ≤ 1; (b) 1 < γη/p < 2; (c) γη/p ≥ 2 (drawn for the case of γη/p > e)

The profit when the population dynamics (2.42) approaches the equilibrium, that
is, when an → a∗ as n→ ∞, becomes

P∗(h) := pY ∗(h)− ηh = ph

γ

[ 1

1 − h ln
{
(1 − h)ℛ0

}− γ η

p

]
. (2.44)

The analysis on this profit P∗(h) brings the following specific results on the
parameter dependence of the profit P∗(h) (see Fig. 2.36):

• When γ η/p ≤ 1, if ℛ0 ≤ eγ η/p, then the profit P∗(h) becomes negative for any
harvesting rate h > 0.

• When γ η/p ≥ 1, if ℛ0 < (γ η/p)e, then the profit P∗(h) becomes negative for
any harvesting rate h > 0.

• When 1 < γη/p < 2, if (γ η/p)e < ℛ0 < eγ η/p, then P∗(h) is positive only
for an intermediate range of h.

• When γ η/p ≥ 2, if (γ η/p)e < ℛ0 < (γ η/p)e2/2, then P∗(h) is positive only
for an intermediate range of h.



2.6 Semi-Spatial Modeling 85

The profit P∗(h) > 0 becomes maximum for h = hMEY which is given by the
root greater than 1 − γ η/p for the following equation:

ln
{
(1 − hMEY)ℛ0

}− hMEY − γ η

p
(1 − hMEY)

2 = 0.

When the profit P∗(h) becomes positive for some h > 0, there exists a harvesting
rate h = hMEY to maximize P∗(h). In contrast, when the population size keeps
changing, so does the profit P∞(h) as n → ∞. In such a case, the situation would
be regarded as undesirable for the stable commerce, so that the harvesting operation
with such a harvesting rate h is not appropriate for the commercial reason. Besides,
when the profit P∞(h) keeps changing its supremum cannot be beyond P∗(hMEY)

(see Fig. 2.35). Thus we can regard the harvesting rate h = hMEY as one which
maximizes the profit P∞(h).

The critical values for the harvesting rate h for the model (2.42) satisfy that
h∗

P < hMEY < hMSY < hc (see Fig. 2.36), where hMEY can be defined only
when P∗(hMEY) > 0. Since the critical value h∗

P is smaller than the others, a
sufficiently weak harvesting rate would be appropriate when the harvesting/culling
purposes the conservation of the population to increase its size, differently from the
harvesting rate to maximize the yield or the profit. In contrast, the harvesting/culling
to maximize the yield or the profit necessarily makes the population size smaller
than its possible maximum.

For both models (2.37) and (2.42), when ℛ0 is sufficiently large, the difference
between hMEY and hMSY is much small. Besides, for the model (2.42), the difference
of h∗

P from them is much small too. This means that, for the population with
sufficiently high fertility, the harvesting purposed to maximize the yield would
be almost appropriate also with respect to the profit and the conservation of the
population. In contrast, for the population with poor fertility, the difference among
those critical values could become significant, and hence the use of such a biological
resource must require a careful assessment and discussion.

2.6 Semi-Spatial Modeling

In this section, we introduce the idea of mathematical modeling for a single-species
population dynamics, taking account of a spatial heterogeneity of population.
Differently from the model with an explicit population distribution in space, for
example, making use of the reaction-diffusion equation, the lattice space, the cell-
automaton, or the network, we shall discuss here a mathematical modeling in
which a relation to the spatial heterogeneity of population could be embedded
in the model as a mathematical structure. Such a modeling could be regarded as
following a statistical sense. Briefly, it is an idea to introduce the relation of such
a spatial heterogeneity to the interaction between individuals in a way of the mean
over the population. Although the mathematical modeling introduces such a spatial
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heterogeneity, the constructed model includes only the relation to it as a structure of
the density effect. In this sense, such a model may be called semi-spatial model [13].

2.6.1 Royama’s Idea of Modeling

This section describes an idea of mathematical modeling for the population
dynamics with the intraspecific reaction within it. Its essence is based on the idea
by Tomoo Royama [54].

Let us consider a population which uses a limited resource. Individuals must
compete for the resource with the others in the same population. The reproduction is
assumed generationally non-overlapping. Now we define the per capita reproduction
rate rk(i) under the competition for a common resource among i individuals
inhabiting at a same local habitat. In this idea of mathematical modeling, the
whole habitat is assumed to consist of a number of local regions in which some
individuals settle down and compete for the resource there. It must be remarked
that the per capita reproduction rate rk(i) corresponds to the net reproduction rate
σm(ak)/2 in the modeling for (2.1) of Sect. 2.1. Especially, rk(1) means the per
capita reproduction rate when there is no competitor for the resource. Hence we
may give it as rk(1) = ℛ0 which means the net reproduction rate when the resource
competition is absent, as before (see the definition given at p. 31 in Sect. 2.1.1).

Now we introduce the probability that an individual settles in a local habitat
where there are the other i − 1 individuals, and denote it by Pk(i) at the kth
generation. The probability Pk(i) can be defined at the same time as the probability
that a local population size is i with respect to the competition for the resource.
The difference in the resource competition due to the spatial heterogeneity of local
habitats is now introduced by the probability distribution {Pk(i)}. The probability
Pk(1) can be regarded as the frequency of individuals each of which uses the
resource to oneself with no competitor.

We can define the following mean (expected) per capita reproduction rate 〈r〉k
about the whole population at the kth generation:

〈r〉k =
∞∑
i=1

rk(i)Pk(i). (2.45)

Under the generationally non-overlapping reproduction, the mean (expected) per
capita reproduction rate 〈r〉k at the kth generation is defined on the other hand by
ak+1/ak with the expected number of mature individuals ak and that of ak+1 at the
next generation. Therefore, we have

ak+1 = ak

∞∑
i=1

rk(i)Pk(i). (2.46)
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In general, the strength of competition depends on the population density, that is,
the mean distance between individuals. The competition becomes severer as the
density gets larger. Since we are now assuming a spatially restricted region as the
habitat of considered population, the population density becomes larger for the
larger population size. This means that the probability Pk(i) now depends on the
population size, that is, the expected number of mature individuals ak at the kth
generation.

As a simple modeling, let us assume here a Poisson distribution for {Pk(i) | i =
1, 2, . . . } with the intensity depending on the expected number of mature individuals
(refer to Chap. 15):

Pk(i) = γ i−1
k e−γk
(i − 1)! (i = 1, 2, . . . ), (2.47)

where γk = γk(ak) is a positive function of the expected number of mature
individuals ak at the kth generation. With Poisson distribution (2.47), the expected
number of individuals under the resource competition at the kth generation, 〈a〉k , is
given by

〈a〉k =
∞∑
j=1

j Pk(j) = γk + 1.

If the function γk(ak) is increasing in terms of the population size ak , the resource
competition becomes severer as the population size gets larger.

Royama [54] assumed that the population is distributed at random in
space, and the resource competition occurs among the individuals within
the neighborhood of a specific finite range around each individual. With a
Poisson distribution of spatial heterogeneity about a population, the number
of individuals within such a fixed range follows a Poisson distribution. The
similar idea was applied for the mathematical modeling of the interaction
between individuals by some other researchers, for example, Skellam [57, 58],
Morisita [42], and Pielou [50].

Firstly let us consider the per capita reproduction rate rk(i) given by

rk(i) = ℛ0ρ
i−1, (2.48)

where rk(1) = ℛ0 > 0. Parameter ρ reflects the strength of the resource competi-
tion to reduce the reproduction rate (0 < ρ ≤ 1). It is smaller as the influence of the
resource competition gets stronger on the per capita reproduction rate. Substituting
Poisson distribution (2.47) and the per capita reproduction rate (2.48) for (2.45), we
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derive the expected per capita reproduction rate 〈r〉k over the whole population:

〈r〉k = ℛ0 e−(1−ρ)γk = elnℛ0−(1−ρ)γk . (2.49)

As a result, we get the following population dynamics model from (2.46):

ak+1 = ak elnℛ0−(1−ρ)γk . (2.50)

If the function γk(ak) is proportional to the expected number of mature individu-
als ak as γk(ak) = κak with a positive constant κ , the recurrence relation (2.50)
becomes Ricker model in Sect. 2.1.2. In the present modeling, the parameter κ
characterizes the severity of the resource competition in the population. As an
extremal case with κ = 0, this modeling includes the case where there is no
resource competition in the population. In such an extermal case, the distribution
given by (2.47) is a singular one with Pk(1) = 1 and Pk(i) = 0 (i = 2, 3, . . . ).

2.6.2 Skellam Model

As the other assumption for the per capita reproduction rate, we may consider a
simple case where it is inversely proportional to the number of individuals in the
local habitat:

rk(i) = ℛ0

i
. (2.51)

This may be regarded as the case such that the resource is evenly shared among indi-
viduals by the competition in the local habitat, and the per capita reproduction rate is
assumed proportional to the resource gain. Substituting Poisson distribution (2.47)
and the assumption (2.51) for (2.45), we derive the expected per capita reproduction
rate 〈r〉k :

〈r〉k = ℛ0

γk

(
1 − e−γk) , (2.52)

and subsequently the population dynamics model:

ak+1 = ℛ0

γk
ak
(
1 − e−γk) . (2.53)

As before, with the additional assumption that γk(ak) = κak, the population
dynamics model (2.53) becomes

ak+1 = ℛ0

κ

(
1 − e−κak). (2.54)
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This is the model proposed by John G. Skellam (1914–1979) [57], making use of the
idea same as Royama’s [54], and sometimes called Skellam model. The population
dynamics by Skellam model has characteristics similar with those of Beverton-Holt
model (2.3) with θ = 1. For ℛ0 ≤ 1, the population size monotonically decreases
to become extinct, while, for ℛ0 > 1, it monotonically approaches a positive
equilibrium, which may be regarded as the carrying capacity for the population.

Skellam [57] discussed the population dynamics by (2.54) in comparison with
the continuous time population dynamics by the logistic equation (2.15). As
long as κak is sufficiently small, the model (2.54) can be approximated by

ak+1 = ℛ0ak

1 + 1
2κak

.

This recurrence relation clearly corresponds to Beverton-Holt model (2.3)
with θ = 1. Making use of this approximated recurrence relation, Skellam
discussed the similarity of the model (2.54) with the logistic equation (2.15).

2.6.3 Site-Based Model

Sumpter and Broomhead [63], Johansson and Sumpter [31], and Br’́annstr’́om and
Sumpter [6] modified and expanded the idea by Royama [54] to what is called site-
based model. Their modeling may be regarded as fundamentally same as Royama’s,
while theirs focuses on the frequency of local habitats in the whole habitat with
respect to the number of individuals in the local habitat. They called the local habitat
“site”.

The frequency of sites inhabited by i individuals is now denoted by pk(i) at the
kth generation. The frequency pk(i) generally depends on the number of sites in
the whole habitat and the whole population size of mature individuals ak . The per
capita reproduction rate at the site with i individuals is denoted by rk(i), which
depends on the number of individuals inhabiting at the same site. It is clear that
these assumptions correspond to the idea by Royama [54], described in the previous
section.

Now we define the mean (expected) growth rate for the subpopulation at the site
containing i individuals by φk(i) = rk(i)·i. In [6, 31] on the site-based model, φk(i)
is given a priori in the modeling, and called interaction function.

For a descriptive convenience, let denote the total number of sites in the habitat
byK . Then the expected number of sites containing i individuals at the k generation
〈i〉k is given by 〈i〉k = Kpk(i). From the above-mentioned assumption on the
reproduction, the population size at the k + 1 th generation is now assumed to be
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Fig. 2.37 Schematic figure of the site-based model

determined by the following recurrence relation:

ak+1 =
∞∑
i=0

φk(i)〈i〉k = K

∞∑
i=1

i · rk(i)pk(i). (2.55)

This is the essential equation of the site-based model. Similarly with the recurrence
relation (2.46) in the previous section by Royama’s idea [54], the variation of
the population size in the site-based model is determined also by the number of
individuals settling in the same site, where the expected per capita reproduction rate
is determined by the situation of each site. Differently from (2.46) to take account
of the mean per capita reproduction rate over the whole population, the site-based

model takes account of that over each local habitat (i.e., site) with
∞∑
i=0

i · rk(i)pk(i)
in (2.55). As schematically shown in Fig. 2.37, every newborn is equivalent with
respect to its settlement of a site though the per capita reproduction rate depends
on which local habitat it will settle to, that is, how many individuals will settle at
the same site at the breeding season. This assumption is equivalent to the idea of
Royama [54] about the local competition about the resource.

Now we shall consider the simplest case where K sites have the equivalent
environmental condition, and the settlement of each individual randomly occurs for
every site. In this case, the probability that a site is settled by i individuals P(i) is
given by

P(i) =
(
N − i +K − 2

K − 2

)/(
N +K − 1

K − 1

)

=
(

1 − 1

K

) i−1∏
j=0

(N
K

− j

K

)/i+1∏
j=1

(N
K

+ 1 − j

K

)
(i = 1, 2, . . . , N),
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where N is the total number of individuals in the population. The above formula
of this probability is derived from the number of ways to distribute N individuals
overK sites, allowing some sites to which no individual settles. When N andK are
sufficiently large, this probability can be approximated by the following geometric
distribution:

P(i) ≈ 1

〈n〉 + 1

( 〈n〉
〈n〉 + 1

)i
(i = 0, 1, 2, . . . ),

where 〈n〉 = N/K is the mean (expected) number of individuals settling to the same
site.

From this modeling, let us assume that the frequency of sites containing i
individuals pk(i) follows the following geometric distribution:

pk(i) = 1

〈a〉k + 1

( 〈a〉k
〈a〉k + 1

)i
(i = 0, 1, 2, . . . ), (2.56)

where 〈a〉k = ak/K is the mean number of individuals settling to the same site at
the kth generation.

First, let us consider the case of the per capita reproduction rate rk(i) given
by (2.48) in the previous section. In this case, the population dynamics model
becomes

ak+1 = K

∞∑
i=1

i · rk(i)pk(i) = ℛ0ak{
1 + (1 − ρ)ak/K

}2 . (2.57)

This corresponds to the model (2.5) in Sect. 2.1.1, that is, Beverton-Holt type model
(2.3) with θ = 2. The reproduction curve for (2.57) is of the scramble type (refer to
Sect. 2.2.4).

In contrast, with rk(i) given by (2.51) related to the Skellam model (2.54), the
population dynamics model becomes

ak+1 = K

∞∑
i=1

ℛ0
1

〈a〉k + 1

( 〈a〉k
〈a〉k + 1

)i

= Kℛ0
〈a〉k

〈a〉k + 1
= ℛ0ak

1 + ak/K . (2.58)

This is Beverton-Holt model (2.3) with θ = 1, which has the reproduction curve of
the contest type as described in Sect. 2.2.4.

For the same rk(i), when the frequency pk(i) follows a Poisson distribution
instead of the geometric distribution (2.56), the same arguments leads to the Skellam
model (2.54) again [6, 31].
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As a last example in this section, let us consider a special assumption that the
reproduction is possible only when the site contains only an individual, while it is
impossible at the site with more than one individuals. This is a specific contest type
of density dependence. In [6, 31], they discussed the case where pk(i) follows a
Poisson distribution, and the mean (expected) growth rate for the subpopulation at
the site containing i individuals φk(i) = rk(i) · i is given by

rk(i) =
{
ℛ0 if i = 1;
0 otherwise.

(2.59)

In this case, from (2.55), we immediately get

ak+1 = Kℛ0pk(1).

Thus, when pk(i) is given by (2.56), we have

ak+1 = ℛ0ak

(1 + ak/K)2 . (2.60)

This corresponds again to Beverton-Holt type model (2.3) with θ = 2 in Sect. 2.1.1.
On the other hand, when pk(i) follows a Poisson distribution, we can get Ricker
model (2.7) [6, 31].

As seen from the schematic figure of the site-based modeling in Fig. 2.37,
this modeling may be easily applied for the population dynamics of animals
like barnacles or corals which have a floating planktonic juvenile stage and
subsequent reproductive stage with the settlement to a patchy habitat in the
life history, or like plants with widely dispersing seeds.

Answer to Exercise

Exercise 2.1 (p. 34)

The right side of the recurrence relation for Beverton-Holt model (2.3) with θ = 1
is a convex and monotonically increasing function of cn as shown in Fig. 2.38. Its
curve is upperbounded by αℛ0/2. When ℛ0 ≤ 1, the curve does not have any
intersection with the line cn+1 = cn > 0 other than the origin (Fig. 2.38a). When
and only when ℛ0 > 1, it has only one other intersection at cn+1 = cn = (ℛ0 −
1)α/2 (Fig. 2.38b). Therefore, the cobwebbing method in Sect. 12.1.2 can clearly
show that the sequence {cn} monotonically approaches zero when ℛ0 ≤ 1, and
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Fig. 2.38 Application of the cobwebbing method for Beverton-Holt model (2.3) with θ = 1.
(a) ℛ0 ≤ 1; (b) ℛ0 > 1. In (b), the trajectories from two different initial values are shown

(ℛ0 − 1)α/2 when ℛ0 > 1, independently of the initial value c1 > 0, as illustrated
by Fig. 2.38 (also see Fig. 2.4).

Exercise 2.2 (p. 43)

First, let xn = cn/cc in (2.13), then we can get the following recurrence relation
mathematically equivalent to (2.13):

xn+1 =
{
ℛ0(1 − xn)xn (0 ≤ xn < 1)

0 (xn ≥ 1),
(2.61)

For 0 ≤ xn < 1, the right side of the above recurrence relation is the function
which has the maximal value ℛ0/4. That is, as long as 0 ≤ xn < 1, xn+1 cannot
become beyond ℛ0/4. If a positive value xn+1 < ℛ0/4 makes xn+2 negative, then
xn+2 must become negative when xn+1 = ℛ0/4. Inversely, if xn+2 becomes non-
negative for xn+1 = ℛ0/4, so it does for any non-negative xn+1 < ℛ0/4. This
condition can be expressed as

ℛ0

(
1 − ℛ0

4

)ℛ0

4
≥ 0.
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Therefore, in order to make xk non-negative for any k ≥ 2 with any initial value x1
that makes x2 positive, it is necessary and sufficient that ℛ0 ≤ 4. The initial value
x1 that makes x2 positive must satisfy that 0 < x1 < 1, that is, 0 < c1 < cc.
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Chapter 3
From Discrete Time Model to Continuous
Time Model

Abstract This chapter is about the idea to mathematically derive the continuous
time model from the discrete time model in Chaps. 1 and 2. The derived model
is written as an ordinary differential equation, since we focus on the model of
single species population dynamics in this chapter. Logistic equation appears
first in this chapter, although its modeling and nature will be described in the
subsequent chapters again, Chaps. 4 and 5. Besides, as the basic idea to understand
the meaning of time derivative, we describe the concept of momental velocity of
population size change. It is the essential aspect for the continuous time population
dynamics model, and is very likely to be forgotten in the biological translation of
the mathematical results obtained for the continuous time model. In most case of
biological phenomena, the continuous time modeling with the momental velocity
of a biological quantity like population size could be regarded as a mathematical
approximation or simplification.

In this chapter, we are going to see some mathematical arguments to derive the
mathematical model described by a differential equation, corresponding to that
described by the difference equation. The former model is a kind of what is
called continuous time model in contrast to the latter, what is called discrete
time model. Differently from most of textbooks containing a description about the
relation between continuous and discrete time models, this section is not going to
describe the derivation of the latter from the former, making use of a mathematical
discretization for time as mentioned in Sects. 2.1.3 and 5.5. We are going to consider
here a reasonable way to make a relation of the discrete time model to a continuous
time one, especially about the model described by a first-order difference equation.

3.1 Geometric Growth to Exponential Growth

In the previous chapters, the time step size between subsequent numbers in the
sequence generated by the recurrence relation was not explicitly given, since it was
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given and fixed as a part of modeling assumptions. Now let us explicitly give it by a
constant positive parameter h. That is, in the following mathematical arguments, we
regard the sequence {xn} as the numbers which appear or are observed with a time
step size h.

In this section, let us consider the geometric growth model given by the
recurrence relation

xn+1 = ℛ0 xn (3.1)

with the common ratio ℛ0 which can be regarded as the net reproduction rate for
the population dynamics from the meaning of the modeling (refer to Sect. 1.5). The
general term of the sequence {xn} can be given by xn = x0ℛn

0 .
Introducing the time step size h, we can regard the value xn as the population

size of x at time t = nh. Subsequently, with x(t) = xn and x(0) = x0, we have

x(t) = x0ℛ
t/h

0 = x0 exp
[ lnℛ0

h
t
]
. (3.2)

Therefore, as the continuous curve fitting to the sequence of geometric progression
{xn} determined by (3.1), we have derived now the exponential curve given by (3.2).
This means that the exponential function as the change of a variable continuous in
terms of time. can approximate the temporal change of the population size by a
geometric growth.

With such an approximation with the exponential function, we can obtain
the population size at any time t of real value. However, from the viewpoint
of a mathematical approximation with an interpolation during the time step, the
continuity of the variable does not necessarily indicate that the population size has
the value of continuous function at any moment. In fact, in our modeling described
in Chap. 1, we assumed the non-breeding season in which the population size could
be unchanged or decrease due to the death even when the growth of population size
in the seasonal sequence is the geometric one. The sequence of population sizes by
the discrete time model does not provide any information on the actual temporal
change of population size during the time step.

In contrast, when the population size may be regarded as changing at any time
with the same dynamics like the growth of a bacteria population with the division,
the exponential growth model would be reasonable in the modeling sense. Even in
such a case, the temporal change of population size can be usually observed as a
sequence of its values with a certain time step, and the geometric growth could be
regarded as a reasonable mathematical model, which is really an approximation for
the population dynamics.
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Fig. 3.1 The logistic growth curves by (3.5) for different five initial value x(0) = x0. Numerically
drawn with ℛ0 = 2.0, β = 1.0, x∗ = 1.0 and h = 1.0. Compare to Fig. 2.4 in Sect. 2.1.1

3.2 Beverton-Holt Model to Logistic Growth

Beverton-Holt model (2.3) with θ = 1 in Sect. 2.1.1, now rewritten for the sequence
{xn},

xn+1 = ℛ0xn

1 + βxn (3.3)

is solvable1 to get the following general term of xn:

xn = x∗
{

1 +
( x∗

x0
− 1
)
ℛ−n

0

}−1

= x∗
{

1 +
( x∗

x0
− 1
)

e−n lnℛ0

}−1

, (3.4)

where x(0) = x0 and x∗ = (ℛ0 − 1)/β. ℛ0 is the upper bound for the net
reproduction rate under the density effect, and β a positive constant to mean the
coefficient of the strength of density effect. Therefore, introducing the time step
size h as before, we can get the following function of time t :

x(t) = x∗
{

1 +
( x∗

x0
− 1
)

exp
[

− lnℛ0

h
t
]}−1

(3.5)

with t = nh and x(t) = xn. As a temporally continuous change of the population
size, the function (3.5) gives so-called logistic growth. The growth curve in terms
of t is shown in Fig. 3.1. As described in Sect. 2.1.1, the value x(t) eventually
converges to x∗ = (ℛ0 − 1)/β for any positive initial value x(0) when ℛ0 > 1,
while it monotonically decreases toward zero when ℛ0 < 1.

1 For instance, consider the recurrence relation with respect to yn = ℛn
0 /(βxn), and find the

general term of yn.
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3.3 Time-Step-Zero Limit

Let us consider the general time discrete model described by a first-order difference
equation:

xn+1 = xn + ϕ(xn). (3.6)

Next, introducing the time step size h, the recurrence relation (3.6) can be rewritten
as

x(t + h) = x(t)+ ϕ(x(t); h), (3.7)

where x(t) = xn, x(t + h) = xn+1 and x(0) = x0 with t = nh.
In (3.7), we introduced h into the function ϕ too. This is because the function

ϕ must depend on the time step size h for a mathematical consistency in the
generalized equation (3.7) with h. From the meaning of the time step size h, the
value x(t + h) approaches x(t) as h → 0, that is, xn+1 → xn as h → 0. Thus, ϕ
in (3.6) must converge to zero as h→ 0. This mathematical arguments show that the
function ϕ must depend on the time step size h, and satisfy that ϕ → 0 as h → 0:
lim
h→0+ϕ(x(t); h) = 0. This is reasonable from the meaning of the modeling. Since

the smaller time step size could be regarded as the shorter duration for the change in
the population size, the zero time step size means no possibility to cause any change
in the population size.

Now, let us consider the limit of h → 0, that is, the limit of zero time step size,
say, the time-step-zero limit for any fixed t . Provided that, for sufficiently small time
step size h, we can apply Taylor expansion for ϕ in terms of h, then we can get

ϕ(x(t); h) = ϕ(x(t); 0)+ ϕh(x(t); 0)h+ o(h), (3.8)

where o(h) denotes the higher order terms and ϕh = ∂ϕ/∂h. Since
lim
h→0+ϕ(x(t); h) = 0, we have ϕ(x(t); 0) = 0 and the following equation from (3.7)

and (3.8):

x(t + h)− x(t)
h

= ϕh(x(t); 0)+ o(h)

h
. (3.9)

Therefore, taking the limit as h → 0, we can derive the following ordinary
differential equation for the function x(t) of time t:

dx(t)

dt
= ϕh(x(t); 0). (3.10)

Thus the solution of (3.10) could be regarded as a continuous time model corre-
sponding to the discrete time model (3.7).



3.3 Time-Step-Zero Limit 101

3.3.1 Geometric Growth Model to Malthus Model

In the case of the geometric growth model (3.1), we can mathematically define the
function ϕ as ϕ(x(t); h) = (ℛ0 − 1)x(t). From the above-mentioned mathematical
constraint for the function ϕ about its dependence on h, we must suppose that the
value ℛ0 depends on the time step size h, that is, ℛ0 is a function of h: ℛ0 =
ℛ0(h).

This is not surprising at all. To consider the temporally continuous change in
the population size x(t), we must suppose the reproduction with a net reproduction
rate ℛ0 for any given time step size h when we observe the sequence of population
sizes with the time step size h. That is, the time step size for the observation must be
reflected to the value of the net reproduction rate ℛ0 because the temporally shorter
interval of observations leads to the smaller difference of the observed subsequent
population sizes. Since ϕ(x(t); h)→ 0 as h → 0, it is now supposed that ℛ0(h) →
1 as h→ 0. From the meaning of the modeling, this is reasonable too.

The net reproduction rate ℛ0 may include the survival of reproductive individ-
uals (i.e., parents). The smaller time step size leads to the smaller number of died
parents during the time interval, and the population size must become the same as
the number of parents as h → 0 since no recruitment is possible with no time
passing at h = 0. This means that ℛ0 → 1 as h→ 0.

Supposing the differentiability of ℛ0(h) in terms of h, we obtain ϕh(x(t); 0) =
ℛ′

0(0)x(t), where ℛ′
0(0) is the derivative of ℛ(h) at h = 0. It is clear that the

detail of the function ℛ0 is not essential now. Finally, the ordinary differential
equation (3.10) now becomes

dx(t)

dt
= ℛ′

0(0)x(t), (3.11)

which solution is given by

x(t) = x0eℛ
′
0(0)t (3.12)

(as for the fundamentals on the linear differential equation, see Sect. 13). This result
shows again that a continuous time model corresponding to the geometric growth
model is the exponential growth one, as already shown in Sect. 3.1.

The continuous time population dynamics governed by the type of ordinary
differential equation (3.11) is sometimes called Malthus growth, and the model
given by (3.11) is frequently called Malthus model. These names are after an English
economist Thomas R. Malthus (1766–1834) who is famous from his theoretical
arguments on the geometric population growth in his book “An Essay on the
Principle of Population”. The more detail description about Malthus model from
the viewpoint of modeling will be given in Sect. 5.1.
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The function x(t) given by (3.12) can be derived directly from the general
term (3.2) with the time step size h. Since ℛ0 must be regarded as a function
of h when we apply the time-step-zero limit for it, we need to mathematically
consider the limit of {lnℛ0(h)}/h in (3.2) as h → 0. Making use of de
l’Hôpital’s law since lnℛ0(h) → 0 as h → 0, we have

lim
h→0+

lnℛ0(h)

h
= lim
h→0+

ℛ′
0(h)

ℛ0(h)
= ℛ′

0(0).

Therefore we can find that the function x(t) given by (3.2) converges to (3.12)
as h → 0.

3.3.2 Beverton-Holt Model to Logistic Equation

For Beverton-Holt model (3.3), we can define the function ϕ as

ϕ(x(t); h) = ℛ0(h)− 1 − β(h)x(t)
1 + β(h)x(t) x(t), (3.13)

where we need to suppose that both of ℛ0 and β are functions of h such that ℛ0 →
1 and β → 0 as h→ 0. This is because the smaller time step size would lead to the
weaker influence from the density effect during the time interval. Since ℛ0 is the
upper bound for the net reproduction rate, we could assume that ℛ0 → 1 as h → 0
for the reason same as for the geometric growth model in the previous section. From
the constraint for the function ϕ, ϕ(x(t); h) → 0 as h → 0, we have β(h) → 0 as
h → 0 in order to satisfy that x(t + h) = xn+1 converges to x(t) = xn in (3.3) as
h→ 0.

Supposing the differentiability of ℛ(h) and β(h), we can get

∂ϕ(x(t); h)
∂h

= ℛ′
0(h){1 + β(h)x(t)} − ℛ(h)β ′(h)x(t)

{1 + β(h)x(t)}2
x(t). (3.14)

Therefore we can obtain the following ordinary equation from (3.10):

dx(t)

dt
= {ℛ′

0(0)− β ′(0)x(t)
}
x(t). (3.15)

This ordinary differential equation is frequently called logistic equation in the theory
of population dynamics, as already mentioned in the last part of Sect. 2.1.3 (the
detail explanation will be given in Sect. 5.3).
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In the early nineteenth century, a Belgian mathematician Pierre F. Verhulst
(1804–1849) presented the following mathematical model for the population
growth [4]:

dN(t)

dt
= aN(t)− b{N(t)}2, (3.16)

where N(t) is the population size at time t with positive parameters a and b.
It is said that he introduced the second term in the right side of (3.16) as a
suppressive effect from the environment on the population growth, intuitively
making use of the analogy to the physical law such that a subject moving
in a fluid medium has a resistance force proportional to the square of the
velocity. Moreover, it is said that the name “logistic equation” conventionally
used today would have the origin that Verhulst used the word logistique for
his description about the Eq. (3.16) in his papers of 1845 and 1847 [5, 6],
whereas he did not call it “logistic equation”, and the definite origin has not
been known.

Verhulst’s works became well-known later with famous researches [1–3]
by an American zoologist Raymond Pearl (1879–1940) and a biometrician
Lowell J. Reed (1886–1966), in which they applied the same equation for the
population dynamics. For this reason, the ordinary differential equation (3.16)
is sometimes called Verhulst-Pearl logistic equation, and the parameter b is
occasionally called Verhulst coefficient or Verhulst-Pearl coefficient.

The ordinary differential equation (3.15) is nonlinear, but is one of exactly
solvable equations, for example, by the method of separation of variables (refer
to Sect. 13). The solution becomes

x(t) = x∗
{

1 +
( x∗

x0
− 1
)

e−ℛ′
0(0)t
}−1

, (3.17)

where x∗ = ℛ′
0(0)/β

′(0) (refer to (5.11) in Sect. 5.3). We can see a clear
correspondence to (3.5). Thus, as shown for (3.5), we can see that the solution of the
logistic equation necessarily shows a monotonic approach to x∗ from any positive
initial value x(0) as t → ∞. Further, it is easy to derive (3.17) from (3.5), taking
the time-step-zero limit with ℛ0 → 1 and β → 0 as h→ 0.
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3.3.3 Logistic Map Model to Logistic Equation

For the logistic map model in Sect. 2.1.3:

xn+1 = ℛ0(1 − βxn) xn, (3.18)

we can mathematically define the function ϕ as

ϕ(x(t); h) = {ℛ0(h)− 1 − ℛ0(h)β(h)x(t)
}
x(t), (3.19)

where we suppose that ℛ0 and β are functions of h, which satisfy that ℛ0 → 1 and
β → 0 as h→ 0 because of the constraint for the function ϕ. Lastly, we can obtain
the following logistic equation again from (3.10):

dx(t)

dt
= {ℛ′

0(0)− β ′(0)x(t)
}
x(t).

3.3.4 Skellam Model to Logistic Equation

For the Skellam model in Sect. 2.6.2:

xn+1 = ℛ0

κ

(
1 − e−κxn), (3.20)

we can mathematically define the function ϕ as

ϕ(x(t); h) = ℛ0(h)
1 − e−κ(h)xn

κ(h)
− x(t), (3.21)

where we suppose that ℛ0 and κ are functions of h as before. Further, same as
before, we can assume from the constraint for the function ϕ that ℛ0 → 1 and
κ → 0 as h→ 0.

Now we have

∂ϕ(x(t); h)
∂h

= ℛ′
0(h)

1 − e−κ(h)xn
κ(h)

+ ℛ0(h)
xne−κ(h)xnκ(h)− (1 − e−κ(h)xn)

{κ(h)}2 · κ ′(h), (3.22)

and can easily find that

lim
κ→0

1 − e−κxn
κ

= xn; lim
κ→0

xne−κxnκ − (1 − e−κxn)
κ2 = − x2

n

2
,
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making use of de l’Hôpital’s law. Thus, from (3.10), we can obtain the following
logistic equation again:

dx(t)

dt
= {ℛ′

0(0)−
κ ′(0)

2
x(t)

}
x(t). (3.23)

Exercise 3.1 With the time-step-zero limit, show that the logistic equation is
derived again for Ricker model in Sect. 2.1.2.

As we have seen in these sections, there is no one-to-one correspondence from
a discrete time model to a continuous time model. This is true also about the
correspondence from a continuous time model to a discrete time one, because
the correspondence must depend on the derivation way of a discrete time
model from a continuous time model.

Note that the nature of the population dynamics for the discrete time model
is not necessarily conserved in the continuous time model derived from it by
the time-step-zero limit. Exceptionally in the case of Beverton-Holt model
and Skellam model, it appears conserved at least qualitatively, while it cannot
in the case of Ricker model and logistic map model in which a bifurcation
to a chaotic variation is involved. Especially on the logistic equation, we will
revisit its correspondence to those discrete time models in Sects. 5.4 and 5.5.

3.4 Momental Velocity of Population Size Change

For most of organisms which have the distinctive reproductive season, the temporal
change of population size could be considered with a discrete time model in the
reasonable modeling sense, like a geometric growth model in Chap. 1. In contrast,
the population growth of microorganism (bacteria, cell, etc.) or human could be
regarded as having no distinct reproductive season, so that it may be approximated
as a continuous temporal variation as most of theoretical works did. Moreover such a
continuous temporal variation has been applied even for many cases of the organism
with a distinct reproductive season. Such an application may be regarded as a kind
of what is called continuum approximation in the time line.

As treated in the previous chapters, the population size varies by the natural
reproduction process, the natural death process within the population, and the
migration (immigration and emigration) process between the population and its
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surrounding environment. Therefore, we have

(Change of the population size in �t) =
+ (Increase by the natural reproduction B�t in �t)

− (Decrease by the natural death D�t in �t)

+ (Immigration from the outside of population I�t in �t)

− (Emigration to the outside of population E�t in �t).

These four elements B�t , D�t , I�t , and E�t may have some interrelation, but we
could usually decompose the change of population size in�t into these four.

When there is neither immigration nor emigration, that is, when it is satisfied that
I�t = E�t = 0 for any time t and�t , the population is called closed population. In
the wider sense about the population dynamics, the population may be regarded as
closed when the migration has no contribution to the temporal change of population
size, that is, when I�t − E�t = 0 for any time t and �t , even in an approximated
sense.

The word “growth” is generally used in the population dynamics to mean the
temporal change of population size by the reproduction process. In the wider sense,
it can be used to mean the temporal change of population size by the above four
elements. Note that it does not mean only the increase but also the decrease, which
may be mentioned as the negative growth.

The net variation rate of the population size by the above four elements can
be called net growth rate. Dividing it by the population size, the growth rate per
unit population size is defined. Typically when the population size is given by the
density of the number of individuals in the population, it is called growth rate per
individual|seeper capita growth rate or per capita growth rate. For the reasonable
modeling, it is very important to distinguish the growth rate per individual from
the net growth rate. The latter indicates the velocity of the population size itself,
which can be affected by the ecological disturbance (for example, natural disaster
like fire, flood, etc. or human interference). The former usually indicates the velocity
averaged over the population, which must reflect the contribution of every individual
to the change of the population size.

Now N(t) denotes the population size (density) at time t . The change of
population size �N = N(t + �t) − N(t) in a period �t after time t could be
decomposed into the above-mentioned four elements, the increase by the natural
reproduction B�t , the decrease by the natural death D�t , the immigration from the
outside of population I�t , and the emigration to the outside of population E�t as
follows:

�N = B�t − D�t + I�t − E�t . (3.24)
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The mean change of population size per unit time in the period�t after time t is
given by

�N

�t
= N(t +�t)− N(t)

�t
.

From the definition of the differential, we know that

�N

�t
−→ dN(t)

dt
(�t → 0),

which means the momental velocity for the change of population sizeN(t) at time t .
On the other hand, the mean change of population size per individual in the period
�t after time t can be defined by

�N

N(t)
= N(t +�t)−N(t)

N(t)
,

which indicates the averaged individual contribution to the change of population size
in the period �t after time t . For a bacteria or another microorganism population
cultivated in vitro under a suitable condition, �N becomes positive, since it is a
closed population with negligible effect of the natural death. In such a case, the
mean value �N/N(t) can be regarded as the mean number of newborns produced
per individual in the period�t after time t .

Dividing the mean change per individual �N/N(t) by �t , we get the mean
change of population size per individual per unit time in the period �t after time t ,
and can define the per capita momental velocity for the change of population size

�N/N(t)

�t
−→ 1

N(t)

dN(t)

dt

with the limit �t → 0.
As these arguments, to construct a reasonable continuous model for a population

dynamics with the differential equation, it is necessary to distinguish the factor to
change the population size in the population level from that in the individual level.
The former factor in the population level must be related to the mean change per
unit time�N/�t , while the latter in the individual level must be to the mean change
per individual per unit time �N/N(t)/�t . From this standpoint, the former factor
should be introduced in the model with a relation to the momental velocity dN/dt ,
while the latter should be done with a relation to (1/N)dN/dt , taking account of
four elements to determine the change of population size as indicated by (3.24).

From the next chapter, we are going to focus on the reasonability in the
continuous time modeling for a population dynamics, where the importance of such
distinction about the momental velocity for the change of population size will be
significant.
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Answer to Exercise

Exercise 3.1 (p. 105)

For Ricker model in Sect. 2.1.2:

xn+1 = ℛ0xne
−γ xn,

we can define the function ϕ as

ϕ(x(t); h) = {ℛ0(h)e−γ (h)x(t) − 1
}
x(t),

where we suppose that ℛ0 and γ are functions of h as before. Further, in the way
similar to the case of Beverton-Holt model, we can assume from the constraint for
the function ϕ that ℛ0 → 1 and γ → 0 as h → 0. Lastly, we can obtain the
following logistic equation again from (3.10):

dx(t)

dt
= {ℛ′

0(0)− γ ′(0)x(t)
}
x(t).
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Chapter 4
Continuous Time Modeling for Birth and
Death Processes

Abstract In this chapter, we shall describe the fundamental modeling with the
birth-death stochastic process. The idea and concept in such a modeling is very
important to understand the meaning of modeling about the deterministic mathe-
matical model which superficially seems not to have any relation to the stochasticity
in the phenomenon. In almost all modeling for the population dynamics, the
deterministic model could be actually regarded as an approximation to describe
an important aspect about the phenomenon. To understand the reasonability of the
deterministic structure introduced in the model, it is necessary and useful to know
its relation to a stochastic process. For this reason, this chapter contains the idea
and concept essential throughout the contents in this book. As the simplest and
most important stochastic process, the Poisson process is introduced and used in
some parts of this book. Chapter 15 of Part II serves to provide the mathematical
fundamentals about it.

4.1 Yule-Furry Process

In this section, we shall consider the population dynamics only with a birth process,
like a clonal or vegetative reproduction. Death is neglected here, and the population
size necessarily increases as time passes. Such a birth process we shall consider
here is called Yule-Furry process (simply, Yule, or Furry process) in the stochastic
process theory [2, 3].

4.1.1 Probability Distribution for Population Size

Let consider the probability P(n, t) that the number of individuals is n at time t
in a population. We now assume the following probability that a new individual
(newborn) is generated in it during the period [t, t + �t] when the number of
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individuals is n at time t:

(
n

1

)
× {β�t + o(�t)} = nβ�t + o(�t),

where the first factor

(
n

1

)
= nC1 = n gives the ways of which present individual

(parent) produces the newborn. Positive parameter β represents the likeliness of the
reproduction, whereas it does not mean the probability by itself. This mathematical
modeling assumes that every present individual has the probability β�t + o(�t)
to produce a newborn in [t, t + �t]. The reader may image a population of cells
in a clonal culture, in which the reproduction is caused by the cell division. The
stochastic process of birth with the above probability is classified to the non-
homogeneous Poisson process with intensity βn where the value of n temporally
changes (refer to Sect. 15.1).

Let us consider the initial condition given by

P(n, 0) = δn,n0 =
⎧⎨
⎩

1 (n = n0 > 0);
0 (n 	= n0),

where δn,n0 is the Kronecker delta, and n0 is the initial population size at t = 0.
With the same procedure as that described in Sect. 15.2 about Poisson distribution,
we can derive the following system of ordinary differential equations with respect
to the temporal change of P(n, t):

dP(n0, t)

dt
= −βn0P(n0, t)

dP (n, t)

dt
= −βnP(n, t) + β(n− 1)P (n− 1, t) (n > n0),

(4.1)

where we remark that mathematically P(n, t) = 0 for any n < n0 and t > 0
because the population size never decreases with the assumption of no death. We
shall apply here the method of probability-generating function to get the solution of
the above system of ordinary differential equations for the probability distribution
{P(n, t)} [1]. Let us define the following probability-generating function for
{P(n, t)}:

F(s, t) =
∞∑
n=n0

P(n, t)sn, (4.2)
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where s is a dummy variable. From the equations in (4.1), we can derive the partial
differential equation with respect to F(s, t):

∂

∂t
F (s, t) = βs(s − 1)

∂

∂s
F (s, t), (4.3)

with the initial condition that F(s, 0) = sn0 , and the boundary condition that
F(1, t) = 1. The boundary condition is derived from the fact that the sum of
probability P(n, t) becomes 1 for any time t .

The solution of the above partial differential equation (4.2) with those initial and
boundary conditions is given as follows, while we skip here the detail of calculation
to derive it:

F(s, t) = e−n0βt sn0
[
1 − (1 − e−βt )s

]−n0 (4.4)

=
∞∑
n=n0

(−1)n−n0

( −n0

n− n0

)
e−n0βt (1 − e−βt )n−n0sn

=
∞∑
n=n0

(
n− 1

n− n0

)
e−n0βt (1 − e−βt )n−n0sn, (4.5)

where we used the series expansion

(1 + x)−n =
∞∑
k=0

(−n
k

)
xk =

∞∑
k=0

(
n+ k − 1

k

)
(−x)k

and the relation to what is called negative binomial coefficient

(−a
k

)
= (−a)(−a − 1)(−a − 2) · · · (−a − k + 1)

k! = (−1)k
(
a + k − 1

k

)
.

From (4.2) and (4.5), we have

P(n, t) = (n− 1)!
(n0 − 1)!(n− n0)! e−n0βt (1 − e−βt )n−n0 , (4.6)

which indicates a negative binomial distribution or Pascal distribution.

For example, the negative binomial distribution is mathematically equivalent
to the probability distribution with respect to the least number of coin tosses
by which the face appears n0 times. The probability is for the number

(continued)
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of the appearances of back, which is a stochastic variable. In the above
expression (4.6), n is the least number of coin tosses, n − n0 is the number
of the appearances of back, when the probability of the appearance of face at
each toss is given by e−βt .

4.1.2 Expected Population Size

In this section, let us consider the expected population size at time t:

〈n〉t :=
∞∑
n=n0

nP(n, t). (4.7)

For the probability-generating function F(s, t) defined by (4.2), we have

∂F (s, t)

∂s

∣∣∣∣
s=1

=
∞∑
n=n0

nP(n, t).

Hence, from the partial derivative of (4.4) in terms of s, we can easily derive 〈n〉t =
n0eβt . Therefore, the expected population size 〈n〉t is exponentially increasing as
time passes.

This result can be obtained in a different way. We can derive the following
ordinary differential equation with respect to 〈n〉t from the system (4.1) with (4.7)
(Exercise 4.1):

d〈n〉t
dt

= β〈n〉t . (4.8)

Since the initial value is given by 〈n〉0 = n0, the solution becomes 〈n〉t = n0eβt .

Exercise 4.1 Derive the ordinary differential equation (4.8) from the system (4.1)
with (4.7).

The result of exponential growth of the expected population size 〈n〉t indicates
that it follows Malthus growth with the malthusian coefficient β (The more detail
description about Malthus model from the viewpoint of modeling will be given in
Sect. 5.1). In the next section, we shall see that Malthus growth of the expected
population size 〈n〉t appears even when the population dynamics is accompanied by
a death process, although we neglected the death in this section.
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4.2 Malthus Growth with Death

In this section, we introduce the death process to Yule-Furry process described in the
previous section. As before, we give the probability that the number of individuals
becomes n + 1 in [t, t + �t] when it is n at time t by nβ�t + o(�t). Positive
parameter β has the same meaning as before. Now in addition, we introduce the
probability that the number of individuals becomes n − 1 in [t, t + �t] when it
is n at time t by nμ�t + o(�t). Positive parameter μ represents the likeliness of
the death. In this birth-and-death process, the parameter β may be called birth rate,
coefficient of birth, or proliferation rate. Correspondingly μ may be called death
rate or coefficient of death. Note again that neither μ nor β means the probability
by itself.

Taking account of the possibility to lead the extinction due to the death process,
we can derive the following recurrence relations about the probability P(n, t)
according to the change of population size in [t, t +�t]:

P(0, t +�t) = P(0, t)+ {μ�t + o(�t)}P(1, t)+ o(�t);
P(1, t +�t) = [1 − {β�t + o(�t)}][1 − {μ�t + o(�t)}]P(1, t)

+ [1 − {β�t + o(�t)}]{2μ�t + o(�t)}P(2, t)+ o(�t);
P(n, t +�t) = [1 − {βn�t + o(�t)}][1 − {μn�t + o(�t)}]P(n, t)

+ [1 − {β(n+ 1)�t + o(�t)}]{μ(n+ 1)�t + o(�t)}P(n+ 1, t)

+ {β(n− 1)�t + o(�t)}[1 − {μ(n− 1)�t + o(�t)}]P(n− 1, t)

+ o(�t) (n = 2, 3, . . . ).

Taking the limit as �t → 0, we can derive the following system of ordinary
equations:

dP(0, t)

dt
= μP(1, t);

dP(1, t)

dt
= −(β + μ)P(1, t) + 2μP(2, t);

dP(n, t)

dt
= −(β + μ)nP(n, t) + (n+ 1)μP(n+ 1, t)+ (n− 1)βP (n− 1, t)

(n = 2, 3, . . . ).
(4.9)

In the same way as to derive (4.8) in the previous section, we can derive the
following ordinary differential equation with respect to 〈n〉t :

d〈n〉t
dt

= (β − μ)〈n〉t , (4.10)
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where

〈n〉t :=
∞∑
n=0

nP(n, t). (4.11)

Therefore, from (4.9), the temporal change of the expected population size 〈n〉t
is regarded as Malthus growth with the malthusian coefficient β − μ. Note that
the population size may decrease now by the death process, so that the expected
population size must be defined with P(n, t) for all n as given by (4.11).

4.3 Death Process

In this section, we focus on a cohort which exists at t = 0 with n0 individuals, and
track the number of survived individuals in it as time passes. Although the cohort
is usually defined as a collection of individuals with the same age, we define it
here in a wider sense such that a collection of individuals who always has the same
likeliness of death even if there would be a difference of age among them. The cohort
necessarily becomes smaller due to the death process as time passes. We assume the
probability that an individual dies in [t, t +�t] when the individual is alive at time
t , given by μ�t + o(�t). The positive parameter μ is the death rate as before. Such
a death process with the above probability is classified to the homogeneous Poisson
process with intensity μ (refer to Sect. 15.1).

4.3.1 Survival Probability

Let us denote the probability that an individual survives during [0, t] by Q(t). The
probabilityQ(t +�t) that an individual survives during [0, t+�t] must satisfy the
following relation:

Q(t +�t) = [1 − {μ�t + o(�t)}]Q(t)
with the survival probability 1 −{μ�t + o(�t)} during [t, t +�t]. Hence we have

Q(t +�t)−Q(t)
�t

=
{
−μ+ o(�t)

�t

}
Q(t),

and can get the following ordinary equation by taking the limit as �t → 0:

dQ(t)

dt
= −μQ(t). (4.12)
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For the above assumption, every individual in the cohort is alive at t = 0, so that
the probability that any individual survives at t = 0 must be 1, that is, Q(0) = 1.
This gives the initial condition for the above ordinary equation. We can easily get
the solution of (4.12) asQ(t) = e−μt .

Exercise 4.2 When the death rate μ is a sufficiently smooth function of t , μ =
μ(t), find that the survival probability Q(t) is given by Q(t) = e−〈μ〉t t with the
time-averaged death rate

〈μ〉t := 1

t

∫ t

0
μ(τ)dτ.

4.3.2 Expected Life Span

Next let us consider the probability that an individual dies in [t, t+�t]. It is given by
the product of the survival probability Q(t) during [0, t] and the death probability
μ�t + o(�t) that an individual dies during [t, t +�t] when the individual is alive
at time t :

Q(t)
{
μ�t + o(�t)

} = e−μtμ�t + o(�t).

Therefore, the expected life span 〈t〉 for the cohort is mathematically calculated as
follows:

〈t〉 =
∫ ∞

0
t · e−μtμ dt = −

∫ ∞

0
t
d

dt

{
e−μt} dt

= [−t e−μt]∞
0 +

∫ ∞

0
e−μt dt = 1

μ
.

Consequently, the expected life span is equal to the inverse of the death rate μ.
In this mathematical argument, the function f (t) = μe−μt may be called

probability density function for the life span, and we can define the probability
[cumulative] distribution function by

F(t) =
∫ t

0
f (τ) dτ = 1 − e−μt . (4.13)

The function F(t) means the probability that an individual dies until time t .
The probability distribution function (4.13) indicates an exponential distribution.
Therefore, the life span under the death process with a homogeneous Poisson
process follows an exponential distribution.
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The above probability distribution function F(t) can be derived in a different
way. From the modeling about the death process considered now, the probability
F(t) that an individual dies until time t must satisfy the following recurrence
relation:

F(t +�t) = F(t) + {μ�t + o(�t)
}{

1 − F(t)}.
With the limit as �t → 0, we can derive the following ordinary differential
equation:

dF(t)

dt
= μ

{
1 − F(t)}. (4.14)

Since any individual is alive at t = 0, the initial condition is given by F(0) = 0.
The solution of (4.14) with F(0) = 0 becomes (4.13).

When the death rate μ is a suffuciently smooth function of t , μ = μ(t), we
can derive the following equation with respect to the expected life span 〈t〉:

〈t〉 =
∫ ∞

0
tf (t)dt =

∫ ∞

0
t · e−〈μ〉t tμ(t) dt

=
∫ ∞

0
tμ(t) exp

[
−
∫ t

0
μ(τ) dτ

]
dt = −

∫ ∞

0
t
d

dt

{
exp
[

−
∫ t

0
μ(τ) dτ

]}
dt

=
[
−t exp

[
−
∫ t

0
μ(τ) dτ

]]∞

0
+
∫ ∞

0
exp
[

−
∫ t

0
μ(τ) dτ

]
dt,

where we used the result of Exercise 4.2. If

lim
t→∞ t exp

[
−
∫ t

0
μ(τ) dτ

]
= 0,

then we have

〈t〉 =
∫ ∞

0
exp
[

−
∫ t

0
μ(τ) dτ

]
dt =

∫ ∞

0
e−〈μ〉t t dt. (4.15)
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Exercise 4.3 Derive the expected life span 〈t〉 for each of the following death rates
μ = μ(t):

(a) μ(t) = mt with a positive constant m.
(b) The following periodic function of t with period h:

μ(t) =
{
μ1 for t ∈ [kh, kh+ θh);
μ2 for t ∈ [kh+ θh, (k + 1)h)

(k = 0, 1, 2, . . . ),

where μi (i = 1, 2), h and θ are positive constants with θ ≤ 1.

4.3.3 Probability Distribution for Cohort Size

Along the same framework of mathematical modeling, we introduce here the
following probability that the death of an individual occurs in [t, t + �t] when
the number of individuals in the cohort is n:

(
n

1

)
× {μ�t + o(�t)} = nμ�t + o(�t). (4.16)

As for the probability P(n, t) that the number of individuals in the cohort is n at
time t , we can derive the following system of ordinary differential equations in the
same way as for Yule-Furry process in Sect. 4.1.

dP(n0, t)

dt
= −μn0P(n0, t);

dP(n, t)

dt
= −μnP(n, t) + μ(n+ 1)P (n+ 1, t) (0 < n < n0);

dP(0, t)

dt
= μP(1, t),

(4.17)

with the initial condition that P(n, 0) = δn,n0 . Differently from Yule-Furry process,
the system (4.17) consists of n0 + 1 equations.

From the first equation of (4.17) and the initial condition, we can easily obtain
the solution

P(n0, t) = e−n0μt .
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In the same way of derivation as that for Poisson distribution in Sect. 15.2, we
substitute

P(n0 − 1, t) = un0−1(t)e
−μ(n0−1)t

for the second equation of (4.17). Again with the initial condition, we can derive the
following equation for un0−1(t):

dun0−1

dt
= μn0e−μt ,

and get un0−1(t) = n0(1 − e−μt ). Thus we find

P(n0 − 1, t) = n0(1 − e−μt )e−μ(n0−1)t .

Applying the same procedure, we can find

dun0−2

dt
= μn0(n0 − 1)(1 − e−μt )e−μt = n0(n0 − 1)

2

d

dt
(1 − e−μt )2,

and subsequently

P(n0 − 2, t) = n0(n0 − 1)

2
(1 − e−μt )2e−μ(n0−2)t .

In this way, we can prove by the mathematical induction that

P(n, t) =
(
n0

n

)
(1 − e−μt )n0−ne−nμt (4.18)

for n = 1, 2, . . . , n0.
Especially, from the third equation of (4.17), the initial condition, and the formula

of P(1, t), we can find that P(0, t) = (1 − e−μt )n0 . Hence, with the conventional

mathematical definitions 0! = 1 and

(
n

0

)
= 1, the result (4.18) gives every P(n, t)

for n = 0, 1, 2, . . . , n0.
The probability distribution (4.18) of {P(n, t)} is a binomial distribution.

Especially when n0 = 1, it can be called Bernoulli distribution. It is the probability
distribution for the number of faces in n0 coin tosses. For the case of the members
in a cohort, each member has alternative status, alive or dead. For this reason, the
binomial distribution could be acceptable.
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From the Eq. (4.18) in the extremal case of n0 = 1, the survival probability
of an individual Q(t) in Sect. 4.3.1 is easily obtained as e−μt , since Q(t) =
P(1, t) from their definitions.

Exercise 4.4 Derive the probability distribution {P(n, t)} for the time-dependent
death rate μ = μ(t).

4.3.4 Expected Population Size

We can easily derive the ordinary differential equation

d〈n〉t
dt

= −μ〈n〉t

with respect to the expected population size of the cohort at time t (see Excer-
cise 4.1):

〈n〉t :=
n0∑
n=0

nP(n, t).

With the initial condition 〈n〉0 = n0, we find 〈n〉t = n0e−μt . Hence the cohort size
is exponentially decreasing toward the extinction. It may be regarded as Malthus
growth with a negative malthusian coefficient.

4.3.5 Average Life Span for Extinct Population

In this section, we track a collection of individuals, say, a population which has gone
extinction with Malthus growth with the malthusian coefficient −ν:

N(t) = N(0)e−νt , (4.19)

and derive the average [mean] life span t over the population to show that it is given
by 1/ν.
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Differently from the consideration on a cohort in the previous sections, we
do not care of the physiological difference in the collection of individuals
now. The members may be different in their nature about the death. We will
consider the average of the life span t from a certain moment indexed by
t = 0 over the collection of individuals which goes extinct in an exponential
manner, neglecting what causes the death. For this reason, the argument in
this section must be distinguished from that in the previous sections on the
stochastic process with the death rate μ.

Since the population becomes extinct at the end after the monotonic decrease, it
is determined when each member in it dies. That is, the deaths are distributed on
the time line. In other words, the collection of the moments of the death leads to the
distribution of life span in the population.

Now the number of deaths between t and t +�t is given by

N(t)−N(t +�t) = N(0){e−νt − e−ν(t+�t)}. (4.20)

Thus, the ratio of deaths to the initial population size N(0) becomes

N(t) −N(t +�t)
N(0)

= e−νt − e−ν(t+�t), (4.21)

which can be regarded as the probability that a randomly chosen member in the
initial population has the life span between t and t +�t .

Let us consider the frequency density distribution of life span f (t) and the
cumulative frequency distribution F(t):

F(t) =
∫ t

0
f (τ)dτ. (4.22)

F(t) gives the frequency of members who have the life span not beyond t . It satisfies
that F(0) = 0 and

lim
t→∞F(t) =

∫ ∞

0
f (τ) dτ = 1.

This limit indicates that every member must die at a finite moment. The frequency
density distribution f (t) has the relation to F(t) as given by (4.22), and the
following relation at the same time:

f (t) = dF(t)

dt
.
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The frequency density distribution f (t) and the cumulative frequency distri-
bution F(t) are mathematically equivalent to the probability density function
and the probability [cumulative] distribution function defined in Sect. 4.3.2.
However, the present argument is not based on any given probability distri-
bution, but regard the emerging phenomenon as a stochastic process with a
probability distribution. Malthus growth (4.19) is an emerging phenomenon
here given a priori, and we will derive the distributions f (t) and F(t) from it.

From the definition of the cumulative frequency distribution, the differenceF(t+
�t)− F(t) means the frequency of members who have the life span between t and
t +�t . Thus, it is equal to (4.21), and we have

F(t +�t)− F(t)
�t

= −e−ν(t+�t) − e−νt

�t
.

With the limit as �t → 0, we obtain the differential equation

dF(t)

dt
= − d

dt
e−νt ,

which immediately gives

f (t) = νe−νt . (4.23)

It is easy to confirm that the improper integral of (4.23) over [0,∞) converges to
1. This means that the frequency density distribution is an exponential distribution.
The cumulative frequency distribution F(t) is obtained by integrating (4.23) as

F(t) = 1 − e−νt . (4.24)

The average life span t can be calculated with the frequency density distribu-
tion (4.23) by

t :=
∫ ∞

0
tf (t) dt,

and we find t = 1/ν.

Exercise 4.5 Derive the formula to give the average life span t when the population
size N is decreasing to become extinct as

N(t) = N(0)e− ∫ t0 ν(τ )dτ (4.25)
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with the malthusian coefficient −ν = −ν(t) which temprally varies, keeping
negative for any t > 0.

More generally, we may consider the case where the population size mono-
tonically decreases toward the extinction as N(t) = N(0)g(t).The function
g(t) of time t is now assumed to be monotonically decreasing in terms of
t and satisfy that g(0) = 1 and lim

t→∞ g(t) = 0. We further assume that

g(t) is smooth enough to be continuous and differentiable in terms of t .
This assumption may be regarded as a reasonable mathematical simplification
about the modeling for such an extinctive population.

Along the same arguments as given in the above, the number of deaths
between t and t +�t is given by

N(t) −N(t +�t) = N(0)
{
g(t)− g(t +�t)},

and we can find

dF(t)

dt
= −dg(t)

dt
.

From the conditions F(0) = 0 and g(0) = 1, we obtain F(t) = 1 − g(t). On
the other hand, the above differential equation means that f (t) = −dg(t)/dt .
Therefore, the average life span t must be mathematically defined by

t :=
∫ ∞

0
tf (t) dt = −

∫ ∞

0
t
dg(t)

dt
dt =

[
− tg(t)

]∞
0

+
∫ ∞

0
g(t) dt.

Depending on the nature of the function g, the above calculation may result
in the positively infinite. In such a case, the average life span t is infinite. Some
may hardly understand this situation, since the infinite life span means being
immortal. From the viewpoint of mathematical modeling, the mathematical
limit as t → ∞ may not be regarded as the infinity of real time. Frequently
it is regarded as corresponding to a mathematical approximation to the state
after a sufficiently long time. In this sense, the infinity of average life span
itself does not mean nothing, whereas it may be regarded as the theoretical
implication that the average life span is much long, or alternatively it would
not be decidable from the standard definition. Even in such a case of infinite
life span, the reasonability of the modeling for the death process cannot be
denied only from it, and can be acceptable.
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4.3.6 Expected Extinction Time

Let us consider next the expected extinction time 〈Te〉 at which a cohort goes extinct,
that is, the expected life span of cohort. It is equivalent to the expected moment at
which the last alive member of the cohort dies. Since the probability that a death
occurs in [t, t +�t] with a sufficiently short interval �t is assumed to be given by
μn�t+o(�t), the probability that more than one deaths occur in [t, t+�t] is given
by o(�t). Hence, the probability that the cohort becomes extinct in [t, t + �t] is
given by μ�t + o(�t) when the cohort size is 1 at time t , while it is given by o(�t)
when the cohort size is more than 1 at time t . From these arguments, we can find
the following mathematical expression of the probability that the cohort becomes
extinct in [t, t +�t]:

P(1, t) · {μ�t + o(�t)} +
∞∑
k=2

P(k, t)o(�t) = n0(1 − e−μt )n0−1e−μtμ�t + o(�t).

For the initial cohort size n0, the expected extinction time 〈Te〉n0 can be defined
as follows by taking the average in terms of time t with the above probability:

〈Te〉n0 =
∫ ∞

0
t · n0(1 − e−μt )n0−1e−μtμ dt

[
=
∫ ∞

0
t
d

dt
(1 − e−μt )n0dt

]

This integral can be actually calculated as follows:

〈Te〉n0 =
∫ ∞

0
t · n0

⎡
⎣n0−1∑
k=0

(
n0 − 1

k

)(−e−μt)k
⎤
⎦ e−μtμ dt

= n0μ

n0−1∑
k=0

(
n0 − 1

k

)
(−1)k

{∫ ∞

0
te−(k+1)μtdt

}

= n0μ

n0−1∑
k=0

(
n0 − 1

k

)
(−1)k

1

(k + 1)2μ2

= 1

μ

n0−1∑
k=0

(
n0

k + 1

)
(−1)k

1

k + 1
= 1

μ

n0∑
k=1

(
n0

k

)
(−1)k+1 1

k
. (4.26)

This result can be proved to be equivalent to

〈Te〉n0 = 1

μ

n0∑
k=1

1

k
. (4.27)
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Exercise 4.6 Prove the equivalence of (4.26) to (4.27).

The expression (4.27) can be derived in a different way which would have a
wide applicability. Firstly let us consider the expected duration 〈T1〉n0 that the
initial cohort size n0 becomes n0 − 1. This is the expected time at which the
first death occurs. Suppose that the death does not occur until time t but does
in [t, t +�t]. The probability is given by

P(n0, t) ·
{
μ�t ×

(
n0

1

)
+ o(�t)

} = e−n0μtn0μ�t + o(�t).

Hence the expected duration 〈T1〉n0 can be derived as follows:

〈T1〉n0 =
∫ ∞

0
t e−n0μtn0μdt = −

∫ ∞

0
t
d

dt
e−n0μtdt = 1

n0μ
.

Next, the time from the moment that the cohort size becomes n0 − 1 to the
moment of extinction is the same as the expected extinction time 〈Te〉n0−1 for
the initial cohort size n0 − 1. Since the duration until the first death occurs
for the initial cohort with size n0 and the time until the cohort extinction from
the moment of the first death are independent of each other, we can find the
following relation:

〈Te〉n0 = 〈T1〉n0 + 〈Te〉n0−1 = 1

n0μ
+ 〈Te〉n0−1.

This can be regarded as the recurrence relation to determine the sequence
{〈Te〉1, 〈Te〉2, . . . , 〈Te〉k, . . . }. It is not difficult to derive (4.27) from this
recurrence relation.

4.4 Net Reproduction Rate

In this section, we consider the net reproduction rate for the population with a
Malthus growth of Sect. 4.2. Since the death and birth are assumed independent
of each other, the net reproduction rate can be uniquely defined for any individual
alive at each time t . We shall consider an individual at the initial time t = 0. From
the assumption given in Sect. 4.2, the probability that an individual alive at t = 0
makes reproduction (e.g., cell division) to produce a newborn in [t, t +�t] is given
by β�t+o(�t)with the birth rate β (refer also to Yule-Furry process in Sect. 4.1). It
must be remarked that the probability of the reproduction to produce more than one
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newborns is now given by o(�t). On the other hand, from the arguments in Sect. 4.3,
the probability that the individual dies in [t, t +�t] is given by μ�t + o(�t) with
the death rate μ, and the probability to survive until time t byQ(t) = e−μt .

Let p(k, t) denote the probability that an individual alive at t = 0 survives and
produces k offsprings until time t . In the way same as that for Malthus growth in
Sect. 4.2, we can find the following relations:

p(0, t +�t) = [1 − {β�t + o(�t)}][1 − {μ�t + o(�t)}]p(0, t)+ o(�t);
p(k + 1, t +�t) = {β�t + o(�t)}[1 − {μ�t + o(�t)}]p(k, t)

+ [1 − {β�t + o(�t)}][1 − {μ�t + o(�t)}]p(k + 1, t)+ o(�t)

(k = 0, 1, 2, . . . ).

With the limit of these relations as �t → 0, we can derive the following system of
ordinary differential equations:

dp(0, t)

dt
= −(β + μ)p(0, t);

dp(k + 1, t)

dt
= βp(k, t) − (β + μ)p(k + 1, t) (k = 0, 1, 2, . . . ).

(4.28)

The initial condition is given by p(k, 0) = δk,0. It is clear that p(0, 0) = 1 and
p(k, 0) = 0 for any k > 0, since the individual is alive at t = 0 while there
is no reproduction at the moment. This initial value problem can be easily solved
(Exercise 4.7):

p(k, t) = (βt)k

k! e−(β+μ)t , (4.29)

where we used a conventional definition 0! = 1.

From this result, we can find that

∞∑
k=0

p(k, t) =
∞∑
k=0

(βt)k

k! e−(β+μ)t = eβt · e−(β+μ)t = e−μt = Q(t).

This indicates that the sum
∞∑
k=0

p(k, t) means the probability that the individ-

ual survives until time t , independently of how many offsprings it produces,
which must be equal toQ(t) from the definition.
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Exercise 4.7 Derive (4.29).

With the argument same as that for the expected life span in Sect. 4.3.2, the
probability that an individual dies in [t, t+�t] after producing k offsprings is given
by

{μ�t + o(�t)}p(k, t) = μp(k, t)�t + o(�t).

Therefore, we find the expected number of offsprings produced by an individual
before the death, that is, the net reproduction rate ℛ0 as follows:

ℛ0 =
∞∑
k=0

∫ ∞

0
k · μp(k, t) dt =

∞∑
k=0

k

∫ ∞

0
μp(k, t) dt =

∞∑
k=0

k𝒫(k), (4.30)

where

𝒫(k) :=
∫ ∞

0
μp(k, t) dt

is the probability that an individual produces k offsprings before the death,
independently of when it dies. From (4.29), we find the followings:

𝒫(0) =
∫ ∞

0
μ e−(β+μ)tdt = μ

β + μ ; 𝒫(k) = β

β + μ 𝒫(k − 1),

and consequently

𝒫(k) = μ

β + μ
(

β

β + μ
)k
. (4.31)

Finally, substituting (4.31) for (4.30), we can get the net reproduction rate

ℛ0 =
∞∑
k=0

k
μ

β + μ
(

β

β + μ
)k

= β

μ
. (4.32)

This result can be understood as ℛ0 = β〈t〉 with the expected life span 〈t〉 = 1/μ
obtained in Sect. 4.3.2. In this sense, the net reproduction rate is given by the product
of the birth rate that means the number of newborns per unit time per individual and
the expected life span.

The relation that (the net reproduction rate) = (the number of newborns per unit
time per individual) × (the expected life span) cannot be necessarily satisfied if the
death rate depends on the reproduction. In the above arguments, it was an important
assumption that the death rate is independent of time and the status of individual,
and the death is independent of the reproduction.
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The logic to derive the net reproduction rate in this section is the same as
that for the basic reproduction number for the epidemic dynamics (refer to
Sect. 9.2.3 and 9.3.4). In other words, the net reproduction rate in the epidemic
dynamics may be called basic reproduction number. For the population
dynamics of transmissible disease spread, the basic reproduction number is
most generally defined as the expected number of new cases of an infection
caused by an infective individual, in a population consisting of susceptible
contacts only. Since the net reproduction rate is defined as the expected
number of mature females produced by a mature female (p. 16 in Sect. 1.5),
a mature female corresponds to an infective individual, and produced mature
females does to new cases of infection in these definitions.

4.5 Logistic Equation

The logistic equation (2.15) can be derived for the density-dependent population
growth by a Poisson process. Similarly with the arguments about Malthus growth
with a Poisson process in Sect. 4.2, let us assume that the number of individuals in
the population becomes n+ 1 from n in [t, t +�t] with probability nβ�t + o(�t).
Now, differently from Sect. 4.2, we assume that an individual dies in [t, t + �t]
with probability nμ�t + o(�t). In this case, we can introduce the probability that
the number of individuals becomesn−1 from n in [t, t+�t] as n2μ�t+o(�t). This
modeling may be regarded as following the assumption that the individual death is
affected by a density effect. Similarly with Malthus growth in Sect. 4.2, from the
assumption that the individual death is independent of the death of any other, the
death in a sufficiently short interval�t occurs with probability given by the sum of
the probability of the death for every individual, that is, by multiplying the number
of alive individuals to the probability of the individual death.

In the similar way of the arguments about Malthus growth with a Poisson process
in Sect. 4.2, we can get the following system of ordinary differential equations with
respect to the probability P(n, t) that the population size is n at time t :

dP(0, t)

dt
= μP(1, t);

dP(1, t)

dt
= −(β + μ)P(1, t) + 4μP(2, t);

dP(n, t)

dt
= −(β + nμ)nP(n, t) + (n+ 1)2μP(n + 1, t)+ (n− 1)βP (n− 1, t)

(n = 2, 3, . . . ).
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Further, with respect to the expected number of individuals at time t ,

〈n〉t =
∞∑
k=0

kP (k, t),

it is not difficult to derive the following ordinary differential equation from the above
system (refer to Exercise 4.1):

d〈n〉t
dt

= β〈n〉t − μ〈n2〉t = (β − μ〈n〉t
)〈n〉t − μσ 2

t ,

where 〈n2〉t means the second moment which is the expected squared value of the

population size at time t , 〈n2〉t =
∞∑
k=0

k2P(k, t). Besides, σ 2
t = 〈n2〉t − 〈n〉2

t means

the variance of the population size at time t . Therefore, if the variance σ 2
t is small

enough to make σ 2
t ≈ 0, the temporal change of the expected population size 〈n〉t

can be approximated well by a logistic equation.

Answer to Exercise

Exercise 4.1 (p. 112)

By differentiate both sides of the definition (4.7) of the expected population size
〈n〉t , we have

d〈n〉t
dt

=
∞∑
n=n0

n
dP(n, t)

dt
= n0

dP(n0, t)

dt
+

∞∑
n=n0+1

n
dP(n, t)

dt
.

Substitution of (4.1) for this equation gives

d〈n〉t
dt

= −βn2
0P(n0, t)+

∞∑
n=n0+1

n
{− βnP (n, t)+ β(n− 1)P (n− 1, t)

}

= −βn2
0P(n0, t)− β

∞∑
n=n0+1

n2P(n, t)+ β
∞∑

n=n0+1

n(n− 1)P (n− 1, t)

= −βn2
0P(n0, t)− β

∞∑
n=n0+1

n2P(n, t)+ β
∞∑
n=n0

(n+ 1)nP (n, t)
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= −β
{
n2

0P(n0, t)+
∞∑

n=n0+1

n2P(n, t)
}

︸ ︷︷ ︸
=

∞∑
n=n0

n2P (n,t)

+β
∞∑
n=n0

n2P(n, t)+ β
∞∑
n=n0

nP (n, t)

= β

∞∑
n=n0

nP (n, t) = β〈n〉t .

Exercise 4.2 (p. 115)

We have Q(t + �t) = [1 − {μ(t)�t + o(�t)}]Q(t). By the same arguments
as in the main text, we can derive the expression of Q(t). When μ is constant
independently of time, 〈μ〉t is equal to the constant μ. As a temporally varying
μ, we may consider an example such that the death rate depends on the season, or
increases with the environmental degradation.

Exercise 4.3 (p. 117)

(a) From (4.15), we can easily get

〈t〉 =
[
−t exp

[
−
∫ t

0
mτ dτ

]]∞

0
+
∫ ∞

0
exp
[

−
∫ t

0
mτ dτ

]
dt

=
[
−t e−mt2/2]∞

0
+
∫ ∞

0
e−mt2/2dt =

∫ ∞

0
e−mt2/2dt =

√
π

2m
.

As a result about this case, the expected life span 〈t〉 is inversely proportional to
the square root of parameter m. As an example, we may consider the temporal
increase of death rate due to the physiological aging. As the other example, we
may consider the environmental degradation due to the population’s activities.
The above result may be translated as an implication that, even if the velocity
of the environmental degradation becomes double, the expected life span would
become shorter while it is greater than half of the past.

(b) In this case, we can prove that

lim
t→∞ −t exp

[
−
∫ t

0
μ(τ) dτ

]
= 0,
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since

t exp
[

−
∫ t

0
μ(τ) dτ

]
≤ t e−μmt

with μm := min{μ1, μ2}, and t e−μmt → 0 as t → ∞. From (4.15), the
expected life span 〈t〉 can be calculated as follows:

〈t〉 = lim
n→∞

∫ nh

0
exp
[

−
∫ t

0
μ(τ ) dτ

]
dt

= lim
n→∞

n−1∑
k=0

{∫ kh+θh

kh

exp
[

−
∫ t

0
μ(τ ) dτ

]
dt +

∫ (k+1)h

kh+θh
exp
[

−
∫ t

0
μ(τ ) dτ

]
dt

}

= lim
n→∞

n−1∑
k=0

[
1

μ1
(1 − e−μ1θh)e−μ1kh + 1

μ2
e−μ2θh{1 − e−μ2(1−θ)h}e−μ2kh

]

= 1 − e−μ1θh

1 − e−μ1h

1

μ1
+
(

1 − 1 − e−μ2θh

1 − e−μ2h

)
1

μ2
.

This result indicates that the expected life span 〈t〉 cannot be given by the inverse
of a simple arithmetic mean of the death rates 〈μ〉 := θμ1+(1−θ)μ2. When the
period h is sufficiently short, or when the death rates μ1 and μ2 are sufficiently
small, we find that

〈t〉 ≈ θ
1

μ1
+ (1 − θ) 1

μ2
,

which means that 〈t〉 can be approximated by the arithmetic mean of the inverse
of death rates.

Exercise 4.4 (p. 119)

Again in the same way of derivation as that for Poisson distribution in Sect. 15.2,
we can get the formula of probability P(n, t) as

P(n, t) =
(
n0

n

)(
1 − e−〈μ〉t t )n0−ne−n〈μ〉t t ,
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where

〈μ〉t := 1

t

∫ t

0
μ(τ) dτ,

which means the long-term average of the death rate.

Exercise 4.5 (p. 121)

With the arguments same as in Sect. 4.3.5, we can derive the frequency density
distribution function f (t), correspondingly to (4.23), as

f (t) = ν(t) exp
[
−
∫ t

0
ν(τ ) dτ

]
.

We must remark the general arguments given in p. 122 too. Hence we can get the
cumulative frequency distribution function F(t):

F(t) = 1 − exp
[
−
∫ t

0
ν(τ ) dτ

]
.

Therefore, as a result, the averaged life span t in this case can be given by

t =
∫ ∞

0
tν(t) exp

[
−
∫ t

0
ν(τ ) dτ

]
dt.

Let us consider the function V (t) :=
∫ t

0
ν(τ ) dτ which is a monotonically

increasing function of t because ν(t) is positive for any t > 0. Therefore, with
the transformation of variable for the integrand in the integral of t , ζ = V (t),
we have

t =
∫ ∞

0
V−1(ζ ) e−ζ dζ,

since dζ = V ′(t) dt = ν(t) dt . V −1 is the inverse function of V (t). We note
that, from the Laplace transformation of V−1(ζ ),

F(s) = ℒ[V −1(ζ )] :=
∫ ∞

0
V −1(ζ ) e−ζ sdζ,

the averaged life span t can be given by t = F(1) too.
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Exercise 4.6 (p. 124)

From the binomial expansion

n0∑
k=1

(
n0

k

)
xk = (1 + x)n0 − 1,

we can get the following relation:

n0∑
k=1

(
n0

k

)
xk−1 = (1 + x)n0 − 1

x
= (1 + x)n0 − 1

(1 + x)− 1
=
n0−1∑
k=0

(1 + x)k.

By the indefinite integral for the above equation, we can derive

n0∑
k=1

(
n0

k

)
xk

k
=
n0−1∑
k=1

1

k + 1
(1 + x)k+1 + x + C, (4.33)

where C is an arbitrary constant. By substituting x = 0 for this equation, we find

C = −
n0∑
k=2

1

k
.

Thus, by substituting x = −1 for (4.33), we can get

n0∑
k=1

(
n0

k

)
(−1)k

k
= −1 −

n0∑
k=2

1

k
= −

n0∑
k=1

1

k
.

Applying this relation for (4.26), we can lastly derive (4.27).

Exercise 4.7 (p. 125)

From the first equation of the system (4.28) and the initial condition that p(0, 0) =
1, we find p(0, t) = e−(β+μ)t . Next let us substitute p(k, t) = uk(t) e−(β+μ)t for
the second equation of (4.28). Then we obtain

duk+1(t)

dt
= βuk(t).
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Since uk(0) = 0 from the initial condition p(k, 0) = 0, we can mathematically get
the following equation from this differential equation:

uk+1(t) = β

∫ t

0
uk(τ ) dτ. (4.34)

Now, we have u0(t) = 1 because of p(0, t) obtained in the above, we find
from (4.34) that u1(t) = βt . Hence, by the mathematical induction with (4.34),
we can prove that

uk(t) = (βt)k

k! .

Finally, we can derive (4.29).
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Chapter 5
Continuous Time Modeling for Single
Species Population Dynamics

Abstract This chapter is on the continuous time modeling for the single-species
population dynamics. The contents serves the readers with the essential idea to
introduce the density effect in the mathematical modeling. So this chapter becomes
basic to understand the modelings in the subsequent chapters. As a specific topic,
we describe the modeling of what is called metapopulation dynamics model too.

5.1 Malthus Model

For a microorganism population in a laboratory culture, the death could be
negligible in a sufficiently long period, when the energy supply and the space for
the reproduction would be kept in a stationary condition. In such an environmental
condition, the fertility could be assumed to be constant independently of the
population growth. In other words, the expected number of offsprings produced by
an individual per unit time could be a constant r independent of time. Hence from
the arguments in Sect. 3.4, the population dynamics could be assumed to follow the
relation

�N/N(t)

�t
= r, (5.1)

that is,

�N = N(t +�t)− N(t) = (r�t)N(t). (5.2)

This relation means that the expected number of newborns per individual during
the time interval �t is given by r�t . Taking the limit as �t → 0 for (5.1)
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as described in Sect. 3.4, we have the following continuous time model for the
population dynamics:

1

N(t)

dN(t)

dt
= r, (5.3)

which means that the per capita momental velocity of the change of population
size, simply called per capita growth rate of population, is assumed constant. This
model is what is called Malthus model which already appeared in Sects. 3.3.1, 4.1.2,
and 4.2. The Eq. (5.3) shows Malthus model with the malthusian coefficient r . As
clear from the above assumption, the malthusian coefficient r means the per capita
growth rate of population.

In the case of laboratory culture mentioned above, the malthusian coefficient
depends on the environmental condition provided for the culture. Assuming it
constant, it can be regarded as the possibly highest per capita growth rate of
population under the given environmental condition. In this sense, r is sometimes
called intrinsic (natural) growth rate or intrinsic rate of natural increase. However,
the malthusian coefficient does not necessarily mean the intrinsic growth rate, as
described in the subsequent part of this section.

In a more general sense, as indicated by (3.24) in Sect. 3.4, the malthusian
coefficient r in Malthus growth depends also on the death and migration of
individuals in the population. It becomes clearer with substituting (5.2) for (3.24)
that Malthus growth could appear, for example, when the increase due to the
immigration is proportional to the population size with a constant per capita birth
rate, death rate, and emigration rate. Especially for a closed population defined in
Sect. 3.4, it could appear when the per capita birth and death rates are constant
since the right side of (3.24) is determined only by them. In such a case of closed
population, we have r = β − μ with the birth rate β and death rate μ which are
positive constants. Hence for a closed population, r > 0 if β > μ while r < 0 if
β < μ.

The solution for the ordinary differential equation (5.3) becomes

N(t) = N(0) ert , (5.4)

which shows the exponential growth of population size. As shown by the examples
in Fig. 5.1, the temporal change of population size N(t) is given by an unbounded
increasing concave curve for r > 0, and by a decreasing concave curve asymptoti-
cally approaching zero for r < 0.
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Fig. 5.1 Fitting of Malthus growth curve (5.4) (solid curve) to the real data (solid plots) with the
least square method: (a) Monthly data of active users of Facebook in Japan (The Japan Ministry
of Internal Affairs and Communications, 2015), r = 0.103 and N(Jan. 2009) = 0.365 × 106

(R2 = 0.967); (b) Annual data of catching glass eels in Japan (The Japan Fisheries Agency, 2015),
r = −0.054 and N(1957) = 176.52 (R2 = 0.849)

5.2 Gompertz Curve

Temporal change of the environment may affect the physiological condition so as
to temporally change the per capita growth rate r: r = r(t). Even in this case,
the ordinary differential equation (5.3) can be solved by the method of variable
separation (refer to Sect. 13.1.2):

N(t) = N(0) exp
[ ∫ t

0
r(τ ) dτ

]
. (5.5)

If r(t) > 0 for any t > 0, the right side of (5.5) is monotonically increasing as time
passes, while, if r(t) < 0 for any t > 0, it is monotonically decreasing toward zero.
When the sign of r(t) is temporally changing, the population size at sufficiently
large time depends on the nature of the temporal change of r(t).

Let us consider the case where the malthusian coefficient r(t) has a periodical
change due to the seasonal variation of environmental condition:

r(t) = r + σ

2
sin(ωt + φ). (5.6)

The long-term average of the malthusian coefficient

〈r〉 := lim
T→∞

1

T

∫ T

0
r(t)dt

(continued)
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can be easily obtained as 〈r〉 = r. The positive parameter σ means the
amplitude in the temporal change of r(t), and the positive parameter ω the
angular frequency. Since

∫ t

0
r(τ )dτ = rt − σ

2ω

[
cos(ωt + φ)− cosφ

]
, (5.7)

we can find that the principal trend of the temporal change of population
size is determined by the long-term average of the malthusian coefficient
r . The second term in the right side of (5.7) is to introduce a periodical
oscillation with a finite amplitude. Since the first term in the right side of (5.7)
is proportional to time t , the value of (5.7) is mainly determined by the first
term after sufficient long time. As shown in Fig. 5.2, the nature of the seasonal
change in the malthusian coefficient does not contribute to the long-term trend
of population growth.

As a special example, for r(t) = r0e−t/η with positive constants r0 and η such
that the malthusian coefficient in (5.5) temporally decreases toward zero, we have

N(t) = N(0) exp
[
r0η(1 − e−t/η)

]
. (5.8)

As seen in Fig. 5.3, the temporal change of population size shows an S-shape
curve. This curve given by (5.8) has been empirically used to be fit to the
experimental/observed data. It is called Gompertz curve or Gompertz-Wright curve.
The naming is after the fitting to a data of adult death rate by Benjamin Gompertz
(1779–1865) in 1825 [4]. Famous population geneticist Sewall G. Wright (1889–

Fig. 5.2 Malthus growth (5.5) with a periodically changing malthusian coefficient r(t) given
by (5.6). (a) r > 0; (b) r < 0
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Fig. 5.3 Gompertz
curve (5.8) which
corresponds to Malthus
growth (5.5) with the
malthusian coefficient
temporally decreasing from
positive to zero: r(t) ∝ e−t/η
with a positive constant η

1988) used it as a mathematical model for the growth of individual body size in
1926 [16].

5.3 Logistic Equation

In this section, let us consider the case where the per capita growth rate becomes
smaller as the population density gets larger. This is the case, for example, that the
availability of necessary resource is limited, or that the environment is degraded
by the waste produced by the population itself. In the modeling for such a case,
the right side of (5.3) is given by a function decreasing in terms of the population
size N : r = r(N). This means that the momental velocity of population size per
individual is determined by a negative density effect as in Sect. 2.1.

The simplest mathematical modeling for such a relation of the per capita growth
rate to the population size N is introduced by a linear function

r = r(N) = r0 − βN. (5.9)

This is reasonable as what is called the zeroth approximation for such a negative
density effect. In this modeling, the parameter r0 = r(0)means the intrinsic growth
rate, since it gives the upper bound for the per capita growth rate. As the population
density gets sufficiently low, if the resource available for each individual becomes
large, or if the environmental degradation is moderated enough to be negligible by
the recovery process, the per capita growth rate could have the maximal fertility
which the species potentially has. It is now represented by r0. The positive parameter
β characterizes the sensitivity of the per capita growth rate for the density effect.
The larger β introduces the severer density effect on the per capita growth rate.
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Thus the parameter β may be regarded as the coefficient of density effect, while it
is sometimes called Verhulst coefficient or Verhulst-Pearl coefficient (refer to p. 103
of Sect. 3.3.2).

With (5.9), the population dynamics model is given by

dN(t)

dt
= {r0 − βN(t)}N(t). (5.10)

This is a logistic equation, already mentioned by (2.15) in Sect. 2.1.3, and also in
Sects. 2.6.2, 3.3.2, 3.3.3, 3.3.4, and 4.5. Although the logistic equation (5.10) is a
nonlinear ordinary differential equation, it can be explicitly solved by the method of
variable separation (refer to Sect. 13.1.2):

N(t) = r0/β

1 −
{

1 − r0/β
N(0)

}
e−r0t

. (5.11)

Even for the logistic equation with temporally varying r0 and β,

dN(t)

dt
= {r0(t)− β(t)N(t)}N(t), (5.12)

it is possible to get the following explicit solution:

N(t) =
[
�(t)

∫ t

0

β(v)

�(v)
dv + �(t)

N(0)

]−1

, (5.13)

where �(t) := exp
[− ∫ t0 r0(τ )dτ ]. Since the logistic equation (5.12) can

be classified to what is called Bernoulli equation in the theory of ordinary
differential equation, it can be mathematically translated to a linear ordinary
differential equation with the variable transformation y(t) = 1/N(t), as
described in Sect. 13.1.4. By the way to solve the linear ordinary differential
equation, we can derive the solution (5.13) (refer to Sect. 13). The temporal
variation by (5.12) is significantly affected by the nature of time-dependence
of r0 and β as exemplified by a numerical calculation shown in Fig. 5.4.

As indicated by Figs. 2.11 (p. 47), 3.1 (p. 99), and 5.5a in this section, the
temporal change of population size N(t) by the logistic equation (5.10) shows a
monotonic approach to the equilibrium value r0/β from any positive initial size
N(0). However, it should be remarked that, as seen in Fig. 5.5a, the population
growth curve of logistic equation (5.10) is not necessarily of S-shape, differently
from the Gompertz curve in Sect. 5.2. When the positive initial value N(0) is
less than r0/2β, the curve (5.11) becomes an S-shaped monotonically increasing
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Fig. 5.4 A numerical example of the temporal variation by the non-autonomous logistic equa-
tion (5.12) with r0(t) = 1 + 0.2 sin(t) and β(t) = 1 − e−0.1t ; N(0) = 0.1. The population size
approaches a periodical stationary oscillation with the mean value 1

Fig. 5.5 The logistic growth (5.11). (a) Numerically drawn curves from different initial values
with r0 = 1.2 and β = 1.0. Every curve monotonically approaches the equilibrium value r0/β =
1.2. (b) A fitting of (5.11) to the annual data about the number of Japanese tourists in abroad (Japan
National Tourism Organization, 2015), by the least square method with the hypothesized carrying
capacity of 1.9 million: r0 = 0.147 and N(1964) = 368000 (R2 = 0.9233). The actual data is
however 128000 for 1964

one. In contrast, when N(0) is greater than r0/2β and less than r0/β, it does not
become S-shape, but monotonically increasing convex. The critical value r0/2β is
sometimes called half saturation value, since it is the half value of the equilibrium
value r0/β which the population size asymptotically approaches. Moreover, when
N(0) is greater than r0/β, it becomes monotonically decreasing concave. In some
literatures, an S-shaped curve would be called the logistic curve, or the curve of
logistic growth (refer to Sect. 3.2). It may be incorrect and is misleading.
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Exercise 5.1 Show that the velocity of the temporal change of population size
by (5.10) takes maximum when the population size N is at the half saturation value
r0/2β.

For the population dynamics by the logistic equation (5.10), the equilibrium
value r0/β means the carrying capacity introduced at p. 34 of Sect. 2.1.1. It may
be called satuation density too. Substituting the parameter of carrying capacity
K = r0/β for (5.10), it can be rewritten in a mathematically equivalent form,
the logistic equation (2.15) in p. 45 of Sect. 2.1.3, which is the most popular form
used in many literatures as the logistic equation. Actually, both of the logistic
equations (2.15) and (5.10) are easily proven to be mathematically equivalent to
the following non-dimensionalized form:

dx(τ)

dτ
= {1 − x(τ)} x(τ), (5.14)

with appropriate variable and parameter transformations.

The ordinary differential equation which consists of only the dependent
variable(s) and its derivative(s) is called autonomous. If the ordinary dif-
ferential equation contains some functions of independent variable t in any
part of it, it is called non-autonomous. Malthus model (5.3) and the logistic
equation (5.10) are autonomous, while (5.6) and (5.12) are non-autonomous.

Rigorously, these two logistic equations (2.15) and (5.10) must be distinguished
from each other in the sense of modeling. For (2.15), the per capita growth rate (5.3)
is given by

r = r(N) = r0

(
1 − N

K

)
. (5.15)

In the mathematical modeling, we find that r0/K of (5.15) corresponds to β of (5.9).
For the logistic equation (5.10) with (5.9), since the carrying capacity is given by
r0/β, the carrying capacity is proportional to the intrinsic growth rate r0. In contrast,
for (2.15) with (5.15), the carrying capacity is given byK , a parameter independent
of r0. This means that the carrying capacity is determined a priori as a characteristic
of the habitat environment. In the case of (5.10), the carrying capacity is determined
a posteriori as a consequence of the balance between the fertility and density effect.

For the logistic equation (2.15) with (5.15), the velocity of the population
size change per individual is proportional to (K − N)/K . From this aspect

(continued)
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of modeling, we may regard the velocity as determined by the proportion of
the “rest of environment” to the carrying capacity K . In other words, when a
given capacityK is “consumed” by the population size N , the velocity of the
size change per individual is proportional to the unused amount of capacity,
K − N . In this translation of the modeling, the intrinsic growth rate r0 may
be regarded as the coefficient of capacity consumption. This is a frequently
used translation of modeling for the logistic equation (2.15), since it may
be simple to understand the modeling. However, we must remark that the
population dynamics with a logistic growth could not be necessarily shown by
the logistic equation (2.15). Especially, if there is a temporal/seasonal change
of environmental condition which affects the intrinsic growth rate, the density
effect, or the carrying capacity itself, such an environmental influence must be
reasonably introduced in the modeling. As shown by numerical examples in
Fig. 5.6 about the logistic equation (2.15) with the time-dependent r0 = r(t)

andK = K(t), such an introduction of temporal change for those parameters
can cause a significant difference in the characteristics which depends on how
it is introduced in the model.

Fig. 5.6 Numerical examples of the temporal variation of population size by the non-autonomous
logistic equation (2.15) with (5.15) where r0 = r0(t) = 1 + (σr/2) sin(ωrt + φr) and
K = K(t) = 1 + (σK/2) sin(ωKt + φK). (σr, ωr, φr, σK, ωK, φK) = (a) (4.0, 5.0, 0, 0, 0, 0);
(b) (0, 0, 0, 1.0, 5.0, 0); (c) (4.0, 5.0, 0, 1.0, 5.0, 5.6); (d) (4.0, 5.0, 0, 1.0, 4.0, 0). Commonly
N(0) = 0.1
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Fig. 5.7 The dynamical nature of logistic equation (5.10) in the one dimensional phase space. (a)
The graph for the density dependence of the velocity of size change dN/dt ; (b) The graph for that
of per capita growth rate (1/N)dN/dt . The per capita growth rate is decreasing in terms of the
population size N , and is negative for N greater than the equilibrium size r0/β

From the aspect of dynamical system given by (5.10), the value of N represents
the state of the population dynamics. In this sense, each value of N indicates a
point on the number line which is generally called one dimensional phase space.
The equilibrium value r0/β is shown as a point N = r0/β in the phase space, the
equilibrium point.

The dynamical nature of logistic equation (5.10) can be understood from the
solution (5.11), while it can be investigated and understood from the equation (5.10)
itself. This is not only a useful qualitative analysis on the dynamical nature, but also
a meaningful approach to the dynamical nature in order to identify the meanings
of modeling. As illustrated by Fig. 5.7, the direction of temporal change in the
population size is determined by the sign of the velocity of population size change
dN/dt or the per capita growth rate (1/N)dN/dt . On the number line, that is, in
the one dimensional phase space, the population size increases if the sign is positive
so that the point corresponding to the value of N moves rightward where the sign is
positive. If the sign is negative, the population size decreases so that the point of N
moves leftward on the number line. Hence, from Fig. 5.7, we can conclude that the
value of N monotonically approaches the carrying capacity r0/β from any positive
initial value N(0).

For modeling the logistic growth by (5.10), we introduced (5.9) as the simplest
assumption for the per capita growth rate under the negative density effect,
since the linear function is mathematically simplest. Now we may consider a
more general function for the negative density effect like

r = r(N) = r0 − βNα, (5.16)

(continued)
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where the additional positive parameter α means the sensitivity of growth rate
to the density effect. For the smaller α, the decrease of per capita growth
rate due to the density effect is steeper in the range of low population density
while it is more moderate in the range of high population density. Then for the
population dynamics model by (5.3) with the per capita growth rate (5.16),
the carrying capacity is given by [r0/β]1/α which depends on α too. The
model (5.3) with (5.16) was studied by Gilpin and Ayala [3]. Actually, the
further past work by F.E. Smith [13], showed that the density dependence
of the per capita growth for the population of Daphnia magna became a
decreasing convex curve in the experimental data. This may be regarded as
corresponding to the case of α < 1 in (5.16).

Even with the per capita growth rate (5.16), the ordinary differential
equation (5.3) is a Bernoulli equation (refer to Sect. 13.1.4). Indeed, with the
variable transformation y(t) = 1/[N(t)]α , we can derive a linear ordinary
differential equation of y, and consequently get the following solution:

N(t) =
[

r0/β

1 − {1 − r0/β
[N(0)]α

}
e−αr0t

]1/α

. (5.17)

We may understand from this solution that the qualitative nature of the
temporal variation of N is the same as that of the standard logistic equa-
tion (5.10) or (2.15) with (5.15), while such a qualitative correspondence can
be equivalently shown by the way to use the one-dimensional phase space as
described above.

5.4 Verhulst Model

Even when the temporal change of a population size could be regarded as continu-
ously occurring, the actual observation usually gives the data of a sequence of sizes
with a certain time interval. Now let us consider such a sequence of population sizes
when the population dynamics follows a logistic equation (5.10).

Like a series of snapshots, let us see the logistic growth given by (5.11) with a
time step h. From (5.11), the population sizes Nk = N(kh) at t = kh and Nk+1 =
N((k + 1)h) at t = (k + 1)h are given by

Nk = r0

β −
{
β − r0

N(0)

}
e−r0kh

; Nk+1 = r0

β −
{
β − r0

N(0)

}
e−r0(k+1)h

. (5.18)
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Eliminating e−r0kh in these two equations, we can get the following recurrence
relation [2]:

Nk+1 = 1

1 + φr0(h)βNk
· er0hNk, (5.19)

where

φr0(h) = er0h − 1

r0
. (5.20)

The recurrence relation (5.19) may be regarded as a discrete time model of
population dynamics, and it is called Verhulst model. This naming is after the work
by Pierre F. Verhulst (1804–1849) [14, 15] in which he used a mathematically
equivalent discrete time model about the variation of populations in France and
some other European countries (see [1]). It is clear that the recurrence relation (5.19)
is mathematically equivalent to Beverton-Holt model which was described in
Sect. 2.1.1. For this reason, Beverton-Holt model can be regarded reasonably in a
modeling sense as the discrete time model corresponding to the logistic equation, as
already mentioned in Sect. 2.1.3.

From the above derivation of Verhulst model (5.19), the temporal sequence
of population sizes by (5.19) can track exactly, that is, with no error, the time
continuous change of population size by the corresponding logistic equation (5.10).
Further, it is easy to confirm that, at the limit as h → 0, the recurrence relation (5.19)
converges to (5.10).

We must note the form of the density effect in Verhulst model (5.19) in
comparison to that in the logistic equation (5.10), since they have the exact
correspondence. As a consequence, the density effect corresponding to (5.9) for
the logistic equation (5.10) is introduced in the corresponding discrete time model
by a rational function like (2.2) in Beverton-Holt model.

Such a correspondence with respect to the modeling of density effect between
the time continuous and discrete models was intuitively applied for the
modeling of the discrete time model such as Leslie-Gower model of the
population dynamics of competing species described in Sect. 2.3.1.

We may consider the following more general ordinary differential equation
for a population dynamics:

dN(t)

dt
= {r0 −D(N(t))}N(t), (5.21)

(continued)
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whereD(N) is a function introducing a density effect on the per capita growth
rate. It can be shown that the recurrence relation

N(t + h) = 1

1 + φr0(h)D(N(t))
·N(t)er0h (5.22)

with φr0(h) defined by (5.20) has the same qualitative nature of dynam-
ics as (5.21) when the function D(N) satisfied a certain general condi-
tion [12]. Such a correspondence about the qualitative nature of dynamics
between (5.21) and (5.22) as well as (5.10) and (5.19) may be called
dynamical consistency.

5.5 Logistic Equation to Logistic Map

The logistic map (2.13) or equivalently (12.4) in Sect. 12.1.3 is defined with a
quadratic polynomial as well as the logistic equation (5.10) (equivalently (2.15)
or (5.14)). Such a similarity between discrete and continuous time models may
be mathematically understood with a time-discretization, sometimes called simple
discretization which is well-known to be used in the Euler method for the numerical
calculation of differential equation. It can give a piece-wise numerical approxima-
tion of the solution [8, 9].

Let us consider an approximation of the solution for the logistic equation (5.10)
about a short interval [t, t + �t]. We use here the following approximation of the
derivative:

dN(t)

dt
= lim
h→0

N(t + h)−N(t)
h

≈ N(t +�t)−N(t)
�t

. (5.23)

This is the simplest approximation making use of the mathematical definition of
derivative, called simple discretization. Applying the approximation (5.23) for the
logistic equation (5.10), we can obtain the equation

Ñ(t +�t)− Ñ(t)
�t

= {r0 − βÑ(t)}Ñ(t),

that is,

Ñ(t +�t) = Ñ(t)+ {r0 − βÑ(t)}Ñ(t)�t (5.24)

= (1 + r0�t)
{

1 − β�t

1 + r0�t Ñ(t)
}
Ñ(t).
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This recurrence relation can determine the value of Ñ(t + �t) at time t + �t

by that of Ñ(t) at time t . Thus, it can be used to give a sequence of values
{Ñ(0), Ñ(�t), Ñ(2�t), Ñ(3�t), . . . } approximating the solution of the logistic
equation (5.10), where Ñ(0) = N(0). This numerical approximation may be called
(forward) Euler method.

Substituting ℛ0 = 1+r0�t and xk = β�tÑ(k�t)/(1+r0�t) (k = 0, 1, 2, . . . )
for (5.24), we can find the logistic map (12.4) in Sect. 12.1.3. Therefore, the logistic
map may be regarded as an approximation with such a simple discretization for
the logistic equation, as already mentioned at the end of Sect. 2.1.3. However, the
approximation by (5.23) can be valid only for sufficiently small �t .

The sequence {Ñ(0), Ñ(�t), Ñ(2�t), Ñ(3�t), . . . } generated by the recur-
rence relation (5.24) converges to that of values correspondingly determined by the
solution of the logistic equation (5.10) at the limit as �t → 0. As long as �t > 0,
however, there must be an error between the value of N and the corresponding
value of Ñ . Figure 5.8 numerically illustrates such a difference in the values, which
appears bigger for the larger �t . The time step size �t must satisfy a certain
condition for the sequence by the recurrence relation (5.24) to approximate well
the solution of the logistic equation (5.10).

It can be easily found that the dynamics by (5.24) has the equilibria 0 and r0/β,
which are identical with those of the logistic equation (5.10). However, as seen
in Sects. 2.1.3, 12.1.3, and 12.1.5, the logistic map (2.13) or (12.4) generates a
periodic solution or a chaotic variation for a large value of ℛ0, while the logistic
equation (5.10) shows only a monotonic approach to the carrying capacity r0/β.
Further, although such a monotonic approach to r0/β by the logistic equation (5.10)
appears even for the initial value N(0) > r0/β, the logistic map (2.13) may show
a non-monotonic approach to it as in the upper second graph of Fig. 2.9 in p. 43.
Moreover, the recurrence relation (5.24) generates negative values for the initial
value Ñ(0) > r0/β + 1/(β�t). For these reasons, the logistic map itself cannot be
regarded as the discrete version of logistic equation, nor the discrete time model
corresponding to the logistic equation, as well as the argument in the previous
section from a different viewpoint.

Fig. 5.8 Numerical plots of {Ñ(0), Ñ (�t), Ñ(2�t), Ñ(3�t), . . . } versus the curve of the solu-
tion (5.11) of the logistic equation (5.10). (a) �t = 0.1; (b) �t = 0.5; (c) �t = 1.0. Commonly,
r0 = 1.0; β = 0.1; N(0) = Ñ(0) = 0.1
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Exercise 5.2 Find the condition for �t such that the recurrence relation (5.24)
generates a monotonic sequence {Ñ(0), Ñ(�t), Ñ(2�t), Ñ(3�t), . . . } approach-
ing r0/β, respectively for Ñ(0) < r0/β and for Ñ(0) > r0/β.

Now let us consider the other application of simple discretization for the logistic
equation (5.10). First, the general population dynamics model

1

N(t)

dN(t)

dt
= r(N(t), t)

can be rewritten to

d lnN(t)

dt
= r(N(t), t).

Applying the simple discretization for the derivative in the left side, we can get

ln Ñ(t +�t)− ln Ñ(t)

�t
= r(Ñ(t), t),

that is,

ln Ñ(t +�t) = ln Ñ(t)+ r(Ñ(t), t)�t,

and subsequently,

Ñ(t +�t) = Ñ(t) · er(Ñ(t),t )�t.

With the per capita growth rate (5.9) for the logistic equation, we arrive at the
following recurrence relation:

Ñ(t +�t) = Ñ(t) · e{r0−βÑ(t)}�t. (5.25)

Lastly, with notations Nk := Ñ(k�t) (k = 0, 1, 2, . . . ) and ℛ0 := er0�t , we
can find the clear mathematical correspondence of the above recurrence relation to
Ricker model (2.7) in Sect. 2.1.2. This relation of the logistic equation to Ricker
model was mentioned in p. 46 of Sect. 2.1.3 too.

Exercise 5.3 Find the condition for �t such that the recurrence relation (5.25)
generates a monotonic sequence {Ñ(0), Ñ(�t), Ñ(2�t), Ñ(3�t), . . . } approach-
ing r0/β, respectively for Ñ(0) < r0/β and for Ñ(0) > r0/β. Further, try to
discuss which of (5.24) and (5.25) could be regarded as the better approximation
for the logistic equation (5.10), from the results of Exercises 5.2 and 5.3.
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5.6 Allee Effect

The per capita growth rate for the logistic equation is monotonically decreasing
in terms of the density, in a linear manner as (5.9) or (5.15) defines (Fig. 5.7b).
Therefore, from the definition of Allee effect described in Sect. 2.2.1, the population
dynamics by the logistic equation does not involve the Allee effect. Although the
net growth rate of population size for the logistic equation has a unimodal density
dependence as seen in Fig. 5.7a, it does not mean any positive density effect for the
per capita growth rate.

We may consider the following simple model with a positive density effect:

1

N(t)

dN(t)

dt
= {aN(t)− v}{w − bN(t)}, (5.26)

where parameters a, b, v, and w are positive constants. The first factor in the right
side means a positive density effect, and the second a negative density effect. In
this modeling, the per capita growth rate is determined by the product of these two
factors of density effect.

This model is the case of Fig. 5.9b when v/a 	= w/b. There is a threshold
value Nc = min[v/a,w/b] for the population density N . When N < Nc, the
population size monotonically decreases to become extinct, while, when N > Nc,
it monotonically approaches the positive equilibrium value N∗ = max[v/a,w/b]
to become persistent. Thus, the population dynamics by (5.26) has the nature of

Fig. 5.9 The density effect for the per capita growth rate when the Allee effect exists. (a) weak
Allee effect; (b) strong Allee effect. Refer to Sect. 2.2.3. In the case of (a), the population size
necessarily approaches a positive equilibrium value from any positive initial size, while, in the case
of (b), it monotonically decreases to become zero from sufficiently small initial size. Arrows on the
horizontal axis indicates the direction of the temporal change in the population size (like Fig. 5.7
about the logistic equation). In both cases, the per capita growth rate becomes the maximum for a
specific population density, that means the optimum density defined in Sect. 2.2.1
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bistability, which appeared and discussed also for the discrete time model (2.17) in
Sect. 2.2.1.

We should remark that the Allee effect does not necessarily bring the nature of
bistability, as already mentioned in Sect. 2.2.3. For an illustrative example, the per
capita growth rate like Fig. 5.9a involves the (weak) Allee effect, where it does not
have the nature of bistability.

When v/a 	= w/b, the population dynamics by (5.26) has three equilibria,
0, Nc, and N∗. Although the ordinary differential equation (5.26) keeps the
value N at Nc for any time t > 0 if the initial value is N(0) = Nc, the
value N leaves away from Nc for the initial value N(0) = Nc + ε with any
infinitesimal value ε 	= 0. This is clear by the phase space argument (refer to
the description in Sect. 5.3) with Fig. 5.9b for (5.26). This kind of equilibrium
is called unstable equilibrium (refer to Sect. 14.1). If the population size stays
at an unstable equilibrium, any perturbation in the population size causes the
change of population size leaving from the equilibrium.

In contrast, the population size N asymptotically approaches the equilib-
rium N∗ from the initial value N(0) = N∗ + ε with any infinitesimal value
ε 	= 0. This means that, if the population size stays at the equilibrium value
N∗, any sufficiently small perturbation in the population size cannot work to
significantly change the size, and the population size tends to return to N∗.
This kind of equilibrium is called locally asymptotically stable equilibrium
(refer to Sect. 14.1).

In the exclusive case where v/a = w/b, it is easy to show that the
right side of (5.26) is negative for any non-negative value of N except for
N∗
c = v/a = w/b. Thus, the population size necessarily decreases as time

passes when N 	= N∗
c . As seen by the phase space argument in this case,

the population size monotonically decreases to become zero if N(0) < N∗
c ,

while it monotonically decreases to become N∗
c if N(0) > N∗

c . In this case,
the population dynamics by (5.26) has two equilibria, 0 and N∗

c . Equilibrium
0 can be easily shown to be locally asymptotically stable, taking account of
only positive perturbation because of the non-negative value for N from the
modeling definition. The other equilibriumN∗

c is unstable, since any negative
perturbation causes the change of population size leaving from it.
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5.7 Metapopulation Model

5.7.1 Levins Model

Metapopulationmeans a collection of subpopulations separated in space which have
some ecological interactions, for example, by migration between them. This concept
has created by an ecological researcher Richard ‘Dick’ Levins (1930–2016) in his
work of 1969 [10]. He expressed it as “a population of populations”. Levins [10, 11]
proposed also a new mathematical modeling for the population dynamics based on
the concept. His idea of the modeling has been widely accepted and applied for
a variety of theoretical researches in landscape ecology and conservation biology,
especially in the ecological field treating the population dynamics for a large spatial
scale.

The essence of Levins’ idea proposed in [10, 11] is to binarize the state of local
habitat, briefly patch, with respect to the trend of the subpopulation size in it. The
possible alternative states are ‘occupied’ and ‘empty’ (or ‘vacant’). This idea ignores
the detail of subpopulation size in each patch, and focuses on the establishment
of subpopulation at the patch in a certain ecological sense. Hence in other words,
it may be regarded as a modeling of coarse-graining population dynamics. The
metapopulation dynamics in this meaning is to describe the temporal change of the
frequency of occupied patches in the whole habitat which consists of a collection of
local habitats fragmented in space, that is, habitable patches.

The mathematical model proposed by Levins [10, 11] is as follows:

dE

dt
= eP − cPE;

dP

dt
= cPE − eP,

(5.27)

where E and P mean the frequencies of ‘empty’ and ‘occupied’ patches respec-
tively. They may be regarded as the probabilities of such states at an arbitrarily
chosen patch. The occupied patch is the local habitat established by a subpopulation
in an ecological sense. The empty patch is the local habitat regarded as with no
such an establishment, which may be vacant before any settlement, or may be
emerged after the extinction of subpopulation previously inhabiting there. Such
an extinction may be caused for example, by a stochastic disturbance in the
environment with a climate change or human interruption. The parameter e is the
coefficient of the occurrence of event to make the patch ‘empty’ (e.g., extinction or
abandonment). The parameter c is the coefficient of the settlement to make the patch
‘occupied’. The term cP introduces the likeliness of the occurrence of settlement
by the immigration from occupied patches. This indicates that the probability of the
settlement to an empty patch is proportional to the frequency of occupied patches
in the whole habitat, whereas cP does not have any meaning of probability in itself
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(refer to the below arguments in the gray box). The model (5.27) is frequently called
Levins model.

Let us suppose that there are N patches in the whole habitat for the
metapopulation. Then NP(t) and NE(t) respectively define the (expected)
numbers of occupied and empty patches at time t . Now, the probability that
an empty patch is settled by immigrants in a sufficiently short period [t, t+�t]
is assumed to be given by ρNP(t)�t + o(�t), where the positive parameter
ρ is the coefficient reflecting the easiness/hardness of settlement in the empty
patch. At the same time, the probability that an occupied patch becomes empty
in [t, t +�t] is assumed to be given by e�t + o(�t). Then the change in the
frequency of empty patches during [t, t +�t], that is, NE(t +�t)−NE(t)
satisfies the following relation:

NE(t +�t)−NE(t) = −{ρNP(t)�t + o(�t)
}
NE(t)+ {e�t + o(�t)

}
NP(t).

Dividing both sides by N�t and taking the limit as �t → 0, we can get the
first equation of (5.27) with c = ρN .

From the modeling and definition, it is always satisfied that 0 ≤ E ≤ 1, 0 ≤ P ≤
1, and E + P = 1. Hence, the model (5.27) can be expressed by the following one
dimensional ordinary differential equation:

dP

dt
= cP (1 − P)− eP (5.28)

= {(c − e)− cP }P. (5.29)

The Eq. (5.28) is sometimes introduced as Levins model instead of (5.27). As seen
from the Eq. (5.29), Levins model (5.28) is mathematically equivalent to the logistic
equation (5.10). If c ≤ e, the frequency of occupied patches P monotonically
decreases to asymptotically converge to 0, that is, the population goes extinct
(Fig. 5.10a). If c > e, the frequency P asymptotically converges to equilibrium
1−e/c (Fig. 5.10b). In this case, the eventual positive frequency of occupied patches
means the persistence of population in the habitat. Consequently, it is implied that
the population persistence requires a sufficient activity of migration between patches
in such a fragmented habitat.
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Fig. 5.10 The phase space consideration on the nature of Levins model (5.28). (a) For c ≤ e, the
population goes extinct; (b) For c > e, the population asymptotically approaches the persistent
equilibrium

5.7.2 3-State Metapopulation Model

A straightforward extension of Levins model (5.27) is by introducing different states
of patch in the modeling. In this section, we consider such a model proposed by
Ilkka Hanski (1953–2016) in 1985 [5] (see also [6] and [7, p. 61]):

dE

dt
= eSS − cLE;

dS

dt
= cLE + eLL− eSS − rS −mLS;

dL

dt
= rS +mLS − eLL,

(5.30)

where E, S, and L are the frequencies of empty patches, occupied patches
with a small population size, and occupied patches with a large population size
respectively. The state of settled patch is now binarized into two different ones.
This modeling provides a metapopulation dynamics with three states of patch. It
is satisfied that E(t) + S(t) + L(t) = 1 for any time t , which can be reasonably
embodied in (5.30) such that d{E(t)+ S(t) + L(t)}/dt = 0 for any time t .

The parameter c is the coefficient of initial settlement by a small subpopulation
immigrating in an empty patch. It must be noted that, in (5.30), the migration from
patches of the state S is assumed negligible for the settlement. The parameter eS is
the coefficient of the transition to the state ‘empty’E for the small subpopulation at
the state S. The parameter r is the coefficient of the growth of small subpopulation
to the large one with the reproduction in the patch, while eL is the coefficient of
the decline of large subpopulation to the small one with some causes to reduce the
population size. The parameter m is the coefficient of the increase of subpopulation
size at the state S by the immigration from the patches of the state L. The net
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immigration rate per small subpopulation is introduced bymLwhich is proportional
to the frequency of large subpopulations. Hanski mentioned in his book [7] that the
most important factor in this model is the immigration to small subpopulations from
large subpopulations. The effect of such an immigration may be called rescue effect
for a reason described in the following part.

Since E(t)+S(t)+L(t) = 1 for any time t , the system (5.30) is mathematically
equivalent to the following two dimensional system:

dE

dt
= eS(1 − E − L)− cLE;

dL

dt
= (r +mL)(1 − E − L)− eLL.

(5.31)

The extinct equilibrium (1, 0) always exists. By the local stability analysis (refer to
Sects. 14.2 and 14.3), we can get the following result on the stability of the extinct
equilibrium (1, 0):

⎧⎪⎨
⎪⎩

unstable (saddle) if
c

eS
>
eL

r
;

locally asymptotically stable (stable node) if
c

eS
<
eL

r
.

(5.32)

First, let us consider the case of m = 0 for (5.31), when there is no contribution
of the immigration from large subpopulations to the state transition of small
subpopulation. For the system (5.31) with m = 0, we can easily find that the unique
non-trivial equilibrium

(E∗, L∗) = (E†,
1 − E†

1 + eL/r

)
(5.33)

exists if and only if E† := eSeL/(cr) < 1. Further with the local stability analysis
on this equilibrium, we can get the following result about its existence and stability
(Exercise 5.4):

⎧⎪⎨
⎪⎩

absent if
c

eS
<
eL

r
;

unique and locally asymptotically stable (stable node) if
c

eS
>
eL

r
.

Exercise 5.4 Derive the above result on the local stability of the non-trivial
equilibrium (E∗, L∗) given by (5.33) when m = 0.

For the system (5.31) with m > 0, there is a bistable case with two non-
trivial equilibria, Eu and Es, as illustrated by Fig. 5.11. In such a bistable case,
the population goes extinct if the frequency of empty patches is beyond a threshold
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Fig. 5.11 Numerical example of a bistable case for the 3-state metapopulation model (5.30).
Nullclines and vector flows in the (E,L)-phase plane (left) and the temporal changes of variables
from different initial conditions (right). The dashed line in the (E,L)-phase plane indicates
E + L = 1. In (a) of right figures, the system asymptotically approaches a persistent state from
(E(0), S(0), L(0)) = (0.5, 0.5, 0.0), while in (b), it asymptotically approaches the extinct state
from (E(0), S(0), L(0)) = (0.6, 0.4, 0.0). Commonly, eS = 0.08; c = 0.2; eL = 0.5; r = 0.02;
m = 2.2

at a certain moment, while it asymptotically approaches a persistent state if the
frequency of empty patches is below the threshold.

The existence of such a bistable situation can be illustrated also by the bifurcation
diagram as shown in Fig. 5.12. It is indicated that there are threshold values μc and
νc for parametersm/r and c/eS respectively such that

When
m

r
≤ μc,

⎧⎪⎨
⎪⎩

the population goes extinct if
c

eS
<
eL

r
;

the population approaches the persistent state Es if
c

eS
>
eL

r
;

When
m

r
> μc,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

the population goes extinct if
c

eS
< νc;

a bistable situation appears if νc <
c

eS
<
eL

r
;

the population approaches the persistent state Es if
c

eS
>
eL

r
.

The threshold value μc is given by eL/r + 1, while νc must depend on m/r and
eL/r as seen in Fig. 5.13.
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Fig. 5.12 Numerically drawn bifurcation diagrams about the value 1 − E∗ = S∗ + L∗ at the
equilibrium state for the 3-state metapopulation model (5.30). (a) m = 0; (b) m/r = 30.0; (c)
m/r = 50.0; (d) m/r = 110.0. Commonly, eL/r = 25.0. In figures, “L.A.S.” means “locally
asymptotically stable”

The bifurcation at c/eS = eL/r when m/r ≤ μc in Fig. 5.12a is classified
in what is called supercritical bifurcation in the dynamical system theory,
at which one equilibrium switches its stability from asymptotically stable to
unstable while the other asymptotically stable equilibrium comes to exist at
the same time. In contrast, the bifurcation at c/eS = eL/r when m/r > μc in
Fig. 5.12c–d is called subcritical bifurcation. The subcritical bifurcation has
a structure called hysteresis. On the other hand, the bifurcation at c/eS = νc
is what is called saddle-node bifurcation.
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Fig. 5.13 Parameter
dependence of the asymptotic
behavior for the 3-state
metapopulation model (5.30).
Numerical result for
eL/r = 25.0. There are
possible three different
asymptotic behavior,
indicated by thick black solid
boundaries

It is clearly indicated by Figs. 5.12a and 5.14a that, when there is no non-trivial
equilibrium, the extinct equilibrium (1, 0) is globally asymptotically stable (refer
to Sect. 14.8). Even when a non-trivial equilibrium exists, the extinct equilibrium
(1, 0) is locally asymptotically stable if the parameter c/eS is not so large such
that c/eS < eL/r . When the parameter c/eS is sufficiently large and a unique non-
trivial equilibrium (E∗, L∗) exists with E∗ = Es, equilibrium (E∗, L∗) is globally
asymptotically stable as seen in Fig. 5.14b.

Exercise 5.5 With the local stability analysis, show that the non-trivial equilibrium
(E∗, L∗) is a locally asymptotically stable node (sink) or saddle when m > 0.

As a consequence, the population goes extinct when the immigration from the
patches of large subpopulation to the empty patch is little active with small c,
while it persists when it is sufficiently active with large c. However, even when
the immigration from the patches of large subpopulation to the empty patch is little
active, the population may persist with an initial condition if the immigration from
the patches of large subpopulation to the patch of small subpopulation is sufficiently
active. This is a bistable case as shown in Figs. 5.11 and 5.12b–d. The rescue effect
called by Hanski [7] belongs to this case. In other words, the immigration from the
patches of large subpopulation can work as a rescue effect to reduce the frequency of
patches with small subpopulation, and subsequently it can decrease the probability
of extinction.
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Fig. 5.14 Nullclines and vector flows in the (E,L)-phase plane. Numerically drawn for (a) c =
0.05 when there is no non-trivial equilibrium; (b) c = 2.5 when there is a unique non-trivial
equilibrium. Commonly, eS = 0.08; eL = 0.5; r = 0.02; m = 2.2

Answer to Exercise

Exercise 5.1(p. 142)

The logistic equation (5.10) can be rewritten as

dN

dt
=
( r0

2β

)2 − β
(
N − r0

2β

)2
.

The right side takes maximum when N = r0/2β, that is, the net growth rate of
population size dN/dt takes maximum (r0/2β)2 when the population size becomes
the half saturation value r0/2β.

Exercise 5.2 (p. 148)

As mentioned in Sect. 5.5, the recurrence relation (5.24) is mathematically equiv-
alent to the logistic map (2.13) in Sect. 2.1.3 and (12.4) in Sect. 12.1.3. Thus, as
described in Sects. 2.1.3 and 12.1.3, it is necessary for a monotonic approach to the
equilibrium r0/β that 1 < ℛ0 = 1 + r0�t ≤ 2. Since r0 > 0 and �t > 0, this
necessary condition leads to the following condition about the time step size �t :

�t ≤ 1

r0
. (5.34)
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We must remark that the recurrence relation (5.24) becomes nonsense as an
approximation for the logistic equation for Ñ(0) ≥ r0/β + 1/(β�t), since the
subsequent sequence {Ñ(�t), Ñ(2�t), Ñ(3�t), Ñ(4�t), . . . } becomes negative
or all zero. Hence, we are going to consider the recurrence relation (5.24) only for
the initial value Ñ(0) < r0/β + 1/(β�t).

Next, when 1 < ℛ0 ≤ 2, the cobwebbing method (refer to Sect. 12.1.2) for
the logistic map (12.4) shows that the orbit {Ñ(0), Ñ(�t), Ñ(2�t), Ñ(3�t), . . . }
from the initial value Ñ(0) < r0/β necessarily approaches equilibrium r0/β

in a monotonically increasing manner, as seen from Fig. 12.2b in Sect. 12.1.3,
because the derivative of the graph at the intersection with the line of xk+1 =
xk, that is, at equilibrium r0/β, is non-negative and less than 1. Therefore, the
condition (5.34) is sufficient for the sequence {Ñ(k�t)} to approach equilibrium
r0/β in a monotonically increasing manner when Ñ(0) < r0/β.

For the case where r0/β < Ñ(0) < r0/β + 1/(β�t), the same arguments as
the cobwebbing method on the logistic map (12.4) can be applied (see Fig. 12.2b).
First, let us consider the case of ℛ0 = 1 + r0�t = 2, that is, when �t = 1/r0.
In this case, the graph of the logistic map has the intersection with the line of
xk+1 = xk at the extremal maximum of the graph, so that the derivative is zero at
the intersection. It can be easily found from the recurrence relation (5.24) that 0 <
Ñ(�t) < r0/β if r0/β < Ñ(0) < r0/β + 1/(β�t). Thus, the subsequent sequence
{Ñ(�t), Ñ(2�t), Ñ(3�t), Ñ(4�t), . . . } must approach equilibrium r0/β in a
monotonically increasing manner, as already described in the above. As a result,
when �t = 1/r0, we have Ñ(0) > Ñ(�t) and Ñ(k�t) < Ñ((k + 1)�t) for any
k > 0. This means that the orbit from Ñ(0) ∈ (r0/β, r0/β + 1/(β�t)

)
does not

monotonically approach r0/β but does in a manner like the upper second figure in
Fig. 2.9 (p. 43) of Sect. 2.1.3.

Next let us consider the case of ℛ0 = 1 + r0�t < 2, that is, when �t < 1/r0.
As exemplified in Fig. 12.2b, the graph of the logistic map has the intersection with
the line of xk+1 = xk at a point in the left side of the extremal maximum of the
graph. Thus, the cobwebbing method can show that Ñ(k�t) < Ñ((k − 1)�t) and
Ñ(k�t) > r0/β for any k > 0 if

r0

β
< Ñ(0) < Ñc := 1

β�t
, (5.35)

where Ñc is derived from the root of the following equation of N such that Ñc >
r0/β:

N + (r0 − βN)N�t = r0

β
.

It is the larger intersection of the graph of the logistic map with the horizontal line
of the value r0/β. As a result, when �t < 1/r0, if the condition (5.35) is satisfied,
the sequence {Ñ(k�t)} approaches r0/β in a monotonically decreasing manner.
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Further, it can be easily shown by the cobwebbing method that, when Ñ(0) >
Ñc, we have Ñ(�t) < r0/β, so that the orbit {Ñ(k�t)} does not become monotonic
but approaches r0/β in a manner like the upper second figure in Fig. 2.9 (p. 43) of
Sect. 2.1.3, as in the previous case mentioned above.

Lastly, let us consider the case of Ñ(0) = Ñc. In this case, we have Ñ(�t) =
r0/β and Ñ(k�t) = r0/β for any k > 0. So the sequence {Ñ(k�t)} can be regarded
as monotonically decreasing in a mathematically wide sense.

Consequently, for the initial value Ñ(0) ∈ (
r0/β, r0/β + 1/(β�t)

)
, the

condition (5.35) is necessary and sufficient for a monotonic approach of the
sequence {Ñ(k�t)} to the equilibrium r0/β in a decreasing manner. Hence, from
the condition (5.35), we have

�t ≤ 1

βÑ(0)
. (5.36)

We note that 1/{βÑ(0)} < 1/r0 in this case, since this is for Ñ(0) > r0/β. Besides,
when the condition (5.36) is satisfied, the initial value Ñ(0) is necessarily less than
r0/β + 1/(β�t).

As a result from the conditions (5.34) and (5.36), if and only if

�t ≤ min
[ 1

βÑ(0)
,

1

r0

]
= 1

r0
min

[ 1

βÑ(0)/r0
, 1
]
, (5.37)

the sequence {Ñ(k�t)} generated by the recurrence relation (5.24) becomes
monotonic to approach r0/β.

Exercise 5.3 (p. 149)

As mentioned in Sect. 5.5, the recurrence relation (5.25) is mathematically equiv-
alent to Ricker model (2.7) in Sect. 2.1.2. We shall now apply the logically same
arguments as those in Exercise 5.2.

As described in Sect. 2.1.2, it is necessary for a monotonic approach to the
equilibrium r0/β that 1 < ℛ0 = er0�t ≤ e. Since r0 > 0 and �t > 0, this
necessary condition leads to the condition about the time step size �t (5.34) same
as for Exercise 5.2 about the recurrence relation (5.24).

Next, when 1 < ℛ0 ≤ e, by the same arguments as in Exercise 5.2 with
the cobwebbing method (refer to Sect. 12.1.2) for the logistic map (12.4), it can
be shown that the orbit {Ñ(0), Ñ(�t), Ñ(2�t), Ñ(3�t), . . . } from the initial
value Ñ(0) < r0/β necessarily approaches equilibrium r0/β in a monotonically
increasing manner (refer to Fig. 5.15). Therefore, the condition (5.34) is sufficient
for an approach of the sequence {Ñ(k�t)} from Ñ(0) < r0/β to equilibrium r0/β

in a monotonically increasing manner.



162 5 Continuous Time Modeling for Single Species Population Dynamics

Fig. 5.15 The illustrative graph of Ricker model (5.25). (a) �t = 1/r0; (b) �t = 1/r0.

For Ñ(0) > r0/β, let us first consider the case of ℛ0 = er0�t = e, that is, when
�t = 1/r0, as in Exercise 5.2. In this case, as seen in Fig. 5.15a, the graph of Ricker
model has the intersection with the line of Nk+1 = Nk at the extremal maximum
of the graph, so that the derivative is zero at the intersection. It can be easily found
from the recurrence relation (5.25) that Ñ(�t) < r0/β if Ñ(0) > r0/β. Thus,
the subsequent sequence {Ñ(�t), Ñ (2�t), Ñ(3�t), Ñ(4�t), . . . } must approach
equilibrium r0/β in a monotonically increasing manner, as already described in the
above. As a result, when �t = 1/r0, we have Ñ(0) > Ñ(�t) and Ñ(k�t) <
Ñ((k + 1)�t) for any k > 0. This means that the orbit does not monotonically
approach r0/β from Ñ(0) > r0/β.

Next let us consider the case of ℛ0 = er0�t < e, that is, when �t < 1/r0. In
this case, the graph of Ricker model has the intersection with the line of Nk+1 =
Nk at a point in the left side of the extremal maximum of the graph, as seen in
Fig. 5.15b. Thus, the cobwebbing method can show that Ñ(k�t) < Ñ((k − 1)�t)
and Ñ(k�t) > r0/β for any k > 0 if

r0

β
< Ñ(0) < Ñcc, (5.38)

where Ñcc is the root of the following equation of N such that Ñcc > r0/β:

Ne(r0−βN)�t = r0

β
.

It is the larger intersection of the graph of Ricker model with the horizontal line of
the value r0/β. As a result, when�t < 1/r0, if the condition (5.38) is satisfied, the
sequence {Ñ(k�t)} approaches r0/β in a monotonically decreasing manner.

Further, it can be easily shown by the cobwebbing method that, when Ñ(0) >
Ñcc, we have Ñ(�t) < r0/β, so that the orbit {Ñ(k�t)} does not become
monotonic.
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Lastly, let us consider the case of Ñ(0) = Ñcc. In this case, we have Ñ(�t) =
r0/β and Ñ(k�t) = r0/β for any k > 0. So the sequence {Ñ(k�t)} can be regarded
as monotonically decreasing in a mathematically wide sense.

Consequently, for the initial value Ñ(0) > r0/β, the condition (5.38) is necessary
and sufficient for a monotonic approach of the sequence {Ñ(k�t)} to equilibrium
r0/β in a decreasing manner. The condition (5.38) is mathematically equivalent to

Ñ(0)e{r0−βÑ(0)}�t ≥ r0

β

as easily seen from Fig. 5.15b. That is, we find the following condition in terms of
�t :

�t ≤ 1

r0

ln[βÑ(0)/r0]
βÑ(0)/r0 − 1

. (5.39)

It can be easily shown that the right side of (5.39) is greater than 1/r0 for Ñ(0) <
r0/β, and less than 1/r0 for Ñ(0) > r0/β, while it converges to 1/r0 as Ñ(0) →
r0/β.

As a result from the conditions (5.34) and (5.39), if and only if

�t ≤ 1

r0
min

[ ln[βÑ(0)/r0]
βÑ(0)/r0 − 1

, 1
]
, (5.40)

the sequence {Ñ(k�t)} generated by the recurrence relation (5.25) becomes
monotonic to approach r0/β.

Now we shall compare the recurrence relation (5.25) with (5.24) with respect to
which could be regarded as the better approximation for the logistic equation (5.10).
Since the recurrence relation (5.24) can become an approximation for the logistic
equation only for the initial value Ñ(0) ∈ (

0, r0/β + 1/(β�t)
)
, let us compare

the recurrence relation (5.25) with (5.24) according to the condition for the
monotonicity about the sequence generated by the recurrence relation only for
Ñ(0) ∈ (0, r0/β + 1/(β�t)

)
.

For Ñ(0) ∈ (0, r0/β], the obtained conditions (5.37) and (5.40) for the
recurrence relations (5.24) and (5.25) respectively are identically given by (5.34).
Hence for Ñ(0) ∈ (0, r0/β], they could be regarded as compatible with respect to
the monotonicity of the sequence generated by them.

For Ñ(0) > r0/β, we can prove that the following equality holds:

1

βÑ(0)/r0
<

ln[βÑ(0)/r0]
βÑ(0)/r0 − 1

.
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Therefore, for Ñ(0) ∈ (
r0/β, r0/β + 1/(β�t)

)
, the condition (5.40) is weaker

than (5.37). Moreover, the condition (5.40) is applicable also for Ñ(0) ≥ r0/β +
1/(β�t). That is, the recurrence relation (5.25) can be used as an approximation for
the logistic equation even for Ñ(0) ≥ r0/β + 1/(β�t) under the condition (5.40).

As a consequence from these arguments, it is implied that the recurrence
relation (5.25) could be regarded as better than (5.24) according to the monotonicity
of the sequence generated by the recurrence relation.

Exercise 5.4 (p. 155)

For the non-trivial equilibrium (E∗, L∗) of the system (5.31), we can derive the
linearized system around (E∗, L∗) with the following Jacobian matrix A (refer to
Sect. 14.2):

A =
⎛
⎝−a∗ −b∗

−c∗ −d∗

⎞
⎠ , (5.41)

where a∗, b∗, c∗, and d∗ are positive elements defined as

a∗ := eS + cL∗; b∗ := eS + cE∗; c∗ := r +mL∗;
d∗ := 2mL∗ + r + eL −m(1 − E∗) = r +mL∗ + reL

r +mL∗ .

As described in Sect. 14.3, we can determine the local stability of (E∗, L∗) by the
eigenvalues of A. The characteristic equation to determine the eigenvalue λ for A
becomes

λ2 + (a∗ + d∗)λ+ a∗d∗ − b∗c∗ = 0. (5.42)

For the equilibrium (5.33) when m = 0, the characteristic equation (5.42)
becomes

λ2 + (eS + cL∗ + r + eL)λ+ cr(1 − E∗) = 0.

When the equilibrium (5.33) exists, we can easily find that the discriminant for
this characteristic equation is necessarily positive, and two eigenvalues are different
negative values, making use of the relation between the roots and coefficients.
Therefore, the equilibrium (5.33) is locally asymptotically stable as a stable node,
that is, a sink when it exists.
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Exercise 5.5 (p. 158)

About Jacobian matrix A for the non-trivial equilibrium (E∗, L∗) of (5.31), given
by (5.41) shown in the answer for Exercise 5.4, we have trA = a∗ + d∗ >

0. Thus, by the relation between the roots and coefficients of the characteristic
equation (5.42), if the eigenvalue is imaginary only when detA = a∗d∗ −b∗c∗ > 0,
then the real part must be negative. If the eigenvalue is real, both eigenvalues
are negative when detA > 0, while they have different signs when detA < 0.
Therefore, when a non-trivial equilibrium (E∗, L∗) exists for (5.31), it is a locally
asymptotically stable node (sink) if detA > 0, while it is unstable as a saddle if
detA < 0. This result implies that, in a bistable case with two non-trivial equilibria,
one is a sink and the other is a saddle.
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Chapter 6
Modeling of Interspecific Reaction

Abstract This chapter is devoted to the description of the idea to model the
interspecific reaction for the continuous time population dynamics model. The
contents could be rarely found in the other textbooks, though the topics are popular
in mathematical biology.

6.1 Mass Action Type of Interaction

In this section, we shall describe an idea of mathematical modeling with the mass
action assumption which is a basic modeling for the chemical kinetics. It provides
some mathematical idea applied for the modeling of intra- and inter-specific reaction
in biological population.

6.1.1 Mass Action Assumption

In the theory of chemical kinetics, the velocity of chemical reaction in a closed
constant volume is defined by the velocity of the change in the concentration of
a substrate or product by the reaction. Let us consider now the following simplest
reaction as an example:

αA + βB → γC, (6.1)

where α, β, and γ are positive constants. The reaction of two substrates A
and B makes the product C. For this chemical reaction, the velocity of the
change in the concentration of chemical substances is mathematically expressed
by −d[A]/dt , −d[B]/dt , and d[C]/dt respectively, where [A], [B], and [C] mean
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the corresponding concentrations. Since the definition of the velocity of the above
chemical reaction V must be unique, it is defined as

V = − 1

α

d[A]
dt

= − 1

β

d[B]
dt

= 1

γ

d[C]
dt

.

With this definition, the velocity is uniquely determined independently of which
substrate or product is used to measure it.

Generally, the velocity of the chemical reaction is a function of the concentrations
of all substances c1, c2, . . . , cj involved in the reaction: V = V(c1, c2, . . . , cj ).
The function of V is called rate law of the reaction in the theory of chemical
kinetics [1]. In many cases, it is given by a power function like

V = V(c1, c2, . . . , cj ) = κ c
n1
1 c

n2
2 c

n3
3 · · · cnjj (6.2)

which may be an approximation for the rate law. The function significantly depends
on the physical condition under which the chemical reaction occurs. The rate
equation (6.2) is called law of kinetic mass action [1]. The constant κ is called
rate constant for the chemical reaction, and each exponent nk the reaction order
or kinetic order for each substance in the chemical reaction. The sum of exponents,
n1 +n2 +· · ·+nj , may be used as the reaction order for the chemical reaction itself.
In the theory of chemical kinetics, the law of mass action means that the chemical
reaction at the equilibrium state satisfies that

c
n1
1 c

n2
2 c

n3
3 · · · cnjj = constant.

This law can be derived by the arguments of thermodynamics. From the dynamical
system theory, this is the relation among chemical substances when the velocity of
the chemical reaction reaches zero, which indicates the termination of reaction or
the dynamical equilibrium where forward and backward reactions are balanced with
each other in terms of the velocity.

As a fundamental modeling in mathematical biology, the power function
like (6.2) has been applied for the velocity of the change in the population size
(density). In such a modeling, a product of powered sizes (densities) appears in
the formula for the velocity. It may be called the modeling with the mass action
assumption for the intra- or the inter-specific reaction. It must be remarked that the
mass action assumption in mathematical biology is not applied for the equilibrium
state in the population dynamics. It may be regarded as corresponding to the law
of kinetic mass action mentioned above with the rate law (6.2). For this reason, the
mass action assumption in mathematical biology is different from the law of mass
action in the chemical kinetics as the definition.
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6.1.2 Lokta-Volterra Type of Interaction

We shall call here the mass action assumption with every reaction order of unity
Lotka-Volterra type of interaction in the population dynamics modeling especially
about the interspecific reaction. That is, according to the Lotka-Volterra type of
interaction, the contribution of an interspecific reaction to the velocity of the
change in the population size is introduced by the product of sizes (densities) of
reacting populations (refer to Sects. 7.1 and 8.4). This may be the most conventional
definition of the Lotka-Volterra type of interaction in mathematical biology.

This naming of the modeling is after an American scientist Alfred J. Lotka
(1880–1949) and an Italian scientist Vito I. Volterra (1860–1940), especially after
Lotka’s works on the host-parasite system for the pest control in 1925 [9, 10] and
Volterra’s work on the fish prey-predator system of the Adriatic Sea in 1926 [16].
They indeed used the mass action assumption to introduce the interspecific reaction.

For such a modeling with the Lotka-Volterra type of interaction, some literatures
describe it as follows:

Consider an individual and the frequency of its encounters to the others. The frequency
must become larger as the population density around the individual gets larger. Suppose
that every individual is located at random in space, and moves at random. Further, assume
that the spatial distribution of population density can be always approximated by a uniform
distribution. This assumption may be called the assumption (or approximation) of complete
mixing or perfect mixing. With this assumption, the frequency of encounters to the others
can be assumed to be proportional to the population density.

The assumption in this description would appear natural since the expected number
of the others in a fixed range around an arbitrarily chosen individual is proportional
to the density under the complete mixing or under the uniform density distribution.

If the population density is constant independently of time, the process of the
random encounter to the others can be regarded as a Poisson process (refer
to Sect. 15.1). The number of the encounters to the others follows a Poisson
distribution (refer to Sect. 15.2). The modeling of the Lotka-Volterra type of
interaction in the above corresponds to the case where the mean of the Poisson
distribution is proportional to the population density.

Besides, as a mathematical simplification, let us assume that the duration for the
interaction between individuals is ignored in comparison to the time scale of the
change in the population size, so that such an interaction affects only the velocity of
the change in the population size at each moment of the encounter. Following the
temporal change in the population density under the complete mixing, the frequency
of encounters to the others contributes to the momental velocity (rate) of interaction
between individuals at each time.
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Along this description of the Lotka-Volterra type of interaction, it is nonsense
in general to introduce the contribution of an interaction among more than two
individuals. Such an interaction among more than two individuals must occur by
an encounter among them at the same moment because of the above assumption.
Generally, the probability of such an encounter among more than two individuals at
a moment could be regarded as a higher order of likelihood than that of an encounter
between two individuals. Such an event with the higher order of likelihood hardly
occurs in comparison to the event with the lower order of likelihood. Let us now
denote the probability of an encounter between individuals A and B by p. The
corresponding probability between individuals B and C is given also by p, since
the encounter is assumed to be random. Even with this simple assumption, we may
note that the probability of such an encounter among more than two individuals
at a moment must have the order of p2. More precisely in a modeling sense, such
an encounter among more than two individuals at a moment would require some
further conditions for its occurrence, and have the higher order. For this reason, the
contribution of the interaction among more than two individuals to the velocity of
the change in the population size is ignored about the mathematical modeling for
population dynamics in general.

In actual population dynamics, the interaction between individuals takes a
certain duration, and the spatial distribution of individuals could not be
random or uniform. However, many mathematical models with the Lotka-
Volterra type of interaction have been playing an important role to discuss a
variety of actual population dynamics in the history of biological science. One
of the reasons may be that the long-term or the large-scale characteristics of
such population dynamics could match those of the mathematical model with
the Lotka-Volterra type of interaction.

For example, even if each interaction between individuals does not have
any spatio-temporal randomness or sufficiently short duration, the occurrence
of the interaction could be approximated well by a random distribution over
time and space. This is an approximation, what is called mean field approxi-
mation. Roughly saying, the non-randomness and non-instantaneousness of
a population dynamics could cancel out in the mean over the population.
This approximation would be applicable especially for a population with a
sufficiently large size or high density. In contrast, for a population with a
small population size or low density, the mean field approximation may be
inappropriate for the modeling.

Although the Lotka-Volterra type of interaction is conventionally mentioned as a
mathematical modeling for the interspecific reaction, the above-mentioned concept
of its modeling is applicable even for the intraspecific reaction. When an interaction
between individuals within a population has a contribution to the velocity of the
change in the population size, the mass action assumption introduces the modeling
by the square of the population density, as we shall describe in the next section.
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6.1.3 Logistic Equation by Lotka-Volterra Type of Interaction

In this section, we shall see the modeling of a single species population with the
mass action assumption to result in the logistic equation described in Sect. 5.3.

Now let us assume that the per capita growth rate of a population is given by a
constant r0. This means that the population grows exponentially with the malthusian
coefficient r0 (Sect. 5.1). We introduce an additional assumption that an interaction
between individuals within the population causes a decrease in the population
size. We may imagine a fatal battle or cannibalism for example. As mentioned in
the previous section, we shall apply here the mass action assumption, that is, the
Loka-Volterra type of interaction for the contribution of such an interaction to the
population dynamics. Thus, we introduce it as the square of population density in the
modeling for the velocity of the change in the population size. Hence, the population
dynamics consists of Malthus growth and a process to decrease the population size
by the Lotka-Volterra type of intraspecific reaction. Now we have the following
population dynamics model:

dN

dt
= r0N − γN2, (6.3)

where the positive parameter γ indicates the strength of the influence of interaction
on the population growth. As easily seen, this model is mathematically equivalent
to the logistic equation (5.10) in Sect. 5.3.

It should be remarked that the above modeling does not include any density effect
on the per capita growth rate, but assumes a process to decrease the population size
itself. More clearly, the second term in the right side of (6.3) has no relation to
the reproduction. For this reason, the logistic equation (6.3) must be regarded as
different in a modeling sense from the logistic equation (5.10) with the per capita
growth rate (5.9) under the density effect described in Sect. 5.3.

For this model, if we introduce a time-dependence in the malthusian coeffi-
cient, r0 = r0(t), it means the temporal change of the intrinsic growth rate,
which may be regarded as an influence of the environmental change on the
physiological condition of individual. In contrast, if we introduce a time-
dependence in the parameter γ , γ = γ (t), it means a temporal change in
the strength of the interaction between individuals. It may be regarded as an
effect of the seasonal change of aggressiveness or mobility. In this way, the
temporal change of γ must be independent of that of the fertility in the above
modeling.

Even for the logistic equation (6.3), we can formally derive the formula of the
“per capita growth rate” (1/N)dN/dt . However, it does not mean the per capita
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growth rate in the meaning of “growth” by the reproduction. It includes the negative
factor converted from the reduction rate of the population size by the intraspecific
reaction.

With the general mass action assumption, the interaction can be introduced by a
power term with an exponent θ (> 0). We may get the following equation regarded
as a generalization of (6.3):

dN

dt
= r0N − γNθ . (6.4)

This ordinary differential equation can be solved as the logistic equation (5.10) in
Sect. 5.3, and the solution becomes (5.17) given in Sect. 5.3 with α = θ − 1.

For θ > 1, the nature of the population dynamics by (6.4) is qualitatively
similar with that of the logistic equation and its extension with (5.16) in Sect. 5.3.
In contrast, for θ ≤ 1, it has a great difference from them. When θ = 1, the
equation (6.4) becomes a Malthus model with the malthusian coefficient r0 − γ .
Hence, the population size exponentially grows if r0 > γ , while it exponentially
decreases to cause the extinction if r0 < γ (refer to Sect. 5.1).

Peculiarly when θ < 1, the per capita growth rate (1/N)dN/dt and the net
growth rate dN/dt are negative for sufficiently small density N , and become
positive for sufficiently large density N , as shown in Fig. 6.1. With the phase

Fig. 6.1 The density dependence of the per capita growth rate (1/N)dN/dt and the net growth
rate dN/dt for (6.4) with θ < 1. Numerically drawn with (a) r0 = 1; γ = 0.8; r0/γ = 1.25 > 1,
(b) r0 = 0.8; γ = 1.0; r0/γ = 0.8 < 1. In each figure, the curves are for θ = 0.1, 0.3, 0.5, 0.8,
and 0.9
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space argument described in Sect. 5.3, it is clear that the equilibrium N = N∗ =
[r0/γ ]1/(θ−1) is unstable. For the initial value N(0) < N∗, the population size
monotonically decreases toward zero, while, for N(0) > N∗, it monotonically
increases unboundedly. In the latter case, since the term r0N gets much larger
than γNθ for sufficiently large N , the population size is expected to asymptotically
approach the exponential growth with the malthusian coefficient r0.

In comparison to the logistic growth or the similar growth with θ > 1, the pop-
ulation dynamics (6.4) with θ < 1 does not approach any positive equilibrium like
the carrying capacity, but approaches the extinctive state or increases unboundedly,
depending on the initial value. Such a situation may be regarded as bistable in a
wide sense. In the population dynamics (6.4), it is necessary for the interaction to
regulate the population growth in order to lead the size to a carrying capacity. For
the interaction term with the general mass action assumption, the case of θ < 1
cannot work enough to regulate the growth by the reproduction with the intrinsic
growth rate r0. Moreover, when θ < 1, it is satisfied that Nθ > N > N2 for
sufficiently smallN < 1. Thus, for sufficiently small population size, the interaction
introduced by the term γNθ is indeed stronger as θ gets smaller. This is the cause
of the population extinction from sufficiently small initial value N(0). In such a
situation of sufficiently small population size, the interaction is so strong that the
growth by the reproduction with the intrinsic growth rate r0 cannot compensate the
decrease due to the interaction. In contrast, when θ > 1, the interaction can work
enough to regulate the growth for large population size, and to become sufficiently
weak for the growth under small population size.

6.1.4 Intraspecific Reaction and Density Effect

In the generalized model (6.4), there was no density effect on the reproduction
itself, since it was constructed by introducing the intraspecific reaction to decrease
the number of individuals itself. Now we shall consider the following model of
population dynamics with the density effect on the reproduction in addition to the
intraspecific reaction:

dN

dt
= (r0 − βN)N − γNθ , (6.5)

where the net growth rate is given by (5.9) in Sect. 5.3.
For this model, the population size does not diverge. When θ ≥ 1, the population

size approaches a unique equilibrium in a monotonic manner for any positive initial
value, similar as the logistic equation. Simply saying, when θ ≥ 1, the population
dynamics has nature qualitatively similar with the logistic equation. In contrast,
as illustratively shown in Fig. 6.2, the population dynamics with θ < 1 shows
characteristics different from the logistic growth.
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Fig. 6.2 Numerical example
of the temporal change in the
population size by (6.5), with
r0 = 1.2; β = 1.0; γ = 0.5;
θ = 0.5. Curves of the
temporal change from eight
different initial values are
drawn

For the population dynamics with θ < 1, there is the following positive critical
value for the intrinsic growth rate r0:

r
†
0 := β

{γ (1 − θ)
β

}1/(2−θ) + γ
{ β

γ (1 − θ)
}(1−θ)/(2−θ)

. (6.6)

The population goes extinct for any positive initial value if r0 < r
†
0 . If r0 > r

†
0 ,

there is a positive threshold value for the initial population size N(0) such that the
population monotonically goes extinct if N(0) is less than it. If N(0) is greater
than it, the population size asymptotically approaches a positive equilibrium in
a monotonic manner, as shown in Fig. 6.2. This may be regarded as a bistable
case corresponding to that for the model in the previous section. Therefore, in
this bistable case for the model (6.5) with θ < 1, we find that the population
dynamics involves indeed a strong Allee effect like Fig. 5.9b in p. 150 of Sect. 5.6.
As seen from the bifurcation diagram in Fig. 6.3, a saddle-node bifurcation appears
at r0 = r

†
0 , which is similar to the 3-state metapopulation model (5.30) as shown in

Fig. 5.12, whereas the whole structure of the bifurcation is different from each other.

For the critical case with r0 = r
†
0 , the nature of population dynamics

becomes qualitatively similar to the model (5.26) with v/a = w/b, which
was described in the last part of Sect. 5.6. Mathematically, the unique
positive equilibrium {γ (1 − θ)/β}1/(2−θ) is unstable, while the population
size asymptotically approaches it from the initial value greater than it. The
population size monotonically decreases toward zero from any positive initial
value smaller than it.
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Fig. 6.3 Numerically drawn
bifurcation diagrams in terms
of the bifurcation parameter
r0 for the population
dynamics model (6.5) with
β = 1.0; γ = 0.5; θ = 0.5,
where r†

0 = 1.19055. In
figures, “L.A.S.” means
“locally asymptotically
stable”

6.1.5 Consumer Population of Exhaustible Resource

In this section, we shall derive the logistic equation again with a modeling of the
consumption of an exhaustible resource by a population, introducing the reaction
between the resource and population by the Lotka-Volterra type of interaction.

Let R(t) denote the available stock of a resource at time t , which is consumed
by a population of size N(t). Now, we introduce the velocity of the resource
consumption by the Lotka-Volterra type of interaction between the resource and
population, that is, with the product N(t)R(t) at time t . Thus, we shall consider
now the following model for their temporal change:

⎧⎪⎪⎨
⎪⎪⎩

dN(t)

dt
= γR(t)N(t);

dR(t)

dt
= −ρN(t)R(t),

(6.7)

where positive parameters γ and ρ mean respectively the per capita growth rate with
a unit amount of resource and the coefficient of per capita resource consumption
rate. We ignore the death and migration to cause the change of the population size.
As already mentioned, the resource is exhaustible without any renewal process.
Since the reproduction is possible to use the resource, the assumption implies that
the population growth becomes dull as the resource gets consumed. For example,
such a situation may be regarded as corresponding to a culture of microorganism in
laboratory.
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From (6.7), we can derive the following differential equation:

dR/dt

dN/dt
= dR

dN
= −ρRN

γNR
= − ρ

γ
(constant).

This equation indicates that dR/dN is constant independently of time. Integrating
withN , we can easily solve it and get the following relation betweenN andR which
is satisfied for any time t:

R(t) = − ρ

γ
N(t) + C, (6.8)

where C is the constant of integration, which must satisfy the following equation
about the initial values N(0) and R(0) at time t = 0:

C = R(0)+ ρ

γ
N(0). (6.9)

This result gives a conservative quantity R(t) + ρ
γ
N(t) for the system (6.7). The

conservative quantity is uniquely determined by the initial values N(0) and R(0)
from (6.8) and (6.9):

R(t) + ρ

γ
N(t) = R(0)+ ρ

γ
N(0).

This equation describes the solution curve of (N(t), R(t)) in the (N,R)-phase plane
too.

By substituting (6.8) and (6.9) for the right side of dN/dt in (6.7), we can obtain
the following one dimensional ordinary differential equation about the temporal
change of N :

dN(t)

dt
= {γR(0)+ ρN(0)− ρN(t)}N(t). (6.10)

The temporal change of the population size N follows the dynamics given by
this ordinary differential equation which reflects the resource consumption in the
background. It is clear that the equation (6.10) is mathematically equivalent to the
logistic equation in Sect. 5.3. Thus, the population governed by the system (6.7)
shows a logistic growth. The population size monotonically increases to approach
an equilibrium, that is, a carrying capacity.

In the logistic growth, the carrying capacity is given byN(0)+(γ /ρ)R(0), which
depends on the initial values N(0) and R(0). This is significantly different from
that for the logistic equation in Sect. 5.3 where the carrying capacity is determined
independently of the initial value of the population size. The parameters in the
logistic equation (5.10) in Sect. 5.3 are given as an innate nature for the population
dynamics and the fixed environmental condition, so that the carrying capacity is
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determined by them as r0/β. In constrast, the logistic growth by (6.10) is derived
from the interaction between the resource and population, so that the carrying
capacity is determined by the interaction itself.

Let us consider a modified model with a process of resource renewal,
following the above modeling for (6.7):

⎧⎪⎪⎨
⎪⎪⎩

dN(t)

dt
= γR(t)N(t);

dR(t)

dt
= −ρN(t)R(t) + εR(t),

(6.11)

where the positive parameter ε is the resource renewal rate. Remark that this
modeling of the resource renewal assumes a Malthus growth of the resource
stock, so that it exponentially increases when the consumer population is
absent, that is, when N ≡ 0. For the system (6.11), we can derive

dN

dR
= γN

ε − ρN ,

and find the conservative quantity

ε lnN(t)− ρN(t)− γR(t) = ε lnN(0)− ρN(0)− γR(0). (6.12)

Hence, we can get the following equation to describe the temporal change of
N in the same way:

dN(t)

dt
=
[
γR(0)+ ε ln

N(t)

N(0)
− ρ {N(t)−N(0)}

]
N(t). (6.13)

This is not the logistic equation. However, it can be easily shown that the
population size N monotonically increases to approach an equilibrium like
the logistic growth, while the resource becomes exhausted as well as in
the previous model (6.7). Note that, in this modeling, the resource cannot
be renewed once it is exhausted. For this reason, the resource may be, for
example, a bioresource for the consumer, like a biological population as the
food.
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Exercise 6.1 Find how the population size N temporally varies by the following
system of population-resource dynamics:

⎧⎪⎪⎨
⎪⎪⎩

dN(t)

dt
= γR(t)N(t);

dR(t)

dt
= −ρN(t)R(t) + A,

(6.14)

whereA is a positive constant. This is the model in which the resource has a constant
inflowA from the outside of system. The resource stock linearly increases when the
consumer population is absent.

6.2 Michaelis-Menten Type of Interaction

6.2.1 Michaelis-Menten Reaction Velocity Equation

In the theory of enzyme kinetics, there is a well-known reaction velocity equation
called Michaelis-Menten reaction velocity equation or simply Michaelis-Menten
equation. We shall describe the outline of its derivation with a specific mathematical
treatment in this section, since the mathematical argument is useful and applicable
for the modeling of population dynamics.

Enzyme is a macromolecule to work as a catalyst to effectively accelerate
the chemical reaction even with relatively low concentration. It combines with a
substrate and makes a chemical complex (coordination compound). Some enzymes
work in most of biochemical reactions. The enzyme concentration is typically much
low compared to the substrate concentration. So is the complex concentration in
the enzyme kinetics. For this reason, in the theory of enzyme kinetics, it could
be an appropriate approximation to suppose that the complex concentration is at
a stationary state after a short-term state transition. We shall see here how this
approximation works to derive an approximated reaction velocity equation in a
simple enzyme kinetics.

Let us consider the following simplest enzyme kinetics with substrate S, enzyme
E, complex X, and product P:

E + S k1�
k−1

X
k2�
k−2

E + P . (6.15)

This enzyme kinetics is sometimes called Michaelis-Menten structure. The enzyme-
substrate complex X may be called Mihaelis-Menten complex and sometimes
mentioned as ES complex. The naming is after the chemists Leonor Michaelis
(1875–1947) and Maud L. Menten (1879–1960) who theoretically studied the
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structure (6.15) and reasonably derived the reaction velocity equation (6.24) that
we will derive by the following arguments.

This simple enzyme kinetics may be applied for a larger scale of biological
reaction process. For example, we may consider a process such that a foreign
substance like hormone, pathogen, or antigen operates on a cell of biological
tissue, and the tissue is induced to produce another response matter like
hormone, antigen, or antigen protein. In this process, E is the inactive receptor
cell of the tissue, S the foreign substance, X the receptor cell activated by S,
and P the response matter produced by the tissue. The parameter k1 is the rate
coefficient of the reaction between the foreign substance and receptor cell, and
k−1 is the coefficient to index the probability of the dissociation of the foreign
substance from the receptor cell. The receptor cell combined with the foreign
substance produces the response matter with the production coefficient k2.
After the production of response matter, the receptor cell immediately loses
its activity and returns to the inactive state. Since such a response matter could
not combined with the receptor cell, it would be appropriate in this biological
process to put k−2 = 0.

As well as in Sect. 6.1.1, let us denote the concentration of substance A by [A].
With the law of kinetic mass action in Sect. 6.1.1, we shall consider the following
system of nonlinear ordinary differential equations as the dynamics to describe the
temporal change of concentrations in the enzyme kinetics (6.15):

d[E]
dt

= −k1[E][S] − k−2[E][P] + (k−1 + k2)[X]; (6.16)

d[X]
dt

= k1[E][S] + k−2[E][P] − (k−1 + k2)[X]; (6.17)

d[S]
dt

= −k1[E][S] + k−1[X]; (6.18)

d[P]
dt

= k2[X] − k−2[E][P]. (6.19)

This is the system of an enzyme kinetics without any inflow or outflow of
substances. Hence the above system satisfies the following equations for any time t
as the conservation laws for it:

[E] + [X] = [E]0; (6.20)

[S] + [P] + [X] = [S]0, (6.21)
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where [E]0 and [S]0 are respectively the initial concentrations of E and S before
the reaction starts. At the same time, from (6.20) and (6.21), we have d[E]/dt =
−d[X]/dt and −d[S]/dt = d[P]/dt + d[X]/dt .

As mentioned before, we suppose that the enzyme concentration E is very low,
and so is the complex concentration X, compared with the substrate and product
concentrations, S and P: [X] � [S] and [X] � [P]. For the conservation law (6.21),
we can use the approximation

[S]0 ≈ [S] + [P]. (6.22)

Further, we shall introduce an additional approximation that the temporal change
in the complex concentration could be negligible, compared to that in substrate
concentrations. This is what mentioned at the beginning of this section, and
called quasi-stationary state approximation (QSSA), quasi-steady state approxi-
mation (QSSA), stationary state approximation, or Briggs-Haldane approximation.
This approximation can be mathematically introduced as d[X]/dt ≈ 0, that is,
d[E]/dt ≈ 0.

With (6.17) applied the QSSA and the conservation law (6.20), we can get the
approximated expression of [E] and [X] by [S] and [P], and as a result, find the
following approximated equation for the reaction velocity V:

V = −d[S]
dt

(
≈ d[P]

dt

)
≈ (Vm/Km)[S] − (VP/KP)[P]

1 + [S]/Km + [P]/KP
, (6.23)

where

Vm = k2[E]0; VP = k−1[E]0; Km = k−1 + k2

k1
; KP = k−1 + k2

k−2
.

This equation is called Michaelis-Menten reaction velocity equation or Michaelis-
Menten equation with Michaelis constant Km. Those parameters Km and KP are
related to the stationarity of the temporal change in the complex concentration.

When k−2 = 0 in the reaction system (6.15), for example, about a biological
reaction process in a tissue, the Michaelis-Menten equation (6.23) becomes

V = −d[S]
dt

(
≈ d[P]

dt

)
≈ (Vm/Km)[S]

1 + [S]/Km
,= Vm

1 +Km/[S] . (6.24)

This reaction velocity has no dependence on the product concentration [P], and cor-
responds to the Eq. (6.23) with the limit as KP → ∞. In many cases, this Eq. (6.24)
is called Michaelis-Menten equation too. Since the reaction velocity (6.24) depends
only on the concentration of substrate S, we can find the dependence shown
in Fig. 6.4. It is indicated that the velocity has an upper bound in terms of the
concentration of substrate S, which may be regarded as a result of the limited
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Fig. 6.4 The dependence of
the reaction velocity of the
Michaelis-Menten
structure (6.24) on the
concentration of substrate S

catalytic efficiency in the reaction. The similar nature can be found also for the
general Michaelis-Menten equation (6.23).

The Michaelis-Menten equation (6.24) mathematically coincides with
Holling’s disc equation argued later about the temporal change of prey
population size in Sect. 8.5.1. It would be worth considering the reason of
the coincidence in a modeling sense (refer to Sect. 8.5.1).

Now let us consider the initial reaction velocity for (6.23) just at the beginning
of the reaction. Since no product has been produced at the initial, we have [P] = 0.
From (6.23), we can obtain the initial reaction velocity

V0 ≈ k2[E]0[S]
[S] + (k−1 + k2)/k1

= Vm

1 +Km/[S] . (6.25)

Although this formula is the same as (6.24), their meanings are different from each
other. Taking the inverse of (6.25), we can get

V−1
0 ≈ 1

Vm
+ Km

Vm
[S]−1, (6.26)

which shows a linear relation between V−1
0 and [S]−1. Therefore, if the data of

V−1
0 and [S]−1 are plotted for a Michaelis-Menten structure, they are expected to

(approximately) show a linear correlation, with which the slope and intersection of
the fitted line can be used to estimate the values of Vm and Km. This approach has
been successful in many cases, and today such a plot is called Lineweaver-Burk plot
after the names of American chemists, Hans Lineweaver (1907–2009) and Dean
Burk (1904–1988), in the theory of enzyme kinetics [8].



182 6 Modeling of Interspecific Reaction

Exercise 6.2 In the same arguments, show that the Eq. (6.23) or (6.24) (fur-
ther, (6.25) or (6.26)) is applicable for the following Michaelis-Menten structure
with two different states of complex:

E + S k1�
k−1

X1
k2�
k−2

X2
k3�
k−3

E + P . (6.27)

6.2.2 Reaction Velocity Equation with Inhibitor

In this section, we introduce an inhibitor I to the Michaelis-Menten structure (6.15)
(or (6.27)). It is a substance to combine with the enzyme E, and works to reduce the
concentration of active enzyme which can combine with the substrate:

E + I
k+�
k−

Y, (6.28)

where Y denotes the state at which I combines with E. Now with the law of kinetic
mass action, let us assume that the temporal change of the concentrations [I] and
[Y] is governed by

d[I]
dt

= −k+[E][I] + k−[Y];
d[Y]
dt

= k+[E][I] − k−[Y].

With the influence of introduced inhibitor, the temporal change of the enzyme
concentration [E] is now governed by the following ordinary differential equation
instead of (6.16):

d[E]
dt

= −k1[E][S] − k−2[E][P] + (k−1 + k2)[X] − k+[E][I] + k−[Y].

We apply the quasi-stationary state approximation (QSSA) for the reaction (6.28)
between I and E, in addition to that for the complex in (6.15). That is, we use the
QSSA such that d[I]/dt ≈ 0. With the same arguments as in Sect. 6.2.1, we can
obtain the reaction velocity V for the enzyme kinetics (6.15) with (6.28):

V = −d[S]
dt

≈ (Vm/Km)[S] − (VP/KP)[P]
1 +KI[I] + [S]/Km + [P]/KP

,
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whereKI = k+/k−. The initial reaction velocity for this case becomes

V0 ≈ Vm

1 + (Km/[S])(1 +KI[I]) .

The arguments to arrive at these results can be regarded as a reasonable mathemat-
ical modeling to introduce the influence of the inhibitor in the formula of reaction
velocity.

6.2.3 Application for Population Dynamics

The quasi-stationary state approximation (QSSA) is applicable for the modeling of
biological population dynamics [2, 4, 5, 11–15]. In this section, we shall see such
an application for the population dynamics.

Let us consider first the following interaction between two populations:

N1 + N2
γ+�
γ−

C
σ→ N2(1 + κ), (6.29)

where Ni (i = 1, 2) indicates the individual free from the interaction, and C does the
pair of individuals under the interaction. We consider only the interaction between
individuals of different populations. The coefficient to enter in the interaction
is γ+. The coefficient γ− is the coefficient for the end of interaction such that
the interaction does not cause any influence (e.g., damage or benefit) on both
individuals. After such an interaction without any influence, both individuals can
return to the free state as before. In contrast, the coefficient σ is the coefficient
for the end of interaction such that the individual of population 1 dies while the
individual of population 2 makes reproduction with the rate κ . Hence, the reaction
kinetics (6.29) can be regarded as an interspecific reaction like the predation or the
parasitism by species 2 for species 1. More generally saying, it can be the process
that species 2 exploits species 1 for the reproduction.

The kinetics (6.29) shows only the process of interaction between two popula-
tions. Now, taking account of the natural reproduction and death, let us consider the
following reaction equations along the same way of its construction as in Sects. 6.2.1
and 6.2.2:

dN1(t)

dt
= g(N1)− γ+N2(t)N1(t)+ γ−C(t); (6.30)

dC(t)

dt
= γ+N2(t)N1(t)− μC(C)− γ−C(t) − σC(t); (6.31)

dN2(t)

dt
= (1 + κ)σC(t)− μ2(N2)− γ+N1(t)N2(t). (6.32)
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We use here the italic symbol to indicate the densities of individual and pair, instead
of bracket [ ] in the previous sections. The term g(N1) in (6.30) is the net growth
rate of population 1 when population 2 is absent, that is, with no influence of the
interaction. The term μ2(N2) in (6.32) is the death rate of population 2 by itself. The
term μC(C) in (6.31) is the death rate of pair under the interaction, which causes the
death of both individuals forming the pair. Remark that we give now μ2(N2) and
μC(C) as general functions of N2 and C respectively.

Now we apply the QSSA for the temporal change of the pair density C. For the
QSSA, we assume that, in the time scale of the temporal change of the pair density
C, the temporal change of the population densitiesN1 andN2 is negligible. In other
mathematical words, the temporal change of the density of pairs C is assumed to be
much faster than that of the population densities N1 and N2, so that the density of
pairs C can be approximated well as taking a value sufficiently near the equilibrium
(i.e., the quasi-stationary state) at each time t . Then we use the approximation
dC/dt ≈ 0 for (6.31), and get

γ+N2(t)N1(t)− μC(C)− γ−C(t) − σC(t) ≈ 0 (6.33)

for each time t . Once we could get the expression of C in terms of N1 and N2
from (6.33), we can obtain a two dimensional closed system of N1 and N2 by
substituting it for (6.30) and (6.32).

Let us consider a simplest modeling such that μC(C) = δCC and μ2(N2) =
δ2N2 with the per capita natural death rates δC and δ2 which are positive constants.
Besides, let us introduce N2(t) := N2(t) + C(t) which means the total size of
population 2, since it consists of free individuals and those under the interaction
with individuals of population 1. In this modeling, from (6.33), we have

C(t) ≈ N1(t)

kh +N1(t)
N2(t), (6.34)

with kh := (γ− + δC + σ)/γ+.
Therefore, from (6.30)–(6.32) with the QSSA, we can obtain the following two

dimensional closed system of N1 and N2:

dN1(t)

dt
= g(N1)− (δC + σ) N1(t)

kh +N1(t)
N2(t);

dN2(t)

dt
= −δ2N2 +K(δC + σ) N1(t)

kh +N1(t)
N2(t),

(6.35)

with K := {σκ + δ2 − (γ− + δC)}/(δC + σ). Remark that N1 means the density
of individuals which can make the reproduction in population 1. As seen in (6.34)
and subsequently in (6.35), the term of interaction between populations is given
by a rational function of N1 which is sometimes called Michaelis-Menten type of
interaction in population dynamics.
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As already mentioned in Sect. 6.2.1, the Michaelis-Menten type of interaction
term mathematically coincides with Holling’s disc equation argued later about
the predator’s functional response as (8.28) in Sect. 8.5.1. So the interaction
term in (6.35) may be called Holling type of interaction, or Holling’s Type II
response in a sense of ecological modeling.

If K ≤ 0, that is, if σκ + δ2 ≤ γ− + δC, then N2(t) → 0 as t → ∞ that means
the extinction of population 2, independently of the other parameters and the initial
value N2(0) > 0. This is the case where the death rate of pair under the interaction
is sufficiently large, or where the interacting pair is much easy to dissolve. It is likely
however that population 2 becomes extinct even when K > 0.

We must remark that the nature of population dynamics (6.35) does not necessar-
ily correspond to that of (6.30–6.32), since such a correspondence could be expected
only under the condition that the QSSA applied in the above arguments is valid as
the appropriate modeling for the population dynamics. Although the system (6.35)
generally shows the same qualitative behavior as (6.30–6.32) in most case even with
the parameter values which cannot be regarded as corresponding to the condition
for the application of the above QSSA, it must be mathematically inappropriate
to regard the system (6.35) as equivalent to (6.30)–(6.32). Actually, as seen in the
numerical example of Fig. 6.5 with g(N1) = (1 − N1)N1, they may show different
behaviors in some cases.

Fig. 6.5 Numerical example of the temporal change by the systems (6.30)–(6.32) and (6.35), with
g(N1) = (1−N1)N1; μC(C) = δCC; μ2(N2) = δ2N2. Commonly, δC = 0.1; δ2 = 1.0; γ+ = 1.0;
γ− = 0.1; σ = 1.0; κ = 7.0; (N1(0), C(0),N2(0)) = (1.0, 0.0, 0.1). In (a) for (6.30–6.32), the
population dynamics asymptotically approaches a periodic solution, while, in (b) for (6.35), it
asymptotically approaches a positive equilibrium with a damped oscillation
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The system (6.35) with g(N1) = (1 −N1)N1, μC(C) = δCC, and μ2(N2) =
δ2N2 mathematically corresponds to what is called Rosenzweig-MacArthur
model which will be discussed in Sect. 8.6. It is a model for the prey-predator
population dynamics with the predator’s functional response of Holling’s
Type II as mentioned also in the above. It will be described in Sect. 8.6 how the
dynamics of Rosenzweig-MacArthur model is characterized by the existence
of a periodic solution.

As the last subject in this section, let us consider a generalization of the modeling
of (6.29) for a multi-species system. It becomes the following structure for the
system with m+ � species (i = 1, 2, . . . ,m; j = 1, 2, . . . , �):

Hi + Pj
γ+
ij

�
γ−
ij

Cij
σij→ Pj (1 + κij ). (6.36)

This may be regarded as a model for the food web system of two trophic levels with
m prey and � predator species, where Hi is prey species i, and Pj predator species
j . Applying the modeling same as that about (6.30)–(6.32), we shall consider here
the following system:

dHi(t)

dt
= gi(Hi, t) −

�∑
j=1

γ+
ij Hi(t)Pj (t)+

�∑
j=1

γ−
ij Cij (t); (6.37)

dCij (t)

dt
= γ+

ij Hi(t)Pj (t)−DijCij (t)− γ−
ij Cij (t)− σijCij (t); (6.38)

dPj (t)

dt
=

m∑
i=1

(1 + κij )σijCij (t)− δjPj (t)−
m∑
i=1

γ+
ij Hi(t)Pj (t). (6.39)

The variables and parameters have their meanings corresponding to those in the
system (6.30)–(6.32) considered in the earlier part of this section.

Again with the QSSA for the interaction between Hi and Pj for every pair of
i and j , we use the approximation dCij /dt ≈ 0 for any pair of i and j . Then,
from (6.38), we have

Hi(t)Pj (t)− kijCij (t) ≈ 0 (6.40)
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for any pair of i and j and any time t , where kij := (γ−
ij +Dij + σij )/γ+

ij . Now let
us introduce

P j (t) = Pj (t)+
m∑
i=1

Cij (t), (6.41)

which means the total population size of predator species j . From (6.40), we can
obtain

Cij (t) ≈ Hi(t)/kij

1 +∑m
i=1Hi(t)/kij

P j (t). (6.42)

Applying these Eqs. (6.40)–(6.42) for (6.37)–(6.39), we can derive the following
population dynamics model:

dHi(t)

dt
= gi(Hi, t) −

�∑
j=1

(Dij + σij ) Hi(t)/kij

1 +∑m
n=1Hn(t)/knj

P j (t);

dP j (t)

dt
= −δjP j (t)+

m∑
i=1

Kji(Dij + σij ) Hi(t)/kij

1 +∑m
n=1Hn(t)/knj

P j (t),

(6.43)

where Kji := {σij κij + δj − (γ−
ij + Dij )}/(Dij + σij ). The term of interaction

in (6.43) can be regarded as a reasonable form of the interaction for the interacting
multi-species system, which has been derived as a generalization from the interact-
ing two species system (6.35).

As a dynamical system, the nature of (6.43) could not necessarily match
that of (6.37)–(6.39) even in a qualitative sense. The system (6.43) has been
derived from (6.37)–(6.39) with the extremal approximation by the QSSA.

The theory of mathematical analysis on the nature of a dynamical system
with two different time scales, that is, with the fast and slow processes, has
been developed in applied mathematics. One of such mathematical analyses
is what is called two-timing method [3, 6] in the perturbation method [7].
The QSSA is actually the zeroth approximation in the two-timing method
for (6.37–6.39). In this sense, the dynamics (6.43) is regarded as the zeroth
approximation for the dynamics (6.37–6.39).

The system (6.43) mathematically corresponds to the multi-species prey-predator
dynamics model with (8.36) by Holling’s disc equation in p. 235 of Sect. 8.5.2.
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Answer to Exercise

Exercise 6.1 (p. 178)

For the system (6.14), we can easily derive the following equation:

d

dt

{
ρN(t) + γR(t)} = γA (constant).

By integrating with t , we can get the following relation between N and R:

ρN(t) + γR(t) = γAt + ρN(0)+ γR(0),

for the initial values N(0) and R(0). Substituting this relation for the first equation
of (6.14), we can get

dN(t)

dt
= {γAt + ρN(0)+ γR(0)− ρN(t)}N(t). (6.44)

This corresponds to the logistic equation with the intrinsic growth rate which
linearly depends on time. So using the solution (5.13) for the logistic equation (5.12)
with temporally varying parameters in Sect. 5.3, we can mathematically get the
solution N(t) of the ordinary differential equation (6.44):

N(t) = exp
[
(γA/2)t2 + {ρN(0)+ γR(0)}t]

ρ

∫ t

0
exp
[
(γA/2)τ 2 + {ρN(0)+ γR(0)}τ ] dτ + 1/N(0)

,

and find that

lim
t→∞N(t) = lim

t→∞
γAt + ρN(0)+ γR(0)

ρ
= ∞, (6.45)

making use of de l’Hôpital’s law. Therefore, the population size unboundedly
increases. This result can be implied by the modeling for the system (6.14).

First, from the first equation of (6.14), the population size N always increases
as long as N and R are positive. From the modeling for the resource renewal, the
resource cannot become exhausted in a finite time because there is always a resource
inflow from the outside. This means that the resource stock R is always positive for
any finite time, although we shall skip here the more mathematically rigorous proof
of this nature. Thus, the population size N must be monotonically increasing for
any finite time.

Next, from the nature of the logistic equation (5.10) to monotonically approach
the carrying capacity r0/β, the temporal change ofN driven by (6.44) is expected to
tend to come nearer to the valueN∞(t) := {γAt+ρN(0)+γR(0)}/ρ which can be
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regarded as corresponding to r0/β for the logistic equation (5.10). This implies the
expectation that the population size N approaches N∞(t) as time passes, so that it
comes to increase unboundedly in an approximately linear manner. This expectation
is really reflected to the mathematical limit in (6.45).

Exercise 6.2 (p. 182)

With the same assumptions as in Sect. 6.2.1, we shall consider the following system
to describe the temporal change in the substance concentrations in the enzyme
kinetics:

d[E]
dt

= −k1[E][S] − k−3[E][P] + k3[X2] + k−1[X1];
d[X1]
dt

= k1[E][S] + k−2[X2] − (k−1 + k2)[X1];
d[X2]
dt

= k2[X1] + k−3[E][P] − (k−2 + k3)[X2];
d[S]
dt

= −k1[E][S] + k−1[X1];
d[P]
dt

= k3[X2] − k−3[E][P],

with the conservation laws given by [E]0 = [E] + [X1] + [X2] and [S]0 = [S] +
[P] + [X1] + [X2].

With the QSSA such that the temporal change in the complex concentration
is negligible, we can use the approximations d[X1]/dt ≈ 0 and d[X1]/dt ≈
0. Making use of the conservation laws, we can obtain the reaction velocity
equation (6.23), or (6.24) with k−3 = 0. Further, we can obtain the equation for
the initial reaction velocity V0, equivalent to (6.25) and (6.26). In these equations,
the parameters are given for the enzyme kinetics (6.27) as follows:

Km = k2k3 + k−1k3 + k−1k−2

k1(k−2 + k2 + k3)
; KP = k2k3 + k−1k3 + k−1k−2

k−3(k−2 + k−1 + k2)
;

Vm = k2k3

k−2 + k2 + k3
[E]0; VP = k−2k−1

k−2 + k−1 + k2
[E]0.

This arguments can be expanded for the case with more than two states of
complex. This means that the Michaelis-Menten reaction velocity equation is
applicable for the general Michaelis-Menten structure, independently of how many
states the complex consist of. On the other hand, this result indicates that we could
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not determine the number of complex states even if the values Vm and Km are
estimated by the Lineweaver-Burk plot with the data of V−1

0 and [S]−1.
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Chapter 7
Modeling for Competitive Relation

Abstract This chapter about the competition dynamics model that is very popular
topics in ecology and mathematical biology. In this book, we shall see also some
related classic theoretical topics which have been rarely mentioned in the modern
textbooks. They may have a potential to provide cues for the readers to expand the
idea for a new modeling about population dynamics.

7.1 Lotka-Volterra Competition Model

7.1.1 Influence of Competition

The following system of ordinary differential equations is a model of population
dynamics for competing m species, called Lotka-Volterra competition model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN1(t)

dt
=
{
r1 − β1N1(t)−

m∑
j=1; j 	=1

γ1jNj (t)
}
N1(t);

dN2(t)

dt
=
{
r2 − β2N2(t)−

m∑
j=1; j 	=2

γ2jNj (t)
}
N2(t);

...

dNk(t)

dt
=
{
rk − βkNk(t)−

m∑
j=1; j 	=k

γkjNj (t)
}
Nk(t);

...

dNm(t)

dt
=
{
rm − βmNm(t)−

m∑
j=1; j 	=m

γmjNj (t)
}
Nm(t),

(7.1)

where all parameters rj , βj , and γij are nonnegative (i, j = 1, 2, . . . ,m; i 	= j ).
As (5.9) for the logistic equation (5.10) in Sect. 5.3, the above Lotka-Volterra
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competition model is based on the modeling about the per capita growth rate for
each species i as

1

Ni(t)

dNi(t)

dt
= ri − βiNi(t)−

m∑
j=1; j 	=i

γijNj (t), (7.2)

which assumes a linear density effect from populations of the other species. Besides,
as described in Sect. 2.3, the interspecific competition is introduced as the negative
density effect from the other species, which reduces the per capita growth rate.
The parameter γij indexes the strength of such an interspecific density effect from
species j to species i, sometimes called (interspecific) competition coefficient. Cor-
respondingly, the parameter βi may be called intraspecific competition coefficient of
species i. The parameter ri indicates the upper bound for the per capita growth rate,
and means the intrinsic growth rate of species i. In this modeling, the interspecific
density effect is introduced in the per capita growth rate. As mentioned in Sect. 2.3,
this could be reasonable for the exploitative competition.

An alternative modeling for the Lotka-Volterra competition model is to introduce
the interspecific reaction to reduce the population size itself. This could be the case
of interference competition (refer to Sect. 2.3). In this modeling, it would be more
appropriate to express the system (7.1) in the following form (k = 1, 2, . . . ,m):

dNk(t)

dt
={rk − βkNk(t)

}−
m∑

j=1; j 	=k
γkjNj (t)Nk(t). (7.3)

This expression more clearly indicates that the interspecific reaction is introduced
with the mass action assumption (Sect. 6.1.1). Especially, the effect of interspecific
reaction on the population growth is introduced by the term proportional to the
product of population densities of competing two species, which may be called
Lotka-Volterra type of interaction (refer to Sect. 6.1.2).

Similarly as described for the logistic equations (5.10) and (6.3) in Sect. 6.1.3,
the modeling of (7.3) must be regarded as different from that of (7.2). For both
modelings, each population follows a logistic growth when no other species exist,
that is, when there is no competition with the other species. The difference in the
modeling is on the influence of the interspecific competition. For the competition
model with (7.2), the interspecific competition affects the per capita growth rate as
a density effect. For the competition model with (7.3), it is independent of the per
capita growth rate, that is, it does not affect the reproduction rate but directly reduces
the population size as an interference effect on the population growth.

It should be remarked that the competition model in which the interspecific
reaction is introduced by the product of population densities of competing two
species, that is, by the Lotka-Volterra type of interaction, may be called Lotka-
Volterra competition model as a wide sense of its definition, independently of what
modeling is applied for the intraspecific reproduction term.
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For Lotka-Volterra competition models (7.2) and (7.3), it is satisfied in general
for the competition coefficient that γij 	= γji > 0 (i 	= j ), since the influence
of the interspecific competition must depend on the species’ nature. Although
we could mathematically consider the case where γij = 0 and γji > 0,
such an interspecific relation between species i and j cannot be ecologically
regarded as a competition. It may be regarded as an amensalism, since one
species has a negative effect from the other while the other has nothing
by the interspecific reaction. In constrast, we may consider Lotka-Volterra
competition model (7.2) or (7.3) which includes γij = 0 and γji = 0 for some
i and j . In such a model, there is no interspecific reaction between species i
and j .

7.1.2 Competing Two Species System

Lotka-Volterra two species competition model of (7.1) for m = 2 has become
popular in the history of population dynamics theory:

⎧⎪⎪⎨
⎪⎪⎩

dN1(t)

dt
= {r1 − β1N1(t)− γ12N2(t)

}
N1(t);

dN2(t)

dt
= {r2 − β2N2(t)− γ21N1(t)

}
N2(t),

(7.4)

with the initial condition such thatN1(0) > 0 andN2(0) > 0, as a usual assumption
for the model about competing two species population dynamics.

The behavior of (N1(t),N2(t)) can be classified in the following four cases
(Fig. 7.1):

(a) When r1/β1 < r2/γ21 and r2/β2 > r1/γ12, species 1 goes extinct while species
2 survives as t → ∞, independently of the initial condition.

(b) When r1/β1 > r2/γ21 and r2/β2 > r1/γ12, one of two species goes extinct
while the other survives, depending on the initial condition. This is a bistable
case.

(c) When r1/β1 < r2/γ21 and r2/β2 < r1/γ12, two species survive and coexist as
t → ∞, independently of the initial condition.

(d) When r1/β1 > r2/γ21 and r2/β2 < r1/γ12, species 2 goes extinct while species
1 survives as t → ∞, independently of the initial condition.

Two species can coexist only in the case of (c). As a special case, when r1 = r2,
the condition for (c) becomes such that β1 > γ21 and β2 > γ12. This condition
means that the effect of intraspecific competition (i.e., the density effect within the
population of same species) is stronger than that of interspecific competition.
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Fig. 7.1 Numerical examples of the temporal change of N1 and N2 by Lotka-Volterra two species
competition model (7.4). (a) (γ12, γ21) = (2.0, 1.5); (b) (γ12, γ21) = (2.0, 2.5); (c) (γ12, γ21) =
(0.8, 1.2); (d) (γ12, γ21) = (0.8, 2.5). Commonly, r1 = r2 = 1.0; β1 = 1.8; β2 = 1.0. In (b), one
of two species goes extinct, depending on the initial condition (bistable case)

The equilibrium for Lotka-Volterra competition model (7.4) can be easily
obtained from the parallel equations of dN1(t)/dt = 0 and dN2(t)/dt = 0. That is,
the equilibrium (N1, N2) = (N∗

1 , N
∗
2 ) must satisfy the following two equations:

(r1 − β1N
∗
1 − γ12N

∗
2 )N

∗
1 = 0; (r2 − β2N

∗
2 − γ21N

∗
1 )N

∗
2 = 0.

Thus we can find possible four equilibria E0, E1, E2, and E3:

E0(0, 0), E1

( r1
β1
, 0
)
, E2

(
0,
r2

β2

)
, E3

( r1β2 − r2γ12

β1β2 − γ12γ21
,
r2β1 − r1γ21

β1β2 − γ12γ21

)
,

(7.5)

in which equilibrium E3 is feasible only when it consists of only positive values.
If it contains a negative value, E3 is nonsense, since it is not reachable from the
positive initial condition. In such a case, we conventionally say that equilibrium E3
does not exist.
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It can be mathematically proved for the system (7.4) that N1 and N2 cannot
become zero or negative for any time t > 0 from any positive initial condition,
whereas we shall not describe here the proof. Such a positiveness of N1 and
N2 is never because the variables N1 and N2 must be nonnegative from the
meaning of population size, whereas it can be shown by the mathematical
analysis on the system (7.4) that the mathematical nature of (7.4) matches
such a biological requirement.

Exercise 7.1 Show that the necessary and sufficient condition for the existence of
equilibrium E3 is to satisfy one of the followings: (i) R1 > 1 and R2 > 1; (ii)
R1 < 1 and R2 < 1 with respect to

R1 := β1/r1

γ21/r2
; R2 := β2/r2

γ12/r1
.

The existence and stability of equilibria for Lotka-Volterra competition
model (7.4) can be determined easily with the isocline method described in
Sect. 14.7. For (7.4), the nullclines for N1 in the (N1, N2)-phase plane are two
lines, N1 = 0 and r1 − β1N1 − γ12N2 = 0. Those for N2 are N2 = 0 and
r2 − β2N2 − γ21N1 = 0. Thus, as shown in Fig. 7.2, we can easily find four cases
according to their spatial configuration, which divides the (N1, N2)-phase plane
into two or three regions with respect to the combination of signs of dN1/dt and
dN2/dt .

Figure 7.2a or d shows the case where the trajectory of (N1, N2) eventually enters
the middle region and asymptotically approaches E1 or E2 on an axis. In Fig. 7.2c,
the trajectory asymptotically approaches E3 in the first quadrant. In Fig. 7.2b, the
trajectory asymptotically approaches E1 or E2, which indicates a bistable situation.
Actually, as seen in Fig. 7.3, numerically drawn trajectories of (N1, N2) in the phase
plane for Lotka-Volterra competition model (7.4) show a clear correspondence to the
above result by the isocline method.

Exercise 7.2 Find the correspondence of each of four cases shown in Fig. 7.2 to
(a–d) in p. 193 respectively according to the behavior of (N1(t),N2(t)) by Lotka-
Volterra competition model (7.4).

The local stability analysis on the equilibrium of Lotka-Volterra two species
competition model (7.4) can derive the result corresponding to the above conclusion
by the isocline method. Taking account of the condition for the existence ofE3 given
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Fig. 7.2 Four cases of the spatial configuration of nullclines for Lotka-Volterra competition
model (7.4). The equilibria E1, E2, and E3 are given by (7.5)

in Exercise 7.1, we can obtain the following result by the local stability analysis
described in Sect. 14.4 (p. 430):

R1 > 1 and R2 > 1 �⇒ E3 is locally asymptotically stable (node);

R1 < 1 and R2 < 1 �⇒ E3 is unstable (saddle);

Otherwise �⇒ E3 does not exist,

(7.6)

where R1 and R2 are defined in Exercise 7.1. Therefore, we can find the correspon-
dence of the case (c) in p. 193 to the case where E3 is locally asymptotically stable,
and the case (b) to the case where E3 is unstable. Refer to the cases (b) and (c) in
Figs. 7.1, 7.2, and 7.3 too.
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Fig. 7.3 Trajectories in the (N1, N2)-phase plane for Lotka-Volterra competition model (7.4).
Numerically drawn for some different initial conditions commonly with r1 = r2 = 1.0; β1 = 1.8;
β2 = 1.0. (a) (γ12, γ21) = (2.0, 1.5); (b) (γ12, γ21) = (2.0, 2.5); (c) (γ12, γ21) = (0.8, 1.2); (d)
(γ12, γ21) = (0.8, 2.5). See also Figs. 7.1 and 7.2

The local stability analysis on the other equilibria,E0,E1, andE2, is not difficult,
and we can easily get the eigenvalues for each of them as follows:

E0 E1 E2

r1, r2 −r1, r2 − γ21
r1

β1
r1 − γ12

r2

β2
, −r2

Since every parameter is positive, the above result on the eigenvalues shows that
equilibrium E0 is always unstable. E1 is locally asymptotically stable if r2/γ21 <

r1/β1, while it is unstable if r2/γ21 > r1/β1. E2 is locally asymptotically stable
if r1/γ12 < r2/β2, while it is unstable if r1/γ12 > r2/β2. These results clearly
coincide with (a–d) in p. 193, and in Figs. 7.1, 7.2, and 7.3.
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As expected from the isocline method in Figs. 7.2c and 7.3c, the coexistent
equilibrium E3 is globally asymptotically stable if it is locally asymptot-
ically stable. This can be proved with a Lyapunov function as described
in Sect. 14.8 (see Exercise 14.2 and the subsequent part). Moreover, the
Poincaré-Bendixson Trichotomy Theorem in Sect. 14.9 is applicable for the
dynamical nature of Lotka-Volterra competition model (7.4), and we can show
the global asymptotic stability of E3 as well when it exists and is locally
asymptotically stable.

As seen in Fig. 7.2b, the system (7.4) can show a bistable situation in which the
trajectory asymptotically approaches alternatively equilibriumE1 or E2, depending
on the initial condition. As numerically indicated by the thick dashed curve in
Fig. 7.4, such a bistable situation divides the phase plane in two, respectively cor-
responding to the set of initial conditions from which the trajectory asymptotically
approachesE1 or E2. The boundary for those two regions is called separatrix in the
dynamical system theory. The existence of such a boundary curve in the phase plane
is apparently implied also by numerical calculations of (b) in Fig. 7.3.

Fig. 7.4 Numerically drawn
vector flows in the
(N1, N2)-phase plane for
Lotka-Volterra competition
model (7.4) in a case
corresponding to (b) of
Fig. 7.1, 7.2, and 7.3 when a
bistable situation appears
with r1 = 1.0; r2 = 0.8;
β1 = 1.8; β2 = 1.0;
γ12 = 2.0; γ21 = 2.5. The
thick dashed curve indicates
the separatrix approximately
drawn in this numerical
calculation
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7.2 Competition for Resource

7.2.1 MacArthur’s Modeling

In this section, we shall see a modeling used by Robert H. MacArthur (1930–
1972) for the multi species population dynamics with the competition for a common
resource. We describe here a generalized version of what he discussed in Chap. 2 of
his famous book “Geographical Ecology: Patterns in the Distribution of Species”
published in 1972 [1].

Let us consider different k resources used by n species of populations. Stock of
the j th resource at time t is denoted by Rj (t) (j = 1, 2, . . . , k). Similarly with
Sect. 6.1.5 for the single species population dynamics, let us assume that the per
capita growth rate ri of species i depends only on the resource use, and we give it
now by the following linear relation between them (i = 1, 2, . . . , n):

ri = ri(R1, R2, . . . , Rk−1, Rk) = −Rc,i +
k∑
j=1

αijRj , (7.7)

where Rc,i and αij are positive constants characterizing species i. Parameter αij
indexes the efficiency for the use of resource j by species i. It may reflect a
preference about the resource for species i. It can be regarded as the index about
the degree of the dependence of species i on resource j . The larger αij means
the stronger dependence on resource j . The parameter αij may be called (energy)
conversion coefficient which appeared in Sect. 2.4.1 since it determines how a used
resource is converted to the per capita growth rate (see also Sect. 8.4). ParameterRc,i
is the threshold for the resource use of species i. The population growth is possible
only when the total use of resources is beyond it. If the total use of resources is
not beyond it, the population cannot grow and decreases its size. From the basic
modeling described in Sect. 5.1, we consider the following population dynamics for
species i with the per capita growth rate (7.7) (i = 1, 2, . . . , n):

1

Ni(t)

dNi(t)

dt
= −Rc,i +

k∑
j=1

αijRj (t). (7.8)

Next we consider the modeling for the temporal change of the stock Rj (t) of
resource j . As one of the simplest mathematical modelings, we assume that the
velocity of resource consumption is proportional to the population size, and consider
the following dynamics for resource j (j = 1, 2, . . . , k):

dRj (t)

dt
= Dj (Rj (t))−

n∑
i=1

βjiNi(t)Rj (t). (7.9)
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The term Dj (Rj (t)) gives the recruitment dynamics of resource j when it is not
used by any species, which is assumed to depend on the stock of resource j only. We
do not assume here any interaction between different resources, although they could
have it, for example, when they are bioresources. Positive parameter βji means the
coefficient of consumption efficiency for resource j by species i. It characterizes the
specific relation between species i and resource j . It is remarked that this modeling
for the relation between the population and resource with respect to the temporal
change of the resource stock is the same as in Sect. 6.1.5 with the Lotka-Volterra
type of interaction between resource and population.

Let us introduce here the following simple recruitment term Dj (Rj (t)) for
resource j :

Dj(Rj (t)) = λjRj (t)− γj {Rj(t)}2, (7.10)

where a positive constant parameter λj is the recruitment coefficient for the stock
of resource j . The negative term with a positive parameter γj means the natural
decay of resource j , that is, the rate with which the stock of resource j becomes
unavailable or non-usable. By the resource dynamics (7.9) with (7.10), the stock of
resource j monotonically approaches λj/γj if it is not used by any species, since it
is given by the equation mathematically equivalent to the logistic equation.

Getting (7.8), (7.9), and (7.10) together, we have the dynamics of n species
populations and k resources, in which n species have a competitive relation with
respect to the resources. The competitive relation is really an indirect competition
(refer to Sect. 2.3). The use of a resource by a species works to reduce the stock, and
subsequently the reduction in the stock works to reduce the per capita growth rate
of every species.

Now we shall apply the quasi-stationary state approximation (QSSA; refer to
Sects. 6.2.1 and 6.2.3) for the dynamics of (7.8)–(7.10). Let us suppose that the
velocity of the temporal change of the resource stock is much faster than that of
the population size. In the time scale of the temporal change of the resource stock,
the temporal change of population sizes are approximately negligible. In the time
scale of the temporal change of population sizes, the resource stock appears to
instantaneously reflect the use by populations. In other words, the resource stock
appears to be determined instantaneously by the population sizes at each moment.
Subsequently, as we will see in the following arguments, the temporal change of
each population size appears to be determined by the population sizes in the system
at each moment, and could be observed as the result of interspecific direct reaction,
that is, like a direct competition (refer to Sect. 2.3).

Hence, to consider the population dynamics, we introduce the QSSA about the
resource dynamics with dRj/dt ≈ 0 for any time t , that is, from (7.9) with (7.10),

λj − γjRj (t)−
n∑
i=1

βjiNi(t) ≈ 0 (j = 1, 2, . . . , k).
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Then we use the following approximated relation of the resource stock to the
population sizes at each time t:

Rj(t) ≈ λj

γj
−

n∑
i=1

βji

γj
Ni(t) (j = 1, 2, . . . , k). (7.11)

We now consider only the case whereRj > 0. From (7.9) with (7.10),Rj (t) = 0 for
any t ≥ t1 if Rj(t) = 0 for a moment t = t1. That is, once a resource is exhausted,
it cannot recover in the resource dynamics by (7.9) with (7.10).

By substituting (7.11) for (7.8), we obtain the following population dynamics
model approximated by the QSSA from the system (7.8)–(7.10):

1

Ni(t)

dNi(t)

dt
≈ −Rc,i +

k∑
j=1

αij

{ λj
γj

−
n∑
�=1

βj�

γj
N�(t)

}

= �i −
n∑
�=1

Bi�N�(t) (i = 1, 2, . . . , n), (7.12)

where

�i := −Rc,i +
k∑
j=1

αij
λj

γj
; Bi� :=

k∑
j=1

αij
βj�

γj
(i, � = 1, 2, . . . , n).

This system (7.12) is mathematically equivalent to Lotka-Volterra competition
model (7.1). Consequently we have found that the resource-population dynamics
model considered in this section could be approximated by the Lotka-Volterra
competition model when the temporal change of the resource stock is much faster
than that of population sizes in the dynamics of (7.8)–(7.10).

7.2.2 Tilman’s Modeling

George David Tilman (1949–) proposed a mathematical modeling to theoretically
discuss the dependence of interspecific competition dynamics on the common
resource use in 1982 [2] (also see [3]). We shall describe in this section the idea
of his modeling for two species system with the interspecific competition about two
common resources.

Let us suppose that the resource stock has equilibrium (R
∗
1, R

∗
2) when there is no

consumption for those two resources. The stock of two resources at time t are now
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denoted by R1(t) and R2(t), the population size of species 1 by N1(t), and that of
species 2 by N2(t). Tilman’s model of two species and two resources is now given
by

⎧⎪⎪⎨
⎪⎪⎩

dNi(t)

dt
= ri (R1(t), R2(t))Ni(t) (i = 1, 2);

dRj (t)

dt
= Dj (Rj (t))− βj1N1(t)Rj (t)− βj2N2(t)Rj (t) (j = 1, 2).

(7.13)

The population dynamics given by the former equation of (7.13) is based on the
assumption same as that for the MacArthur’s model (7.7) in Sect. 7.2.1: The per
capita growth rate ri is determined by the stock of two resources, so that it is
given by a function of them, ri = ri(R1(t), R2(t)). The resource dynamics is the
same as (7.9) in Sect. 7.2.1. The equilibrium value of the stock R

∗
j without the

consumption now satisfies that Dj (R
∗
j ) = 0 (j = 1, 2). Let us assume now that,

without the consumption, each resource asymptotically approaches the equilibrium
in a monotonic manner. Therefore, in our modeling, we assume the following
features of Dj (Rj ) (j = 1, 2): Dj (Rj ) > 0 for Rj < R

∗
j , and Dj(Rj ) < 0 for

Rj > R
∗
j .

In this section to describe Tilman’s way of the theoretical argument on the
competition for the common resources, we shall set the following assumption for
the per capita growth rate ri :

ri(R1, R2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= 0 if R1 = Rci,1 and R2 ≥ Rci,2;
= 0 if R1 ≥ Rci,1 and R2 = Rci,2;
< 0 if R1 < R

c
i,1 or R2 < R

c
i,2;

> 0 if R1 > R
c
i,1 and R2 > R

c
i,2,

(7.14)

where Rci,1 and Rci,2 are positive constants characterizing species i according to
the dependence of the reproduction on two resources respectively. These constants
define the least stock of each resource to make the per capita growth rate positive.
Even when one of two resources has the stock beyond the threshold, the per capita
growth rate becomes negative if the other has the stock below the threshold. In such
a case, the resource of the stock below the threshold is called limiting factor for
the population growth in ecology. With the above assumption, the per capita growth
rate becomes positive when and only when every resource has the stock beyond the
threshold.
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In some real cases, the population size does not necessarily decrease even if
the stock of a resource becomes below the threshold for the per capita growth
rate. For example, some microorganisms become dormant in the environment
with sufficiently poor stock of a resource required for the reproduction. In an
ideal situation, the population size of such an organism may not decrease nor
increase even when the resource stock is below the threshold.

Taking account of the death rate under such a dormant state, for example,
by a disease or an effect of immune system for such a microorganism in vivo,
the population size may decrease even under the dormant state. In such a case,
the per capita growth rate must be assumed to be negative under the dormant
state. In contrast, in the laboratory culture under an appropriately controlled
condition, such a death would be negligible, and then the assumption (7.14)
could be replaced by another such as ri(R1, R2) = 0 for any R1 ≤ Rci,1 and
ri (R1, R2) = 0 for any R2 ≤ Rci,2.

From the assumption (7.14), since ri(Rci,1, R2) = 0 for any R2 ≥ Rci,2 and
ri(R1, R

c
i,2) = 0 for any R1 ≥ Rci,1, we find that, if an equilibrium with R1 = R∗

1 >

0, R2 = R∗
2 > 0, N1 = N∗

1 > 0, and N2 = N∗
2 > 0 exists for the system (7.13),

then it must satisfy that R∗
1 = Rci,1 or R∗

2 = Rci,2. Indeed, from the population
dynamics of (7.13), it is clear that the population size of species i increases as long
as R1 > Rci,1 and R2 > Rci,2. As the population size gets larger, the right side
of the resource dynamics of (7.13) becomes smaller. Even when the right side of
the resource dynamics of (7.13) reaches zero, the population size increases as long
as R1 > Rci,1 and R2 > Rci,2, and subsequently the right side becomes negative
so that the resource stock turns to decrease. Further, even when the resource stock
decreases, the population size increases as long as R1 > Rci,1 and R2 > Rci,2, so
that the resource stock cannot turn to increase but keeps decreasing. The temporal
change follows such a process until it is satisfied that R1 = Rci,1 or R2 = Rci,2. At
the moment that R1 = Rci,1 or R2 = Rci,2, it is satisfied that dNi/dt = 0, and the
population growth of species i stops.

These arguments do not imply that the population size of species i necessarily
approaches a positive equilibrium. After the population growth of species i stops
at a moment with R1 = Rci,1, the population size of species i may decrease if the
stock of resource 2 decreases to satisfy that R2 < R

c
i,2. In such a case, the resource

2 is the limiting factor for species i, and species i would become extinct. Moreover,
since the resource is used by the other species at the same time, even if R1 = Rci,1 or
R2 = Rci,2 at a moment, the resource consumption by the other species may cause
the decrease of the resource stock, and the subsequent decrease of the population
size of species i occurs with dNi/dt < 0 after the moment. In such a case, we can
apply the above arguments for the other species as well.

Tilman [2] systematically discussed the relation of the resources to the coexis-
tence of competing two species, making use of the zero-net-growth-isocline (ZNGI)
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Fig. 7.5 Zero-net-growth-isocline (ZNGI) for species i, introduced by Tilman [2]. The assump-
tion (7.14) is applied. (a) the ZNGI passes the region that R1 < R

∗
1 and R2 < R

∗
2; (b) the ZNGI

does not pass the region that R1 < R
∗
1 and R2 < R

∗
2. Species i may be able to persist in the case of

(a), while it cannot persist and goes extinct in the case of (b). For the resource stock of region I in
the figure (a), the stock of resource 2 is beyond the threshold for species i, while that of resource 1
is below the threshold. So the population size of species i decreases. For the region II, resource 2
is the limiting factor to cause the decrease of population size. For the region III, both resources are
below their thresholds, and the population size decreases

shown in Figs. 7.5 and 7.6. We describe the essence here, firstly focusing on one of
two species.

In the case of Fig. 7.5b, when the ZNGI for species i does not pass the region
where R1 < R

∗
1 and R2 < R

∗
2, species i cannot persist and goes extinct in such an

environment. As indicated by the resource dynamics of (7.13), two resource stocks
have the upper bounds R

∗
1 and R

∗
2 respectively, and each resource cannot become

beyond the upper bound which is the natural assumption in an ecological sense.
Thus, the resource stock must be always in the white region of Fig. 7.5. In the case
of Fig. 7.5b, the white region does not intersect with the ZNGI. In the white region
II, the stock of resource 1 is beyond the threshold for species i, while that of resource
2 is below the threshold. The resource 2 is the limiting factor in this case, and the
population size of species i must decrease. In the white region III, the population
size decreases as well, because of the shortage of both resource stocks. Therefore,
in such a case, the per capita growth rate of species i must be negative, and the
population goes extinct.

In contrast, in the case of Fig. 7.5a, the ZNGI for species i passes the white
region, which indicates the possibility of the persistence of species i. For the white
subregion above the ZNGI, the per capita growth rate of species i is positive.
However, even in this case, the persistence of species i depends on the resource
competition with the other species, and the extinction of species i may occur.
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Fig. 7.6 Zero-net-growth-isoclines (ZNGIs) defined by Tilman [2]. The assumption (7.14) is
applied. (a) the ZNGIs of two species do not have intersection; (b) the ZNGIs of two species
have an intersection. In the case of (a), species 2 eventually goes extinct. In the case of (b), the
coexistent equilibrium exists, which is indicated by the intersection, while its stability depends on
the parameters for the population dynamics

Next, let us focus on the relation of the ZNGIs for two species. Figure 7.6a shows
the case where two ZNGIs have no intersection, and the ZNGI for species 2 is
located above the ZNGI for species 1. In this case, species 2 eventually goes extinct.
When the resource stock is in the region above the ZNGI for species 2, the resource
stock tends to approach the ZNGI for species 2, following the process described
before. Since the resource stock on the ZNGI for species 2 is in the region above
the ZNGI for species 1 in the case of Fig. 7.6a, the population size of species 1 must
increase, so that the resource stock enters the region between the ZNGIs for two
species, following the process described before. Hence, the resource stock finally
reaches the ZNGI for species 1. When the resource stock is on the ZNGI for species
1, the per capita growth rate of species 2 is negative, and species 2 goes extinct.
If the equilibrium reached by this process satisfies that R1 = Rc1,1 (on the vertical
ZNGI for species 1), the resource dynamics of (7.13) gives the following equation
with respect to the equilibrium population size N∗

1 of species 1:

N∗
1 = γ1

β11

(
R

∗
1 − Rc1,1

) = γ2

β21

(
R

∗
2 − R2

)
.

Subsequently, we can obtain the following equilibrium stock R∗
2 of resource 2 at the

equilibrium:

R∗
2 = R

∗
2 − γ1β21

γ2β11

(
R

∗
1 − Rc1,1

)
. (7.15)
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In this argument, we find it necessary for the existence of such an equilibrium that
R∗

2 ≥ Rc1,2. This is because the resource stock (Rc1,1, R
∗
2 ) is in the region below the

ZNGI for species 1 if R∗
2 < R

c
1,2, which is inconsistent with the positiveness of the

equilibrium population size of species 1. Therefore, if R∗
2 < R

c
1,2, the equilibrium

such that R1 = Rc1,1 cannot exist. In such a case, it can be shown by the same
argument that the equilibrium satisfying that R2 = Rc1,2 (on the horizontal ZNGI
for species 1 in Fig. 7.6a) exists.

In the case of Fig. 7.6b when the ZNGIs for two species has an intersection, it is
satisfied that dN1/dt = 0 and dN2/dt = 0 if R1 = Rc1,1 and R2 = Rc2,2. Thus, the
intersection may be a coexistent equilibrium for two species. However, as shown
by Tilman [2], such a coexistent equilibrium may not be reached from some initial
condition. Depending on the upper bounds (R∗

1 , R
∗
2 ) for the resource stocks, it is

likely that one species goes extinct. As an extremal case, the coexistent equilibrium
may not be reached from any initial condition. As we expect, the coexistence of two
species requires a certain condition related to (R∗

1 , R
∗
2 ).

We can see a numerical example in Fig. 7.7 about these arguments on the
dynamics (7.13) with Dj(Rj ) given by (7.10) and the following per capita growth
rate ri (i = 1, 2):

ri = ri (R1, R2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.1(R1 − Rci,1)(R2 − Rci,1) if R1 > R
c
i,1 and R2 > R

c
i,2;

0 if R1 = Rci,1 or R2 = Rci,2;
0.1(R1 − Rci,1) if R1 < R

c
i,1 and R2 ≥ Rci,2;

0.1(R2 − Rci,2) if R1 ≥ Rci,1 andR2 < R
c
i,2;

0.1(R1 − Rci,1)+ 0.1(R2 − Rci,2) if 1 < R
c
i,1 and R2 < R

c
i,2.

(7.16)

As a consequence, the coexistence of two species competing two common
resources significantly depends on the nature of resource dynamics and the relation
of species to it. In this theoretical argument, the resources may be regarded as
representing the environmental condition for competing two species, The different
resource dynamics could make the different fate of interspecific competition about
the resource. Tilman’s modeling provides a theoretical idea to discuss such a fate of
interspecific competition.
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ZNGI for species 1

ZNGI for species 2

Fig. 7.7 Numerical example of the trajectories for the dynamics (7.13) with the per capita
growth rate ri (i = 1, 2) given by (7.16) and the resource recruitment term Dj (Rj ) given
by (7.10). (a) (R∗

1 , R
∗
2 ) = (0.6, 1.8); (b) (R∗

1 , R
∗
2 ) = (1.0, 1.2); (c) (R∗

1 , R
∗
2 ) = (1.1, 1.05);

(d) (R∗
1 , R

∗
2 ) = (1.2, 0.9); (e) (R∗

1 , R
∗
2 ) = (1.4, 0.6). The trajectories are for the initial condition

given by (R1(0), R2(0),N1(0),N2(0)) = (R∗
1 , R

∗
2 , 14.5, 10.0), and commonly with λj = 1.0

(j = 1, 2); Rc1,1 = 0.5; Rc1,2 = 0.8; Rc2,1 = 0.7; Rc2,2 = 0.4; β11 = 0.02; β12 = 0.02; β21 = 0.02;
β22 = 0.01. Remark that, from λj /γj = R∗

j , γj is given by 1/R∗
j for each case in this numerical

calculation

Answer to Exercise

Exercise 7.1 (p. 195)

The coexistent equilibrium E3 given by (7.5) can be expressed with R1 and R2 as
follows:

E3

( R2 − 1

(γ21/r2)(R1R2 − 1)
,

R1 − 1

(γ12/r1)(R1R2 − 1)

)
.
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Hence, the equilibrium values of E3 become positive if and only if

(R1 − 1)(R1R2 − 1) > 0 and (R2 − 1)(R1R2 − 1) > 0.

This condition is satisfied when R1 > 1 and R2 > 1, or when R1 < 1 and R2 < 1.
If neither of these two conditions is satisfied, E3 contains non positive value. These
two condition for the existence of E3 correspond respectively to (b) and (c) shown
in p. 193 about Lotka-Volterra two species competition system (7.4).

Exercise 7.2 (p. 195)

As shown in Fig. 7.2, the nullclines for Lotka-Volterra two species competition
system (7.4) are lines. Therefore, their different spatial configurations in the first
quadrant of the (N1, N2)-phase plane count 2 × 2 = 4, since they can be
determined by the order of the intersections between internal nullclines and axes.
The configurations correspond respectively to four cases shown in p. 193.
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Chapter 8
Modeling for Prey-Predator Relation

Abstract This chapter is about the prey-predator dynamics model that is very
popular topics in ecology and mathematical biology. In this book, we shall see
also some related classic theoretical topics which have been rarely mentioned in
the modern textbooks. They may have a potential to provide cues for the readers to
expand the idea for a new modeling about population dynamics.

8.1 Predator’s Response

There are two aspects of the predator’s response to the prey population through
the predation: numerical response and functional response [16]. The numerical
response means the change in the population size of predator by the predation, while
the functional response does the change in the predation rate per predator according
to the prey density. The functional response indicates the efficiency of predation,
which reflects the change of predator’s behavior/choice about the predation, and the
numerical response does the reproduction with the predator’s energy gain by the
predation.

The following three types of functional response were proposed by Crawford S.
Holling (1930–2019) in [5, 6], and have come to be conventionally used today in
ecology (see Fig. 8.1):

Holling’s Type I response The predation rate per predator increasing (almost)
proportionally to the prey density up to a certain critical value, beyond which
it remains the maximal and insensitive to the prey density.

Holling’s Type II response The predation rate per predator increases as the prey
density gets larger, while its increase becomes smaller at the same time. The
predator rate has an increasing convex curve with respect to the prey density.

Holling’s Type III response The predation rate per predator increases as the prey
density gets larger. Its increase becomes bigger up to a certain prey density,
beyond which it becomes smaller. The predator rate has an S-shaped curve with
respect to the prey density.
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Fig. 8.1 Three types of the functional response in the predation by Holling [5, 6]

The functional response of predator necessarily affects the population dynamics
between the predator and prey. As seen in Fig. 8.1, the predation rate per predator
generally has an upper bound for sufficiently high prey density. Such a saturation
of the predation rate is due to the handling time for the predation, for example, the
time for searching, catching, or eating a prey individual. The existence of handling
time for the predation leads to the supremum of the expected number of preys
successfully caught by the predator per unit time. When the prey density is high,
the expected time to find a prey by a predator would be short, whereas it must
always take a certain time to handle the caught prey. For this reason, there must be
the upper bound for the number of preys handled in unit time.

For Holling’s Type III response, the predation rate per predator shows an S-
shaped curve in terms of the prey density (Fig. 8.1). For example, when the
prey density is low, the increase in the prey density causes a steep increase
of the predation rate since the frequency of encounters between the prey and
predator is induced to get larger. On the other hand, when the prey density is
high, the handling time limits the predation efficiency, so that the increase in
the prey density leads to only a gradual increase of the predation rate.

As the other factor of functional response, the predator may reduce the
searching effort for the prey when the prey density is much low [4], since
such a prey species appears less valuable for the predator due to the small

(continued)
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expected energy gain from the prey in unit time with a small probability
of successful find. In such a case, the predator would switch the choice of
targeted prey species, if the other prey species is available for the predator.
Such a predator is called generalist predator in the population dynamics (refer
to Sect. 2.4.1). Then the change of targeted prey species is called switching
predation which will be described later in Sect. 8.7.2. On the other hand,
Holling [7] mentioned the other possibility that the capacity of predator’s
searching and catching becomes more effective as the prey density gets larger
in a low range. Further, there may be the effect of limited space for the
prey’s refuge in the environment. When the prey density becomes beyond
the limit, the predation success could gets easier since the preys’ refuge gets
less available.

8.2 Prey-Predator Population Dynamics

Let us denote the predator density by P = P(t) and the prey density by H = H(t)

at time t . The predation rate per predator is now introduced as a function of P
and H , f (P,H). The total amount of preys successfully attacked by the predator
population in a short period�t , now denoted by �Y, is given by

�Y = f (P,H)P�t + o(�t). (8.1)

As a reasonable modeling, the right side of (8.1) must be zero for any value of�t as
H → 0, since the absence of prey causes no successful attack by the predator.
Hence, we can assume that f (P, 0) = 0. Robert May mentioned the function
f as the introduction of functional response of the predator in the prey-predator
population dynamics [12]. The characteristics of predator’s functional response can
be included in the feature of function f as its modeling.

Since the functional response function f (P,H) means the predation rate per
predator, it may have the following nature in most cases:

∂f

∂P
≤ 0; ∂f

∂H
≥ 0. (8.2)

However, there may be some cases where the condition (8.2) does not hold.
For example, if the predators tend to make a cooperative search for the prey,
the searching efficiency may get higher as the predator density becomes

(continued)
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larger, at least, in a certain range. Even in such a case, much high predator
density would reduce the share of caught prey(s) for each predator, so that
the value of f (P,H) gets smaller. Then the predation rate f (P,H) has a
unimodal curve in terms of the predator density P .

Now let H = H(t) denote the prey density at time t . The change of the prey
density H(t + �t) − H(t) in a period �t after time t is given by the decrease
with the predation �Y and the variation �G due to the other processes including
birth, death, and migration in the same period: H(t + �t) − H(t) = �G − �Y.
The variation�G generally depends on the prey density itself, and must satisfy that
�G → 0 as �t → 0 since no period allows any variation (refer to the similar
arguments in Sect. 3.3). Hence, from (8.1), we have

H(t +�t)−H(t) = �G − f (P,H)P�t + o(�t). (8.3)

Dividing both sides of (8.3) by �t and taking the limit as �t → 0, we can get
the following ordinary differential equation to govern the population dynamics of
prey:

dH(t)

dt
= g(H)− f (P,H)P, (8.4)

where we define the limiting function g by

g(H) := lim
�t→0

�G
�t
,

which means the momental velocity of population size change for the prey when the
predator is absent (refer to Sect. 3.4).

If the prey population is a closed population without any effect of migration on
the size variation (refer to Sect. 3.4), the function g must satisfy that g(0) = 0,
since no individual leads to no cause for any increase in the population size.
For an open prey population, there may be an increase by the immigration, so
that the population size could increase even when the size becomes zero at a
moment. In such a case, the function g may satisfy that g(0) ≥ 0.

Now let us introduce the population dynamics of predator by

dP(t)

dt
= −m(P)+ F(P,H)P, (8.5)
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where the term −m(P) means the momental velocity of population size change for
the predator with the factors except for the predation. If the predator population
is closed without any effect of migration on the size variation, this term −m(P)
may mean the natural death of predator to decrease the population size, and become
negative. The term F(P,H)P corresponds to the reproduction process of predator
population by the predation. The function F means the per capita reproduction rate
of predator. The factor represented by the function F is called numerical response
of predator by Robert May [12] (refer to Sect. 8.1).

The function F may be a function of the predation rate per predator f (P,H),
since the value of F must be determined by the energy gain for the reproduc-
tion with the predation. In general, it could not be proportional to that of f ,
while it may have a positive correlation with that of f . The amount of preys
taken by a predator cannot produce the energy gain proportional to the amount
due to the digestive efficiency etc. Thus, the dependence of F on f would be
generally nonlinear. Besides, the value of F may depend on the physiological
state depending on the environmental condition or the intraspecific density
effect too. For these aspects about the numerical response, it is necessary
to assume a reasonable function F in the model, with appropriate features
corresponding to the nature of numerical response for the predator in the
considered population dynamics.

8.3 Dynamics of Exhaustible Prey

In this section, we shall consider one of the simplest assumptions for the prey-
predator relation. Let us assume first that there is no recruitment of prey population,
that is, �G = 0 for any time t . The prey is now an exhaustive resource for the
predator. For example, this is the case of a culture of bacteria in vitro which a
nutrient is given only once for the reproduction. There are many other examples of
the predation in a similar situation in which the predation occurs only in a specific
season when there is no reproduction of prey. We may regard the following modeling
as for the population dynamics in such a season. Now from (8.3), we have the
population dynamics of prey by

dH(t)

dt
= −f (P,H)P. (8.6)

When the population size of predator has already reached the equilibrium with
the predation for the other preys, or when the recruitment of the predator population
is out of the considered season with a negligible demographic change (e.g., due
to the natural death) for the predator, we may assume that the population size of
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predator P can be regarded as constant independently of time. In such a case,
the ordinary differential Eq. (8.6) can be mathematically solved by the method of
variable separation (refer to Sect. 13.1.2):

∫ H(t)

H(0)

dH

f (P,H)
= −

∫ t

0
Pdτ = −P t,

and we have

t = − 1

P

∫ H(t)

H(0)

dH

f (P,H)
. (8.7)

This equation can be regarded as the inverse function of H = H(t). Once the
functional response function f (P,H) is given, we can mathematically determine
the temporal change of the prey density H by (8.7).

Let us consider here the following functional response function that satisfies the
condition (8.2):

f (P,H) = γ
H

P
, (8.8)

where γ is a positive constant to index the predation efficiency. In this case, we can
easily calculate the integral in (8.7), and get

t = − 1

P
· P
γ

{
ln(H(t))− ln(H(0))

}
,

that is,

H(t) = H(0)e−γ t . (8.9)

The prey density exponentially decreases independently of the predator density P .
When the functional response function f is given by (8.8), the total amount

of preys successfully attacked by the predator population (8.1) in a short period
�t becomes �Y = γH�t + o(�t) which has the principal term independent
of P . Therefore, even when the predator density varies, the total amount of preys
successfully attacked by the predator population is always the same for any period
�t . This is because the predation rate per predator is now assumed to be inversely
proportional to the predator density as given by (8.8).

Further, since the total amount of preys successfully attacked by the predator
population is independent of the predator density, the total amount is determined
only by the prey density. This would seem oversimplified, while such a situation
may be approximately realized as a result of the decrease in the predation rate due
to the intraspecific reaction in the predator population.
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Next let us consider the total amount of preys successfully attacked by the
predator population until time t:

Y(t) = H(0)−H(t) = H(0)(1 − e−γ t ).

The amount per unit time is given by

Y(t + 1)− Y(t) = H(0)e−γ t (1 − e−γ ).

This is decreasing in terms of time t . Moreover it can be easily found that the time-
averaged velocity of predation Y(t)/t is decreasing in terms of t as well.

We can define the following averaged predation rate per prey in unit time:

Y(t + 1)− Y(t)
H(t)

= 1 − eγ .

This may be regarded as an index of the risk of predation for the prey. This predation
rate per prey is constant independently of time t . If we consider the same averaged
predation rate per prey in a short period�t , then we can easily derive the following
averaged predation rate per prey in unit time (refer to Sect. 3.4):

Y(t +�t)− Y(t)
H(t)�t

≈ γ,

since

Y(t +�t)− Y(t) = dY(t)
dt

�t + o(�t) = H(0)γ e−γ t�t + o(�t).

These results depend on the modeling of functional response function given
by (8.8). So let us consider next the following function generalized from it:

f (P,H) = γ
Ha

Pb
(8.10)

with positive parameters a and b, which satisfies (8.2) as well. The previous model
can be regarded as for (8.10) with a = 1 and b = 1. In the following arguments, we
will see that it was a very specific case.
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The predator density P is assumed constant as before. From (8.7), we can derive

t =

⎧⎪⎪⎨
⎪⎪⎩

− 1

P
· P

b

γ
{ln[H(t)] − ln[H(0)]} (a = 1);

− 1

P
· P

b

γ

1
1−a

{[H(t)]1−a − [H(0)]1−a} (a 	= 1),

and subsequently

H(t) =
⎧⎨
⎩

H(0)e−γP 1−bt (a = 1);
{[H(0)]1−a − (1 − a)γP 1−bt

} 1
1−a (a 	= 1).

(8.11)

With a specific modeling with a = 1 and b = 0, when the predation rate per
predator f is proportional to the prey density, the total amount of preys successfully
attacked by the predator population until time t is given by

Y(t) = H(0)−H(t) = H(0)(1 − e−γP t ). (8.12)

This modeling may be called Nicholson-Bailey type of predation process. Indeed,
this type of predation term has already appeared for the discrete time model called
Nicholson-Bailey model in Sect. 2.4.2, whereas the modeling was different from
what we are considering in this section. As the predator density gets larger, the
total amount Y(t) becomes larger, while the amount per predator Y(t)/P becomes
smaller. This nature is the same even for the model with a = 1 and b < 1, as seen
from (8.11).

When the dynamics considered in this section is about the prey-predator
dynamics in a season before their reproduction, we can derive the prey
population size at the end of the predation season by H(0) − Y(T ) with
the season length T . We may construct a discrete time population dynamics
for the annual variation of prey population size, as a modeling of population
dynamics for the reproduction in the breeding season, which was described in
Sect. 1.5 for the discrete time population dynamics. For the specific modeling
with a = 1 and b = 0, it actually corresponds to Nicholson-Bailey model in
Sect. 2.4.2, as mentioned in the above.

In contrast, for the model with a > 1, the formula (8.11) indicates that the prey
density hyperbolically decreases toward zero as time passes. As the predator density
gets larger, the velocity of decrease becomes more gradual when b > 1, and steeper
when b < 1. Especially for the model with b > 1, this nature can be understood
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as the result of feature such that the predation rate per predator f becomes much
smaller as the predator density gets larger.

The model with a < 1 has characteristics different from the above. As seen
from (8.11), the prey density decreases until the following time tc and becomes
exhausted at t = tc:

tc = [H(0)]1−a

(1 − a)γP 1−b .

This is a mathematically special case since the solution of (8.6) with (8.10) cannot
be extended beyond t = tc in this case. When b < 1, the time of prey exhaustion tc
becomes earlier as the predator density gets larger. When b > 1, it becomes later.

8.4 Lotka-Volterra Prey-Predator Model

In this section, we shall consider again the specific modeling with a = 1 and b = 0
for the functional response function f given by (8.10), that is f (P,H) = γH .
Further we shall consider here the population dynamics of predator (8.5) with
the simplest modeling of F(P,H) = κf (P,H), where κ is a positive constant
frequently called (energy) conversion coefficient. The parameter κ indexes the
efficiency of the conversion of the amount of preys caught by the predator into the
energy for the reproduction. The per capita reproduction rate of predator F is now
assumed to be proportional to the per capita predation rate for the prey f .

From (8.4) and (8.5), we have the following system of prey-predator population
dynamics:

⎧⎪⎪⎨
⎪⎪⎩

dH(t)

dt
= g(H)− γH(t)P (t);

dP(t)

dt
= −m(P)+ κγH(t)P (t).

(8.13)

As a consequence of our modeling, the interaction between prey and predator
appears as the terms given by the product of prey and predator densities. It may
be regarded as the modeling with the mass action assumption for the interspecific
reaction, that is, with the Lotka-Volterra type of interaction described before in
Sect. 6.1.2. Thus in a wider sense, we may call the system (8.13) Lotka-Volterra
prey-predator model.
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The general Lotka-Volterra prey-predator model for the population dynamics
of n predator species and � prey species can be given by the following n + �
dimensional system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dHi(t)

dt
= gi(Hi)−

n∑
k=1

γkiHi(t)Pk(t) (i = 1, 2, . . . , �);

dPj (t)

dt
= −mj(Pj )+

�∑
k=1

κjkγjkHk(t)Pj (t) (j = 1, 2, . . . , n).

(8.14)

Non-negative parameters γ and κ characterize the relation between prey and
predator species according to the population dynamics.

The simplest Lotka-Volterra prey-predator model is derived by applying Malthus
growth (refer to Sects. 3.3.1 and 5.1) for the recruitment term of prey population
g(H) and the death term of predator −m(P) in (8.13), that is,

g(H) = rH(t); −m(P) = −δP (t).

For the closed population dynamics (refer to Sect. 3.4), the positive parameters r
and δ mean the intrinsic growth rate of prey and the natural death rate of predator
respectively. Now we have the following simplest Lotka-Volterra prey-predator
model:

⎧⎪⎪⎨
⎪⎪⎩

dH(t)

dt
= rH(t)− γH(t)P (t);

dP(t)

dt
= −δP (t) + κγH(t)P (t).

(8.15)

This is the pioneer prey-predator model considered by Lotka [10, 11] and
Volterra [21, 22] in the early twenty century (see Sect. 6.1.2).

Lotka [10, 11] and Volterra [21, 22] applied the mass action assumption
for the interspecific reaction between prey and predator, as the simplest
approximation about it from the analogy with the chemical reaction kinetics
(refer to Sect. 6.1). Hence their modeling was different from that with
the functional response function in this section. However, the theoretical
discussion of the population dynamics by the mathematical results on the

(continued)



8.4 Lotka-Volterra Prey-Predator Model 219

model may be independent of such a difference in the modeling for (8.15).
We shall remark here that the difference in the modeling could lead in general
to some different theoretical discussion by the mathematical results on the
model, whereas it is not the case for (8.15).

Exercise 8.1 For Lotka-Volterra prey-predator model (8.15), apply the isocline
method described in Sect. 14.7. What feature can you find about the temporal change
of H and P ?

8.4.1 Trajectory in Phase Plane

The isocline method can give an information on the temporal change of H and P
for (8.15) such that it may be oscillatory (Exercise 8.1 in the previous section).
Actually as seen in Fig. 8.2, the temporal change by (8.15) necessarily becomes
periodic with a finite period for any positive initial condition except for the
coexistent equilibrium. More precisely, for any initial point (H(0), P (0)) in the
(H, P )-phase plane except for the coexistent equilibrium, the point (H(t), P (t))
necessarily returns to the initial point (H(0), P (0)) with a finite period T > 0:
(H(T ), P (T )) = (H(0), P (0)). Hence the trajectory of (H(t), P (t)) in the (H, P )-
phase plane becomes a closed curve, that is, a periodic orbit. Although it is usually
hard to find the formula of such a periodic orbit, we can derive it for Lotka-Volterra
prey-predator model (8.15) as described in the following.

Fig. 8.2 Numerically drawn trajectories in the (H, P )-phase plane, and a temporal change for
Lotka-Volterra prey-predator model (8.15) with r = 0.1; γ = 0.1; δ = 0.1; κ = 0.8. In the (H, P )-
phase plane, three trajectories from different initial conditions are drawn. Each closed curve for the
periodic orbit in the (H, P )-phase plane is given by (8.17)
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Let us denote the closed curve of the periodic orbit in the (H, P )-phase plane by
an implicit functionQ(H,P) = 0. Supposing that the curve is sufficiently smooth,
we can assume the existence of a continuous and differential function ϕ from the
implicit function theorem such that P = ϕ(H) in the neighborhood of (h, p) on the
curveQ(H,P) = 0, satisfying that

dP

dH
= dϕ(H)

dH
= ϕ′(H) = −QH(H, ϕ(H))

QP (H, ϕ(H))
,

whereQH(H,P) = ∂Q(H,P )/∂H andQP (H,P) = ∂Q(H,P )/∂P . Since P =
P(t) and H = H(t), we have

dP(t)

dt
= dϕ(H(t))

dt
= ϕ′(H(t)) dH(t)

dt

by the derivative for a composite function. Thus the following relation holds:

ϕ′(H(t)) = dP(t)/dt

dH(t)/dt
.

Substituting (8.15) for this equation, we can get

ϕ′(H) = dϕ

dH
= −δ + κγH

H
· P

r − γP = −δ + κγH
H

· ϕ

r − γ ϕ . (8.16)

This is the ordinary differential equation which ϕ(H) must satisfy. The method of
variable separation is applicable for (8.16) (refer to Sect. 13.1.2). Since

∫
r − γ ϕ
ϕ

dϕ =
∫ ( r

ϕ
− γ

)
dϕ = r lnϕ − γ ϕ + C1;

∫ −δ + κγH
H

dH =
∫ (

− δ

H
+ κγ

)
dH = −δ lnH + κγH + C2,

where C1 and C2 are undetermined constants, we can find from (8.16) that

r lnϕ − γ ϕ = −δ lnH + κγH + C3,

with an undermined constant C3. Therefore, from P = ϕ(H), we can result that the
following equation holds for any point (h, p) on the closed curveQ(H,P) = 0:

r lnP − γP + δ lnH − κγH = C3.
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Hence this equation holds for any time t . The undermined constant C3 is uniquely
determined if a point on the closed curveQ(H,P) = 0 is given. That is, the closed
curve of the periodic orbit for the initial condition (H(0), P (0)) is given by

r lnP − γP + δ lnH − κγH = r lnP(0)− γP(0)+ δ lnH(0)− κγH(0).
(8.17)

Since the Eq. (8.17) holds for any time t , we find that

V (t) := r lnP(t) − γP(t) + δ lnH(t)− κγH(t) (8.18)

is a conserved quantity independent of time t for (8.16) (Exercise 8.2).

Exercise 8.2 By differentiating V (t) in terms of t , check that the function V (t)
defined by (8.18) is a constant independent of time t .

8.4.2 Equilibrium and Averaged Population Size

It is easy to find that two equilibria always exist for Lotka-Volterra prey-predator
model (8.15), (0, 0) and (δ/(κγ ), r/γ ). By the local stability analysis on each
equilibrium (refer to Sects. 14.2 and 14.3), we can obtain explicitly the eigenvalues
for it (Exercise 8.3).

Since the eigenvalues for equilibrium (0, 0) are r and −δ, it is a saddle point,
and unstable (see Fig. 8.2 and Table14.1 of Sect. 14.3). The eigenvalues for the
coexistent equilibrium (δ/(κγ ), r/γ ) are pure imaginaries ±i

√
rδ. Thus it is a

center point, and mathematically Lyapunov stable (refer to Sect. 14.3). It has been
already clear that the coexistent equilibrium (δ/(κγ ), r/γ ) is not asymptotically
stable (refer to Sect. 14.3), since the trajectory from the initial point different from
(δ/(κγ ), r/γ ) never returns to (δ/(κγ ), r/γ ) as shown in the previous section.

Exercise 8.3 Linearizing Lotka-Volterra prey-predator model (8.15) around the
equilibrium, derive the eigenvalues for each of equilibria (0, 0) and (δ/(κγ ), r/γ ).

Generally, even if the local stability analysis shows that an equilibrium is
a center point, it may not be Lyapunov stable, as mentioned in Sect. 14.4.
For Lotka-Volterra prey-predator model (8.15), the local stability analysis on
equilibrium (δ/(κγ ), r/γ ) clearly shows that it is a center point, whereas it
is not possible to investigate only by the local stability analysis whether it is
Lyapunov stable or not. For the center point, the stability is determined by the
nature of original (nonlinear) dynamics. This is a reason why the stability of

(continued)
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center point is sometimes called neutral. The linearized system can give some
valuable information about the stability, while it is the extremal approximation
for the dynamics just in the neighborhood of the equilibrium. We shall revisit
this issue again in Sect. 8.4.3 on the structural stability.

Since the eigenvalues for the coexistent equilibrium (δ/(κγ ), r/γ ) are pure
imaginaries ±i

√
rδ, the linearized system of (8.15) around it has the solution in

the form of (13.24) with ρ = 0 and ω = √
rδ in Sect. 13.2.4. Hence, the linearized

system has a periodic solution with period 2π/
√
rδ. This implies that the periodic

solution of (8.15) near equilibrium (δ/(κγ ), r/γ ) approximately has the period
2π/

√
rδ.

As we have already seen, Lotka-Volterra prey-predator model (8.15) has a
periodic solution with a finite period T . Since the periodic solution is uniquely
determined by the initial condition, so is the period T . Now we can define the
following averaged population sizes over the period, H and P , for each initial
condition:

H := 1

T

∫ T

0
H(t) dt; P := 1

T

∫ T

0
P(t) dt. (8.19)

From (8.15), we have

1

H(t)

dH(t)

dt
= r − γP(t),

and, by the integral for both sides of this equation,

∫ T

0

1

H(t)

dH(t)

dt
dt =

∫ T

0
r − γP(t) dt,

we can derive the following equation:

lnH(T )− lnH(0) = 0 = rT − γ T P .

Therefore, we find that P = r/γ . In the same way, we can find that H =
δ/(κγ ) (Exercise 8.4). Consequently, the averaged population sizes over the period
is necessarily equal to the values at the coexistent equilibrium (δ/(κγ ), r/γ )

located inside of the closed curve of the periodic orbit in the (H, P )-phase plane,
independently of the initial condition.

Exercise 8.4 Show that the averaged prey population size H over the period T
defined by (8.19) for (8.15) becomes H = δ/(κγ ). Moreover, show that the total
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amount of preys successfully attacked by the predator population during the period
T ,

YT :=
∫ T

0
γH(t)P (t) dt

is given by γ T H P . This result indicates that the averaged predation rate over the
period T is given by rδ/(κγ ) independent of the initial condition.

8.4.3 Structural Stability

In this section, to understand further the nature of Lotka-Volterra prey-predator
model (8.15), we shall consider the following system that is mathematically added
sufficiently smooth two variable functions ℱi (i = 1, 2) to (8.15):

⎧⎪⎪⎨
⎪⎪⎩

dH(t)

dt
= rH(t)− γH(t)P (t)+ ε1ℱ1(H(t), P (t));

dP(t)

dt
= −δP (t)+ κγH(t)P (t)+ ε2ℱ2(H(t), P (t)),

(8.20)

where ε1 and ε2 are non-zero constants. We assume that the two variable functions
ℱ1 and ℱ2 satisfy that ℱi = 0 (i = 1, 2) for (H, P ) = (0, 0) and (δ/(κγ ), r/γ ).
Hence the system (8.20) has the same equilibria (0, 0) and (δ/(κγ ), r/γ ) as Lotka-
Volterra prey-predator model (8.15). When |ε1| and |ε2| are sufficiently small,
the terms ε1ℱ1(H(t), P (t)) and ε2ℱ2(H(t), P (t)) may be called the perturbation
terms for (8.15).

By the linearization of (8.20) around equilibrium (H ∗, P ∗) (refer to Sect. 14.2),
we can derive the following linearized system for (8.20) around (H ∗, P ∗):
⎧⎪⎪⎨
⎪⎪⎩

dh̃(t)

dt
= rh̃(t)− γ {P ∗h̃(t)+H ∗p̃(t)} + ε1∂Hℱ∗

1 h̃(t)+ ε1∂Pℱ∗
1 p̃(t);

dp̃(t)

dt
= −δp̃(t)+ κγ {P ∗h̃(t)+H ∗p̃(t)} + ε2∂Hℱ∗

2 h̃(t)+ ε2∂Pℱ∗
2 p̃(t),

(8.21)

where

∂Hℱ∗
i := ∂ℱi

∂H

∣∣∣∣
(H,P )=(H ∗,P ∗)

; ∂Pℱ∗
i := ∂ℱi

∂P

∣∣∣∣
(H,P )=(H ∗,P ∗)

(i = 1, 2).
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Hence we have the following Jacobian matrixA for equilibrium (H ∗, P ∗) = (0, 0):

A =
⎛
⎝ r + ε1∂Hℱ∗

1 ε1∂Pℱ∗
1

ε2∂Hℱ∗
2 −δ + ε2∂Pℱ∗

2

⎞
⎠ ,

which characteristic equation det(A− λE) = 0 becomes

(λ− r)(λ+ δ) = (ε1∂Hℱ∗
1 + ε2∂Pℱ∗

2 )λ−rε2∂Pℱ∗
2 +δε1∂Hℱ∗

1

+(ε1∂Pℱ∗
1 )(ε2∂Hℱ∗

2 )−(ε1∂Hℱ∗
1 )(ε2∂Pℱ∗

2 ).

Thus, for equilibrium (0, 0), we can see that the eigenvalues are clearly different
from r and −δ unless ∂Hℱ∗

i = ∂Pℱ∗
i = 0 (i = 1, 2). However, as long as |ε1| and

|ε2| are sufficiently small, they are a pair of positive and negative real numbers, and
equilibrium (0, 0) is a saddle point. Hence for sufficiently small |ε1| and |ε2|, the
stability of equilibrium (0, 0) is the same as that for (8.15), which means that the
stability is not affected by the perturbation terms.

For equilibrium (H ∗, P ∗) = (δ/(κγ ), r/γ ), we have Jacobian matrix

A =
⎛
⎝ ε1∂Hℱ∗

1 −δ/κ + ε1∂Pℱ∗
1

rκ + ε2∂Hℱ∗
2 ε2∂Pℱ∗

2

⎞
⎠

and the characteristic equation

(λ− ε1∂Hℱ∗
1 )(λ− ε2∂Pℱ∗

2 )+ (rκ + ε2∂Hℱ∗
2 )(δ/κ − ε1∂Pℱ∗

1 ) = 0.

Clearly, unless the coefficient for the first order term of λ, ε1∂Hℱ∗
1 + ε2∂Pℱ∗

2 is
zero, the eigenvalue never becomes purely imaginary for any small |εi| (i = 1, 2).
This means that any small perturbation term added to (8.15) changes the stability
of equilibrium (δ/(κγ ), r/γ ), which cannot be a center point. Thus, the nature of
periodic solution appeared for (8.15) is lost by any small perturbation term.

For the system (8.20) with a sufficiently small perturbation terms which do
not necessarily satisfy that ℱi = 0 (i = 1, 2) for every equilibrium, these
arguments are applicable, while every equilibrium may be changed slightly from
that for (8.15). The equilibrium corresponding to (δ/(κγ ), r/γ ) is in general not
a center point. Therefore, we have found that an arbitrary small perturbation term
makes a mathematically drastic difference in the nature of the solution for the system
(8.15). We may say now that the system (8.15) lacks the structural stability, and the
system (8.15) is called structurally unstable. Actually, Lotka-Volterra prey-predator
model (8.15) is well-known as an example of structurally unstable system.
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For most dynamical systems with the equilibrium as a center point, the
stability of center point is vulnerable when the system is modified with such a
perturbation term as above. This is another reason why the stability of center
point is sometimes called neutral, other than the reason mentioned before in
this section.

Exercise 8.5 For the system (8.20) with the perturbation terms ℱ1(H, P ) = H 2

and ℱ2(H, P ) ≡ 0 (therefore, no perturbation term is added for the population
dynamics of predator), find all equilibria and determine the local stability of each
equilibrium.

8.4.4 Predator vs Prey with Logistic Growth

In this section, we assume a prey with the logistic growth (refer to Sects. 3.2
and 5.3), and consider Lotka-Volterra prey-predator model (8.13) with

g(H) = {r − βH(t)}H(t),

that is,

⎧⎪⎪⎨
⎪⎪⎩

dH(t)

dt
= {r − βH(t)}H(t)− γH(t)P (t);

dP(t)

dt
= −δP (t)+ κγH(t)P (t).

(8.22)

This prey-predator model is mathematically equivalent to the system (8.20) with
ε1ℱ1(H, P ) = −βH 2 and ε2ℱ2(H, P ) ≡ 0. As already shown in Sect. 8.4.3, the
nature of the solution for (8.22) must be different from that for (8.15).

First, let us apply the isocline method (refer to Sect. 14.7) for the system (8.22).
The nullclines for H and P in the (H, P )-phase plane are given by {(H, P ) | (r −
βH − γP)H = 0} and {(H, P ) | (−δ + κγH)P = 0}. They are all lines. We can
find the following three different cases with respect to their spatial configuration as
shown in Fig. 8.3: (a) β < β∗ := rκγ /δ; (b) β = β∗; (c) β > β∗. At the same time,
we can find that the system (8.22) has the following three equilibria:

E0(0, 0); E1

( r
β
, 0
)
; E2

( r
β∗ ,

r

γ

(
1 − β

β∗
))
,

In the case of Fig. 8.3b, c, the application of isocline method indicates that
no coexistent equilibrium exists, and any trajectory asymptotically approaches
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Fig. 8.3 Application of the isocline method for Lotka-Volterra prey-predator model (8.22). (a)
β < β∗ := rκγ/δ; (b) β = β∗; (c) β > β∗

equilibrium E1 for any positive initial condition. Thus in such a case, the predator
population goes extinct. In contrast, in the case of Fig. 8.3a with β < β∗, a
coexistent equilibrium E2 exists, while its stability cannot be determined only by
the isocline method. The isocline method can imply just the possibility of oscillatory
temporal change around equilibrium E2, but cannot show any asymptotic behavior
of the trajectory.

Next let us apply the local stability analysis on the equilibrium for (8.22). The
linearized system around equilibrium (H ∗, P ∗) is given by

⎧⎪⎪⎨
⎪⎪⎩

dh̃(t)

dt
= (r − 2βH ∗)̃h(t)− γ {P ∗h̃(t)+H ∗p̃(t)};

dp̃(t)

dt
= −δp̃(t)+ κγ {P ∗h̃(t)+H ∗p̃(t)}.

Actually the local stability analysis for the system (8.22) was mathematically
involved in Exercise 8.5 of the previous section (p. 225). From its results, we can
find that the coexistent equilibrium E2 is locally asymptotically stable whenever it
exists as in Fig. 8.3a. Further, the local stability of equilibrium E2 can be classified
into the following two cases when it exists:

stable spiral when 0 < β < β∗∗ := 2κγ
(

− 1 +
√

1 + r

δ

)
;

stable node when β∗∗ ≤ β < β∗ := κγ r

δ
.

Indeed, as shown by Fig. 8.4, the temporal change of prey and predator population
sizes shows a damped oscillation toward the coexistent equilibrium when 0 < β <
β∗∗, while it does a monotonic approach toward it when β∗∗ ≤ β < β∗.
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Fig. 8.4 Numerically drawn trajectories in the (H, P )-phase plane, and temporal changes for
Lotka-Volterra prey-predator model (8.22) with different values of β and commonly, r = 0.2;
γ = 0.1; δ = 0.1; κ = 0.8; (H(0), P (0)) = (0.625, 0.5625). For β = 0.05 (< β∗∗ = 0.117),
the coexistent equilibrium E2 is a stable spiral, while, for β = 0.12 (< β∗ = 0.16), E2 is a stable
node. For both cases, equilibrium E1 is a saddle point. For β = 0.2, the coexistent equilibrium E2
does not exist, when E1 is a stable node

These results can be gotten together as the parameter dependence of the coexis-
tence between prey and predator in Fig. 8.5. Especially, For the weak intraspecific
density effect in the prey population (small β), the high predation efficiency (large
γ ), and the efficient predator reproduction (large κγ ), it is likely that the temporal
change of prey and predator population sizes becomes oscillatory in a damped
manner.

The description about the behavior of the solution for Lotka-Volterra prey-
predator model (8.22) is based on the results obtained by the isocline method
and the local stability analysis. However, they can be proved in a more precise
mathematical sense, and we can get the further mathematical result about
the behavior of the solution. As such a mathematical approach described
in Sect. 14.8, an appropriately constructed Lyapunov function can be used
to show the global asymptotic stability of the coexistent equilibrium E2
for Lotka-Volterra prey-predator model (8.22). As the other mathematical
approach, the Poincaré-Bendixson Trichotomy Theorem in Sect. 14.9 is appli-
cable for the dynamical nature of Lotka-Volterra prey-predator model (8.22),
and we can show the global asymptotic stability of E2 as well when it exists.
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Fig. 8.5 Parameter
dependence of the
coexistence between prey and
predator for Lotka-Volterra
prey-predator model (8.22)

Predator ’s  extinction

(stable node)

(stable spiral)

8.5 Holling’s Disc Equation

In this section, we shall describe an idea of the modeling for the functional response
function, proposed first by Crawford S. Holling in 1959 [5, 6] and discussed further
by Tomoo Royama (1930–) [15], which is called today Holling’s disc equation.

8.5.1 Disc Equation for a Single Prey Species

Let us assume the random predation such that the predator targets at every prey in
the region of distance less than R from it. In other words, every prey in the disc area
of radius R with the center of the predator can be attacked by the predator. Any prey
out of the disc area is not attacked. This is a simple representation of the searching
capacity of the predator. The movement of a predator is now traced in the two
dimensional plane, drawing a band with the width of 2R as schematically shown in
Fig. 8.6. The traced band may pass a part of area which was passed before. We now
ignore any influence of such an overlapped visit to the same place by the predator,
and assume that the predation success is independent of the past visit for any place
in the plane. Any place is regarded as equivalent for the predator’s visit. We are
going to consider the amount of preys successfully attacked by the predator, making
use of the cumulative total area traversed by the disc of radius R instead of the total
area covered by the pattern generated by the trace of the disc movement. Moreover,
we ignore any influence to each predator from the other predators’ predation in the
same plane.
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Fig. 8.6 Trace of the disc
area of radius R for the
predation by a predator in
plane

Let V (t) denote the velocity of predator’s movement at time t . Then the
increment in the band area traversed by the predator’s disc area in [t, t + �t] with
sufficiently short period�t is given by

2R
∫ t+�t

t

V (z) dz = 2RV (t)�t + o(�t).

Suppose that the number of predators in the same habitat (i.e., plane) is given by a
constant P . Then the total increment of the area traversed by all predators’ disc area
in [t, t +�t] becomes P {2RV (t)�t + o(�t)}. We assume that any overlapping of
different disc areas at the same moment is negligible or does not occur, for example,
due to a repulsive interaction between predators.

With these assumptions, we can define the amount �Y of preys successfully
attacked by P predators in [t, t +�t] by

�Y = P
[
σ {2RV (t)H(t)�t + o(�t)}] = 2σRV (t)PH(t)�t + o(�t),

(8.23)

where H(t) is the prey density at time t , and the positive parameter σ less than one
means the probability of a predator’s successful attack. The prey in the disc area
can escape from the attack with probability 1 − σ . Remark that the total number of
preys located in the disc area traversed by a predator in [t, t +�t] is now given by
2RV (t)H(t)�t + o(�t) in (8.23).

Further we assume that the spatial distribution of preys in the habitat can be
regarded as random or statistically uniform (not necessarily regular in space) at
any time t . Although the predators’ attacks and predations could cause a spatial
heterogeneity of the prey distribution, we assume a sufficiently fast diffusion
of preys in the plane, and ignore such a spatial heterogeneity generated by the
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predation. For example, we may image a slowly swimming aquatic predator which
catches preys floating around it. As the other example, we may image the immobile
predator which catches preys coming near its location like spider, ant lion, and sea
anemones etc., whereas, in this case, the movement of a disc area assumed here
must be translated in another appropriate meaning in a modeling sense.

Let us denote the area of the habitat for the prey and predator considered now
by S. The total amount of preys in the habitat is given by SH(t) at time t . Now we
assume that there is no recruitment of prey in the considered predation season. Thus
the total amount of preys is monotonically decreasing as time passes. We are now
focusing on the prey-predator dynamics in the predation season when there is no
reproduction in the prey population. This assumption indicates that the considered
prey is exhaustible like that in Sect. 8.3.

Under the above assumptions, the total amount of preys in the habitat SH(t+�t)
must satisfy that SH(t +�t) = SH(t)−�Y(t), taking account of the predation in
[t, t +�t]. Thus from (8.23), we have

H(t +�t)−H(t)
�t

= −�Y(t)
S�t

= −2σRV (t) · P
S

·H(t)+ o(�t)

�t
.

Finally, by the limit �t → 0, we can derive the following ordinary differential
equation for the temporal change of prey density:

dH(t)

dt
= −2σRV (t) · P

S
·H(t), (8.24)

where P/S means the averaged predator density in the habitat.
In this equation, we note that the velocity of the decrease of prey density is

proportional to the product of prey and predator densities. It corresponds to the
Lotka-Volterra type of interaction in Sect. 6.1.2. This can be regarded as the result
of assumptions given in this section which lead to the assumption mathematically
equivalent to that of complete mixing for the Lotka-Volterra type of interaction.

Now, from (8.23) and (8.24), we can identify the functional response function
f defined in Sect. 8.2, as f = f (H, t) = 2σRV (t)H(t)/S ∝ H(t). Since the
predation rate per predator is proportional to the prey density, the predation may
be regarded as the Nicholson-Bailey type (refer to Sect. 8.3). Corresponding to the
parameter γ in Sect. 8.3, the predation efficiency can be regarded now as given by
the value of 2σRV (t)/S at time t .

Actually, we can solve the ordinary differential Eq. (8.24), and get the solution

H(t) = H(0) · exp
[

− 2σR
∫ t

0
V (τ)

P

S
dτ
]
,
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and subsequently the total amount of preys successfully attacked by the predators
until time t

Y(t) = SH(0)− SH(t) = SH(0)

{
1 − exp

[
− 2σR

∫ t

0
V (τ)

P

S
dτ
]}
.

(8.25)

This formula really indicates a Nicholson-Bailey type of predation process. Espe-
cially when the velocity of predator’s movement is constant independently of time
t , we have Y(t) = SH(0)

(
1 − e−2σRV [P/S]t).

Introduction of Handling Time

As already mentioned in Sect. 8.1, the predation rate may not be proportional to the
prey density, but be gradual increasing in terms of it toward a certain upper bound
because of the handling time for the predation. Let us assume now the handling time
h for the predation per prey as a constant independent of time. Then the predator
cannot successfully get preys more than T/h in any period T .

Let �y denote the amount of preys successfully attacked by a predator in [t, t +
�τ ]. Since the total handling time for the amount �y is given by h�y, the rest
�τ − h�y can be regarded as the time for the predator’s searching the prey in the
period�τ . Remark that it must be satisfied that�y < �τ/h, from the reasonability
of modeling.

Regarding �τ − h�y as the time of predator’s movement, from (8.23), we can
now find the following equation with respect to �Y = P�y:

�Y = P
[
σ {2RV (t)H(t)(�τ − h�y)+ o(�τ)}].

We can solve this equation in terms of �Y and get

�Y = 2σRV (t)H(t)

1 + h · 2σRV (t)H(t)
P�τ + o(�τ).

With the same argument to derive (8.24), we can obtain the following ordinary
differential equation:

dH(t)

dt
= − 2σRV (t)H(t)

1 + h · 2σRV (t)H(t)
· P
S
. (8.26)

Therefore, from (8.23) and (8.24), taking account of the handling time, we have
now the following functional response function f :

f = f (H, t) = a(t)σH

1 + ha(t)σH , (8.27)
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Fig. 8.7 Functional response
by Holling’s disc
equation (8.28). The
predation rate is bounded by
1/h which is the upper bound
for the number of preys
successfully attacked by a
predator in unit time. This is a
Holling’s Type II response
(refer to Sect. 8.1)

where a(t) := 2RV (t). Generally, the functional response function, that is, the
predation rate per predator in the following form is called Holling’s disc equation:

f = f (H) ∝ αH

1 + hαH , (8.28)

where α is a positive constant. The above formula (8.27) can be regarded as a
generalized type of Holling’s disc equation. The functional response given by (8.28)
is a Holling’s Type II response defined in Sect. 8.1, as seen in Fig. 8.7.

As already mentioned in Sect. 6.2.1, Holling’s disc equation is mathematically
equivalent to the Michaelis-Menten equation (6.24). As argued in the above,
Holling’s disc equation (8.28) can be derived with the modeling taking account of
the handling time which indicates a break in the search of prey. The requirement
to have such a handling time suppresses the increase of the cumulative number of
preys successfully attacked by the predator. In the Mihaelis-Menten structure (6.15)
of Sect. 6.2.1, the creation of the enzyme-substrate complex X (Michaelis-Menten
complex) works similarly to suppress the increase of the product concentration P .
Such a similarity in the dynamical nature results in the same mathematical structure
about the velocity of process about the predation and the chemical kinetics.

The idea of Holling [5, 6] to derive the disc Eq. (8.28) was conceptual. Let us
consider randomly distributed points in a plane. Then we assume disc areas
with radius R located randomly in a plane. If a randomly chosen point is
located in a disc area, we regard it as the occurrence of predation such that a
predator successfully attacks a prey. At the same time, we count the handling
time h. He considered the repetition of this conceptual game-like stochastic
process, and theoretically found the disc Eq. (8.28). Mathematically we must

(continued)
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consider the expected number of points in a disc area over a large number
of repetitions of the process. For more detail, see Royama [15] in which
the author mathematically translated Holling’s conceptual modeling and
discussed its reasonability precisely. As easily expected, Holling’s conceptual
modeling was criticized for its application to the actual data about the
parasitism or predation, while the disc equation was successful to be fit to
the data.

8.5.2 Disc Equation for Multiple Species

In this section, we consider the modeling of the predation for m prey species by
a generalist predator species. We take the same assumptions about the predation
as in the previous section. Let us denote the density of prey species i by Hi(t),
the probability of a predator’s successful attack for a prey of species i by σi , the
handling time for it by hi .

Assuming that the predation is at random (without any specific preference about
the prey species), the expected number�υi of preys of species i in the total number
of successfully attacked preys�y in a short period [t, t +�τ ] is now given by

�υi = σiHi(t)∑m
j=1 σjHj (t)

�y + o(�τ). (8.29)

This formula is based on the modeling that the effective density of prey species i for
the predation is given by σiHi because the successful attack is determined by the
probability σi . The total effective prey density is therefore given by

∑m
j=1 σjHj for

the predator.

High density of a prey species is not necessarily beneficial for the predator if
the attack for the prey species is little successful. For example, whenH1 > H2
and σ1 < σ2, it may be satisfied that σ1H1 < σ2H2. Failure of the attack is
nonsense for the predator, which may be regarded as the predation with no
energy gain. From this point, it is theoretically reasonable to consider the
above effective prey density for the predation.

On the other hand, the total time for the handling according to �y is given by

m∑
i=1

hi�υi =
m∑
i=1

hi
σiHi(t)∑m
j=1 σjHj (t)

�y + o(�τ),
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since the successful attack for a prey of species i takes the handling time hi .
Therefore, by the same argument as in the previous section, we can define the
searching time �T in the period�τ by

�T = �τ −
m∑
i=1

hi
σiHi(t)∑m
j=1 σjHj(t)

�y − o(�τ). (8.30)

With the same assumptions for the movement of predator, the area traversed by
a predator during �T of [t, t + �τ ] is given by 2RV (t)�T + o(�τ), so that the
number of preys of species i successfully attacked by a predator in �τ becomes
σi{2RV (t)Hi(t)�T + o(�τ)}. Hence the total number �y of preys successfully
attacked by a predator in [t, t +�τ ] is given by

�y =
m∑
i=1

2RV (t)σiHi(t)�T + o(�τ). (8.31)

Substituting (8.30) for (8.31) and solving it in terms of �y, we can derive the
following equation:

�y = 2RV (t)
∑m
i=1 σiHi(t)

1 + 2RV (t)
∑m
j=1 hjσjHj (t)

�τ + o(�τ). (8.32)

The total amount of preys of species i in the habitat SHi(t + �τ) must satisfy
that SHi(t+�τ) = SH(t)−P�υi , taking account of the predation by P predators
in [t, t+�τ ] as in the previous section. Thus, from (8.29) and (8.32), we can derive
the following equation:

Hi(t +�τ)−Hi(t)
�τ

= − 2RV (t)σiHi(t)

1 + 2RV (t)
∑m
j=1 hjσjHj (t)

· P
S

+ o(�τ)

�τ
.

With the limit as �τ → 0, we have

dHi(t)

dt
= − 2RV (t)σiHi(t)

1 + 2RV (t)
∑m
j=1 hjσjHj (t)

· P
S
. (8.33)

Therefore we can define the functional response for pray species i by the following
function fi :

fi = fi(H1,H2, . . . , Hm, t) = a(t)σiHi

1 + a(t)∑m
j=1 hjσjHj

, (8.34)

where a(t) := 2RV (t).
The predation rate for prey species i, given by this function fi , is clearly less

than 1/hi . It is remarked that the predation rate significantly depends on the
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density of other prey species. Since the predator’s attack to the other species must
reduce the predation pressure for prey species i due to the handling time for them,
this modeling can be regarded as a reasonable formulation to express such an
indirect interspecific effect from the other prey species to prey species i through
the predation by the common predator.

Now, let us introduce furthermore the predator’s (expected) energy gain per
prey of species i, denoted by ei . This parameter ei may be regarded as a
weight according to the value of prey species i for the predator, since the
difference of prey species must lead to the qualitative/quantitative difference
as the bioresource for the predator. Let us denote by �E the energy gain per
predator with the total number of successfully attacked preys �y in a short
period [t, t +�τ ]. With (8.29), the energy gain�E in [t, t +�τ ] becomes

�E =
m∑
i=1

ei�υi =
m∑
i=1

ei
σiHi(t)∑m
j=1 σjHj(t)

�y + o(�τ).

From (8.32), we can derive

�E =
m∑
i=1

eifi(H1,H2, . . . , Hm, t)�τ + o(�τ) (8.35)

with the functional response function fi given by (8.34). Since the predator’s
reproduction depends on the energy gain by the predation, the predator’s
numerical response function F of (8.5) in Sect. 8.2 must be related to
the energy gain determined by the above equation. We shall consider the
population dynamics model of one prey and one predator with Holling’s disc
equation and such a numerical response function in the next section.

As a simple expansion of the above modeling with Holling’s disc equation,
we can consider the predation by more than one predator species. Let us assume
� different species of predator for m prey species. The number of individuals of
predator species j is now denoted by Pj . Predator species j is now characterized
by the searching/attacking radius Rj , the moving velocity Vj(t), the probability of
successful predation for prey species i, σij , and the handling time for prey species
i, hij . Applying the above arguments for this case, we can easily derive

dHi(t)

dt
= −

�∑
k=1

2RkVk(t)σikHi(t)

1 + 2RkVk(t)
∑m
j=1 hjkσjkHj (t)

· Pk
S
. (8.36)
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Consequently we can define the following functional response of predator species j
for prey species i:

fij = fij (H1,H2, . . . , Hm, t) = aj (t)σijHi

1 + aj (t)∑m
k=1 hkj σkjHk

, (8.37)

where aj (t) := 2RjVj (t). The interspecific relation of exploitative competition
between predator species (refer to Sect. 2.3) is indirectly involved in the functional
response function (8.37) through the dependence of prey densities affected by the
other predators’ predation.

As already mentioned in Sect. 6.2.3, the functional response function for the
prey population dynamics of (6.43) is mathematically equivalent to (8.37)
with time-independent aj . Since the prey-predator population dynamics
model (6.43) was derived with the quasi-stationary state approximation
(QSSA) for the state of predator’s handling the attacked prey, the functional
response function for the prey population dynamics of (6.43) must contain a
structure corresponding to the handling time. This would be the reasoning
about the mathematical correspondence between the functional responses
of (6.43) and (8.37).

8.6 Rosenzweig-MacArthur Model

In this section, we consider the following population dynamics model of one prey
and one predator with the functional response by Holling’s disc equation:

⎧⎪⎪⎨
⎪⎪⎩

dH(t)

dt
= {r − βH(t)}H(t)− γH(t)

1 + hγH(t) P (t);
dP(t)

dt
= −δP (t)+ κ γH(t)

1 + hγH(t) P (t),
(8.38)

where positive parameters r , β, δ, and κ have the same meanings respectively as
those for Lotka-Volterra prey-predator model (8.22). Parameter γ is the coefficient
of predation efficiency, and h is the handling time per prey. When the handling time
is negligible, that is, when h = 0, the above system (8.38) coincides with Lotka-
Volterra prey-predator model (8.22). After the study on the prey-predator population
dynamics model (8.38) by American ecological scientists Michael L. Rosenzweig
(1941–) and Robert H. MacArthur (1930–1972) in 1968 [14], it is sometimes called



8.6 Rosenzweig-MacArthur Model 237

Rosenzweig-MacArthur model today. Making use of the transformation of variables
and parameters,

H̃ (t) := βH(t)

r
; P̃ (t) := γP(t)

r
; τ := rt; μ := δ

r
; k := κγ

β
; η := rhγ

β
,

(8.39)

we can get the following non-dimensionalized system for (8.38):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dH̃ (τ )

dτ
= {1 − H̃ (τ )}H̃ (τ )− H̃ (τ )

1 + ηH̃ (τ ) P̃ (τ );
dP̃ (τ )

dτ
= −μP̃ (τ)+ k H̃ (τ )

1 + ηH̃ (τ ) P̃ (τ ).
(8.40)

On the other hand, same as Lotka-Volterra prey-predator model (8.22), the
prey population in the Rosenzweig-MacArthur model (8.38) follows the logistic
growth with the carrying capacity r/β (refer to Sect. 5.3). Hence, for the ecological
reasonability, we may assume that 0 < H(0) ≤ r/β, that is, the initial population
size of prey is not beyond the carrying capacity. The prey population size cannot
beyond the carrying capacity r/β for any time t because its variation is governed
by the reproduction with the logistic equation and the predation. Actually, since
dH/dt < 0 for any H > r/β and P ≥ 0, we can mathematically prove that
0 < H(t) < r/β for any t > 0 with the initial condition such that 0 < H(0) ≤ r/β
and P(0) > 0. Thus we consider the non-dimensionalized system (8.40) with the
initial condition such that 0 < H̃(0) < 1 and P̃ (0) > 0, and we may assume that
0 < H̃(τ) < 1 for any τ > 0.

There are the following three equilibria for the system (8.40):

E0(0, 0); E1(1, 0); E2(H̃
∗+, (1 − H̃ ∗+)(1 + ηH̃ ∗+)), (8.41)

where H̃ ∗+ := 1/(k/μ − η). The equilibrium E2 exists when and only when 0 <
H̃ ∗+ < 1, that is,

k

μ
− η > 1. (8.42)

The local stability analysis (refer to Sect. 14.5) shows that the eigenvalues for E0
are 1 and −μ. Thus, equilibrium E0 is always a saddle point. It is shown also that
the eigenvalues for E1 are −1 and −μ + k/(1 + η). Hence equilibrium E1 can be
classified as follows according to the stability:

⎧⎪⎪⎨
⎪⎪⎩

stable node if
k

μ
− η < 1;

saddle if
k

μ
− η > 1.

(8.43)
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As a result, we find that equilibrium E1 is unstable as a saddle point when and only
when equilibriumE2 exists. As described in Sect. 14.5, we can obtain the following
result on the stability of E2 when it exists:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

unstable (source) if η > 1 and
k

μ
− η > 2 + 2

η − 1
;

locally asymptotically stable (sink) if

⎧⎪⎪⎨
⎪⎪⎩

η ≤ 1
or

η > 1 and
k

μ
− η < 2 + 2

η − 1
;

Lyapunov (neutrally) stable if η > 1 and
k

μ
− η = 2 + 2

η − 1
.

(8.44)

This result is shown in Fig. 8.8.
It is indicated that there is no stable equilibrium in the first quadrant of (H̃ , P̃ )-

phase plane when equilibrium E2 exists and is unstable, since the other equilibria
E0 and E1 are both unstable as saddle points. In such a case, the solution of (8.40)
asymptotically approaches a periodic orbit, that is, a closed curve in the (H̃ , P̃ )-
phase plane, called limit cycle, as shown in Fig. 8.9. The mathematical proof makes
use of Poincaré-Bendixson Theorem, Poincaré-Bendixson Trichotomy, and the fact
given in Exercise 14.3 of Sect. 14.9 (see [18] for more mathematical arguments).

In contrast, when the coexistent equilibrium E2 does not exist, the above results
by the local stability analysis and the isocline method can prove that the solution

Fig. 8.8 Parameter
dependence of the existence
and stability of equilibrium
E2 for (8.40). The solid line
and curve indicate the
boundary of parameter
regions. The dashed lines are
related to (8.42), (8.43),
and (8.44)

non-existence

unstable

asymptotically
stable
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Fig. 8.9 A numerical example of the asymptotic approach of trajectory to a limit cycle in the
(H̃ , P̃ )-phase plane, and corresponding temporal change for the system (8.40). Nullclines are
drawn too in the (H̃ , P̃ )-phase plane. (a) (H̃ (0), P̃ (0)) = (0.568, 1.476); (b) (H̃ (0), P̃ (0)) =
(0.285, 1.193). Commonly, μ = 0.15; k = 1.0; η = 2.0

necessarily approaches the unique asymptotically stable equilibrium, alternatively
E0 or E1.

At the critical case under the third condition in (8.44), equilibrium E2
becomes unstable with purely imaginary eigenvalues, while it becomes
unstable as an unstable spiral under the first condition in (8.44), and an
asymptotically stable periodic orbit appears. This kind of bifurcation to a
limit cycle at the critical case under the third condition in (8.44) is called
(supercritical) Hoph bifurcation in the dynamical system theory.

The Rosenzweig-MacArthur model (8.38) with h = 0 coincides with Lotka-
Volterra prey-predator model (8.22) for which no periodic solution appears. As seen
in Fig. 8.10 about the parameter dependence of the prey-predator dynamics by the
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Rosenzweig-MacArthur model (8.38), its nature is qualitatively the same as that of
Lotka-Volterra prey-predator model (8.22) for sufficiently small h. Appearance of
a limit cycle for the Rosenzweig-MacArthur model (8.38) requires a large h. This
implies that the predator with a long handling time would cause a periodic variation
when it coexists with the prey.

8.7 Regulation of Prey Use

As seen in the previous section on the Rosenzweig-MacArthur model, the functional
response significantly affects the nature of prey-predator population dynamics. The
coexistence between prey and predator would require some characteristics of the
functional response. Actually, we can see from Fig. 8.10 about the Rosenzweig-
MacArthur model (8.38) that the predator with an inappropriate functional response
could not coexist with the prey. This implies that the coexistence between prey and
predator could be understood as a result of the coevolution for the prey-predator
relation between those species. The evolution of predation involves

• Which prey should be used;
• How much should be used.

The functional response can be regarded as related to the latter aspect.
The former aspect has been studied in what is called diet selection theory or diet

menu theory. The latter has been studied in foraging theory with a relation to the
ethology [3, 9, 17]. In such studies, the optimal strategy for the predator to maximize
the fitness (defined for each aspect about the predator’s behavior) has been discussed

Fig. 8.10 Parameter
dependence of the asymptotic
behavior of the solution for
the Rosenzweig-MacArthur
model (8.38). Solid line and
curve indicate the boundary
of parameter regions. See also
Fig. 8.8
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from the viewpoint of evolutionary biology. In this section, we consider some classic
theories on such an aspect for a while. It will be seen that they are closely related to
the reasonable modeling for the prey-predator population dynamics.

8.7.1 Diet Selection: Which Should Be Used?

Supposing that there are m prey species available for a predator, we shall consider
the theoretical problem about which prey species should be used by the predator as
the optimal predation. This problem has been studied with a variety of assumptions
in the optimal diet selection theory.

Let us consider this problem here with the most classic assumption given by the
following assumptions:

1. The predator searches a prey at random.
2. The density of each prey species is constant independently of the predation.
3. Any interaction between predators is negligible.
4. The frequency of a predator’s encounters to the prey of species i per unit time

is given by a species-specific constant λi (i = 1, 2, . . . ,m− 1,m).
5. Each of the predator’s attack to a prey is independent of the past experience of

predation.
6. When the predator handles an attacked prey, it cannot search or attack any other

prey.
7. When the predator attacks an individual of prey species i, the attack is

successful with probability σi (i = 1, 2, . . . ,m− 1,m).
8. When the attack to a prey of species i is successful, it takes the expected

handling time hi (i = 1, 2, . . . ,m− 1,m).
9. If an attack fails, the handling time is negligible.

10. The expected energy gain by the predation of a prey of species i is given by ei
(i = 1, 2, . . . ,m− 1,m).

11. The optimal diet selection maximizes the expected energy gain per unit time
by the predation.

The last assumption in the above defines the optimality according to the diet
selection in this theoretical consideration.

Although the predator does not necessarily attack an encountered prey, the higher
frequency of encounters indicates the more easiness for the predator to find the prey.
We now introduce the probability pi (i = 1, 2, . . . ,m − 1,m) that the predator
attacks an individual of prey species i when the predator encounters it. The set
of probabilities {p1, p2, . . . , pm} represents the predator’s behavior according to
the diet selection. The frequency of a predator’s encounters to the prey of any
species per unit time is given by

∑m
i=1 λi from the fourth assumption. Thus, the

expected duration ts until the predator encounters any prey individual is given by
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ts = 1/
∑m
i=1 λi . Then the probability qi that, when the predator encounters a prey

individual, it is of species i is given by qi = λi/
∑m
j=1 λj .

First, let us derive the expected searching time Ts until the predator makes a
successful attack to a prey after it starts the search for the prey. From the above
modeling, even when the predator encounters a prey of species i, it does not attack
it with probability 1 − pi . Besides, when the predator attacks a prey of species i, it
is unsuccessful with probability 1 − σi . Hence the probability that the predator does
not attack an encountered prey or the attack fails is given by

m∑
i=1

{
(1 − pi)qi + (1 − σi)piqi

} =
m∑
i=1

(1 − σipi)qi = 1 −
m∑
i=1

σipiqi,

where σipiqi gives the probability that the predator encounters a prey of species i
and succeeds in the attack for it. As a result, the formula

m∑
i=1

σipiqi

{
1 −

m∑
i=1

σipiqi

}k

gives the probability that the predator makes the first successful attack to a prey
encountered after k encounters without attack or with unsuccessful attack. Since the
unsuccessful attack takes no handling time from the above ninth assumption, it takes
no time if the predator does not attack an encountered prey or if the attack fails. Thus
the successful attack after k encounters without attack or with unsuccessful attack
takes the expected time (k + 1)ts after the predator starts the search for the prey.
Lastly we can derive the expected searching time Ts as follows:

Ts =
∞∑
k=0

(k + 1)ts

[ m∑
i=1

σipiqi

{
1 −

m∑
i=1

σipiqi

}k] = ts∑m
i=1 σipiqi

. (8.45)

Next, when the attack to a prey is successful, the expected handling time Th for
the successful attack to a prey is given by

Th =
m∑
i=1

σipiqi∑m
j=1 σjpjqj

hi , (8.46)

where σipiqi/
∑m
j=1 σjpjqj gives the probability that, when the predator success-

fully attacks a prey, it is of species i. In the same way, we can give the expected
energy gain E by the successful attack to a prey individual as follows:

E =
m∑
i=1

σipiqi∑m
j=1 σjpj qj

ei , (8.47)
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With these modelings, the expected time necessary for the search and attack per
prey is given by Ts+Th. Hence, from (8.45), (8.46), and (8.47), the expected energy
gain per unit timeW can be defined by

W = E

Ts + Th =
∑m
i=1 σiλipiei

1 +∑m
i=1 σiλipihi

. (8.48)

As defined in the last assumption, the optimal diet selection must maximize the
valueW .

Now let us investigate the pj -dependence of W . The partial derivative of W in
terms of pj ,

∂W

∂pj
= σjλj ej

(
1 +∑m

i=1,i 	=j σiλipihi
)− σjλjhj∑m

i=1,i 	=j σiλipiei(
1 +∑m

i=1 σiλipihi
)2 , (8.49)

has the sign independent of pj . If it is positive, the value of W increases as
pj gets larger, while if it is negative, it increases as pj gets smaller. Hence pj
must take alternatively 0 or 1 for the optimal diet selection (p1, p2, . . . , pm) =
(p∗

1, p
∗
2 , . . . , p

∗
m), where p∗

j (j = 1, 2, . . . ,m) is 0 or 1.

It is mathematically possible that ∂W/∂pk = 0 for a certain k with a specific
set of values {p1, p2, . . . , pk−1, pk+1, . . . , pm}. Then the value of p∗

k for the
optimal diet selection is indefinite. However, this case must hold only with a
specific relation among the parameters λi , hi , and ei (i = 1, 2, . . . , k− 1, k+
1, . . . ,m). Since the parameters are independent of each other according to
the prey species, such a specific relation is regarded as hard to be established
for any biological reason. Therefore, we ignore here such a specific case, and
assume that the right side of (8.49) has the sign definitely positive or negative.

Now let us consider which p∗
i is zero. The right side of (8.49) can be transformed

as follows:

∂W

∂pj
= σjλjhj

1 +∑m
i=1 σiλipihi

( ej
hj

−W
)
. (8.50)

Without any loss of generality, let us set the order of prey species as follows:

e1

h1
≥ e2

h2
≥ e3

h3
≥ · · · ≥ em−1

hm−1
≥ em

hm
. (8.51)

The value of ei/hi means the energy gain from the prey species i per handling time,
which may be regarded as an index about the value of prey species i for the predator.
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Suppose that the value of W takes its maximum W∗ with the optimal diet
selection (p1, p2, . . . , pm) = (p∗

1 , p
∗
2 , . . . , p

∗
m). In comparison with the above

order of values ei/hi , there must exist the unique natural number k∗ such that

e1

h1
≥ e2

h2
≥ · · · ≥ ek∗

hk∗
> W∗ > ek∗+1

hk∗+1
≥ · · · ≥ em

hm
,

where k∗ may be 1 or m as mentioned later. Then the right side of (8.50) must be
positive for j = 1, 2, . . . , k∗ while it must be negative for j = k∗+1, k∗+2, · · · ,m.
Therefore, it is concluded that p∗

1 = p∗
2 = · · · = p∗

k∗ = 1 and p∗
k∗+1 = p∗

k∗+2 =
· · · = p∗

n = 0 as the optimal diet selection. In the optimal diet selection, the predator
necessarily attacks the encountered prey of species with the order higher than a
critical value k∗ about the index ei/hi , while it neglects the encountered prey of
species with the order lower than it, that is, the species neglected by the predator is
not the “prey” for it according to the optimal diet selection. From these theoretical
arguments, we found that the optimal diet selection follows the all-or-none rule
about the use of prey species.

From this result, we can derive the following condition to determine the unique
natural number k∗:

ek∗

hk∗
>Wk∗ >

ek∗+1

hk∗+1
, (8.52)

where we defined

Wk :=
∑k
i=1 σiλiei

1 +∑k
i=1 σiλihi

which means the expected energy gain per unit time when the predator uses the prey
species only from the first to the kth in the above order for the value of prey species.
Especially, since

W1 = σ1λ1e1

1 + σ1λ1h1
<
e1

h1

for any positive λ1, we can find that the optimal diet selection necessarily contains
the prey species of the first in the above order. This may be taken natural and trivial
from the above arguments, because, if the first species is not in the diet selection,
no species is included in it so that the energy gain is zero, which is nonsense and
contradictory for its maximization.

We remark here that the formula of Wk mathematically corresponds to
the energy gain per unit time �E/�τ given by (8.35) with Holling’s disc

(continued)
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equation for more than one prey species in Sect. 8.5.2. As easily found, the
number of preys within the searching area aHi in the arguments of Sect. 8.5.2
reasonably corresponds to the frequency of encounters λi in this section.

We can prove in addition the following nature about the optimal diet selection
with a relatively large k∗:

W1 <W2 < · · · <Wk∗−1 <Wk∗ >Wk∗+1 > · · · >Wm−1 >Wm.

It is clearly shown that the value of Wk takes the maximum for the unique k∗, and at
the same time, the k-dependence of Wk is monotonically increasing for k < k∗ and
decreasing for k > k∗. This indicates that the order of prey species defined by (8.51)
is reasonable to index the value of prey species for the predator. From the above
order with respect to the value of Wk , the predator with the diet selection given by
k = k∗ can expectedly gain the energy per unit time greater than any predator with
that by k 	= k∗ can. Since the efficiency of energy gain by the predation is essential
for the predator’s reproduction, the larger W could be regarded as the greater fitness
in the sense of evolutionary biology. Thus, the natural selection would favor the diet
selection with k = k∗.

The above theoretical arguments significantly depend on the assumptions for
the modeling. For instance, let us consider the ninth assumption that the
handling time is negligible when the predator’s attack fails. This assumption
implies that the predator’s attack itself would take sufficiently short time.
This is not necessarily unrealistic. We may imagine the attack of bird which
tries to catch a fish under water. In comparison, the predator’s attack with
sneaking and chasing, such as carnivorous fish, must take a significant time
for an attack. Actually, replacing the above ninth assumption with that the
handling time is the same independently of the attack’s success when the
predator attacks a prey, we can show that the optimal diet selection is different
in general from that obtained in the above arguments (Exercise 8.6).

Exercise 8.6 If the above ninth assumption is replaced with that the handling time
is the same independently of the attack’s success when the predator attacks a prey,
show that the optimal diet selection is different in general from the result obtained
in this section.
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Diet Selection for Two Prey Species

In this part, we focus on the special case of two prey species available for the
predator. Without loss of generality, let us assume that e1/h1 > e2/h2. As already
proved in the previous part, the predator must use the first prey for the optimal diet
selection: p∗

1 = 1. Thus we shall consider whether the predator uses the second
species for the optimal diet selection. From the result with (8.52) in the previous
part, if and only if W1 < e2/h2, the second species is included in the optimal diet
menu.

We remark that this condition depends on λ1 but does not on λ2. The expected
energy gain per unit time W1 is monotonically increasing in terms of λ1. Hence, as
the density of prey species 1 becomes lower by the predation, W1 must decrease
due to the decline of the frequency to encounter the prey of species 1. Thus, if
the predation begins with the condition that W1 > e2/h2, the density of prey
species 1 decreases as the predation is going on, and then the condition may become
unsatisfied. Once it comes to be satisfied that W1 < e2/h2, the expected energy
gain per unit time becomes greater with the change of diet menu to use both of prey
species.

As seen about the functional response with Holling’s disc equation for more than
one prey species in Sect. 8.5.2, the predation rate for prey species 1 is smaller when
the predator uses the other prey species than when it uses only prey species 1. Hence
the reproduction of prey species 1 may redeem the density enough to satisfy again
the condition that W1 > e2/h2. These arguments imply the possibility that the
optimal diet selection may repeat a change depending on the density change of prey
by the predation. When such a repeated change of diet selection would converge to
a fixed diet menu for the equilibrium densities of prey species 1 and 2 under the
predation, the above arguments indicate that it must satisfy that W1 = e2/h2 and
W2 ≥ W1, where the latter condition is necessary since the use of only species 1
cannot make the equilibrium as mentioned in the above. At such an equilibrium, we
find that, from the former condition,

λ1 = 1

σ1h1
· e2/h2

e1/h1 − e2/h2
,

and from the latter condition, necessarilyW2 = W1 independently of λ2 as a result.

It must be remarked that the arguments in this section was based on the
theory of optimal strategy from the viewpoint of evolutionary biology. Hence
the arguments about the optimal diet selection in the first part was to be
considered with the supposition of the equilibrium state for the population
dynamics. Some readers may confuse this context, since the arguments would
seem to consider the predator which could change the diet menu during the

(continued)
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change of prey density with its predation. The arguments were to investigate
the diet selection in order to determine which diet menu could make the
energy gain per unit time maximal. In other words, they were to find a
rule/algorithm to determine the optimal diet menu. It was a typical way
of thinking the optimal strategy in evolutionary biology. In the last part of
this section, we considered the change of prey density due to the predation.
From the standpoint for the optimal strategy, it may be regarded as a shift of
equilibrium prey density due to the predator’s diet menu. In contrast, the way
of consideration in the last part will be adapted for the switching predation
in the next section as the other type of functional response in the population
dynamics.

8.7.2 Switching Predation: How Much Should Be Used?

As seen in the previous section, the maximization of the energy gain for the predator
depends on the diet selection. Further, as mentioned there, the diet selection depends
on the densities of prey species available for the predator. This implies the possibility
of a foraging strategy for the predator with the functional response to get the greater
energy gain by the predation.

In the arguments on the optimal diet selection of the previous section, it is
assumed that the prey density is constant independently of the predation, that is,
the frequency of encounters to prey individuals is given as a constant λi for prey
species i. In the context of population dynamics, it changes due to the predation.
So it is worth considering the functional response to maximize the energy gain for
the predator according to the prey-predator population dynamics in which the prey
density changes by the predation. Such a functional response would be regarded as
an optimal strategy with respect to the evolution of predation.

Let us consider m prey species available for the predator again. We shall
introduce the concept of predation effort or foraging effort that reflects not only
the energy but also time used for the predation/foraging. Let us denote here the total
predation effort per unit time by C. It determines the energy gain per unit time by the
predator how the predation effort is allocated to the foraging for each prey species.

We now introduce the allocation ratio of the predation effort for prey species i
by θi (0 ≤ θi ≤ 1; i = 1, 2, . . . ,m), which satisfies that

∑m
i=1 θi = 1. Then we

give the effort allocation per unit time to the foraging for prey species i by ci = θiC.
Let us assume that the expected number of preys of species i successfully foraged
per unit time is proportional to the effort allocation ci . The net predation rate for the
population of prey species i is given by αiciHi with a specific positive constant αi
and the population density Hi of prey species i. Parameter αi could be regarded as
the predation efficiency for prey species i. Hence the functional response for prey
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species i is given by fi = αici . We have now the expected energy gain E by the
predation per unit time as follows:

E =
m∑
i=1

eifiHi = C
m∑
i=1

eiαiθiHi, (8.53)

where ei is the expected energy gain for the predator to obtain by foraging a prey of
species i.

Let us consider now the simplest case of two prey species when m = 2. Since
θ1 + θ2 = 1 in this case, we have

∂E

∂θj
= C (ejαjHj − eiαiHi

)
(i, j = 1, 2; i 	= j).

Hence, as long as e1α1H1 > e2α2H2, it is adaptive to increase the effort allocation
θ1 (decrease θ2) in order to make the energy gain larger. Such an adaptive control
of predation effort with changing the effort allocation to the foraging for each prey
species is regarded as one of typical foraging behaviors called switching predation.

We remark that, along the present modeling, the allocation ratio of the predation
effort θi must be a function of prey densities: θi = θi(H1,H2). As θi gets larger,
the predation pressure for prey species i becomes stronger while that for the other
prey species j does weaker. The stronger predation pressure must make the density
of prey species Hi smaller, and the weaker predation pressure must make Hj larger
under the prey-predator population dynamics. Therefore, if an equilibrium exists for
the prey-predator population dynamics with such a switching predation, it must be
satisfied at the equilibrium that ∂E/∂θ1 = ∂E/∂θ2 = 0, that is, e1α1H1 = e2α2H2.
Such an equilibrium may be regarded as a specific situation, what is called ideal
free distribution. At the equilibrium, the energy gain per unit effort for one prey
species is equal to that for the other. In this sense, the value of prey becomes the
same independently of species at the equilibrium, according to the energy gain by
the predation.

In an ethological context of evolutionary biology, the ideal free distribution
is defined as a specific distribution of individuals in a spatially heterogeneous
environmental condition. The high population density at a location means the
smaller share of resource per individual there. When the spatial distribution of
a resource is heterogeneous, if each individual can freely and ideally choose
the settlement location to get the larger share of resource, we can define the
equilibrium population density distribution in space by which every individual
gets an even share of resource, following the spatially heterogeneous distribu-
tion of the resource. It is called the ideal free distribution [1, 2, 8, 20].
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Ideal Switching Response

The adaptive control of predation effort with changing the effort allocation to the
foraging for each prey species is given by the function θi = θi(H1,H2) in the case
of two prey species. It determines the functional response for prey species i at the
same time, because fi = αici = αiθiC. The following function can realize the ideal
control of predation effort described in the previous section:

θi = θi(H1,H2) =
(
eiαiHi

)n
(
e1α1H1

)n + (e2α2H2
)n (i = 1, 2), (8.54)

where the positive parameter n is introduced to index the responsiveness of the
effort control to the prey density. The larger n indicates the higher responsiveness as
seen in Fig. 8.11. In the exceptional case with n = 0, we have θ1 = θ2 = 1/2
independently of the prey density. This can be regarded as the case where the
predator randomly forages the preys without any control of predation effort, since
the effort allocation does not depend on the prey species.

With the effort allocation by (8.54), the expected energy gain per unit time E
given by (8.53) becomes

E = C
(
e1α1H1

)n+1 + (e2α2H2
)n+1

(
e1α1H1

)n + (e2α2H2
)n . (8.55)

As indicated by Fig. 8.11, the switching predation with (8.54) (n > 0) can always
provide E greater than the random predation (n = 0) can. For the larger n, the
advantage of switching predation over the random predation becomes greater.

Fig. 8.11 The allocation ratio of predation effort given by (8.54) (the left figure). The function
θ1 is numerically drawn with e1α1 = 1.0; e2α2 = 1.2; H2 = 1.0. On the right, drawn is the
corresponding expected energy gain per unit time E given by (8.55) with C = 1.0
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At the limit as n → ∞ that is the case of extremal responsiveness for the
effort control to the prey density, the allocation ratio (8.54) becomes

θi = θi(H1,H2) =

⎧⎪⎪⎨
⎪⎪⎩

0 for eiαiHi < ejαjHj ;
1
2 for eiαiHi = ejαjHj ;
1 for eiαiHi > ejαjHj ;

(i = 1, 2; i 	= j).

This function provides what is called bang-bang control for the effort
allocation, and the predator forages only one of two prey species unless
e1α1H1 = e2α2H2. Thus, under the bang-bang control of predation, the
predator appears to switch the diet menu, depending on the prey density.

As mentioned in the above, if there is the coexistent equilibrium for the prey-
predator population dynamics, it must be satisfied that e1α1H1 = e2α2H2. At such
an equilibrium, we have θ1 = θ2 = 1/2, so that the predator apparently takes
a random predation. This is because the densities of prey species becomes such
that the predator’s effort allocation is even for each prey species. It is a result of
the population dynamics with the predator’s active control of prey densities by the
switching predation toward the situation such that e1α1H1 = e2α2H2, that is, the
ideal free distribution which is now given by H1 : H2 = e2α2 : e1α1.

Biased Switching Response

The effort allocation with (8.54) was ideal to increase the expected energy gain per
unit time E. It has a close relation to the predation efficiency αi and the energetic
value ei for prey species i. Now, let us consider the more general effort allocation
by the following function:

θi = θi(H1,H2) = (βiHi)
n

(β1H1)
n + (β2H2)

n (i = 1, 2), (8.56)

where the parameter βi is regarded here as the index of predator’s preference
for prey species i. We assume that βi is not necessarily related to the predation
efficiency αi and the energetic value ei for prey species i. As β1 gets larger and
larger than β2, the predation becomes strongly biased for prey species 1. Note that,
although the effort allocation depends on the prey densities, it may not necessarily to
increase the energy gain per unit time due to the existence of predator’s preference
for prey species.
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Fig. 8.12 The allocation ratio of predation effort given by (8.56). The function θ1 is numerically
drawn with β1 = 3.0; β2 = 1.0; e1α1 = 1.0; e2α2 = 1.2; H2 = 1.0. On the right, drawn is the
corresponding expected energy gain per unit time E given by (8.57) with C = 1.0

With the effort allocation by (8.56), the expected energy gain per unit time E
given by (8.53) becomes

E = C e1α1H1 (β1H1)
n + e2α2H2 (β2H2)

n

(β1H1)
n + (β2H2)

n . (8.57)

The switching predation with (8.56) is less adaptive than that with (8.54) due
to the predator’s preference for prey species. Actually, as seen in Fig. 8.12, the
random predation (n = 0) can become more advantageous than the switching
predation in some cases depending on the prey densities. The expected energy gain
E given by (8.57) becomes the same as that by the random predation not only when
e1α1H1 = e2α2H2 but also when β1H1 = β2H2. Moreover, we can easily show
that, when

min
{ e2α2

e1α1
,
β2

β1

}
H2 < H1 < max

{ e2α2

e1α1
,
β2

β1

}
H2,

the random predation is more advantageous than the switching predation with the
effort allocation by (8.56).

Suppose again that there is the coexistent equilibrium for the prey-predator
population dynamics. Then it must be satisfied that β1H1 = β2H2, because, if
not, the effort allocation changes to cause a temporal variation of prey densities.
Since the predation is apparently equivalent to the random one at the equilibrium,
the expected energy gain per unit time E∗ at the equilibrium for the switching
predation with (8.56) can be expressed by the same formula as that with (8.54):
E∗ = (C/2)(e1α1H1 + e2α2H2). However, we note that the equilibrium sizes of
H1 andH2 are different from each other, depending on the prey-predator population
dynamics in which the difference in the switching response of predator with the
predator’s preference for the prey species must result in the different equilibrium
sizes.



252 8 Modeling for Prey-Predator Relation

Answer to Exercise

Exercise 8.1 (p. 219)

To apply the isocline method (refer to Sect. 14.7) for Lotka-Volterra prey-predator
model (8.15), we need to find first the nullclines in the (H, P )-phase plane.
From (8.15), the nullclines for H is given by

{
(H, P ) | (r − γP)H = 0

}
, and

those for P is by
{
(H, P ) | (−δ + κγH)P = 0

}
. They are the axes, a horizontal

line, and a vertical line in the (H, P )-phase plane. We can get the following figure
by the isocline method to indicate the vector direction for the trajectory in each
region bounded by the nullclines in the (H, P )-phase plane:

0

White circles indicate the equilibrium points. The above figure about the vector
direction implies the possibility that the trajectory draws a curve moving around
the coexistent equilibrium point (δ/(κγ ), r/γ ), that is, the temporal change of H
and P could show an oscillation around the equilibrium values δ/(κγ ) and r/γ
respectively. However, we cannot get any information about the asymptotic behavior
of the trajectory, whether it approaches one of equilibria or diverges.
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Exercise 8.2 (p. 221)

By differentiating (8.18) in terms of t , we find that

dV (t)

dt
= r

1

P(t)

dP (t)

dt
− γ dP(t)

dt
+ δ 1

H(t)

dH(t)

dt
− κγ dH(t)

dt

=
{
r

P (t)
− γ

}
dP(t)

dt
+
{
δ

H(t)
− κγ

}
dH(t)

dt
.

By substituting (8.15) for this equation, we find that

dV (t)

dt
=
{
r

P (t)
− γ

}
{−δP (t) + κγH(t)P (t)}

+
{
δ

H(t)
− κγ

}
{rH(t)− γH(t)P (t)}

= −rδ + rκγH(t)+ γ δP (t) − κγ 2H(t)P (t)

+ δr − δγP (t)− κγ rH(t)+ κγ 2H(t)P (t) = 0.

Therefore, V (t) must be equal to a constant independent of time t .

Exercise 8.3 (p. 221)

By the linearization of Lotka-Volterra prey-predator model (8.15) around the
equilibrium (H ∗, P ∗) (refer to Sect. 14.2), we can obtain the following linearized
system of ordinary differential equations about the approximated perturbation
(̃h(t), p̃(t)) ≈ (H(t) − H ∗, P (t) − P ∗) in the neighborhood of (H ∗, P ∗) (refer
to Sect. 14.2):

⎧⎪⎪⎨
⎪⎪⎩

dh̃(t)

dt
= rh̃(t)− γ {P ∗h̃(t)+H ∗p̃(t)

};
dp̃(t)

dt
= −δp̃(t)+ κγ {P ∗h̃(t)+H ∗p̃(t)

}
.

(8.58)

Jacobian matrix for equilibrium (H ∗, P ∗) is given by

A =
(
r − γP ∗ −γH ∗

κγP ∗ −δ + κγH ∗

)
.
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Hence, for the equilibrium (H ∗, P ∗) = (0, 0), we have the diagonal matrix A =(
r 0
0 −δ

)
, so that the eigenvalues of A, that is, those for equilibrium (H ∗, P ∗) =

(0, 0) are r and −δ. For the coexistent equilibrium (δ/(κγ ), r/γ ), we have the anti-

diagonal matrixA =
(

0 −δ/κ
rκ 0

)
, so that the characteristic equation det(A−λE) =

0 becomes λ2 + rδ = 0, and we obtain the purely imaginary eigenvalues ±i
√
rδ.

Exercise 8.4 (p. 222)

From (8.15), we have

1

P(t)

dP (t)

dt
= −δ + κγH(t),

and get the following equation by the definite integral for t ∈ [0, T ]:

lnP(T )− lnP(0) = −δT + κγ TH,

where we used the definition of H given by (8.19). Since P(T ) = P(0) from the
periodicity, the left side is zero, so that we find H = δ/(κγ ).

In the same way, the definite integral of the first equation in (8.15) for t ∈ [0, T ]
results in the following equation:

H(T )−H(0) = rT H − YT .

Since H(T ) = H(0) from the periodicity, the left side is zero, we can get YT =
rTH . On the other hand, we have already known that P = r/γ , that is, r = γP .
Hence we finally find that YT = γ TH P .

Exercise 8.5 (p. 225)

In this case, the system (8.20) becomes

⎧⎪⎪⎨
⎪⎪⎩

dH(t)

dt
= rH(t)− γH(t)P (t) + ε1{H(t)}2;

dP(t)

dt
= −δP (t)+ κγH(t)P (t).

(8.59)
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For this system, we can find that there could be three equilibria: E0(0, 0);
E2(δ/(κγ ), r/γ + ε1δ/(κγ

2)); E1(−r/ε1, 0). Although ε1 must satisfy a condition
for the reasonable equilibrium (H ∗, P ∗) with H ∗ ≥ 0 and P ∗ ≥ 0, we shall put
aside the condition and investigate first the local stability for each of them.

The linearized system of (8.59) around equilibrium (H ∗, P ∗) is given by

⎧⎪⎪⎨
⎪⎪⎩

dh̃(t)

dt
= rh̃(t)− γ {P ∗h̃(t)+H ∗p̃(t)} + 2ε1H

∗ h̃(t);
dp̃(t)

dt
= −δp̃(t)+ κγ {P ∗h̃(t)+H ∗p̃(t)},

(8.60)

where (̃h(t), p̃(t)) is the approximation for the perturbation (h(t), p(t)) := (H(t)−
H ∗, P (t) − P ∗) in the neighborhood of (H ∗, P ∗) (refer to Sect. 14.2). Jacobian
matrix for (H ∗, P ∗) becomes

A =
(
r − γP ∗ + 2ε1H

∗ −γH ∗

κγP ∗ −δ + κγH ∗

)
.

Jacobian matrix for E0(0, 0) becomes the diagonal matrix A =
(
r 0
0 −δ

)
, so

that the eigenvalues are r and −δ. These eigenvalues are the same as those for
equilibrium (0, 0) about Lotka-Volterra prey-predator model (8.15). Equilibrium
E0(0, 0) is a saddle point, and the stability is not influenced by the perturbation
term at all.

For equilibrium E2(δ/(κγ ), r/γ + ε1δ/(κγ
2)), Jacobian matrix becomes

A =
(
ε1δ/(κγ ) −δ/κ
rκ + ε1δ/γ 0

)
,

so that we can get the characteristic equation

λ2 − ε1δ

κγ
λ+ rδ + ε1δ

2

κγ
= 0.

As a result, we can find the following classification about the local stability of E2,
except for the case where the eigenvalues include zero (refer to Table 14.1 in p. 428
of Sect. 14.3):
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Condition Eigenvalues Classification of equilibrium Sign of equilibrium value

ε1 < ε
∗ Positive and

negative
Saddle (+,−)

ε∗ < ε1 ≤ ε∗∗− Both negative Stable node (+,+)
ε∗∗− < ε1 < 0 Imaginary with

negative real part
Stable spiral

ε1 = 0 Purely imaginary Center

0 < ε1 < ε
∗∗+ Imaginary with

positive real part
Unstable spiral

ε1 ≥ ε∗∗+ Both positive Unstable node

The critical value ε∗ := −rκγ /δ < 0 is derived from the sign of the product of
eigenvalues, and

ε∗∗± := 2κγ
(

1 ±
√

1 + r

δ

)

are derived from the sign of the discriminant for the characteristic equation. For
the excluded case where ε1 = ε∗, the eigenvalues are 0 and ε1δ/(κγ ) < 0, so
that the local stability analysis with the linearized system (8.60) cannot determine
the stability of E2. Moreover, since (δ/(κγ ), 0) = (−r/ε1, 0) when ε1 = ε∗,
equilibrium E2 merges with E1. We will return to this case later.

Jacobian matrix for equilibrium E1 becomes the triangular matrix

A =
(−r rγ /ε1

0 −δ − rκγ /ε1

)
,

so that the eigenvalues are −r and −δ− rκγ /ε1. Therefore, the local stability of E1
can be classified as follows, except for the case where the eigenvalues include zero
as already mentioned in the above:

Condition Eigenvalues Classification of equilibrium Sign of equilibrium value

ε1 < ε
∗ Both negative Stable node

(+, 0)
ε∗ < ε1 < 0 Positive and negative Saddle

ε1 > 0 Both negative Stable node (−, 0)

The critical value ε∗ < 0 is the same as before. When ε1 = ε∗, the eigenvalues
are −r and 0, so that the local stability analysis with the linearized system (8.60)
cannot determine the stability of E1.
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In the exclusive case of ε1 = ε∗, the system (8.59) becomes

⎧⎪⎪⎨
⎪⎪⎩

dH(t)

dt
= rκγ

δ

{ δ
κγ

−H(t)
}
H(t)− γH(t)P (t);

dP(t)

dt
= κγ

{
− δ

κγ
+H(t)

}
P(t).

(8.61)

There are only two equilibria, (0, 0) and (δ/(κγ ), 0). Let us apply the isocline
method (refer to Sect. 14.7) for (8.61). Then we can get the following figure (a)
about the vector direction in the (H, P )-phase plane:

0

)b()a(

0

The isocline method implies that the trajectory from a positive initial point
asymptotically approaches equilibrium (δ/(κγ ), 0). The numerically drawn vector
flows shown in the above figure (b) clearly indicates this result. However, in
a mathematical sense, equilibrium (δ/(κγ ), 0) is unstable, because both of the
isocline method and the numerically drawn vector flows indicate the divergence
of trajectory from an initial point such that H(0) > 0 and P(0) < 0.

Since the system (8.61) is not just a mathematical system of ordinary differential
equations but a prey-predator population dynamics model, only the trajectory from
a positive initial point is meaningful. Therefore, as our conclusion about the case of
ε1 = ε∗, (δ/(κγ ), 0) is globally asymptotically stable from the above result by the
isocline method.

In a rigorous mathematical sense, the above conclusion with the isocline
method requires the more mathematical proof, though we could clearly see
the usefulness of the isocline method to get the mathematical nature of the
trajectory.

(continued)
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In the mathematical proof, it is necessary to show that the trajectory from
a positive initial point cannot go out of the first quadrant of the (H, P )-phase
plane in any finite time. Since the system (8.61) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

1

H(t)

dH(t)

dt
= ℱ(H(t), P (t)) := rκγ

δ

{ δ
κγ

−H(t)
}

− γP(t);
1

P(t)

dP (t)

dt
= 𝒢(H(t), P (t)) := κγ

{
− δ

κγ
+H(t)

}
,

(8.62)

we can mathematically get the following equations about H(t) and P(t) for
the initial condition (H(0), P (0)) = (H0, P0):

⎧⎪⎪⎨
⎪⎪⎩
H(t) = H0 exp

[ ∫ t

0
ℱ(H(s), P (s)) ds

]
;

P(t) = P0 exp
[ ∫ t

0
𝒢(H(s), P (s)) ds

]
.

(8.63)

These equations mathematically indicate that H(t) > 0 for any t > 0 for
H0 > 0, and P(t) > 0 for any t > 0 for P0 > 0.

As the other way of mathematical argument on the same subject, we could
carry out the proof making use of the contradiction of the supposition that
the trajectory from a positive initial point intersects an axis at a finite time.
In such a proof, we need to use the unique existence of the solution for the
system (8.61). Since this book is not to focus on such a mathematical proof,
we shall not go into it here. For the reader interested in such a mathematical
aspect, some other text books focusing on the more mathematical aspect of
the population dynamics model [19], or those of applied mathematics on the
dynamical system [13] would be helpful.

As mentioned above, we are now interested only in the equilibrium inside the
first quadrant of the (H, P )-phase plane. From this standpoint, we can get together
the results obtained by the above analysis as follows:

Condition E0 E2 E1

ε1 < ε
∗

Saddle

— Stable node

ε1 = ε∗ — (Asymptotically stable)

ε∗ < ε1 ≤ ε∗∗− Stable node
Saddle

ε∗∗− < ε1 < 0 Stable spiral

ε1 = 0 Center —

0 < ε1 < ε
∗∗+ Unstable spiral —

ε1 ≥ ε∗∗+ Unstable node —
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For any positive ε1, no asymptotically stable equilibrium exists, and the solution
for the linear system (8.60) diverges. For any negative ε1, the solution necessarily
converges an asymptotically stable equilibrium. Consequently this result clearly
indicates the structural instability of Lotka-Volterra prey-predator model (8.15) for
the perturbation term.

Exercise 8.6 (p. 245)

When the handling time is the same independently of the attack’s success, the attack
necessarily takes a handling time specifically given for the attacked prey species
even if it is unsuccessful. Thus, instead of Ts in the main text, we need to consider
the expected duration until the first attack after the predator starts the search for the
prey. Let us denote it by Ta now.

The probability that the predator does not attack an encountered prey is given by∑m
i=1(1 − pi)qi = 1 −∑m

i=1 piqi . Hence, the formula

m∑
i=1

piqi

{
1 −

m∑
i=1

piqi

}k

gives the probability that the predator makes the first attack to a prey encountered
after k encounters without attack. Same as in the main text, the attack after k
encounters without attack takes the expected time (k + 1)ts after the predator starts
the search for the prey. Lastly we can derive the expected time Ta as follows:

Ta =
∞∑
k=0

(k + 1)ts

[ m∑
i=1

piqi

{
1 −

m∑
i=1

piqi

}k] = ts∑m
i=1 piqi

. (8.64)

Independently of whether the attack to a prey is successful or not, the expected
handling time T ′

h for the attack to a prey is now given by

T ′
h =

m∑
i=1

piqi∑m
j=1 pjqj

hi, (8.65)

where piqi/
∑m
j=1 pjqj gives the probability that, when the predator attacks a prey,

it is of species i. It is different from Th by (8.46) in the main text. Further, the
expected energy gain E′ per attack is given by

E′ =
m∑
i=1

piqi∑m
j=1 pjqj

{
σiei + (1 − σi) · 0

} =
m∑
i=1

piqi∑m
j=1 pjqj

σiei . (8.66)

This is because the energy gain is zero if the attack is unsuccessful.
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Lastly, from (8.64), (8.65), and (8.66), the expected energy gain per unit timeW ′
can be defined by

W ′ = E′

Ta + T ′
h

=
∑m
i=1 σiλipiei

1 +∑m
i=1 λipihi

,

and we have

∂W ′

∂pj
= σjλj ej

(
1 +∑m

i=1,i 	=j λipihi
)− λjhj∑m

i=1,i 	=j σiλipiei(
1 +∑m

i=1 λipihi
)2 ,

which has the sign independent of pj . Moreover, we have the other expression of
this partial derivative as well as in the main text:

∂W ′

∂pj
= λjhj

1 +∑m
i=1 λipihi

(σjej
hj

−W ′).
Hence, with the same arguments as in the main text, pj must take alternatively 0

or 1 for the optimal diet selection (p1, p2, . . . , pm) = (p∗
1 , p

∗
2 , . . . , p

∗
m), and it can

be expressed as p∗
1 = p∗

2 = · · · = p∗
k∗ = 1 and p∗

k∗+1 = p∗
k∗+2 = · · · = p∗

n = 0
with the uniquely determined natural number k∗, when we set the order of prey
species as follows:

σ1e1

h1
≥ σ2e2

h2
≥ σ3e3

h3
≥ · · · ≥ σm−1em−1

hm−1
≥ σmem

hm
. (8.67)

The specific natural number k∗ is uniquely determined to satisfy that

σk∗ek∗

hk∗
>W′

k∗ >
σk∗+1ek∗+1

hk∗+1
,

where

W′
k :=

∑k
i=1 σiλiei

1 +∑k
i=1 λihi

.

In general, the order of prey species by (8.67) does not coincide with that
by (8.51). This is because the order (8.67) depends on the probability distribution of
successful attack {σi}, while (8.51) is independent of it. Hence, the species of high
rank in (8.51) may be ordered as a low rank in (8.67) due to a small probability of
successful attack, which means the difficulty for the predator to succeed in the attack
for the prey species, for example, with the prey’s protective behavior or resistant
characteristics. Therefore, every prey species i with p∗

i = 1 in the above modeling
does not coincide to a prey species j with p∗

j = 1 in the main text. That is, a prey
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species i with p∗
i = 1 in the above modeling may correspond to the species j with

p∗
j = 0 in the main text.
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Chapter 9
Modeling with Class Structure

Abstract In this chapter, we shall focus on the modeling of the stage structured
population dynamics especially in the context of the epidemic dynamics. It is the
typical population structure for the epidemic dynamics to classify the individuals
into susceptible, latent, infectious, recovered (immunized) ones, which are regarded
as the physiological states with respect to the infection of a transmissible disease.

9.1 Structured Population

Problem on a population dynamics may need to take account of a structure
within the population, like social structure, physiological structure, and ecological
structure. The population with such an internal structure is called structured
population. The social structure is based on the social behavior of individuals in
the population, which follows, for example, kin selection, sexual selection, and
evolutionarily optimal strategy. On the other hand, the physiological structure is
based on the physiological state of individuals, for example, sex, age, size of a part
of body, body weight, color, etc. As a specific example which will be mainly treated
in this chapter, the physiological state with respect to the infection of a transmissible
disease determines the structure of population under the epidemic dynamics. Such
a physiological structure could have a close relation to the social structure. The
ecological structure is based on the ecological interaction between individuals in
the population. The group formation to compose subpopulations makes an example.

Now let us focus on the physiological structure which may be quantified by a
certain measure. If an individual is characterized by a value x by the measure,
we can identify the value of state variable for the individual by x. Each member
of the population is distinguished in terms of the value of state variable, so that
the population is characterized by the distribution of the state variable. It gives
an expression of the physiological structure about the population. Generally a
population characterized by a distribution of physiological state variable is called
physiologically structured population.

When the measure is the age of individual, we can define the physiological
structure by the age distribution for the population. Such a population with an
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264 9 Modeling with Class Structure

age distribution is sometimes called age structured population or age classified
population. We will see the fundamental modeling for the age structured population
dynamics in the subsequent Chap. 10.

The distribution of state variable may be discrete, when the state variable takes
only a value belonging to a set consisting of countable number of values. The
population with such a discrete distribution of state variable may be called stage
structured population or stage classified population. If the age distribution in a
population is by a number of age classes, the age structured population is a stage
structured population.

In this chapter, we shall focus on the modeling of the stage structured population
dynamics especially in the context of epidemic dynamics. It is the typical population
structure for an epidemic dynamics to classify the individuals into susceptible,
latent, infectious, recovered (immunized) ones, which are regarded as the physio-
logical states with respect to the infection of a transmissible disease.

9.2 Spread of Transmissible Disease

The disease transmission process from an infective individual (we hereafter use
“infective” as a single noun, following a convention in mathematical epidemiology)
to a susceptible one (hereafter “susceptible” as a single noun) could be regarded as
analogous to the interaction between predator and prey. The successful transmission
of the disease causes the decrease in the subpopulation size of susceptibles while
it does the increase in the subpopulation size of infectives. It can be regarded as
corresponding to the process with the decrease in the prey population size by the
predation and the increase in the predator population size by the reproduction with
the energy gain by the predation.

In this section, we shall consider the modeling of the temporal change of the
subpopulation sizes for the susceptible, infective, and if necessary, latent (incubated,
encapsuled), and recovered (removed, immunized) classes. There could be the other
classes, for example, the isolated (quarantined) and the died etc. The transmissible
disease considered here may be regarded for example as panic or fear as a
transmissible psychological state, or as addiction for drug, alcohol, gamble, gaming,
etc. Moreover, we may consider the disease not only for human but also for plant
or animal. Further, as an extended application from the clear similarity, we may
consider the spread of mode, habit, rumor, fake news, innovative technology, or
another information.

The disease transmission may have different aspects about the route: horizontal
transmission and vertical transmission. We will assume only the horizontal trans-
mission in this chapter. The horizontal transmission indicates the infection between
individuals being at the same time and space. The vertical transmission means the
infection of newborns at birth from the mother in a rigorous sense, while it may be
referred as the transmission of a disease from generation to generation through the
parent-child relationship.
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In this chapter to describe the basic modelings, we shall consider the population
dynamics about the spread of a transmissible disease by the horizontal transmission
after its invasion in a population. We ignore any change of the population size
in the time scale of the epidemic dynamics, that is, the spread of disease in the
population. Thus we assume that the population size is constant independently of
time, denoted by a positive constantN . Especially since we will describe only basic
epidemic dynamics models, we assume no latent period for them in most of the
subsequent part, so that the individual gets the infectivity to transmit the disease
to the other immediately after the infection. Now let us denote the susceptible
subpopulation size (density) by Sk at the beginning of the kth day after the initial
invasion of a transmissible disease in the population. In the same way, Ik denotes the
infective subpopulation size, which indicates the density of individuals who has the
infectivity.Rk denotes the recovered subpopulation size, which indicates the density
of individuals who has the immunity against the disease. From the assumption of
constant population size, we have Sk + Ik + Rk = N for any k. In Sect. 9.3.6,
we will revisit these assumptions and give examples of modelings and models with
modifying them.

In the other context of epidemic dynamics modeling, the class denoted by
R may not be for individuals with the immunity. The use of the letter
R is sometimes explained as the first letter of the word “Recovered” or
“Recovery”. However, according to the epidemic dynamics in a general
sense, it would be better to be explained as the first letter of “Removed” or
“Removal”, since the individual of class R is generally assumed to have no
contribution to the transmission of disease itself in the modeling. The class R
consists of individuals removed from the epidemic dynamics. For example, if
the disease is highly fatal, the class R indicates the subpopulation of dead, that
is, the accumulation of dead by the disease. In contrast, if the disease is not
fatal, it may indicate the subpopulation of isolated or hospitalized infectives
after their detection. In this case, the individuals of class R is not at the
recovered state, but they are out of the epidemic dynamics in a reasonable
sense. In these cases with the different meaning of class R, the modeling
described in this chapter would be reasonably modified, although we shall
not consider such a modification any more in this book. The reader can easily
find such modelings in the other literatures on the mathematical model for the
epidemic dynamics [1, 2, 5, 6, 8, 15, 22].
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9.2.1 Generic Discrete Time Model

Let us introduce the probability P(j) that an individual contacts the route of disease
transmission j times a day. The route of disease transmission means the chance to
encounter the pathogen which could cause a transmissible disease by its successful
infection to the host. For example, in the case of a sexually transmitted disease or a
skin disease, the disease transmission requires a direct contact between individuals.
So the probability P(j) is determined by the frequency of contacts to the other
individuals. In the case of malaria, dengue fever, or pine wilt disease, it requires the
contact with a vector (mosquito or long-horned beetle) which carries the pathogen
(microorganism or virus). Then P(j) is determined by the frequency of contacts
to the vector. In contrast, the transmission of influenza may be caused by the
contact to droplets or aerosols containing the pathogen. Thus, in such a case, P(j)
is determined by the frequency of chances to stay in contaminated air or touch
contaminated materials as potential routes for the disease transmission.

It must be remarked that P(j) does not mean the probability of the infection. The
infection may occur only by the contact to the infective individual, the carrier vector,
or the contaminated air or materials. Any contact to the susceptible individual, non-
carrier vector, or non-contaminated/purified/disinfected air/material cannot cause
the infection. In the modeling for epidemic dynamics, it is important to take account
of such a frequency/probability to contact the route of disease transmission, which
depends on the characteristics of not only the disease but also the behavior of
individuals and further the sanitary condition around them.

Today most of mathematical models for epidemic dynamics are given by the
system of differential equations, and some of them may be treated as the
typical models in many textbooks on mathematical biology and epidemiology.
For such continuous time models, the logic of mathematical modeling
described in this chapter for the discrete time model could be applied at least
as an essential skeleton for its modeling.

Further, in most of the explanation on the modeling for the human
epidemic dynamics, the infection with the contact between individuals is
usually assumed. It may become misleading about the epidemic dynamics.
We know that the essence of disease transmission is the contact not between
individuals but between pathogen and individual. Even in a situation where
no infective individual exists, there could be a possibility for a susceptible to
get the infection, like the droplet-borne transmission through contaminated
air/materials as mentioned in the above.

For example, as in the case of the COVID-19 or the infectious gastroenteri-
tis, when the droplet would have a high probability to transmit the persistent
virus to the others, the active pathogen density for the materials contaminated

(continued)
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by the droplets significantly depends on the density of infectives in the
population. However, it may not necessarily have significant relation to the
frequency of contacts between individuals. For this reason, we understand
that washing hands and clothes after getting chances to be in such situations
would be effective to reduce the likeliness of the infection. Actually it is well-
known that we need to make a highly cautious treatment about a vomit and
excreta from the patient of an infectious gastroenteritis.

The description about the modeling in the context of the contact between
individuals is straightforward and even appropriate for the disease with such
a route of transmission. However, it is not necessarily applicable for many
diseases. For this reason, we shall describe here the modeling in the context
of the contact between pathogen and individual.

On the other hand, it is generally difficult to estimate such a frequency of
contacts between pathogen and individual in the route of disease transmission.
In contrast, today it may become possible to use a statistical analysis on a big
data in order to get an estimation about the frequency of contacts between
individuals. This modern situation may make it more feasible to consider the
relation of the contacts between individuals and the epidemic dynamics.

With the probability distribution {P(j)}, we can define the expected number of
contacts to the route of disease transmission per day by 〈π〉 = ∑∞

j=0 jP (j). Let
us assume that 〈π〉 is mathematically determined as a finite value. Next supposing
that the ratio φk of j contacts in the kth day is expected for that to the pathogen,
we give the following formula of the expected number of contacts to the route of
disease transmission which has a possibility to cause the infection:

∞∑
j=0

φkjP (j) = φk〈π〉.

φk can be regarded as the probability that a contact to the route of disease
transmission is one which has a possibility to cause the infection, that is, which
is contaminated by the pathogen.

In general, φk must depend on the density of infectives Ik in the population. As
the density of infectives gets larger, the route of disease transmission is more likely
to be contaminated by the pathogen. Besides the pathogen concentration at the route
becomes higher. Hence φk could have a positive correlation with the number/density
of infectives which produce the pathogen in the population. It may depends on
the nature of the route of disease transmission, the behavior of individuals and the
sanitary situation around them. For example, the spread of the custom to wear the
mask at the social scene may work to weaken such a positive correlation.
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Next we introduce the probability that a susceptible escapes from the infection
with � contacts to the contaminated route of disease transmission at the kth day,
by (1 − βk)

� where βk is the probability to get the infection by a contact to the
contaminated route at the kth day (0 < βk < 1). On the other hand, when a
susceptible contacts j times to the route of disease transmission at the kth day,
the probability that � of the contacts is to the contaminated route is given by the
following from the assumption given above:

(
j

�

)
φ�k(1 − φk)j−� = j !

�!(j − �)! φ
�
k(1 − φk)j−�.

Thus we have the following probability that a susceptible escapes from the infection
with j contacts to the route of disease transmission at the kth day:

j∑
�=0

(
1 − βk

)� ( j
�

)
φ�k(1 − φk)j−� =

j∑
�=0

(
j

�

){ φk

1 − φk
(
1 − βk

)}�(
1 − φk

)j

=
{ φk

1 − φk (1 − βk)+ 1
}j (

1 − φk
)j = (1 − βkφk

)j
.

Therefore, the probability of infection at the kth day is correspondingly given by
1 − (1 − βkφk

)j .
As a consequence of this modeling, we have the probability for a suscep-

tible to escape from the infection at the kth day as
∑∞
j=0(1 − βkφk)

jP (j),
and the probability for a susceptible to get the infection at the kth day as∑∞
j=0

{
1 − (1 − βkφk)j

}
P(j). The latter probability of the infection means what

is called the infection force for the epidemic dynamics. The larger is the infection
force, the disease spread is more severe.

With those assumptions derived with the modeling, we can consider the fol-
lowing simplest epidemic dynamics model to govern the daily change of the
subpopulation sizes of susceptible Sk , infective Ik , and removed/recoveredRk (see
Fig. 9.1):

Sk+1 =
∞∑
j=0

(1 − βkφk)jP (j)Sk + (1 −m)qIk + θRk;

Ik+1 =
∞∑
j=0

{
1 − (1 − βkφk)j

}
P(j)Sk + (1 − q)Ik;

Rk+1 = mqIk + (1 − θ)Rk,

(9.1)

where it holds that Sk + Ik + Rk = N for any k.
Here the parameter q means the probability that an infective recovers and loses

the infectivity in one day (0 < q ≤ 1). Hence the expected duration of the infectivity
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Fig. 9.1 State transitions for
the epidemic dynamics model
(9.1)

Susceptible

Infective

Removed/Recovered

S

R

I

is now given by 1/q days as follows: Suppose an individual who is infected at a day.
For the above model, such an individual becomes infective from the next day. So if
the individual recovers k days later, the infective duration is regarded as k days since
the individual is still infective at the day of the recovery. The probability of such a
recovery after k days is now given by (1 − q)k−1q . Thus the expected duration of
the infectivity is mathematically derived by

∑∞
k=1 k(1 − q)k−1q = 1/q (refer to the

last part of Sect. 1.5).
The parameter m means the probability that a recovered individual can get the

immunity (0 ≤ m ≤ 1). When m = 0, the recovery cannot lead to the immunity at
all. When m = 1, it can necessarily lead to the immunity. The individual with the
immunity cannot get the infection, so that such an individual is removed from the
epidemic dynamics. On the other hand, the recovered individual without getting
the immunity is assumed to return to the susceptible state, that is, go back to
the susceptible class, at which the individual can get the infection again like a
susceptible who has not experienced the disease.

In the above model, we introduce the probability of the waning of the immunity
per day by the parameter θ (0 ≤ θ < 1). For θ = 0, the waning never occurs and
the immune individual keeps the immunity at least in the time scale of the epidemic
dynamics. By the same calculation as about the expected duration of the infectivity
in the above, the expected duration of the immunity is now given by 1/θ .

9.2.2 Invasion Success of Transmissible Disease

In this section, we consider the condition for the success of the disease’s invasion
in the population under the epidemic dynamics given by (9.1). The invasion success
is theoretically defined as the increase of infective population size at the initial of
epidemic dynamics with a sufficiently small number of infective individuals in the
population. Generally saying, the spread of a transmissible disease begins with its
invasion success.

Now we take the initial condition for the infective population size as I0 � N at
the zeroth day. Since the zeroth day is when the disease emerges in the population,



270 9 Modeling with Class Structure

we may reasonably suppose that no individual has the immunity, so thatR0 = 0. We
do not consider now the other cases such that the vaccination is operated in advance
or some immune individuals remain from the last season of epidemic dynamics.
Thus we have S0 = N − I0. Further, from such a situation at the zeroth day, the
probability φ0 that a contact to the route of disease transmission has a possibility to
cause the infection must be sufficiently small: φ0 � 1. So is the probability β0 to
get the infection by a contact to the contaminated route at the zeroth day: β0 � 1.
With these assumptions, let us consider the mathematical condition that I1 > I0,
which now means the invasion success of the disease in the population by the above
definition.

From the second equation of (9.1), we have

I1 =
∞∑
j=0

{
1 − (1 − β0φ0)

j
}
P(j)S0 + (1 − q)I0

=
∞∑
j=0

jβ0φ0P(j)(N − I0)+ o(β0φ0)+ (1 − q)I0, (9.2)

making use of Taylor expansion in terms of β0φ0. Since it is reasonable to assume
that these probabilities given by φk and βk are positively correlated with the infective
population size Ik , let us assume further that the product βkφk is given by an
appropriately smooth increasing function of Ik : βkφk = F(Ik). Again by Taylor
expansion, we have

φ0β0 = F(I0) = F(0)+ F′(0)I0 + o(I0), (9.3)

where

F′(0) = dF(I)
dI

∣∣∣∣
I=0

> 0

because of the above-mentioned positive correlation to the infective population size
I . In addition, we reasonably suppose that F(0) = 0, assuming now that no infective
(i.e., Ik = 0) means no pathogen in the route of disease transmission.

If the pathogen can keep active out of the host for a sufficiently long duration
until its natural decay, it may become reasonable to assume that F(0) > 0. In
such a case, even when the infective is absent on a day, the active pathogen
hiding in the environment may create a new infective individual. On the other
hand, if the disease transmission is occurred by the vector as mentioned in the
previous section, φk and βk depend not directly on the infective population

(continued)
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size but on the carrier vector population size. Also in such a case, even when
the infective is absent on a day, the carrier vector may create a new infective
individual. In these cases, the following arguments with F(0) = 0 must be
necessarily modified, although we shall not go into such a modeling any more
in this book.

By substituting (9.3) for (9.2), we can get

I1 =
{ ∞∑
j=0

jP (j)F′(0)N + (1 − q)
}
I0 + o(I0)

= {〈π〉F′(0)N + (1 − q)}I0 + o(I0), (9.4)

where 〈π〉 is the expected number of contacts to the route of disease transmission
per day, as defined in the previous section.

As a result, the mathematical condition for the invasion success to make I1 > I0
is given by 〈π〉F′(0)N + 1 − q > 1, that is,

〈π〉F′(0)
q

N > 1. (9.5)

If this condition is satisfied, the disease invasion is successful to make a spread in the
population. The condition (9.5) implies that, when the duration of infectivity is suf-
ficiently long (with a sufficiently small q), or when the individual mobility/activity
is so high that the frequency of contacts to the route of disease transmission is
sufficiently large (with a sufficiently large 〈π〉), the spread of the disease may occur.

9.2.3 Reproduction Number of Infectives

As an index about the tendency of the disease spread by an epidemic dynamics in
a population, we may consider the expected number of new infectives produced by
an infective during having the active infectivity. The expected number is not for a
specific infective individual, but for an arbitrary infective individual, so that such an
index could represent the tendency of the disease spread for the population.

We need some detail assumptions in order to make the conceptual definition
about such an index more accurate, and give its mathematical definition [4, 6,
10, 19]. The typical conceptual definition is given as the expected number of new
infectives produced by an infective under the condition that the original infective
has contacts only with susceptibles during having the active infectivity. It is today
well-known as the basic reproduction number for the disease spread.
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It is actually impossible that an infective could have contacts only with suscep-
tibles during having the active infectivity, even though it might occur stochastically
with a certain probability. This is because the production of new infectives causes
the possibility of contacts with them. Therefore, it is reasonable to understand the
meaning of the basic reproduction number as the supremum, that is, the least upper
bound for the expected number of new infectives produced by an infective. In this
sense, the basic reproduction number can be defined as the expected number of new
infectives produced by an infective during having the active infectivity under the
condition that the original infective has the possibly highest efficiency to transmit
the disease to susceptibles. In the actual disease transmission, the contacts only
with susceptibles becomes harder as the infective produces new infectives around
him/her.

The basic reproduction number is defined with the same concept as the net
reproduction rate given the definition in p. 16 of Sect. 1.5 and argued for the
population dynamics with a Malthus growth in Sect. 4.4. The birth process of
offsprings and the death process of parents are analogous to the production
of new infectives by the disease transmission and the removal of infectives
from the epidemic dynamics with the loss of infectivity. In such an analogy,
it is characteristic for the epidemic dynamics that the new infectives can
be produced from the susceptibles, so that the production must significantly
depend on the number of susceptibles in the same population.

To derive the basic reproduction number for the epidemic dynamics (9.1),
we must consider the supremum for the expected number of new infectives
produced by an infective during having the infectivity. Now the number of new
infectives produced at the kth day is given by the second equation of (9.1)
as
∑∞
j=0

{
1 − (1 − βkφk)j

}
P(j)Sk . In order to introduce the possibly highest

efficiency to transmit the disease to susceptibles, when the infective has contacts
only with susceptibles, we must suppose the situation that Ik � N and Rk = 0.
This supposed situation is the same as in Sect. 9.2.2. Hence, from (9.4), we have

∞∑
j=0

{
1 − (1 − F(Ik))j

}
P(j)Sk = 〈π〉F′(0)NIk + o(Ik)

with βkφk = F(Ik). This means that the expected number of new infectives
produced by an infective in a day is given by 〈π〉F′(0)N . We remark that this
expected number is independent of k, since we used the above supposed situation to
derive it.

As already mentioned in Sect. 9.2.1, the expected duration of the infectivity is
given by 1/q for the epidemic dynamics (9.1). This is independent of k too, which
indicates that any infective at any day has the expected duration of the infectivity
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after the day. Thus it is independent of when the individual is infected. In the other
sense, all infectives are identical every day according to the epidemic dynamics.

Some readers may suspect that the infective who passes longer period after
the infection could have a weaker infectivity and higher possibility to lose the
infectivity and recover. Actually the immune response becomes more effective
after the infection, and more likely to lead to the recovery. This indicates that
the older infective would have lesser contribution to the disease transmission,
that is, the efficiency of disease transmission for such an older infective
would become lower. To introduce such a dependence of the infectivity on
the time after the infection, it is necessary to take account of the epidemic
age in the modeling for each infective individual after the infection. Then we
must consider the distribution of epidemic age in the infective subpopulation,
which temporally changes according to the epidemic dynamics. Even in such
a modeling, however, the definition of the basic reproduction number is the
same as given in the above.

In the actual epidemic dynamics of any transmissible disease, the duration
of the infectivity depends on the infective individual’s physiological condition
(e.g., age and healthy state) too. For the epidemic dynamics model (9.1), the
expected duration of the infectivity is given by 1/q while it does not mean
that every infective has the same duration. Since the probability for the loss
of infectivity per day is given by a constant q , we have already shown in
Sect. 9.2.1 that the distribution of the duration of the infectivity follows the
geometrical distribution defined as (1 − q)k−1q (k = 1, 2, . . . ), although this
is not the distribution of epidemic age.

Finally from the above arguments, we can define the basic reproduction number
ℛ0 for the epidemic dynamics model (9.1) by the product of the expected number
of new infectives produced by an infective in a day, 〈π〉F′(0)N , and the expected
duration of the infectivity, 1/q:

ℛ0 = 〈π〉F′(0)N · 1

q
. (9.6)

It must be remarked that the basic reproduction number ℛ0 is independent of k, that
is, of any day. This is taken natural because it is the index to express the supremum as
mentioned above. The basic reproduction number is the index for the characteristics
of the population under the epidemic dynamics. In other words, it indexes the degree
of threat of the disease spread in the population.

If ℛ0 < 1, the outbreak does not occur. It indicates that the supremum for
the expected number of new infectives produced by an infective during having the
infectivity is less than one. Thus, the number of infectives tends to decrease in the
population. In contrast, when the outbreak occurs, it must be satisfied that ℛ0 > 1.
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This is because the outbreak means the increase of the number of infectives, so that
the expected number of new infectives produced by an infective during having the
infectivity must be greater than one.

As remarked above, the basic reproduction number ℛ0 is defined as the
supremum, the actual expected number of new infectives produced by an infective
during having the infectivity must be less than it. Hence, even if ℛ0 > 1, the
actual expected number of new infectives produced by an infective during having
the infectivity may be less than one on the way of epidemic dynamics, so that
the number of infectives may decrease (we will argue such a behavior in the next
section).

On the other hand, for the epidemic dynamics model (9.1), the condition that
ℛ0 > 1 coincides with that for the invasion success (9.5). Therefore, if ℛ0 > 1, the
disease succeeds in invading in the population and causes an increase of infectives
toward the outbreak. For this reason, we can consider that, if ℛ0 > 1, the outbreak
occurs for (9.1).

Some readers may have expected the coincidence of those conditions for the
basic reproduction number ℛ0 and the invasion success of (9.5), from the
corresponding supposition for their derivation. However, it must be remarked
that they are different from each other according to the way of thought, that is,
the modeling. The outbreak with the basic reproduction number ℛ0 greater
than one could be applied for the newly emergent disease in a population, or
for the seasonally repetitive outbreak of an endemic disease. In contrast, since
the introduction of an alien transmissible disease by the conqueror in a colony,
the artificial diffusion of a harmful transmissible disease as a bioterrorism,
or the spread of fear as a panic transmission through a population has a
relatively large initial number of infectives, the possibility of outbreak cannot
be discussed only by the basic reproduction number ℛ0.

Similarly to the basic reproduction number, we can define an index to represent
the epidemic situation at each day. As such an index, let us consider the supremum
for the expected number of new infectives produced by an infective during having
the infectivity, provided that the situation at the kth day is unchanged. It is
sometimes called the effective reproduction number. For the epidemic dynamics
model (9.1), the number of new infectives produced at the kth day is given by∑∞
j=0

{
1 − (1 − F(Ik))j

}
P(j)Sk . Dividing this by the infective subpopulation size

Ik gives the mean number of new infectives produced by an infective at the kth day.
Hence we can define the effective reproduction number Rk at the kth day for the
epidemic dynamics model (9.1) as

Rk := 1

Ik

∞∑
j=0

{
1 − (1 − F(Ik))j

}
P(j)Sk · 1

q
, (9.7)
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since the expected duration of infectivity is given by 1/q for every day as explained
before. As inferred from the derivation way of (9.7), it mathematically holds that
Rk → ℛ0 as (Sk, Ik) → (N, 0).

As seen from (9.7), the effective reproduction number is defined for each day.
Hence the difference in the initial condition makes it different. More generally
saying, the effective reproduction number at a day depends on the history of epi-
demic dynamics. Although it must depend on the characteristics of the transmissible
disease itself as well as ℛ0, it indexes the situation at the kth day according to the
undergoing epidemic dynamics. As the situation at the kth day is more serious, the
increase in the number of infectives must be expected to become larger.

9.2.4 SIR, SIS, and SIRS Models

In this section, we are going to see some specific and simple models belonging to
the epidemic dynamics model (9.1). Let us assume that the probability to get the
infection by a contact to the contaminated route of disease transmission is constant
for any day: βk = β, and the probability that a contact is to the contaminated route
of disease transmission φk is given by

φk = α
Ik

N
, (9.8)

where α is a constant such that 0 < α ≤ 1.
This modeling is based on the assumption that the possibility of the contamina-

tion for the route of disease transmission, that is, the risk of infection is proportional
to the proportion of infectives in the population (with the proportional constant
α). For example, a protective behavior like masking may suppress the dispersal of
pathogens, and then the parameter α must be small.

In the modeling with the class R which means the state such that the infective
is isolated or hospitalized, the infective belonging to the class R cannot
contribute to the risk of infection. Then the above formula for φk may be
changed to

φk = α
Ik

N − Rk .

We shall not go into such a model any more in this book.
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With the above assumptions, we have F′(0) = βα/N for the epidemic dynamics
model (9.1), so that, from (9.6), the basic reproduction number is given by

ℛ0 = βα〈π〉
q

. (9.9)

Next, as did in Sect. 2.4.2, we shall introduce the following Poisson distribution
for the probabilityP(j) that an individual contacts the route of disease transmission
j times a day:

P(j) = γ je−γ

j ! (j = 0, 1, 2, . . . ) (9.10)

with P(0) = e−γ (refer to Chap. 15). The expected number of contacts to the route
of disease transmission per day 〈π〉 satisfies that 〈π〉 = γ , and then from (9.9), the
basic reproduction number is given by

ℛ0 = βαγ

q
. (9.11)

Further, since we have

∞∑
j=0

(1 − βkφk)jP (j) = e−γ
∞∑
j=0

{(1 − βkφk)γ }j
j !

= e−γ · e(1−βkφk)γ = e−βkφkγ = e−βαγ Ik/N,

the infection force at the kth day is now given by 1 − e−βαγ Ik/N , and the effective
reproduction number Rk defined by (9.7) becomes

Rk := Sk

qIk
(1 − e−βαγ Ik/N). (9.12)

It can be easily proved that Rk <ℛ0 for any Sk > 0 and Ik > 0.

SIR Model

In this part, we shall consider the model (9.1) with m = 1 and θ = 0. Then every
recovered individual can get the immunity, and the immunity is kept without its
waning. Thus the state transition with respect to the disease is one-way as S → I →
R. The epidemic dynamics model with such a one-way state transition is called SIR
model (Fig. 9.2).
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Fig. 9.2 State transitions for the SIR model (9.13)

Fig. 9.3 A numerical calculation of the temporal change of variables for the SIR model (9.13)
with βαγ = 1.0; q = 0.25; ℛ0 = 4.0; (S0/N, I0/N,R0/N) = (0.999, 0.001, 0.0). The temporal
change of Rk/ℛ0 is shown too

The SIR model for the epidemic dynamics model (9.1) with m = 1 and θ = 0
becomes

Sk+1 = Ske−βαγ Ik/N ;
Ik+1 = Sk

(
1 − e−βαγ Ik/N )+ (1 − q)Ik;

Rk+1 = qIk + Rk,
(9.13)

with the initial condition (S0, I0, R0) = (N − I0, I0, 0). For the SIR model (9.13),
the infective population size eventually approaches zero as shown in Fig. 9.3, that
is, Ik → 0 as k → ∞. Since the total population size is given as a constant N ,
the susceptible population size monotonically decreases as time passes, while the
immune population size monotonically increases. Then the infective population size
eventually decreases toward zero.

As seen in Fig. 9.3, there exists a positive value S∞ for the SIR model (9.13) such
that Sk → S∞ > 0 as k → ∞. It indicates that there are susceptibles who have
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not experienced the infection until the end of epidemic dynamics when disease-
free equilibrium state (DFE) is established, that is, when the disease is eliminated
from the population. At the same time, the value R∞ = N − S∞ gives the total
number of individuals who have experienced the infection, which may be called the
final epidemic size. In the following part, let us consider some detail nature of the
epidemic dynamics by (9.13).

The above nature of SIR model is not necessarily applicable for the other SIR
model with a temporally variable total population size. When the recruitment
or the withdrawal of members by migration or temporal visit/trip must be
taken into account for the epidemic dynamics, the high recruitment rate of
susceptible members may maintain the production rate of new infectives,
and subsequently the infective population remains for a long time in the
population. Such a situation is called endemic state, and we say that the
disease becomes endemic.

As a special case, when the time scale of epidemic dynamics is relatively
large, that is, when the disease spread is relatively slow, the temporal change
of total population size by birth and death could not be negligible. Then it
is likely that the disease becomes endemic, like smallpox, tuberculosis, and
measles. Such an endemic state could become unstable by the innovation
of prevention and treatment for the disease, and transfer to the disease-free
equilibrium state. The smallpox is one of historical examples about such
diseases.

From the first and second equations of (9.13), we can find the following equality
that holds for any k ≥ 0:

Sk+1

N
+ Ik+1

N
− 1

ℛ0
ln
Sk+1

N
= Sk

N
+ Ik

N
− 1

ℛ0
ln
Sk

N
.

Therefore, for the initial condition (S0, I0, R0) = (N − I0, I0, 0), we have

Sk

N
+ Ik

N
− 1

ℛ0
ln
Sk

N
= 1 − 1

ℛ0
ln
S0

N
(9.14)

for any k ≥ 0. Since the right side of (9.14) is a constant independent of day (k),
the left side defines a conserved quantity for the SIR model (9.13). Further, the
Eq. (9.14) gives a relation between Sk/N and Ik/N for any k ≥ 0, so that it can be
regarded as the formula of a curve in the (S/N, I/N)-plane on which every point
(Sk/N, Ik/N) is located (see Fig. 9.4).
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0

Fig. 9.4 Trajectories by the SIR model (9.13) in the (S/N, I/N)-plane for three different initial
conditions (S0/N, I0/N)

From (9.14), we can find the following nature of the SIR model (9.13):

• The infective population size Ik is monotonically decreasing if ℛ0S0/N ≤ 1,
while it increases in an early period and turns to monotonically decreasing if
ℛ0S0/N > 1.

• The maximal size of infective population when ℛ0S0/N > 1 is below the
following value Isup:

Isup :=
[

1 − 1

ℛ0

{
1 + ln

(
ℛ0

S0

N

)}]
N. (9.15)

The value Isup gets larger as the initial susceptible population size S0 is larger
(i.e., for the smaller I0 = N−S0) (Fig. 9.4), and as the basic reproduction number
ℛ0 is greater (Fig. 9.5).

• The limiting value of Sk → S∞ as k → ∞ is given by the unique positive root
less than N for the following equation:

S∞
N

− 1

ℛ0
ln
S∞
N

= 1 − 1

ℛ0
ln
S0

N
. (9.16)

From the first nature, we find that the infective population size is monotonically
decreasing as time passes even for the basic reproduction number greater than one,
if it satisfies that 1 <ℛ0 ≤ N/S0. Thus no outbreak occurs in such a case. Roughly
saying, this is the case where the basic reproduction number ℛ0 is slightly greater
than one. Since ℛ0 > 1, the disease invasion is successful in such a case, so that it
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Fig. 9.5 Numerically drawn ℛ0-dependence of Isup and R∞ by (9.15) and (9.17) for I0/N =
0.001

must be a cautious situation from the viewpoint of public health about the epidemic
size.

Next, let us consider the ℛ0-dependence of the final epidemic size R∞ = N −
S∞. From (9.16), we can easily obtain the following equation to determine it:

R∞
N

+ 1

ℛ0
ln
(

1 − R∞
N

)
= 1

ℛ0
ln
(

1 − I0

N

)
. (9.17)

As seen from Fig. 9.5, the final epidemic size R∞ gets larger as the basic
reproduction number ℛ0 is greater. Thus the disease spread becomes more serious
for the disease or community with the larger ℛ0. Moreover, we note that the final
epidemic size gets drastically larger as ℛ0 is beyond one. Hence, it is implied that,
even when the basic reproduction number ℛ0 is slightly greater than one, the final
epidemic size R∞ could become much large, though the infective population size
may appear to decrease as time passes.

Case of Uncertain Immunization

Let us consider next the model modified from (9.13), assuming that the recovery
does not necessarily provide the effective immunity, that is, 0 < m < 1. In this
case, the recovered individual may get the infection again, so that we will need to
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Fig. 9.6 State transitions for
the epidemic dynamics model
(9.18)
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clarify the definition of the final epidemic size. The model is given as the following
system (Fig. 9.6):

Sk+1 = Ske
−βαγ Ik/N + (1 −m)qIk;

Ik+1 = Sk(1 − e−βαγ Ik/N )+ (1 − q)Ik;
Rk+1 = mqIk + Rk.

(9.18)

The nature of the epidemic dynamics by this model is qualitatively similar with
that of the SIR model (9.13). However, as seen from (9.7), the immune population
size R∞ at the end of the epidemic dynamics is smaller than that for the SIR model
(9.13), although this never indicates that the epidemic size was smaller than that by
the SIR model (9.13). Since the recovery necessarily provides the immunity for the
SIR model (9.13), we can regard the value of Rk as the number of individuals who
have experienced the infection. In contrast, for the model (9.18), we cannot do so,
because some recovered individuals can get the infection again. This means that the
susceptible subpopulation may contain the individuals who have experienced the
infection and failed to get the immunity after their recovery.

Hence, let us now introduce the variable Ck as the cumulative number of
individuals who have been infected and recovered until the kth day, which can
be determined by the recurrence relation Ck+1 = qIk + Ck with C0 = 0. As
shown by Fig. 9.7, such repetitive infections may result in the cumulative number
of infected individuals Ck greater than the total population size N . On the other
hand, the susceptible population size S∞ at the end of the epidemic dynamics may
become greater than that for the SIR model (9.13), since the size S∞ contains those
who have experienced the infection in past.

The uncertain immunization causes the recruitment of susceptible individuals,
so that the maximum of the infective population size tends to become larger, and
the infective population size decreases more slowly toward zero. Such repetitive
infections must lead to a heavier load for the medical services in the community.



282 9 Modeling with Class Structure

Cumulative ratio of new cases

Fig. 9.7 A numerical calculation of the temporal change of variables for the epidemic dynamics
model (9.18) with m = 0.8; βαγ = 1.0; q = 0.25; ℛ0 = 4.0; (S0/N, I0/N,R0/N) =
(0.999, 0.001, 0.0)
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Fig. 9.8 State transitions for the SIS model (9.19)

SIS Model

If the recovery cannot bring the immunity at all, that is, when m = 0, the epidemic
dynamics model (9.18) becomes the following system of difference equations:

Sk+1 = Ske−βαγ Ik/N + qIk;
Ik+1 = Sk(1 − e−βαγ Ik/N)+ (1 − q)Ik.

(9.19)

This is a kind of what is called SIS model (Fig. 9.8). The basic reproduction number
ℛ0 and the effective reproduction number Rk are given again by (9.11) and (9.12)
respectively.

When the pathogen is polymorphic or when there are a number of variants, the
antigen generated with an infection may not be satisfactorily effective for the new
infection. As the other example, the pathogen may hiddenly stay in the body of the
recovered individual, and the repeated infection triggers the revival of the infectivity.
In the other context, the addiction for drug, alcohol, gamble, or gaming could be
regarded as the case.

Since Sk + Ik = N for any k, the nature of the dynamical system (9.19) is
essentially determined by the following one dimensional recurrence relation:

Ik+1 = (N − Ik)(1 − e−βαγ Ik/N )+ (1 − q)Ik.

Hence we can apply the cobwebbing method (refer to Sect. 12.1.2), and find the
following nature of the SIS model (9.19):
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Cumulative ratio of new cases

Fig. 9.9 A numerical calculation of the temporal change of variables for the SIS model (9.19)
with βαγ = 1.0; q = 0.25; ℛ0 = 4.0; (S0/N, I0/N,R0/N) = (0.999, 0.001, 0.0)
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Fig. 9.10 Parameter dependence of the infective ratio I∗/N at the endemic equilibrium state for
the SIS model (9.19). The right figure shows the contour map about I∗/N in the (βαγ, q)-space

• When ℛ0 ≤ 1, the infective population size Ik monotonically decreases toward
zero for any initial value I0 > 0, and the population asymptotically approaches
the disease-free equilibrium state.

• When ℛ0 > 1, the infective population size Ik monotonically and asymptotically
approaches a positive value I∗ for any initial value I0 > 0, and the population
asymptotically approaches the endemic equilibrium state (Fig. 9.9). The endemic
size I∗ is given by the unique positive root for the following equation:

q
I∗

N
= (1 − I∗

N

)
(1 − e−βαγ I ∗/N ). (9.20)

As indicated by Fig. 9.10, the infective population size I∗ at the endemic
equilibrium state gets larger as the duration of infectivity is longer with the smaller
q . It gets larger as the basic reproduction number ℛ0 = βαγ/q is greater.



284 9 Modeling with Class Structure

Further, from the Eq. (9.20) to determine the value of I∗ when R0 > 1, we can
find that the effective reproduction number Rk defined by (9.12) is unity at the
endemic equilibrium state. This means that the expected number of new infectives
produced by an infective is one, which is consistent with the nature such that the
infective population size Ik asymptotically approaches I∗, as shown by Fig. 9.9,
and remains the same once it becomes I∗. Note that the epidemic dynamics always
works at the endemic equilibrium state, keeping the infective population size I∗
with the repetitive infection and recovery.

The endemic state is maintained by the balance in the processes that the
susceptible becomes the infective by the infection and that the recovered becomes
the susceptible. The repetitive infections keep occurring at the endemic state. Hence
the cumulative number of individuals who have experienced the infection Ck is
monotonically increasing as indicated by Fig. 9.9. Since new infectives are always
produced at the endemic state, the medical services must undergo a heavy load for
the treatment.

SIRS Model

If the immunity obtained by the recovery wanes, we have the following epidemic
dynamics model from (9.1), which is a kind of what is called SIRS model (Fig. 9.11):

Sk+1 = Ske−βαγ Ik/N + θRk;
Ik+1 = Sk(1 − e−βαγ Ik/N )+ (1 − q)Ik;
Rk+1 = qIk + (1 − θ)Rk.

(9.21)

The basic reproduction number ℛ0 and the effective reproduction number Rk are
given again by (9.11) and (9.12) respectively.

As seen in Fig. 9.12, the epidemic dynamics by (9.21) may approach an endemic
equilibrium state, since the individuals who experienced the infection may return to

Fig. 9.11 State transitions
for the SIRS model (9.21)
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Fig. 9.12 A numerical calculation of the temporal change of variables for the SIRS model (9.21)
with θ = 0.01; βαγ = 1.0; q = 0.25; ℛ0 = 4.0; (S0/N, I0/N,R0/N) = (0.999, 0.001, 0.0)

the susceptible class as well as the SIS model (9.19). The SIRS model (9.21) has the
following nature:

• When ℛ0 ≤ 1, the infective population size Ik monotonically decreases toward
zero for any initial value I0 > 0, and the population asymptotically approaches
the disease-free equilibrium state with Sk ≡ N , Ik ≡ 0 and Rk ≡ 0.

• When ℛ0 > 1, the infective population size Ik asymptotically approaches a
positive value I∗ for any initial value I0 > 0, and the population asymptotically
approaches the endemic equilibrium state (Fig. 9.12). The endemic size I∗ is
given by the unique positive root for the following equation:

1

q

( N
I∗ − 1

)
= 1

θ
+ 1

1 − e−βαγ I ∗/N . (9.22)

• The susceptible and infective population sizes S∗ and I∗ at the endemic
equilibrium state satisfy the following equality:

I∗

N
= θ

θ + q
(

1 − S∗

N

)
. (9.23)

Hence the infective population size I∗ at the endemic equilibrium state is
necessarily smaller than θ/(θ + q).

• The ratio of the infective population size I∗ to the immune population size R∗ at
the endemic equilibrium state is given by

I∗ : R∗ = 1

q
: 1

θ
. (9.24)
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Fig. 9.13 Parameter dependence of the oscillatory behavior for the SIRS model (9.21). Numeri-
cally drawn with (a) βαγ = 0.8; (b) βαγ = 1.0; (c) βαγ = 1.2; (d) βαγ = 1.5

As well as the SIS model (9.19), it is determined by the basic reproduction
number ℛ0 whether the disease becomes endemic or not. The stability of the
disease-free equilibrium state and the endemic equilibrium state can be analyzed
by the local stability analysis (refer to Sect. 12.2). Further, it is easy to show that
the effective reproduction number Rk defined by (9.12) is unity at the endemic
equilibrium state.

Differently from the SIS model (9.19), the SIRS model (9.21) may have a
damped oscillation when the system approaches the endemic equilibrium state, as
shown in Fig. 9.12. Even though the oscillation is damping, it could be observed
as repeated outbreaks on the way of epidemic dynamics. Such a situation must be
regarded as serious for the public health.

The SIRS model (9.21) with θ = 0 coincides with the SIR model (9.13) for
which no oscillation can appear in the temporal change. As indicated by Fig. 9.13,
an oscillatory behavior can appear even with so small waning rate θ .

For the SIRS model (9.21), the expected duration of the immunity obtained by the
recovery is given by 1/θ , making use of the same arguments to derive the expected
duration of the infectivity 1/q as described before for the SIR model (9.13). Hence,
as implied by Fig. 9.13, an oscillatory behavior is more likely to appear when the
immunity is active for relatively long period with small waning rate and when the
basic reproduction number ℛ0 = βαγ/q is large. Inversely, when the immunity is
short-term with large waning rate and when the basic reproduction number ℛ0 is
nearer to one, the temporal change of the infective population size is likely to be
monotonic. Further, we can see that the oscillatory nature significantly depends on
the value of parameter βαγ . For a sufficiently large value of βαγ , that is, when the
infectivity is much strong (Fig. 9.13d), the oscillatory behavior may appear almost
independently of the duration of infectivity and immunity. Then the value of the
basic reproduction number ℛ0 is much large too.

Now let us consider the characteristics of the endemic equilibrium state, making
use of (9.22), (9.23), and (9.24). Figure 9.14 illustrates the θ -dependence and
q-dependence of the population proportion (S∗/N, I∗/N,R∗/N) at the endemic
equilibrium state.

First, as the immunity is longer with smaller θ , the immune population size R∗
at the endemic equilibrium state gets larger, while the infective population size I∗
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Fig. 9.14 θ-dependence with q = 0.25 (ℛ0 = 4.0) and q-dependence with θ = 0.05 of the
population proportion (S∗/N, I∗/N,R∗/N) at the endemic equilibrium state for the SIRS model
(9.21). Numerically drawn commonly with βαγ = 1.0
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Fig. 9.15 Contour map of the population proportion (S∗/N, I∗/N,R∗/N) at the endemic
equilibrium state for the SIRS model (9.21). Numerically drawn to show the (θ, q)-dependence
with βαγ = 1.0

does smaller. Inversely, as the immunity is shorter with larger θ , R∗ gets smaller
and I∗ does larger. In this case, the susceptible population size S∗ gets larger at the
same time. This is because the immunity waning is more likely to occur, so that the
recovered individuals transfers to the susceptible class faster to make the susceptible
population size larger.

Next, as the infective can recover faster with larger q , the infective population
size I∗ gets smaller, while the susceptible population size S∗ does larger. Inter-
estingly the immune population size R∗ does not have monotonic relation to the
recovery rate. It takes the maximum at an intermediate value of q as indicated by
(9.15). For faster or slower recovery, it gets smaller. This nature is clearly shown by
Fig. 9.15 as well.

When the recovery is fast with large q , the effective reproduction number Rk
must be restricted to be small, because the duration of infectivity is short. The
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infective population size remains relatively small, so that the immune population
size after the recovery is kept small.

On the other hand, when the recovery is slow with small q , the infectivity is long-
term to cause the relatively large size of infective population. While the immune
population size decreases by the immunity waning, the slow recovery tends to
undercompensate such a decrease and leads to the relatively small size of immune
population.

From these results on the SIRS model (9.21) with the immunity waning, we could
get an implication that, even when the infective population size is large, the immune
population size does not necessarily become large. They may have a non-monotonic
relation.

There are a variety of problems for the epidemic dynamics. For example, the
effect of vaccination on the epidemic size is one of typical problems. The
vaccination can be regarded as the artificial immunization, which may have a
possibility of waning. Then the epidemic dynamics with such a vaccination
would have similar nature as the SIRS model in the above. On the other
hand, the isolation affects directly the epidemic dynamics, as mentioned at
the beginning of Sect. 9.2. Especially for the human epidemic dynamics,
the behavioral change by the spread of information on the disease or the
sanitary treatment policy for the route of disease transmission could alter the
nature of the epidemic dynamics, which would have a relation in a feedback
manner. Such a social response to the epidemic dynamics must have a relation
to the cultural and social background too. The aspect of social science is
very important for the research on the epidemic dynamics in the human
community.

9.3 Kermack-McKendrick Model

The following system of ordinary differential equations as a continuous time
epidemic dynamics model is the simplest version of the mathematical model studied
by William O. Kermack (1898–1970) and Anderson G. McKendrick (1876–1943)
in 1927 [9]:

dS(t)

dt
= −σI (t)S(t);

dI (t)

dt
= σI (t)S(t) − ρI (t);

dR(t)

dt
= ρI (t).

(9.25)
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This is popular today in mathematical epidemiology as Kermack-McKendrick model
which is a continuous time SIR model with the susceptible population size S(t),
the infective population size I (t), and the removed population size R(t) at time t .
Positive parameters σ and ρ are the coefficient of infection and the recovery rate
respectively. As well as the discrete time SIR model (9.13) in Sect. 9.2.4, the total
population size is constant independently of time t for Kermack-McKendrick model
(9.25): S(t)+I (t)+R(t) = N for any t . Actually, the system of ordinary differential
Eq. (9.25) gives d{S(t) + I (t) + R(t)}/dt = 0, which mathematically means that
the total population size S(t) + I (t)+ R(t) is constant independently of time t .

The continuous time SIR model (9.25) can be derived from the discrete time SIR
model (9.13) by the time-step-zero limit described in Sect. 3.3. In the application of
the time-step-zero limit, it is necessary to introduce the dependence of parameters
γ and q on the time step size h such that γ → 0 and q → 0 as h → 0 for the
reasonable sake to take the limit as the time step size goes to zero (refer to Sect. 3.3).
Then we can get the continuous time SIR model (9.25) with the correspondence
such that σ = βαγ ′(0)/N and ρ = q ′(0), where γ ′(0) := dγ (h)/dh

∣∣
h→0 and

q ′(0) := dq(h)/dh
∣∣
h→0 which are now assumed finite and positive.

On the other hand, the modeling for Kermack-McKendrick model (9.25) is
usually explained by the mass action assumption, and more precisely by the Lotka-
Volterra type of interaction (refer to Sect. 6.1). As mentioned at the beginning
of Sect. 9.2, the disease transmission process can be regarded as analogous to
the interaction between predator and prey. Hence it could be reasonable to apply
the other modeling on the prey-predator interaction for the disease transmission
dynamics with some appropriate assumptions, like Holling’s disc equation in
Sect. 8.5.

9.3.1 Infection Force

Similarly to the modeling of the prey-predator interaction given in Sect. 8.2, we
can introduce the infection force as the infection rate with a function of S and I
(R = N−S−I ),�(S, I), and consider the change of susceptible population size in
a short period�t : S(t+�t)−S(t) = −�(S(t), I (t))S(t)�t+o(�t). Applying the
way to derive the momental velocity of population size change in Sect. 3.4, we can
get the ordinary differential equation to describe the temporal change of susceptible
population size: dS/dt = −�(S, I)S. For Kermack-McKendrick model (9.25), the
infection force is given by�(S, I) = σI that is proportional to the infective density
in the population. The term of the interaction between susceptibles and infectives
depends on what assumptions the infection rate, that is, the infection force would be
modeled with. The simplest and least necessary assumptions are about the contact
between individuals and the probability of an infectious contact, as argued already
in Sect. 9.2.
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Let us give the frequency of contacts per individual with the others in the interval
[t, t+�t] by χ(t)�t+o(�t)with a positive χ(t) that means the momental velocity
for the number of contacts, that is, the contact rate between individuals. Besides,
applying the mean field approximation (refer to Sect. 6.1.2), we assume that the
probability that a contact by a susceptible is one with an infective is proportional
to the proportion of infectives in the population I (t)/N . Then we assume that the
probability that a susceptible gets infected in [t, t +�t] is proportional to

I (t)

N
χ(t)�t + o(�t),

so that the infection force is proportional to (I/N)χ . The detail of this modeling is
determined by the function χ(t) which reflects the frequency of contacts between
individuals in the population. Such a frequency of contacts must significantly
depend on the route of disease transmission.

For a human sexually transmitted disease, the contact rate between individuals
at the route of disease transmission, that is, the sexual contact may be regarded
as a constant independent of time, since the frequency of such contacts would be
determined by the established network of such sexual contacts in the population.
Then χ is given as a positive constant. With such a modeling, the infection force is
assumed to be proportional to the ratio of infectives in the population:� ∝ I/N . It
is sometimes called ratio-dependent type or frequency-dependent type of infection
force.

In contrast, for a transmissible disease with the air-borne route of disease
transmission, for example, by the droplet or the aerosol like the flue or COVID-19,
we may assume that the contact rate is proportional to the population density: χ ∝
N , since the route of disease transmission is about the contacts between arbitrary
individuals as already argued in Sect. 9.2.1. With such a modeling, the infection
force is assumed to be proportional to the infective density in the population:� ∝ I .
Subsequently, the term of interaction between susceptibles and infectives is given
by the product of their densities, that is, by the mass action assumption. Thus, such
an infection force is sometimes called mass action type.

For the epidemic dynamics in which the temporal change of total population
size is negligible and the total population size is assumed constant indepen-
dently of time, the infection force is mathematically equivalent to each other
of these two types. However, when the temporal change of total population
size must be taken into account for the epidemic dynamics, the nature of
epidemic dynamics model would be significantly different from each other for
these two types of infection force. Moreover, even when the infection force
is mathematically equivalent between them, the epidemiological arguments
based on the mathematical results obtained by the analysis on the model

(continued)



9.3 Kermack-McKendrick Model 291

would essentially depend on the assumption about the route of disease
transmission or the nature of contact rate. For this reason, such a mathematical
equivalence may not necessarily induce the same conclusion on the epidemic
dynamics.

9.3.2 Invasion Success of Transmissible Disease

As considered for the discrete time epidemic dynamics model in Sect. 9.2.2, we
can derive the condition for the invasion success of the transmissible disease
about Kermack-McKendrick model (9.25). Let us assume the initial condition such
that I (0) = I0 � N similarly to the argument in Sect. 9.2.2. This means the
initial situation of the epidemic dynamics such that a sufficiently small number of
infectives appear in the population. Since the invasion success causes the increase of
the infective population size by such a few initial infectives, the following condition
is necessary for it:

dI (t)

dt

∣∣∣∣
t=0

= {σS(0)− ρ} I (0) > 0.

Hence the condition for the invasion success can be given as

σS(0)

ρ
> 1. (9.26)

Although the condition I0 � N is independent of this result, the concept of
the invasion of a disease could be reasonable for such an initial condition with a
sufficiently small number of infectives.

9.3.3 Final Epidemic Size

Since the right side of the first equation of (9.25) is always negative, the susceptible
population size S(t) is monotonically decreasing in terms of time t . If S(t) > ρ/σ
at time t , the right side of the second equation of (9.25) is positive, that is, the
momental velocity of the temporal change of the infective population size is positive
and the infective population size I (t) increases at time t . If S(t) < ρ/σ , then I (t)
decreases. The right side of the third equation of (9.25) is always positive, so that
R(t) is monotonically increasing in terms of time t .

As seen in Fig. 9.16, the infective population size I (t) asymptotically and
exponentially approaches zero for sufficiently large t . This means that the disease
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Fig. 9.16 Numerical example of the temporal change and trajectory in the (S, I)-phase plane by
Kermack-McKendrick model (9.25) with σ = 0.7; ρ = 0.2; (S(0), I (0), R(0)) = (0.95, 0.05, 0.0)

eventually disappears in the population. In contrast, the susceptible population size
does not approach zero, that is, there must a part of susceptibles who can escape
from the infection until the end of epidemic dynamics. This is the same nature as
the discrete time SIR model (9.13) in Sect. 9.2.4. Actually Kermack-McKendrick
model (9.25) has the qualitatively same nature as the discrete time SIR model (9.13)
as described below.

From the first and second equations of (9.25), we can find the following equation:

dS(t)

dt
+ dI (t)

dt
= −ρI (t) = ρ

σ

1

S(t)

dS(t)

dt
= ρ

σ

d

dt
{ln S(t)}.

By integrating both sides in terms of t , we have

S(t)+ I (t)− ρ

σ
ln S(t) = S0 + I0 − ρ

σ
ln S0 (9.27)

with S(0) = S0 > 0 and I (0) = I0 > 0. Similarly with the arguments for the
discrete time SIR model (9.13) in Sect. 9.2.4, since the Eq. (9.27) holds for any time
t , it can be regarded as the formula of a trajectory of the solution in the (S, I)-phase
plane for (9.25) (Figs. 9.16 and 9.17).

From the Eq. (9.27), we can get

dI

dS
= ρ

σ

1

S
− 1.

Thus, the trajectory can take the maximum for S = ρ/σ (Figs. 9.16 and 9.17).
Hence, at the moment that the infective population size takes the maximum on the
way of the epidemic dynamics by (9.25), it holds that S(t) = ρ/σ . Mathematically
this result coincides with that derived from the equation dI (t)/dt = 0 about the
second equation of (9.25).
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Fig. 9.17 Curves of (9.27) about the trajectory in the (S, I)-phase plane for Kermack-McKendrick
model (9.25) for different four initial conditions (S(0), I (0))

In addition, we can easily prove that the curve of (9.27) in the (S, I)-phase plane
necessarily has two positive intersection with the S-axis for any S0 > 0 and I0 > 0
(refer to Exercise 9.1 in the following part). This means the necessary existence of
susceptibles who can escape from the infection until the end of epidemic dynamics.

Besides, since S(t)+ I (t)+R(t) = N for any t , R(0) = 0and S(0)+ I (0) = N ,
the right side of (9.27) is decreasing in terms of S(0) = S0 > 0 as indicated by
Fig. 9.17. Since the curve of (9.27) in the (S, I)-phase plane is uniquely determined
for each initial condition (S(0), I (0)) = (S0, I0), we can result that the curve for an
initial condition is different from that for the other initial condition.

As the reasonable initial condition for almost all considerations with the
epidemic dynamics by (9.25), it is assumed that R(0) = 0. Then we have
S(0)+I (0) = S0+I0 = N , and the initial point in the (S, I)-phase plane must
be located on the line S + I = N . It is easily shown that the curve of (9.27)
has the unique intersection with the line S+ I = N , and the solution given by
the curve for t > 0 is necessarily located in the region given by S + I < N .
This is because S + I = N − R is monotonically decreasing in terms of t
due to the transition of individuals to the removed class R. Therefore, as seen
from Fig. 9.17, the curve for an initial value of S0 is different from that for the
other initial value of S0.



294 9 Modeling with Class Structure

As a result, we find that, for the initial susceptible population size S(0) larger than
ρ/σ , the infective population size increases in the earlier period, takes a maximal at
a moment, and subsequently decreases monotonically toward zero. For the initial
susceptible population size S(0) not beyond ρ/σ , the infective population size
monotonically decreases toward zero (see Fig. 9.17).

The susceptibles who can escape from the infection until the end of epidemic
dynamics is now mathematically denoted as S∞ := lim

t→∞S(t). The size S∞ may

be called the final size of the susceptible population for the epidemic dynamics by
(9.25).

Since I∞ := lim
t→∞ I (t) = 0, we can get the following equation about the relation

between the initial value S0 and the final size S∞:

S∞ − ρ

σ
ln S∞ = S0 + I0 − ρ

σ
ln S0. (9.28)

This equation uniquely determines the final size S∞ for any given S0 > 0
(Exercise 9.1). From (9.28), the final epidemic size R∞ = N − S∞ for Kermack-
McKendrick model (9.25) satisfies that

ℛ0 = 1

R∞/N
ln

1 − I0/N
1 − R∞/N

, (9.29)

where ℛ0 := σN/ρ, and we used the relations S0 + I0 = N , I∞ = 0, and S∞ +
R∞ = N . Since the final size S∞ is uniquely determined by the Eq. (9.28), the final
epidemic size R∞ must be uniquely determined as well. As shown in Fig. 9.18, the
final epidemic size R∞ is monotonically increasing in terms of σ/ρ, and tends to
drastically increase for ℛ0 := σN/ρ > 1. We will revisit this nature in the next
section.

Exercise 9.1 Prove that the Eq. (9.28) uniquely determines a positive value of the
final size S∞ < 1 for any given S0 > 0.

9.3.4 Reproduction Number of Infectives

As described in Sect. 9.2.3, the basic reproduction number ℛ0 is defined as the
expected number of new infectives produced by an infective under the condition
that the original infective has contacts only with susceptibles during having the
active infectivity, and is corresponding to the supremum for the expected number
of new infectives produced by an infective. Besides, similarly to the definition for
the discrete time epidemic dynamics in Sect. 9.2.3, we can define the effective
reproduction number R(t) as the supremum for the expected number of new
infectives produced by an infective during having the infectivity, provided that the
situation at time t is unchanged.
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Fig. 9.18 ℛ0-dependence of the final epidemic size R∞ for Kermack-McKendrick model (9.25),
determined by (9.29) with I0/N = 0.01. ℛ0 := σN/ρ

For Kermack-McKendrick model (9.25), we have the expected number of new
infectives produced by an infective during a small interval (t, t +�t) as

S(t) − S(t +�t)
I (t)

= − 1

I (t)

dS(t)

dt
�t + o(�t) = σS(t)�t + o(�t).

From the arguments in Sect. 4.3.2 or 4.3.5, the expected duration of infectivity for
Kermack-McKendrick model (9.25) is given by 1/ρ. Therefore we can find the
effective reproduction number for Kermack-McKendrick model (9.25) as R(t) =
σS(t)/ρ. Hence we can define the basic reproduction number now as

ℛ0 = sup
S

R(t) = σN

ρ
. (9.30)

As already argued in Sect. 9.2.3, the outbreak does not occur if ℛ0 < 1, while
ℛ0 > 1 if the outbreak occurs. Indeed we have gotten the corresponding nature
of the epidemic dynamics by (9.25) in Sect. 9.3.3: If S(t) > ρ/σ at time t , the
infective population size I (t) increases at time t , while, if S(t) < ρ/σ at time t ,
it decreases at time t . This means that the infective population size I (t) increases
if R(t) > 1, while it decreases if R(t) < 1. Since R(t) ≤ ℛ0 for any t , the
above proposition holds with respect to ℛ0. This nature of the epidemic dynamics
by (9.25) is demonstrated well by the ℛ0-dependence of the final epidemic size R∞
shown in Fig. 9.18.
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The condition for the invasion success (9.26) derived in Sect. 9.3.2 can be
expressed here as the condition for the effective reproduction number such that
R(0) > 1. The invasion success and outbreak are more likely to occur for Kermack-
McKendrick model (9.25) as the total population sizeN gets larger, since the former
is proportional to S(0) which becomes larger for larger N as well as the latter is.
Thus, for the epidemic dynamics by (9.25), the larger population is more vulnerable
to the spread of a transmissible disease.

9.3.5 Extension to SIS and SIRS Models

As well as the generic discrete time model (9.1) in Sect. 9.2.1, we can introduce the
probability that the recovery is successful to get the immunity,m (0 ≤ m ≤ 1), and
the waning rate of the immunity, ν, in Kermack-McKendrick model. Then we have
the following extended model:

dS(t)

dt
= −σI (t)S(t) + (1 −m)ρI (t) + νR(t);

dI (t)

dt
= σI (t)S(t) − ρI (t);

dR(t)

dt
= mρI (t) − νR(t).

(9.31)

From the arguments in Sect. 4.3.2 or 4.3.5, the expected duration of immunity for
this model (9.31) is given by 1/ν. Note that the basic reproduction number ℛ0 and
the effective reproduction number R(t) are defined the same as given in Sect. 9.3.4
for Kermack-McKendrick model (9.25), since the same derivation can be applied
independently of the above extension: R(t) = σS(t)/ρ; ℛ0 = σN/ρ.

SIS Model

If the immunity is ineffective as supposed for the discrete time SIS model (9.19) in
Sect. 9.2.4, we have the following SIS model from (9.31) with m = 0:

dS(t)

dt
= −σS(t)I (t) + ρI (t);

dI (t)

dt
= σS(t)I (t) − ρI (t).

(9.32)
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For this model, no immune individual exists. Since S(t) + I (t) = N for any t , the
nature of the epidemic dynamics by (9.32) is essentially determined by the following
one dimensional ordinary differential equation:

dI (t)

dt
= σ

{
N − I (t)}I (t) − ρI (t) = σ

{
N − ρ

σ
− I (t)

}
I (t).

This is mathematically equivalent to the logistic Eq. (5.10) in Sect. 5.3. Hence the
temporal change of the infective population size is always monotonic for any initial
value I (0) > 0, and

• when N − ρ/σ ≤ 0, that is, when ℛ0 ≤ 1, the infective population size is
monotonically decreasing toward zero;

• when N − ρ/σ > 0, that is, when ℛ0 > 1, the infective population size
monotonically approaches the equilibrium value given by N − ρ/σ .

The latter is the case where the population approaches an endemic equilibrium state.

Case of Uncertain Immunization

Next, similarly with the discrete time model (9.18) in Sect. 9.2.4, if the immunity
never wanes once it is obtained while the recovery does not necessarily lead to the
immunity, the model (9.31) becomes as follows with ν = 0 and m > 0:

dS(t)

dt
= −σI (t)S(t) + (1 −m)ρI (t);

dI (t)

dt
= σI (t)S(t) − ρI (t);

dR(t)

dt
= mρI (t).

(9.33)

Since the previous two equations are closed with respect to the variables S and I ,
the nature of this three dimensional system is essentially determined by the two
dimensional system of those two equations. Thus, the isocline method is applicable
(refer to Sect. 14.7).

As indicated by Fig. 9.19, we can find that the outbreak occurs only when
S(0) > ρ/σ as for Kermack-McKendrick model (9.25). When S(0) ≤ ρ/σ ,
the infective population size is monotonically decreases toward zero, while the
susceptible population size approaches a certain positive value as the epidemic
dynamics is going to the end. More precisely with respect to the temporal change of
the susceptible population size S(t) and its final size S∞ := lim

t→∞ S(t), we can get

the following nature:

• For S(0)/N > (1 − m)/ℛ0, S(t)/N monotonically decreases toward S∞/N >

(1 −m)/ℛ0.
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Fig. 9.19 Numerically drawn vector flows in the (S, I)-phase plane for the epidemic dynamics
model (9.33) with σ = 0.2; ρ = 0.1;m = 0.5. Two vertical lines in the first quadrant are nullclines

• For S(0)/N < (1 − m)/ℛ0, S(t)/N monotonically increases toward S∞/N <

(1 −m)/ℛ0.

Since the susceptible class contains individuals who have experienced the infection
and lost the immunity, the final size S∞ does not mean the susceptibles who have
escaped from the infection until the end of the epidemic dynamics even though it
contains such individuals.

From (9.33), we have

dS

dt
+ dI

dt
= −mρI. (9.34)

Besides from the first equation of (9.33), we can derive

I = − 1

σ

d

dt
ln
∣∣− σS + (1 −m)ρ ∣∣. (9.35)
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Substituting (9.35) for (9.34) and integrating it in terms of t , we can get the
following equation which gives the curve of the trajectory in the (S, I)-phase plane:

S(t)+ I (t)− mρ

σ
ln
∣∣− σS(t) + (1 −m)ρ ∣∣

= S(0)+ I (0)− mρ

σ
ln
∣∣− σS(0)+ (1 −m)ρ ∣∣. (9.36)

Therefore we can obtain the following equation to determine the final size S∞:

S∞
N

− m

ℛ0
ln
∣∣∣− S∞

N
+ 1 −m

ℛ0

∣∣∣ = 1 − m

ℛ0
ln
∣∣∣− S0

N
+ 1 −m

ℛ0

∣∣∣ (9.37)

for the initial condition given by (S(0), I (0), R(0)) = (N − I0, I0, 0) with I0 > 0.
Since I (t) → 0 as t → ∞, we can get the final value R∞ from the equation
S∞ + R∞ = N . However, it must be remarked that R∞ does NOT mean the final
epidemic size for the epidemic dynamics by (9.33). This is because the epidemic
dynamics by (9.33) contains the re-infection after the recovery from the infective
state as already mentioned about the meaning of S∞.

To investigate the final epidemic size which is now defined as the cumulative
number of individuals who have experienced the infection until time t , C(t), we
must integrate the flux of recovered individuals over time:

C(t) :=
∫ t

0
ρI (τ ) dτ.

This is the conceptually same definition as Ck for the discrete time model (9.18) in
Sect. 9.2.4.

The final epidemic size can be now given by C∞ := lim
t→∞C(t). From the third

equation of (9.33), we find that

C∞ =
∫ ∞

0
ρI (τ ) dτ =

∫ ∞

0

1

m

dR(τ)

dτ
dτ = R(∞)− R(0)

m
= R∞

m
(9.38)

for R(0) = 0. Consequently from (9.37), we can derive the following equation to
determine the final epidemic size C∞:

C∞
N

+ 1

ℛ0
ln
∣∣∣mC∞

N
− 1 + 1 −m

ℛ0

∣∣∣ = 1

ℛ0
ln
∣∣∣ I0
N

− 1 + 1 −m
ℛ0

∣∣∣. (9.39)
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From the nature of the temporal change of the susceptible population size S(t)
and its final size S∞ obtained by the isocline method at the beginning of this part,
we can find the following nature of C(t) and the final epidemic size C∞:

• For I (0)/N < 1 − (1 − m)/ℛ0, C(t)/N monotonically increases toward
C∞/N < 1/m− (1 −m)/(mℛ0).

• For I (0)/N > 1 − (1 − m)/ℛ0, C(t)/N monotonically increases toward
C∞/N > 1/m− (1 −m)/(mℛ0).

Making use of this nature, we can get the following equation equivalent to (9.39):

m = I0/N + (1 − 1/ℛ0)(eℛ0C∞/N − 1)

(C∞/N − 1/ℛ0)eℛ0C∞/N + 1/ℛ0
. (9.40)

As seen from Fig. 9.20, the final epidemic size C∞ is monotonically decreasing in
terms of m. That is, as the probability to succeed in getting the immunity on the
recovery is larger, the final epidemic size gets smaller.

When m = 0 for the model (9.33), it becomes equivalent to the SIS model
(9.32). For the SIS model, if ℛ0 > 1, the epidemic dynamics approaches an
endemic equilibrium state, at which the cumulative number of individuals who have
experience the infection C(t) is monotonically increasing as time passes. Thus, as
shown in Fig. 9.20, the final epidemic size C∞ positively diverges as m → 0. On
the other hand, at the other extremum with m = 1, the model (9.33) is equivalent to
the Kermack-McKendrick model (9.25), and the final epidemic size C∞ becomes
equal to R∞ (< 1) discussed in Sect. 9.3.3 for it.

)c()b()a(

Fig. 9.20 The m-dependence of the final epidemic size C∞ defined by (9.38) for the epidemic
dynamics model (9.33) with (a) ℛ0 = 0.9 and I0/N = 0.1; (b) ℛ0 = 1.2 and I0/N = 0.1; (c)
ℛ0 = 1.2 and I0/N = 0.5. The broken curve indicates 1/m− (1 −m)/(mℛ0)
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SIRS Model

When the recovery assures the immunity though the immunity may want to be lost,
the epidemic dynamics model (9.31) becomes the following SIRS model:

dS(t)

dt
= −σI (t)S(t) + νR(t);

dI (t)

dt
= σI (t)S(t) − ρI (t);

dR(t)

dt
= ρI (t) − νR(t).

(9.41)

It is easy to find that there are at most two equilibria E0(N, 0, 0) and

E+
(
S∗,

ν

ρ + ν (ℛ0 − 1)S∗,
ρ

ρ + ν (ℛ0 − 1)S∗) with S∗ := ρ

σ
.

The former is the disease-free equilibrium state, and the latter the endemic
equilibrium state. The endemic equilibrium state exists if only if ℛ0 > 1.

From S(t) + I (t) + R(t) = N for any t , the system (9.41) is mathematically
equivalent to the two dimensional system of ordinary differential equations with
respect to S and I , derived from the first and second equations of (9.41) with
substituting R(t) = N − S(t) − I (t) for the first. Hence we can use the isocline
method, and find the following condition for the global stability of the disease-free
equilibrium state E0 (see Fig. 9.21a):

Fig. 9.21 Numerically drawn vector flows in the (S, I)-phase plane for the epidemic dynamics
model (9.41) with N = 1.0; ρ = 0.1; ν = 0.01; (a) σ = 0.09 (ℛ0 = 0.9); (b) σ = 2.0
(ℛ0 = 2.0). Nullclines are drawn too
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• The disease-free equilibrium stateE0 is globally asymptotically stable if and only
if ℛ0 ≤ 1.

It is shown too that, when ℛ0 ≤ 1, the infective population size monotonically
decreases toward zero as time passes. That is, when ℛ0 ≤ 1, the epidemic dynamics
monotonically approaches the disease-free equilibrium state. As for the stability of
the endemic state E+, however, it is impossible to get the result only by the isocline
method (see Fig. 9.21b).

The local stability analysis (Sects. 14.2 and 14.3) can show that the endemic
state E+ is locally asymptotically stable whenever it exists with ℛ0 > 1. Indeed,
from the characteristic equation for E+, λ2 + (σI∗ + ν)λ + (ρ + ν)σI∗ = 0,
it is easily seen that every eigenvalue has a negative real part: Re λ < 0. Since
the system (9.41) is mathematically equivalent to the two dimensional system
of ordinary differential equations as mentioned above, we can apply Poincaré-
Bendixson Theorem (Sect. 14.9) for it. Then from Poincaré-Bendixson Theorem,
we can get the following result for the case of ℛ0 > 1:

• The endemic state E+ is globally asymptotically stable if and only if ℛ0 > 1.

The global stability of the endemic state E+ can be proved also by the
Lyapunov function (Sect. 14.8). Indeed the following function of S and I is a
Lyapunov function about the endemic state E+ for the system (9.41):

V (S, I) := {(S − S∗)+ (I − I∗)
}2 + 2S∗{(I − I∗)− I∗ ln

I

I∗
}
.

(9.42)

The function V (S, I) is positive for any (S, I) such that 0 < S 	= S∗ and
0 < I 	= I∗, while it becomes zero only for (S, I) = (S∗, I∗) (see Fig. 9.22).
We can derive

dV

dt
= −2ν

{
(S − S∗)+ (I − I∗)

}2 − 2σS∗(I − I∗)2,

which is negative for any (S, I) such that S 	= S∗ and I 	= I∗, while it
becomes zero only for (S, I) = (S∗, I∗). These features indicate that the
function V (S, I) is a strict Lyapunov function about the endemic state E+ for
the system (9.41). From the existence of this Lyapunov function, the endemic
state E+ is shown to be globally asymptotically stable when it exists.

As mentioned for the discrete time SIRS model in Sect. 9.2.4, the temporal
change to approach the endemic equilibrium state depends on the parameters.
Numerical example in Fig. 9.23 indicates that a damped oscillation to approach the
endemic equilibrium state is likely to occur. Such an oscillation could be regarded
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Fig. 9.22 Numerically drawn contour map of the value of Lyapunov function (9.42) in the (S, I)-
phase plane about the system (9.41) with N = 1.0; σ = 0.7; ρ = 0.2; ν = 0.01; ℛ0 = 3.5.
Nullclines for the system is shown too

Fig. 9.23 Numerical example of the temporal change and the trajectory in the (S, I)-phase
plane by the SIRS model (9.41) with N = 1.0; σ = 0.7; ρ = 0.2; ν = 0.01; ℛ0 = 3.5;
(S(0), I (0), R(0)) = (0.95, 0.05, 0.0)

as a repetition of epidemic outbreaks which may cause a heavy load for the medical
services and a strong fear of the disease in the community. If the eigenvalue for
E+ is imaginary, the temporal change to approach the endemic state E+ becomes a
damped oscillation. If it is real, such a damped oscillation does not occur.

By investigating the eigenvalue for E+, we can get the following result about the
temporal change to approach the endemic state E+:
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Damped oscillation

Toward the disease-free state

Fig. 9.24 Parameter dependence of the oscillatory behavior for the SIRS model (9.41). The region
of the damped oscillation is given by the condition (9.43). For the other region with ℛ0 > 1,
the epidemic dynamics approaches the endemic equilibrium state without any lasting damped
oscillation. (ν/ρ)† = (1 + √

5)/2 ≈ 1.61803; ℛ†
0 = (13 + 5

√
5)/2 ≈ 12.0902

• When the endemic state E+ exists with ℛ0 > 1, the temporal change follows a
damped oscillation to approach it if and only if

( ρ
ν

+ 1
)(√

1 + ν

ρ
− 1
)2
<ℛ0 − 1 <

( ρ
ν

+ 1
)(√

1 + ν

ρ
+ 1
)2
.

(9.43)

Otherwise, it approaches E+ monotonically for sufficiently large t .

As seen in Fig. 9.24, a damped oscillation is likely to appear even for sufficiently
small ν, which means the case where the waning of immunity hardly occurs and
the expected duration of immunity is sufficiently long. This result on the occurrence
of a damping oscillation is the same as the discrete time SIRS model in Sect. 9.2.4.
Besides, similarly with it, we note that a damped oscillation is likely to occur for an
intermediate range of the basic reproduction number ℛ0. The epidemic dynamics
with ℛ0 near or much far from 1 does not show such a damped oscillation, but does
a non-oscillatory approach to the endemic equilibrium state. Since ℛ0 for the SIRS
model (9.41) is proportional to the population size N , this result can be regarded as
an implication that a damped oscillation is likely to occur for a population with an
intermediate size.
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Fig. 9.25 Parameter dependence of the population proportion (S∗/N, I∗/N,R∗/N) at the
endemic equilibrium state for the SIRS model (9.41). Numerically drawn on the ν/ρ-dependence
with ℛ0 = 3.5 and the ℛ0-dependence with ν/ρ = 0.2

On the other hand, as shown in Fig. 9.25, the epidemic size I∗ at the endemic
equilibrium state is positively correlated to both values of ν/ρ and ℛ0. As the
duration of immunity gets shorter with smaller ν or as the infectivity gets stronger
with larger ℛ0, the epidemic size I∗ becomes greater. The susceptible population
S∗ at the endemic equilibrium state is independent of the value of ν/ρ because
S∗/N = 1/ℛ0 for the SIRS model (9.41). Hence, it is independent of ν, that is, of
how long the immunity is effective.

It must be remarked that, even at the endemic equilibrium state, the epidemic
dynamics is going on with a cycle of state transition S → I → R → S. Therefore,
as mentioned for the discrete time SIS and SIRS models in Sect. 9.2.4, the endemic
state gives a continuous load to the medical services. Since

lim
ν/ρ→∞

I∗

N
= 1 − 1

ℛ0
; lim

ℛ0→∞
I∗

N
= ν/ρ

1 + ν/ρ ,

it is implied that the desirable medical services must have the capacity enough to
provide the effective treatment even at the epidemic situation corresponding to the
above limit.

9.3.6 Modeling with the Other Factors for Epidemic
Dynamics

Latent Period

In general, the transmissible disease has a latent (or incubation) period during
which the disease does not cause any clear symptom. The infected individual in
such a latent period may not be distinguishable from the susceptible. The infected
individual in the latent period, who appears like a susceptible, may have infectivity
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like one with the human immunodeficiency virus (HIV) to cause the acquired
immunodeficiency syndrome (AIDS). In contrast, there are not a few transmissible
diseases which have the latent period to cause little infectivity.

To introduce the contribution of a latent period to the epidemic dynamics, we
need to add a class for infected individuals in the latent period, denoted here by
E as a most popular symbol which is said to be after the word “encapsulation”.
With the introduction of class E, the class I means the subpopulation of infected
individuals with infectious symptoms of the disease. Let us now consider a discrete
time modeling of what is called SEIRmodel in which the state transition with respect
to the disease is one-way as S → E → I → R. As a simplest assumption, we now
assume the followings in addition to or replacing those for the discrete time SIR
model (9.13) in Sect. 9.2.4:

(i) A susceptible gets the infection by a contact with an infected individual in the
latent period with probability β.

(ii) The infected individual in the latent period cannot recover during it but
necessarily develops symptoms after it;

(iii) The infected individual in the latent period develops symptoms with probabil-
ity ω per day;

(iv) An infective with symptoms after the latent period is immediately isolated
under a treatment, and stay away from any contact with susceptibles until the
recovery to be discharged from the isolation.

The assumption (i) is more generally with respect to the susceptible’s contact
with the pathogen through the contact to the contaminated route of disease
transmission, as described in Sect. 9.2.1. Because of the assumption (iv), the
assumption (i) means that the pathogen contamination of the route of disease
transmission would have a positive correlation principally with the density of
infected individuals in the latent period. This is the essence of assumption (i)
from the viewpoint of the modeling, while we describe here the modeling
in the most frequently used context of the contact between individuals as
expressed in the above assumption (i).

From the assumption (iv), since the infective with the symptom cannot contact
any susceptible, the susceptible can have contacts only with susceptible, recovered
or infected individuals in the latent period, which population size in total is now
given by N − Ik at the kth day. Hence, making use of the mean field approximation
again as in Sect. 9.3.1, the probability φk that a contact of a susceptible is with
an infected individual in the latent period at the kth day is now given by φk =
αEk/(N − Ik) with a constant α such that 0 < α ≤ 1.
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With the same arguments in Sects. 9.2.1 and 9.2.4 applying Poisson distribution
with the intensity γ for the number of contacts with the others, we can get the
following discrete time SEIR model:

Sk+1 = Ske
−βαγEk/(N−Ik);

Ek+1 = Sk
{
1 − e−βαγEk/(N−Ik)}+ (1 − ω)Ek;

Ik+1 = ωEk + (1 − q)Ik;
Rk+1 = qIk + Rk,

(9.44)

where Ek denotes the population size of infected individuals in the latent period
at the kth day. With the same arguments as in Sects. 9.2.3 and 9.2.4, it is easy to
show that the basic reproduction number for this SEIR model (9.44) is given by
ℛ0 = βαγ/ω. As seen from Fig. 9.26a, the epidemic dynamics by (9.44) has a
peak for the population size of infected individuals in the latent period before a peak
for that of infectives. Since it is assumed that the infected individual can be detected
after developing symptoms, the number of infectives can provide the information of
the disease spread necessarily with a time delay.

The corresponding continuous time SEIR model can be derived from the above
(9.44), for example, by the time-step-zero limit described in Sect. 3.3. Same as the
arguments at the beginning of Sect. 9.3 for Kermack-McKendrick model, we can

Fig. 9.26 Numerical calculation of the temporal change of variables for (a) the discrete time SEIR
model (9.44) with βαγ = 1.0; ω = 0.25; q = 0.25, and (b) the continuous time SEIR model
(9.45) with b = 1.0; κ = 0.25; ρ = 0.2. Commonly, ℛ0 = 4.0; (S0/N,E0/N, I0/N,R0/N) =
(0.999, 0.001, 0.0, 0.0)
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derive the following system of ordinary differential equations as a continuous time
SEIR model corresponding to (9.44):

dS(t)

dt
= −b E(t)

N − I (t)S(t);
dE(t)

dt
= b

E(t)

N − I (t)S(t) − κE(t);
dI (t)

dt
= κE(t)− ρI (t);

dR(t)

dt
= ρI (t),

(9.45)

where b is the infection coefficient, κ the rate of symptom development, and ρ
the recovery rate. The infection force � is now given by � = bE/(N − I)

which may be regarded as a ratio-dependent type (refer to Sect. 9.3.1). The basic
reproduction number ℛ0 for the epidemic dynamics by (9.45) can be derived by the
same argument as in Sect. 9.3.4:

ℛ0 = sup
(S,I )

1

κ
· b S

N − I = b

κ
, (9.46)

since the expected duration of latent period for the SEIR model (9.45) is given by
1/κ . As seen from Fig. 9.26, the epidemic dynamics by (9.44) and (9.45) have the
qualitatively same nature.

On the other hand, the SEIR model (9.45) may be regarded as specific in a
sense because of the assumption (iv) on the perfect isolation of infectives. As a
simplest extension of Kermack-McKendrick model (9.25) with the introduction of
latent class, we may consider the following system, omitting the assumption (iv) on
the perfect isolation of infectives:

dS(t)

dt
= −bE(t)S(t)− σI (t)S(t);

dE(t)

dt
= bE(t)S(t)+ σI (t)S(t) − κE(t);

dI (t)

dt
= κE(t)− ρI (t);

dR(t)

dt
= ρI (t),

(9.47)

where b and σ are infection coefficients about the individuals in the latent period
and with the symptom respectively. In general, the infectivity depends on the
physiological state of the infected individual, and those parameters b and σ are
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different from each other. The basic reproduction number ℛ0 for the epidemic
dynamics by (9.47) becomes

ℛ0 = sup
S

( 1

κ
· bS)+ sup

S

( 1

ρ
· σS) = N

( b
κ

+ σ

ρ

)
, (9.48)

since an infected individual can transmit the disease during the latent period of the
expected duration 1/κ and during the period of symptoms of the expected duration
1/ρ.

As seen by the comparison of the basic reproduction number (9.48) for (9.47)
to (9.46) for (9.45), the basic reproduction number (9.48) is independent of
the total population sizeN differently from (9.46). This is typical with respect
to the difference between the epidemic dynamics with the ratio-dependent
type of infection force and with the density-proportional type, that is, the
infection force by the mass action assumption. As argued in Sect. 9.3.1, such
a difference is caused by the nature of the route of disease transmission.

Further, as well as Kermack-McKendrick model (9.25), the SEIR model (9.47)
has the following time-independent conserved quantity:

b

κ

{
S(t)+ E(t)}+ σ

ρ

{
S(t)+ E(t)+ I (t)} − ln S(t) = C0, (9.49)

where the constant C0 is determined by the initial condition (S(0), E(0), I (0))
similarly as (9.27) and (9.36). For the initial condition given by (S(0), E(0), I (0),
R(0)) = (N − E0, E0, 0, 0) with E0 > 0, we have C0 = ℛ0 − ln(N − E0) with
the basic reproduction number ℛ0 defined by (9.48).

Since E(t) → 0 and I (t) → 0 as t → ∞, we have the following equation to
determine the final susceptible population size S∞ at the end of epidemic dynamics
by (9.47):

ℛ0
S∞
N

− ln S∞ = ℛ0 − ln(N − E0).

Since S∞ +R∞ = N , we get the following equation to determine the final epidemic
size R∞ (Fig. 9.27):

ℛ0
R∞
N

+ ln
(

1 − R∞
N

)
= ln

(
1 − E0

N

)
. (9.50)

From this Eq. (9.50), we can easily find the lower bound for the final epidemic size,
infR∞, determined only by ℛ0 and independent of the initial value E0. It is given
by the unique positive root less than one for the following equation of x: ℛ0x/N +
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Fig. 9.27 ℛ0-dependence of the final epidemic size R∞ for the SEIR model (9.47), determined
by (9.50) with E(0)/N = 0.01

ln(1 − x/N) = 0 with ℛ0 > 1. For ℛ0 ≤ 1, we mathematically define it as
infR∞ = 0. As seen in Fig. 9.27, the final epidemic size R∞ tends to drastically
increase for ℛ0 > 1. This can be regarded as a manifestation of the importance
of the threshold value 1 for the basic reproduction number ℛ0 as well as the result
discussed in Sect. 9.3.4 for Kermack-McKendrick model (9.25).

Vector-Borne Disease

Like malaria, dengue fever, and Zika virus infection by mosquito, or pine wilt
disease by long-horned beetle, some transmissible diseases rely on specific animals
as the vector which carries the pathogen to the host. The epidemic dynamics for
such a vector-borne disease needs a specific modeling which contains the population
dynamics about the vector.

We shall consider here a simplest modeling for such an epidemic dynamics of
vector-borne disease, modifying Kermack-McKendrick model (9.25). We assume
that the disease transmission occurs only by the contact between host and vector.
Introducing the interaction between vector and host by the Lotka-Volterra type of
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Fig. 9.28 Scheme of the epidemic dynamics by the model (9.51) for a vector-borne disease

interaction (Sect. 6.1.2), we can derive the following epidemic dynamics model for
a vector-borne disease (Fig. 9.28):

dS(t)

dt
= −aβS(t)V+(t);

dI (t)

dt
= aβS(t)V+(t)− ρI (t);

dR(t)

dt
= ρI (t);

dV+(t)
dt

= bβI (t)V−(t)− μV+(t);
dV−(t)
dt

= −bβI (t)V−(t)− μV−(t)+ g(V (t)),

(9.51)

where V+(t) and V−(t) are the population sizes of vector carrying the pathogen
and non-carrier vector respectively. The total population size of vector is denoted as
V (t) = V+(t) + V−(t). The function g(V ) indicates the net reproduction rate for
the vector population, which is now assumed to depend only on the total population
size of vector V . This means that we assume that the per capita growth rate of vector
does not depend on whether the vector individual is the carrier or non-carrier of the
pathogen. The coeffcients aβ and bβ are respectively for the infection of susceptible
host from the carrier vector and for the transition of non-carrier vector to carrier by
the pathogen transmission through the contact with the infected host. Parameterμ is
the natural death rate of vector. Although the state transition of the host with respect
to the disease is the type of SIR, the disease transmission is only via the contact with
the vector.
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Now, from (9.51), we can derive the following equation to govern the temporal
change of the total population size of vector, V (t):

dV (t)

dt
= g(V (t))− μV (t). (9.52)

Since the population dynamics by (9.52) is independent of the epidemic dynamics,
we shall consider the epidemic dynamics in the situation that the vector population
reaches (or can be approximated to reach) the equilibrium state. This means that we
shall suppose that the total population size of vector V is a constant V ∗ for any time
t , which satisfies the equality g(V ∗) = μV ∗.

With this assumption about the vector population size, the system (9.51) can be
reduced to the mathematically equivalent one with the lower dimension as follows:

dS(t)

dt
= −aβS(t)V+(t);

dI (t)

dt
= aβS(t)V+(t)− ρI (t);

dV+(t)
dt

= bβI (t)
{
V ∗ − V+(t)

}− μV+(t).

(9.53)

As seen in Fig. 9.29, the infected host necessarily decreases toward zero as time
passes, since the total population size of host N is constant independently of time
and the state transition of host is one-way as S → I → R. Hence, the carrier vector
necessarily tends to disappear as well.

We assumed that V (t) → V ∗ as t → ∞ for the vector population
dynamics (9.52). Since the population dynamics (9.52) is now assumed to
be independent of the epidemic dynamics, so is the convergence of V to V ∗.
However, in general, as long as considering the epidemic dynamics (9.51), the
vector population size temporally varies with a relation to the densities V+ and
V−. Therefore, the temporal changes of variables by the epidemic dynamics
(9.51) and (9.53) could be generally different more or less from each other.

As mentioned in the above, since we assume that the total vector popula-
tion size approaches an equilibrium as time passes, the epidemic dynamics
(9.51) is expected to come to have the qualitatively same nature as (9.53) as
times passes, whereas it requires a mathematical proof [15, 18]. The system
(9.53) may be called the limiting system for (9.51), and the system (9.51)
may be called asymptotically autonomous since the limiting system (9.53)
is autonomous while the system (9.51) can be regarded as non-autonomous
because it includes a function V = V (t) of time.

(continued)
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Fig. 9.29 Numerical calculations of the temporal change of variables for the epidemic dynamics
model of vector-borne disease (9.53) with aβV ∗ = 1.0; bβN = 0.1; ρ = 0.2; μ = 0.25;
ℛ0 = 2.0; (S(0)/N, I (0)/N, V+ (0)/V ∗) = (1.0, 0.0, 0.01). Temporal change of the effective
reproduction number R(t) defined by (9.54) is shown by the broken curve

From the standpoint of modeling, it could be reasonable to consider the
system (9.51) with the assumption V (t) = V ∗, because it can be regarded as
the epidemic dynamics model in the situation that the vector population has
reached the equilibrium state.

To consider the reproduction number about the disease spread, we need to take
account of the route of pathogen transmission. Let us focus on an infected host.
The expected duration of host’s “infectivity” for the vector is given by 1/ρ. Now
we can consider the effective reproduction number R(t) for the host population
at time t (refer to Sect. 9.2.3). An infected host is expected to produce bβV−(t)
of carrier vectors per unit time. The expected life span of vector is given by 1/μ
(refer to Sects. 4.3.2 and 4.3.5). On the other hand, a carrier vector is expected
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to produce aβS(t) of infected hosts per unit time. Therefore, we can define the
effective reproduction number as

R(t) := 1

μ
· aβS(t)

︸ ︷︷ ︸
production of infected

hosts per carrier vector

× 1

ρ
· bβV−(t)︸ ︷︷ ︸

production of carrier

vectors per infected host

. (9.54)

Hence the basic reproduction number ℛ0 can be defined as

ℛ0 = sup
(S,V−)

R(t) = 1

μ
· aβN × 1

ρ
· bβV ∗. (9.55)

The latter factor bβV ∗/ρ means the supremum for the expected number of non-
carrier vectors which become carrier by an infected host until the recovery, while the
former factor aβN/ρ means the supremum for the expected number of susceptible
hosts infected by a carrier vector during its survival. Therefore, their product means
the supremum for the expected number of infected hosts produced by an infected
host until the recovery.

There are different mathematical ways to derive the basic reproduction
number ℛ0 for an epidemic dynamics model. One is to use the condition
for the local stability of the disease-free equilibrium state. It would seem to
match the necessarily satisfied nature of disease-free equilibrium state argued
in Sect. 9.2.3. That is, if ℛ0 < 1, the disease fails to invade in the population
and becomes eliminated, while if ℛ0 > 1, the disease succeeds in invading in
the population and causes an increase of infectives and an outbreak. Hence,
the disease-free equilibrium state is unstable if ℛ0 > 1. However, this could
not the case for some epidemic dynamics models as mentioned at the end of
this section.

The other way well-known today uses what is called next generation
matrix. We shall not touch its mathematical theory itself here but describe
only the mathematical process to derive ℛ0 given by (9.55) with the next
generation matrix for the model (9.51). Readers interested in the mathematical
theory can easily find the description in not a few literatures and textbooks on
mathematical epidemiology (for example, see [3, 6, 7, 10, 15, 19, 22] or the
original articles by van den Driessche and Watmough [20, 21]).

(continued)
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Firstly, from the system (9.51), we pick out only equations to describe
the route of disease transmission, that is, those especially related to the
recruitment of infected hosts:

dI (t)

dt
= aβS(t)V+(t)− ρI (t);

dV+(t)
dt

= bβI (t)V−(t)− μV+(t).
(9.56)

Now we decompose the dynamical terms into two sets in which one shows the
recruitment of infected hosts, and the other does the supplementary processes:

dx

dt
= ℱ(S, V+)− 𝒱(I, V+, V−),

where x := T(I (t), V+(t)
)
;

ℱ(S, V+) :=
(
aβSV+

0

)
; −𝒱(I, V+, V−) :=

( −ρI
bβIV− − μV+

)
.

(9.57)

The vector ℱ is for the terms of the recruitment of infected hosts, while
−𝒱 is for the other. Jacobian matrices of ℱ and 𝒱 about the disease-free
equilibrium state (S, I, R, V+, V−) = (N, 0, 0, 0, V ∗) are given by

F := Dℱ
∣∣
DFE =

(
0 aβN

0 0

)
; V := D𝒱

∣∣
DFE =

(
ρ 0

−bβV ∗ μ

)
.

The next generation matrix K is defined by FV−1, that is,

K = FV−1 =
⎛
⎜⎝
aβN · bβV ∗

ρμ

aβN

μ

0 0

⎞
⎟⎠ . (9.58)

The theory says that the maximum absolute value of the eigenvalue for K
gives the basic reproduction number ℛ0, which is defined as the spectral
radius of K in mathematics. Therefore, from (9.58), we can get the basic
reproduction number ℛ0 given by (9.55). It must be remarked that, as
mentioned in [7, Chap. 9] and [15, Chap. 5] (and references therein), there
could be the other way of the decomposition different from (9.57), which

(continued)
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results in a different formula of ℛ0, typically corresponding to the square
root of (9.55) (Exercise 9.2).

Exercise 9.2 Drive the basic reproduction number ℛ0 for the epidemic dynamics
model (9.51), making use of the next generation matrix with the following decom-
position instead of (9.57) for (9.56):

ℱ(S, I, V+, V−) :=
(
aβSV+
bβIV−

)
; −𝒱(I, V+) :=

( −ρI
−μV+

)
.

Long-Term Epidemic Dynamics

We have considered some models for the epidemic dynamics model until now under
the assumption that the host population size is a constant independent of time. This
assumption means that the epidemic dynamics is short-term enough to make the
demographic change in the host population negligible with respect to the spread of
disease in the population. Alternatively the model may be regarded as fundamental
in order to theoretically consider the epidemic dynamics in which the population
size of host is temporally varying, while the researches on such fundamental models
have been useful to get valuable insights for a variety of problems in population
dynamics as proved by the history in mathematical sciences.

We shall introduce here the demographic change in the host population under an
epidemic dynamics. Such an epidemic dynamics must have a time scale comparable
to that for the temporal change of the population size of host. For this reason, such a
time scale must be relatively large, and the epidemic dynamics is sufficiently long-
term.

Let us consider the following model for a vector-borne epidemic dynamics with
the demographic change in the host population, modified from (9.51):

dS(t)

dt
= −aβS(t)V+(t)− δS(t)+�(S(t), I (t), R(t));

dI (t)

dt
= aβS(t)V+(t)− δI (t) − ρI (t);

dR(t)

dt
= ρI (t)− δR(t);

dV+(t)
dt

= bβI (t)V−(t)− μV+(t);
dV−(t)
dt

= −bβI (t)V−(t)− μV−(t)+ g(V (t)),

(9.59)
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where� and δ are the net recruitment rate and per capita death rate respectively for
the host population. We assume now that the disease has no effect on the survival,
that is, is non-fatal. From the former three equations about the host population
dynamics, we have

dN(t)

dt
= �(S(t), I (t), R(t)) − δN(t) (9.60)

about the temporal change of the total population size N(t) := S(t)+ I (t) + R(t).
Since we assume that the disease is non-fatal, the population dynamics with respect
to the total population size of host can be assumed to have no or negligible relation to
the disease. Hence, with (9.60), let us consider the situation that the total population
of host has reached the equilibrium. In other words, the total population size of host
is assumed to be at the equilibrium state with the valueN∗: N(t) = N∗ for any time
t . This makes it hold that�(S(t), I (t), R(t))− δN∗ = 0 for any time t , because the
population dynamics with respect to the total population size of host is now assumed
to have no relation to the epidemic dynamics.

Some readers may think that this assumption about the host population
dynamics would be related to the quasi-stationary state approximation
(QSSA) described in Sect. 6.2. However, it is not the case. As mentioned in
the above, we are now considering a long-term epidemic dynamics for a non-
fatal disease, which is the reason why we take account of the demographic
change in the host population dynamics. Actually, the demographic change in
the host population must have a certain influence on the epidemic dynamics,
since it could provide a recruitment or reduction of susceptible hosts in
the population. The assumption introduced above about the host population
dynamics means that we are going to focus on the epidemic dynamics for the
host population which has reached the equilibrium state according to the total
population size, and we shall not consider the epidemic dynamics through the
transient state of the host population dynamics about the total size. Thus, we
do not assume any difference about the time scale between the population
dynamics of host and vector. Therefore, we do not apply the QSSA for the
population dynamics considered here.

Further, let us assume that the total population size of vector V is a constant
V ∗ for any time t , so that we have g(V ) ≡ g(V ∗) = μV ∗ as before. From the
original model (9.59) with these assumptions, we can derive the following epidemic
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dynamics model with respect to the population frequencies defined as fS := S/N∗,
fI := I/N∗, fR := R/N∗, v+ := V+/V ∗, and v− := V−/V ∗:

dfS(t)

dt
= −aβV ∗fS(t)v+(t)− δfS(t)+ δ;

dfI(t)

dt
= aβV ∗fS(t)v+(t)− ρfI(t)− δfI(t);

dfR(t)

dt
= ρfI(t)− δfR(t);

dv+(t)
dt

= bβN∗fI(t)v−(t)− μv+(t);
dv−(t)
dt

= −bβN∗fI(t)v−(t)− μv−(t)+ μ,

and the mathematically equivalent closed system with the reduced dimension:

dfS(t)

dt
= −aβV ∗fS(t)v+(t)− δfS(t)+ δ;

dfI(t)

dt
= aβV ∗fS(t)v+(t)− (ρ + δ)fI(t);

dv+(t)
dt

= bβN∗fI(t)
{
1 − v+(t)

} − μv+(t);

(9.61)

since fS(t) + fI(t) + fR(t) = 1 and v+(t) + v−(t) = 1 for any time t . As easily
seen, this model (9.61) becomes equivalent to the previous one (9.53) when δ = 0.

The system (9.61) may be regarded as the limiting system for (9.59), since we
assumed that N(t) → N∗ and V (t) → V ∗ as t → ∞ for (9.59). However,
the arguments to lead to (9.61) were from the standpoint of modeling about
the epidemic dynamics.

The basic reproduction number ℛ0 for the epidemic dynamics by (9.59), that is,
by (9.61) becomes

ℛ0 = 1

μ
· aβN∗ × 1

ρ + δ · bβV ∗,

which can be derived by the same arguments as for (9.55). As for the existence of
endemic equilibrium state and the local stability of equilibria for the system (9.61),
we can get the following results:

• The disease-free equilibrium state (DFE) (fS, fI, v+) = (1, 0, 0) is locally
asymptotically stable if ℛ0 < 1, while it is unstable if ℛ0 > 1.
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(a) )c()b(

Fig. 9.30 Numerical calculations of the temporal change of variables for the epidemic dynamics
model of vector-borne disease (9.61) with aβV ∗ = 1.0; bβN∗ = 0.1; ρ = 0.2; μ = 0.25;
(S(0)/N∗, I (0)/N∗ , V+(0)/V ∗) = (1.0, 0.0, 0.01); (a) δ = 0.25 (ℛ0 = 0.888); (b) δ = 0.1
(ℛ0 = 1.333); (c) δ = 0.01 (ℛ0 = 1.905)

• The endemic equilibrium state (fS, fI, v+) = (f ∗
S , f

∗
I , v

∗+) uniquely exists if and
only if ℛ0 > 1, where

f ∗
S = δ/(aβN∗)

δ/(aβN∗)+ v∗+
; f ∗

I = μ

bβV ∗
v∗+

1 − v∗+
; v∗+ = δ/(aβN∗)

δ/(aβN∗)+ 1/ℛ0

(
1 − 1

ℛ0

)
,

satisfying that f ∗
S + f ∗

I = 1 − f ∗
R < 1 and v∗+ < 1.

• The endemic equilibrium state is locally asymptotically stable whenever it exists.

We can investigate the local stability of the DFE by the standard local stability
analysis with the linearized system (refer to Sect. 14.2), whereas we can prove that
of the endemic equilibrium state by making use of the Routh-Hurwitz Criterion with
a little cumbersome calculation (refer to Sect. 14.6).

The endemic equilibrium state is globally asymptotically stable when it exists,
though we shall not go into the mathematical proof here (see [23]). As numerically
demonstrated in Fig. 9.30, the temporal change may be accompanied by a damped
oscillation toward the endemic equilibrium state.

Sir Ronald Ross (1857–1932) presented the following epidemic dynamics
model for the Malaria spread [16, 17]:

⎧⎪⎪⎨
⎪⎪⎩

dfI(t)

dt
= aβV ∗{1 − fI(t)

}
v+(t)− δfI(t);

dv+(t)
dt

= bβN∗fI(t)
{
1 − v+(t)

}− μv+(t),
(9.62)

(continued)
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which was studied further by George U. Macdonald (1925–1997) about the
modification and estimation of parameter values [11–14]. This model is
sometimes called Ross-Macdonald model today.

The model (9.62) can be now regarded as a simpler version of (9.61) with
ρ = 0 and fS(t)+fI(t) = 1. Hence there are not the recovery or the removed
class. Then we must assume that the infected host keeps its “infectivity” for
the vector until its death. As seen from the similarity of two formulas in
(9.62), this model can be regarded as the dynamics of pathogen transshipment
between two different populations. It may be the simplest reasonable model
for a vector-born “disease” with negligible fatality.

Since the model (9.62) is two dimensional, for example, the analysis with
the isocline method (Sect. 14.7) can easily show that the DFE is globally
asymptotically stable if ℛ0 := (aβN∗/μ)(bβV ∗/δ) ≤ 1, while the endemic
equilibrium state is globally asymptotically stable if ℛ0 > 1. Further, it can
be shown also that there is no oscillatory behavior in the temporal change by
the model (9.62), differently from (9.61).

Answer to Exercise

Exercise 9.1 (p. 294)

Let us define F(x) := x − (ρ/σ) ln x for x > 0. Then the Eq. (9.28) is expressed as
F(S∞) = F(S0)+ I0. The curve y = F(x) is concave with the extremal minimum
at x = ρ/σ , satisfying that lim

x→0+F(x) = ∞ and lim
x→∞F(x) = ∞, as illustrated in

the below figures:

0 �
�

0 �
�

)b()a(
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These are in the case of F(ρ/σ) > 0. The curve of y = F(x)+ I0 is equivalent to
the parallel displacement of y = F(x) by I0 in the direction of y-axis.

Since S(t) is monotonically decreasing as time passes, we must have S∞ < S0.
From the above left graph (a) when S0 > ρ/σ , the root S∞ of the Eq. (9.28) must
be determined as indicated in it. In the similar way, when S0 < ρ/σ , it must be
determined as indicated in (b). Hence it is clear that the root S∞ of the Eq. (9.28) is
uniquely determined.

Although these arguments are for the case of F(ρ/σ) > 0, it can be applied for
the case of F(ρ/σ) ≤ 0 too. Lastly these arguments show the unique existence of
the root S∞ of the Eq. (9.28).

Exercise 9.2 (p. 316)

For the decomposition given in this exercise, we have the following Jacobian
matrices of ℱ and 𝒱 about the disease-free equilibrium state (S, I, R, V+, V−) =
(N, 0, 0, 0, V ∗):

F := Dℱ
∣∣
DFE =

(
0 αβN

bβV ∗ 0

)
; V := D𝒱

∣∣
DFE =

(
ρ 0

0 μ

)
.

Then the next generation matrix K = FV−1 becomes

K = FV−1 =

⎛
⎜⎜⎜⎝

0
aβN

μ

bβV ∗

ρ
0

⎞
⎟⎟⎟⎠ .

The eigenvalues for K are purely imaginary ± i
√
(aβN/μ)(bβV ∗/ρ), and therefore

the basic reproduction number ℛ0 is obtained as ℛ0 = √
(aβN/μ)(bβV ∗/ρ). This

is the square root of that given by (9.55).

Although those formulas for the basic reproduction number ℛ0 are different,
the condition for ℛ0 ≷ 1 is mathematically identical for both of them.
However, for matching the definition of the basic reproduction number as
the supremum of the expected number of new cases in Sect. 9.2.3, the above
formula with the square root would not be reasonable as long as we consider
the expected number of new infectives in the host population.

(continued)
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In some literatures (for example, see [15]), the above basic reproduction
number is explained as the geometric mean of the expected number of
secondary infections by the host and that by the vector, since the initial
infective individual could be a host or a vector. However, this explanation
clearly show that it is not the expected number of new infective hosts regarded
as those produced by an infected host, or that of new infective vectors as those
produced by an infected vector. In general, for a vector-borne disease, we
consider the vector as a carrier of pathogen for the host population. Therefore
it is the main subject to be investigated how many new infective hosts are
produced in the host population. In this sense, the above result with the square
root would not be reasonable.
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Chapter 10
Modeling for Age Structure

Abstract As described in Sect. 9.1, the biological population can have the structure
according to a measure of the “age”. In biology, the age distribution may be treated
as a set of age classes. In such a case, the age distribution follows a discrete
variable to index each age class. In the widest sense, the age can be regarded
as the time lapse after the birth. Then the age is expressed by a continuous
variable with real number. In this chapter, we shall describe the fundamentals
on the modeling for the population dynamics with an age structure, discrete or
continuous, and give the essential introduction about some biological concepts
related to such theoretical approach with the mathematical modeling for the age
structured population dynamics.

The biological population can have the structure according to a measure of the “age”
as described in Sect. 9.1. In biology, the age distribution may be treated as a set of
age classes. In such a case, the age distribution follows a discrete variable to index
each age class. In a widest sense, the age can be regarded as the time lapse after the
birth. Then the age is expressed by a continuous variable with real number.

In this chapter, we shall describe the fundamentals on the modeling for the
population dynamics with an age structure, discrete or continuous, and at the
same time give the essential introduction of some biological concepts related to
such a theoretical approach with the mathematical modeling for the age structured
population dynamics.

10.1 Discrete Time Model

In this section, we shall consider the fundamental mathematical modeling for the
discrete time population dynamics with a number of age classes. The mathematical
model can be expressed with a matrix. Let the number of age classes be m, and the
subpopulation size at age class i be ni,k at time step k. As introduced in Chap. 1,
the time step may correspond to the generation or season to define a cycle of
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326 10 Modeling for Age Structure

reproduction. The most popular time step would be the year for the biological
population dynamics. Here let us call it “generation” in a general sense, since we are
going to consider the subpopulation sizes of all age classes, {ni,k | i = 1, 2, . . . ,m}.
The last age class m can be regarded as corresponding to the ecological life
span (may correspond to the physiological life span under a specific environment
controlled in laboratory) (refer to Sect. 1.5).

We have the following expression of the age distribution with them dimensional
vector nk:

nk ≡

⎛
⎜⎜⎜⎝
n1,k

n2,k
...

nm,k

⎞
⎟⎟⎟⎠ .

The generational change of age distribution can be mathematically expressed as

nk+1 = Aknk (10.1)

with an m × m matrix Ak, which elements may depend on the age distribution
itself as the general assumption: Ak = Ak(nk). The matrix Ak is called transition
matrix or projection matrix for the discrete age structured population dynamics. The
discrete time model with such a transition matrix is called matrix model in general.

More generally, the transition matrix Ak may depend also on the age
distribution older than the last generation: Ak = Ak(nk,nk−1,nk−2, . . . ).
Since the transition matrix Ak does not necessarily contain only constant
elements, the matrix model may have a nonlinearity in the mathematical
expression. However, in some cases, the matrix model would indicate a
population dynamics with a matrix with only constant elements, which leads
to a linear model as appeared in Sect. 1.4.

10.1.1 Leslie Matrix Model

Let us consider the case where the “age” must increase by one when time proceeds
by a generation, that is, by a time step. This assumption of aging is the most popular
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Fig. 10.1 The age/state transition for Leslie matrix model and for Lefkovitch matrix model

as the discrete time “age”, like the chronological age. In such a case, the transition
matrix Ak must have the following structure (see Fig. 10.1):

Ak ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 b2 b3 b4 b5 · · · bm

a1 0 0 0 0 · · · 0
0 a2 0 0 0 · · · 0
...
. . .
. . .
. . .

...
...

0 · · · 0 aj 0 · · · 0
...

...
. . .
. . .

. . .
...

0 0 0 · · · 0 am−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10.2)

where zero are elements except for (1, j)-elements and (j, j − 1)-elements (j =
1, 2, . . . ,m). This transition matrix is called Leslie matrix after the works on the
age structured population dynamics with the transition matrix (10.2) by Patrick H.
Leslie (1900–1972) in 1945 and 1948 [10, 11].

For a closed population dynamics (refer to Sect. 3.4) with Leslie matrix (10.2),
the (j +1, j)-element aj (j = 1, 2, . . . ,m−1) means the proportion of individuals
which are of age class j and survive until the next generation to become of age class
j + 1. In other words, 1 − aj means the proportion of individuals which are alive at
age class j and die before the next generation. Hence it must satisfy that 0 ≤ aj ≤ 1
(j = 1, 2, . . . ,m− 1). From a viewpoint of modeling with a stochastic process, aj
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means the survival probability that an individual of age class j survives to reach the
next generation, and 1 − aj correspondingly does the death probability.

The element bi (i = 1, 2, . . . ,m) indicates the recruitment with the reproduction
by individuals of age class i. More precisely, bi means the per capita growth rate
(number of newborns, seeds, etc.) for the individual of age class i. Hence it is non-
negative. If the reproduction is possible only after a age class J (< m) because of
an immature period, we have b1 = b2 = · · · = bJ = 0 in the Leslie matrix (10.2).

10.1.2 Lefkovitch Matrix Model

Differently from the previous case of “age” increasing generation by generation,
we may consider the case where the transition to the next “age” class does not
necessarily occur. Such “age” may be better to be called “state” more generally,
like the stages of seed, immature, and mature (seedling) in the plant population.
Such a structured population dynamics may be called stage structured population
as already mentioned in Sect. 9.1. The epidemic dynamics with a structure with
the state classes, susceptible, latent, infective (infectious), and recovered (immune)
could be analogously regarded as such a stage structured population dynamics,
which was discussed in Sects. 9.2 and 9.3.

Since some individuals may stay at the same age class even after the generation
passes (see Fig. 10.1), the transition matrix becomes

Ak(nk) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 b2 b3 b4 b5 b6 · · · bm

a1 c2 0 0 0 0 · · · 0
0 a2 c3 0 0 0 · · · 0
...
. . .
. . .
. . .

. . .
...

...

0 · · · 0 aj cj+1 0 · · · 0
...

... 0
. . .

. . .
. . .

...
...

...
...
. . .

. . .
. . . 0

0 · · · 0 0 · · · 0 am−1 cm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.3)

This is sometimes called Lefkovitch matrix, after the works on the stage structured
population dynamics by Leonard Lefkovitch (1929–2010) (especially after [9]).

For the stage structured dynamics of a closed population with (10.3), the
principal diagonal element cj (j = 2, 3, . . . ,m) means the proportion of individuals
which remain alive at the same age class j until the next generation. Hence it
must satisfy that 0 ≤ cj ≤ 1 (j = 2, 3, . . . ,m). Therefore 1 − cj means the
proportion of individuals which go out of age class j before the next generation,
that is, those which alternatively die or survive to transfer to age class j + 1
until the next generation. It must be remarked that 1 − cj does not necessarily
mean the death probability. Further, from the meaning of the (j + 1, j)-element



10.1 Discrete Time Model 329

aj (j = 1, 2, . . . ,m − 1) as described in the previous section for Leslie matrix
(10.2), it is necessary to satisfy that 0 ≤ aj + cj ≤ 1 (j = 2, 3, . . . ,m − 1). Thus
1 − aj − cj means the proportion of individuals which are alive at age class j and
die before the next generation.

For an open population with the migration of individuals to and from it, it is
generally necessary to take account of the immigration to and the emigration
from each age class. Hence, from the argument of Sect. 3.4 in a general
context, the generational change of the subpopulation size of age class j
becomes as follows:

(
subpopulation of age class j at the k + 1th generation

) =
+ (individuals remaining at age class j from the kth generation

)
+ (individuals transferring from age class j − 1 at the kth generation

)
+ (migrants from and to age class j between the k th and

k + 1th generations) .

For the Lefkovitch matrix model with (10.3), the recurrence relation to give
the subpopulation size nj,k+1 of age class j at the kth generation generally
becomes

nj,k+1 = aj−1nj−1,k + cjnj,k + εj,k
with the number of immigrants εj,k (≥ 0) to age class j between the kth and
k + 1th generations, so that the recurrence relation to govern the generational
change of age distribution is described as nk+1 = Aknk + εk with εk :=
T(ε1,k, ε2,k, . . . , εm,k).

It must be remarked for this modeling that the emigration is included in
the term cjnj,k . The number of emigrants cannot become beyond the sub-
population size of corresponding age class, while the number of immigrants
may be independent of it. Hence, in this modeling, the parameter cj means
the proportion of individuals which do not emigrate from and remains alive
at the same age class j until the next generation. Therefore 1 − cj means
the proportion of individuals which go out of age class j before the next
generation, which consist of not only those which die or survive to transfer
to age class j + 1 but also those which emigrate from the population until the
next generation.

In a wider sense, the Lefkovitch matrix model may be defined with the transition
matrix which has some positive values in the principal diagonal elements except
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for (1, 1)-element. The transition matrix (10.3) is the simplest one extended from
the Leslie matrix model. Readers interested in the matrix model for the age
structured population dynamics can find the introductory description, for example,
in [3, 15, 16]. Books by Hal Caswell (1949–) [1, 2] describe the further discussion
and application of the matrix model for the biological population dynamics.

10.1.3 Stable Age Distribution

For the age structured population dynamics by (10.1) with a transition matrix Ak ,
we can mathematically have the following expression of the age distribution at the
kth generation:

nk = Ak−1Ak−2 · · ·A1A0n0,

where n0 is the initial age distribution. When the transition matrix Ak is a constant
matrix, Ak = A, it becomes

nk = Akn0. (10.4)

For the matrix model with such a constant transition matrix A, if there are an age
distribution n∗ and a positive constant λ such that

An∗ = λn∗, (10.5)

then n∗ defines what is called the stable age distribution, more generally saying,
stable state distribution for the age/state structured population dynamics with the
transition matrix A. In mathematical words, the stable age distribution is given by
the right eigenvector for a specific eigenvalue λ (> 0) of the matrix A.

If the population reaches a stable age distribution, the subpopulation size of
every age class grows as a geometric progression with the common ratio λ. The
population size increases if and only if λ > 1, while it decreases if and only if
λ < 1, as described in Chap. 1. Now we can define the age frequency distribution
by the vector

f k = 1∑m
i=1 ni,k

nk,

where the element fi,k means the frequency/proportion of individuals in age class i
at the kth generation. It can be proved from (10.5) that the age frequency distribution
is generationally unchanged for the stable age distribution n∗ (Exercise 10.1). This
is the reason to use the word “stable” for the specific age distribution.
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Exercise 10.1 Prove that the age frequency distribution is generationally
unchanged for the stable age distribution n∗.

Suppose that the transition matrix A has distinct m eigenvalues λi (i =
1, 2, . . . ,m) such that |λ1| ≤ |λ2| ≤ · · · ≤ |λm|. Let us denote the right eigenvector
for the eigenvalue λi by ui = T(ui,1, ui,2, . . . , ui,m) (i = 1, 2, . . . ,m) such that
Aui = λiui . Since the eigenvectors {ui} are linearly independent of each other,
there is a unique set of constants ci (i = 1, 2, . . . ,m) for arbitrarily given initial
distribution n0 such that n0 = c1u1 + c2u2 + · · · + cmum. Let us now consider the
case of cm 	= 0. From (10.4), we have

nk = Akn0 = Ak
m∑
i=1

ciui =
m∑
i=1

ciA
kui =

m∑
i=1

ciλ
k
i ui

= λkm

{
c1u1

( λ1

λm

)k + c2u2

( λ2

λm

)k + · · · + cm−1um−1

(λm−1

λm

)k + cmum

}
,

where |λi/λm| ≤ 1 for any i < m. Especially if |λm−1| < |λm|, we can find that

nk ≈ λkmcmum (10.6)

for sufficiently large k, because |λ1/λm| ≤ |λ2/λm| ≤ · · · ≤ |λm−1/λm| < 1.
In this case, the generational change of the age distribution eventually approaches a
geometric progression with the common ratio λm. Hence the population goes extinct
if |λm| < 1, while it geometrically grows if |λm| > 1.

Further from this result (10.6) about the asymptotic generational change of the
age distribution, we can easily find that the age frequency distribution f k becomes

f k ≈ 1∑m
i=1 um,i

um

for sufficiently large k. This means that the age frequency distribution f k
approaches a specific stable age frequency distribution f ∗ defined by the right
eigenvector um for the eigenvalue λm of the largest absolute value as

f ∗ = 1∑m
i=1 um,i

um.

Although the above arguments are only for the case of cm 	= 0, they are
generally acceptable as the reasonable modeling. The initial age distribution
n0 to make cm = 0 is specific, and is not worth considering from the
standpoint of theoretical consideration on the biological population dynamics.

(continued)
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This is because a little difference in the initial age distribution can make
cm 	= 0. Taking into account the environmental fluctuation in the biological
system, the above arguments on the stable age distribution would be generally
regarded as satisfactory in the theoretical consideration on the biological
population dynamics.

Let us consider next the stable age distribution n∗ for the Leslie matrix model
with the transition matrixA given by (10.2). The characteristic equation

∣∣A−λE∣∣ =
0 for A becomes the following polynomial equation of degreem:

λm − b1λ
m−1 − a1b2λ

m−2 − a1a2b3λ
m−3− · · ·

· · · −
{m−2∏
j=1

aj

}
bm−1λ−

{m−1∏
j=1

aj

}
bm = 0. (10.7)

Since the Leslie matrix is one of matrices that have only non-negative elements,
Perron-Frobenius theorem says that the above characteristic Eq. (10.7) for A has a
unique positive root λ+ such that any other root has the absolute value less than λ+
(for example, see [14, 15]). That is, λ+ corresponds to λm in the above arguments
which satisfies that |λm−1| < λm. The root λ+ is called principal eigenvalue,
principal root, or dominant eigenvalue for the characteristic equation or for the
matrix A.

From (10.5), we can get the following expression of the stable age distribution
n∗ for the Leslie matrix model with (10.2) (Exercise 10.2):

n∗ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∗
1
n∗

2
...

n∗
j

...

n∗
m−1
n∗
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= n∗
m ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λm−1+ /(a1a2 · · · am−1)

λm−2+ /(a2a3 · · · am−1)
...

λ
m−j
+ /(ajaj+1 · · · am−1)

...

λ+/am−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.8)

Although the above expression of the stable age distribution does not explicitly
contain parameter bj (j = 1, 2, . . . ,m), the principal root λ+ depends on it. As
already described before, the population with the stable age distribution shows a
growth of geometric progression with the common ratio λ+.

Exercise 10.2 Derive (10.8).
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10.1.4 Reproductive Value

In this section, we are going to consider the reproductive value for a closed age
structured population following the stable age distribution n∗ according to the Leslie
matrix model with (10.2). The reproductive value is defined as the expected total
number of survived mature female offsprings born from a mother of an age onward.
Roughly saying, it is an index of the “value” of a reproductive female at an age
according to how its offsprings contribute to the future population size. This implies
that the reproductive vale of a female gets smaller as the future population size
becomes larger. As easily understood from the definition, the reproductive value
becomes smaller for the older reproductive female, that is, the female with the larger
age. This is because the expected total number of survived mature female offsprings
produced by a female of an age onward gets smaller as the female becomes older.
The reproductive value was defined first by Sir Ronald A. Fisher (1890–1962) in his
book published in 1930 [5]. Today it has a close relation to the fitness in evolutionary
biology. In this section, we are going to describe the mathematical modeling for the
reproductive value about a closed age structured population of Leslie matrix model,
for the purpose of clarifying the logical meaning of reproductive value.

The reproductive value must be distinguished from the net reproduction rate
defined in Sect. 1.5, while they are closely related to each other. Since the
net reproduction rate is defined as the expected total number of reproductive
females produced by a reproductive female, it is the supremum for the
reproductive value of a reproductive female in terms of the age. The net
reproduction rate is derived as the expected value for the whole reproductive
period (age span) for a mature female, taking account of the survival
probability in the period. Therefore it is an index of the reproductive potential
according to the population. In contrast, the reproductive value is defined for
a reproductive female of each age as seen in the following description of this
section. Thus it is derived as the expected value for the rest of reproductive
period at each age, taking account of the survival probability in the rest period
for the reproduction.

Let us denote the reproductive value of an individual in age class j at a generation
by vj . The individual becomes age j + 1 and has the reproductive value vj+1
at the next generation if it survives until the next generation. Since the survival
probability to the next generation is now given by aj for the individual of age j , the
individual cannot contribute to the future population size if it dies with probability
1 − aj . Since we assume that the population follows the stable age distribution,
the population size geometrically grows with the growth rate λ+ per generation
as shown in Sect. 10.1.3. That is, the population size becomes larger if |λ+| > 1
or smaller if |λ+| < 1 respectively by λ+ times at the next generation. Hence the
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reproductive value vj+1 becomes discounted by 1/λ+ times at the next generation in
comparison with vj at the present generation. On the other hand, the offsprings born
from an individual of age j , which are given by bj , have the total reproductive value
bjv1 at the next generation, since they are of age class 1 at the next generation. This
total reproductive value of offsprings is included to determine the reproductive value
vj as described below. Exceptionally, the reproductive value of an individual in the
terminal age classm is determined only by the reproductive value of offsprings born
from it, since such an individual cannot survive until the next generation.

Now we have the following equations corresponding to these arguments:

vj = bj
v1

λ+
+
{
aj
vj+1

λ+
+ (1 − aj ) · 0

}
(1 ≤ j < m);

vm = bm
v1

λ+
,

(10.9)

that is,

bjv1 + ajvj+1 = λ+vj (1 ≤ j < m);

bmv1 = λ+vm.

These equations can be expressed with vector and matrix as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1 0 0 0 · · · 0
b2 0 a2 0 0 · · · 0
...

...
. . .
. . .

...
...

bj 0 · · · 0 aj · · · 0
...

...
. . .
. . .

...

bm−1 0 0 · · · 0 0 am−1

bm 0 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2
...

vj
...

vm−1

vm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2
...

vj
...

vm−1

vm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This m × m matrix is the transposed matrix of the Leslie matrix (10.2), that is, TA.
Hence, with v := T(v1, v2, . . . , vm), the above equation can be rewritten as

TvA = λ+Tv, (10.10)

where the m dimensional vector Tv is the row vector given by the transposition of
the column vector v, and we used a mathematical relation that T(TAv) = TvA. The
Eq. (10.10) indicates that the row vector Tv is the left eigenvector for the principal
eigenvalue λ+ of matrix A.

Since any vector proportional to an eigenvector becomes the eigenvector for the
same eigenvalue, the standard mathematical definition of the reproductive value is
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to use the value relative to the reproductive value at birth, that is, the reproductive
value for the individual of age class 1. Mathematically it corresponds to determining
the vector v such that v1 = 1. Then the element vj (2 ≤ j ≤ m) means the relative
reproductive value for the individual of age class j . From (10.9), we can easily get
the following formula about the general vector v:

vj

v1
= λ

j−1
+∏j−1
i=1 ai

m∑
k=j

(∏k−1
i=1 ai

)
bk

λk+
(2 ≤ j ≤ m), (10.11)

where the right side gives the formula of the relative reproductive value for the
individual of age class j .

Sir Ronald A. Fisher [5] defined the reproductive value Vx for the individual
of age x about the age structured population for which the age is defined as a
continuous non-negative value:

Vx

V0
= erx

lx

∫ ∞

x

e−rt ltmt dt, (10.12)

where lt is the mean survival rate of the individual with age t ,mt the expected
number of offsprings produced by the individual with age t onward, and
r the momental natural growth rate of the population size. V0 means the
reproductive value at birth. The right side of (10.12) gives the formula of the
relative reproductive value for the individual of age class j . The reproductive
value for the individual older than the reproductive age must be zero, so that
the value of mt is given by zero for such an old individual. For the growing
population with a positive value of r , the above formula (10.12) indicates
that the present offsprings have the higher value than the future ones have.
For the declining population, it is inverse. The formula of reproductive value
(10.11) for the Leslie matrix model with (10.2) has a clear mathematical
correspondence to (10.12), and they has the same nature in a biological sense.

10.1.5 Sensitivity Analysis

About a matrix model, the sensitivity analysis generally means the analysis on the
contribution of each element of the matrix to the nature of the temporal change
of population size. A change of environmental condition may influence some
factors governing the population dynamics, while the nature of population dynamics
could be qualitatively maintained. For such a persistent population dynamics, it
is biologically interesting which factor would be most influential in determining
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the nature of population dynamics. Mathematically according to the population
dynamics model, it corresponds to how closely each parameter is related to the
nature of dynamical system as the model.

Whereas the phrase “sensitivity analysis” may be sometimes used today in
a much wider sense as the analysis on the parameter dependence according
to a dynamical system, we shall describe in this section only the essential to
mathematically estimate the sensitivity for the general matrix model with a constant
transition matrix A (for further detail, see [1–3, 16]). Readers may be able to find
the other aspect of such a structured population dynamics with a transition matrix.

Let us suppose that the transition matrix A has m distinct eigenvalues λi (i =
1, 2, . . . ,m), and denote the right eigenvector by ui and the left eigenvector by vi as
column vectors for each eigenvalue λi . We have now Aui = λiui and v∗

i A = λiv
∗
i ,

where, from the mathematical definition, the left eigenvector vi satisfies the latter
equation as the complex conjugate transposed vector of vi , v∗

i := Tvi .
Generally every eigenvalue λi , right eigenvector ui and left eigenvector vi

can be treated as continuous and differentiable functions of elements aij (i, j =
1, 2, . . . ,m). Thus the change in the values of elements of the transition matrix
could alter them. From this viewpoint, we take the differential of the equation
Aui = λiui , and obtain the following relation of differentials:

(dA)ui + Adui = (dλi)ui + λidui , (10.13)

where dA denotes the m × m matrix which elements are given by the differential
of elements of A, daij , and dui does the column vector with elements of the
differential dui,j (j = 1, 2, . . . ,m) about those of vector ui . Multiplying v∗

i from
the left for both sides, we have

v∗
i (dA)ui + v∗

i A dui = (dλi)v
∗
i ui + λiv∗

i dui ,

where the second terms of both sides are the same as each other since v∗
i A = λiv

∗
i .

Hence we find the relation such that

dλi = v∗
i (dA)ui

v∗
i ui

, (10.14)

where we must remark that the term v∗
i ui is the scalar product that leads to a non-

zero scalar value when the matrix A has m distinct eigenvalues (Exercise 10.3).

Exercise 10.3 When the m × m transition matrix A has m distinct eigenvalues,
show that the scalar product of the right eigenvalue ui and the left eigenvalue vi ,
v∗
i ui , does not become zero for every eigenvalue λi .
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In the above description, we used the differential used in mathematics, though
the arguments can be carried out in the following way essentially equivalent
to it, which may be more straightforward to grasp the meaning from the
viewpoint of modeling about the population dynamics.

Assume that each element aij of the transition matrix A changes by a
sufficiently small perturbation δaij , that is, the element aij is replaced by
aij + δaij . Following the change of elements, the eigenvalue and eigenvectors
are changed from λi to λi + δλi and from ui to ui + δui respectively. Thus
we have the following relation:

(A+ δA)(ui + δui ) = (λi + δλi)(ui + δui ),

where δA denotes the m×m matrix with elements δaij . Neglecting all terms
with the second order of perturbations δaij , δλi , and δui , we can get the
following approximated relation from the above one:

(δA)ui + Aδui ≈ (δλi)ui + λiδui ,

which clearly corresponds to (10.13). With this relation, we can carry out the
same arguments as the above to derive (10.14).

From the above general result, we shall now consider the dependence only on a
specific element ak� of A, fixing the other elements. In this case, any element of the
matrix dA except for dak� is zero with dak� 	= 0. From (10.14), we have

dλi = vi,k(dak�)ui,�

v∗
i ui

,

and consequently obtain the following equation about the partial derivative of the
eigenvalue λi in terms of ak�:

∂λi

∂ak�
= vi,kui,�

v∗
i ui

. (10.15)

This partial derivative is translated as the sensitivity of the eigenvalue λi to the
element ak� of A. The Eq. (10.15) indicates that it is proportional to the product
of the kth element of left eigenvector and the �th element of right eigenvector, since
the denominator v∗

i ui is independent of the choice of k and �. As it has the larger
absolute value, the eigenvalue λi has the higher sensitivity to the element ak�. In
other words, for the perturbation of an element ak� with the higher sensitivity, the
eigenvalue λi is more significantly affected to change by the larger amount.



338 10 Modeling for Age Structure

We can define the m × m matrix Si which (k, �)-element is given by (10.15)
(k, � = 1, 2, . . . ,m), called sensitivity matrix for the eigenvalue λi . From (10.15),
it can be mathematically defined by

Si :=
T(uiv

∗
i )

v∗
i ui

.

With the definition of sensitivity by (10.15), we may be able to compare the
dependence of each eigenvalue on elements of A, though we cannot compare
the dependence of eigenvalues on each element of A. For such a purpose, the
following elasiticity is defined for the eigenvalue λi in terms of the element
ak� of A:

ei,k� := ak�

λi

∂λi

∂ak�
= ∂(lnλi)

∂(ln ak�)
.

From this definition, the elasticity means the relative change of λi , that is,
δλi/λi for the relative change of ak�, given by δak�/ak� with a sufficiently
small perturbation δak�. It mathematically satisfies that

∑m
k,�=1 ei,k� = 1

(Exercise 10.4). Hence the elasticity ei,k� can be regarded as an index about
the relative contribution of element ak� to the eigenvalue λi . Caswell [1,
Section 9.2] advises against its misleading use, and suggests its logical use
with clarifying the meaning and definition.

Exercise 10.4 Show that
∑m
k,�=1 ei,k� = 1.

10.2 Continuous Time Model

In this section, we shall describe the modeling of the age structured population
dynamics with the age defined as a continuous variable according to time. The age
continuously varies as time passes.

10.2.1 Age Distribution Function

For the age continuously varying as time passes, the age of an individual a is given
by a linear function of time t: a = a(t) = t − t0 with the moment of its birth at
t = t0. Now let us denote the subpopulation size of individuals who have the age
not beyond X at time t by U(X, t). The function U(X, t) is called age distribution
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function. We assume that it is a sufficiently smooth function of X and t . From the
definition, it must be monotonically increasing non-negative function in terms ofX.

The subpopulation size in a range of age [X,X + δX) at time t is given by
δU(X, δX, t) = U(X + δX, t) − U(X, t). Let us focus on this subpopulation, that
is, a cohort of the same age class in a wide sense (as for the definition of cohort, refer
to Sect. 4.3). After a period �t , the cohort transfers to that with the size δU(X +
�t, δX, t +�t) for a range of age [X+�t,X+�t + δX) at time t +�t , because
age a at time t becomes age a +�t at time t +�t . Thus, the difference

δQ(X, δX, t,�t) = δU(X +�t, δX, t +�t)− δU(X, δX, t) (10.16)

gives the variation of cohort size focused on now. Such a variation is caused by the
death in the population and migration from/to it.

As seen from the definition, δU(X, 0, t) = U(X, t)−U(X, t) = 0 for anyX
and t . Although δU(X, δX, t) gives the cohort size in the age range [X,X +
δX), δU(X, 0, t) does not mean the cohort size of any ageX. This is a general
mathematical nature of the distribution function for a continuous variable.
SinceX is the variable for the continuous age more than zero, mathematically
U(0, t) = 0 for any t for the same reason.

Making use of Taylor expansion for a multi-variable function, we have

δU(X, δX, t) = U(X + δX, t)− U(X, t) = ∂U(X, t)

∂X
δX + o(δX), (10.17)

and hence,

δU(X +�t, δX, t +�t)

= ∂U(x, t +�t)
∂x

∣∣∣∣
x=X+�t

δX + o(δX)

= ∂U(X, t +�t)
∂X

δX + ∂2U(X, t)

∂X2 �tδX + o(�t)δX + o(δX).

(10.18)
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Therefore, from (10.16–10.18), we can derive

δQ(X, δX, t,�t)

=
[∂U(X, t +�t)

∂X
− ∂U(X, t)

∂X

]
δX + ∂2U(X, t)

∂X2 �tδX + o(�t)δX + o(δX)

=
[∂2U(X, t)

∂t∂X
�t + o(�t)

]
δX + ∂2U(X, t)

∂X2
�tδX + o(�t)δX + o(δX)

=
[∂2U(X, t)

∂t∂X
+ ∂2U(X, t)

∂X2

]
�tδX + o(�t)δX + o(δX). (10.19)

On the other hand, for a sufficiently smooth function U(X, t), the variation of
cohort size δQ(X, δX, t,�t) in the period �t can be supposed to be a sufficiently
smooth function of δX and �t too. Now δQ(X, δX, t,�t) satisfies the following
features as a function of δX and�t:

(i) δQ(X, δX, t, 0) = 0 for any (X, t) and δX;
(ii) δQ(X, 0, t,�t) = 0 for any (X, t) and�t .

Since no passage of time causes no change of the cohort size, the feature (i) holds,
similarly as the arguments in Sect. 3.3. The feature (ii) comes from the definition of
δQ(X, δX, t,�t), since δU(X, 0, t) = 0 for any (X, t).

From the feature (i), we now note that, for�t → 0, the term o(δX) of (10.19)
must be zero, which was defined as the difference of terms o(δX) in (10.17)
and (10.18). Actually the term o(δX) of (10.18) contains �t which order we
did not take care of. As easily seen from (10.18), it must become equivalent
to the term o(δX) of (10.17) for�t → 0. The term o(δX) of (10.19) must be
zero as well.

Now let us introduce the following equation about δQ(X, δX, t,�t):

δQ(X, δX, t,�t) = M(X, δX, t)δU(X, δX, t)�t + o(δX,�t) (10.20)

with a sufficiently smooth functionM(X, δX, t) that means the momental variation
rate of cohort size at time t (refer to Sect. 3.4), and the residue term o(δX,�t) such
that

lim
δX→0

o(δX,�t)

δX
= 0; lim

�t→0

o(δX,�t)

�t
= 0.
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The right side of (10.20) must satisfy the above features (i) and (ii). Making use of
Taylor expansion of δU(X, δX, t) andM(X, δX, t), the Eq. (10.20) becomes

δQ(X, δX, t,�t) = M(X, δX, t)
[∂U(X, t)

∂X
δX + o(δX)

]
�t + o(δX,�t)

=
[
M(X, 0, t)+ ∂M(X, x, t)

∂x

∣∣∣∣
x=0

δX + o(δX)
]

×
[∂U(X, t)

∂X
δX + o(δX)

]
�t + o(δX,�t)

= M(X, 0, t)
∂U(X, t)

∂X
δX�t + o(δX)�t + o(δX,�t).

(10.21)

Consequently from the right sides of (10.19) and (10.21), we can find the
following equation:

−μ(X, t)∂U(X, t)
∂X

= ∂

∂X

{∂U(X, t)
∂X

}
+ ∂

∂t

{∂U(X, t)
∂X

}
, (10.22)

where μ(X, t) := −M(X, 0, t). This partial differential equation governs the
temporal change of age distribution given by U(X, t).

10.2.2 von Foerster Equation

As the frequency density distribution of life span f (t) in Sect. 4.3.5, we can define
the age density distribution u(a, t) as

U(X, t) =
∫ X

0
u(a, t) da, (10.23)

and we have

u(a, t) = ∂U(a, t)

∂a
. (10.24)

Since U(X, t) is monotonically increasing in terms of X as seen from the definition
given in the previous section, the Eq. (10.24) indicates that u(a, t) must be non-
negative for any a and t . Now, from (10.22), we can obtain the following partial
differential equation with respect to the age density distribution u(a, t):

−μ(a, t)u(a, t) = ∂

∂a
u(a, t)+ ∂

∂t
u(a, t). (10.25)
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This partial differential equation about the temporal change of age density
distribution for an age structured population is today called von Foerster equation
after the work by Heinz von Foerster (1911–2002) on the growth of microorganism
population in 1959 [19]. Actually, in 1926, Anderson G. McKendrick (1876–1943)
presented the same equation on the epidemic dynamics [12]. For this reason, the
Eq. (10.25) may be called McKendrick-von Foerster equation. In mathematical
biology, the Eq. (10.25) has been studied as models in a variety of contexts, for
example, on the age distribution of proliferating cell population (for example,
see [13, 17, 18]).

The derivation of (10.22) and (10.25) described in this section can be
applied for the more general physiologically structured population (Sect. 9.1).
Suppose that the physiological state of an individual x = x(t) at time t follows
the differential equation

dx(t)

dt
= g(x, t), (10.26)

where g(x, t) is a sufficiently smooth function of x and t . The partial
differential equation governing the temporal change of the state density
distribution u(x, t) can be derived as

−μ(x, t)u(x, t) = ∂

∂x

{
g(x, t)u(x, t)

}+ ∂

∂t
u(x, t) (10.27)

along the same way for (10.25). For readers interested in the more mathemat-
ical detail about the derivation, refer to [13].

For an age structured closed population, every cohort of any age range must
temporally decreases due to the death. In this case, δQ(X, δX, t,�t) defined by
(10.16) is necessarily negative, so that M(X, δX, t)δU(X, δX, t) in (10.20) and
M(X, 0, t) in (10.21) become negative. Then the function μ(x, t) in (10.25) is non-
negative, which means the momental (per capita natural) death rate for the individual
of age x at time t . For the open population with a migration process from/to the
population, the left side of (10.25) must include the term about it.
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We must remark that the value of u(a, t) does not mean the cohort size of age
a at time t . As argued in Sect. 10.2.1, the subpopulation size in a range of age
[X,X + δX) at time t is given by

δU(X, δX, t) = U(X + δX, t)− U(X, t) =
∫ X+δX

X

u(a, t) da.

It may seem that the cohort size of individuals with the same age X could be
given by the limit as δX → 0, whereas δU(X, δX, t) → 0 as δX → 0. From
this mathematical feature, some readers might think that it means that there is
no individual with age X. But it is not valid. As long as

∫ X+δX/2

X−δX/2
u(a, t) da > 0

for arbitrary small δX > 0, such individuals with age X exist. From this
argument, we can note that the positiveness of the value u(a, t) could be
regarded as indicating the existence of individuals of age a, while the value
of u(a, t) cannot mean the cohort size of individuals with the same age a.
Mathematically, we have δU(X, δX, t) = u(X, t)δX+ o(δX) from the above
equation. Also from this equation, we can find that u(a, t) cannot have the
meaning of population size by itself, since it must be meant not by u(X, t) but
by the product u(X, t)δX. We must not confuse the value of u(a, t) with the
cohort size of age a. Precisely the subpopulation size in an age structured
population with the continuously variable age can be defined by the age
distribution function U(X, t) as argued in Sect. 10.2.1.

10.2.3 Population Renewal Process

As mentioned in the previous section, the death process can be introduced by the
term −μ(a, t)u(a, t) in von Foerster equation (10.25). To complete the modeling
for the age structured population dynamics, we must give the modeling for the
recruitment or renewal process with the birth by the reproduction in the population.

From the definition of the distribution function U(X, t) in the previous section,
we can mathematical identify the subpopulation born in [t, t +�t] as

�U(t) = U(�t, t +�t)− U(0, t) = U(�t, t +�t),
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since U(0, t) ≡ 0 for any t . By Taylor expansion, we have

�U(t) =
[∂U(x, t)

∂x
+ ∂U(x, t)

∂t

]
(x,t)=(0,t )�t + o(�t). (10.28)

On the other hand, from the definition of partial derivative, we find that

∂U(x, t)

∂t

∣∣∣∣
(x,t)=(0,t )

= lim
h→0

U(0, t + h)− U(0, t)
h

= 0

for any t , because U(0, t) ≡ 0 for any t by the mathematical nature of U(x, t) as
mentioned in Sect. 10.2.1. From (10.28), we have

�U(t)

�t
= ∂U(x, t)

∂x

∣∣∣∣
(x,t)=(0,t )

+ o(�t)

�t
= u(0, t)+ o(�t)

�t
. (10.29)

with (10.24). This equation indicates that the value of u(0, t) means the momental
reproduction rate (velocity) at time t , lim

�t→0
�U(t)/�t (refer to Sect. 3.4).

Let us assume that the reproductive cohort of δU(X, δX, t) produces the
amount of newborns {B(X, δX, t)�t + o(�t)}δU(X, δX, t) in [t, t + �t), where
B(X, δX, t) means the momental per capita birth rate for the cohort at time t .
Besides, as a reasonable modeling assumption, we assume the range of reproductive
age as [amin, amax), and consider an arbitrary age classification such that

X0 = amin < X1 < X2 < · · · < Xk < · · · < Xn = amax

with δXi = Xi−Xi−1 (i = 1, 2, . . . , n). Then we can make the following equations
about�U(t):

�U(t) =
n∑
i=1

B(Xi, δXi, t)δU(Xi , δXi, t)�t + o(�t)

=
n∑
i=1

[
B(Xi, 0, t)+ ∂B(Xi, x, t)

∂x

∣∣∣∣
x=0

δXi + o(δXi)
]

×
[ ∂U(X, t)

∂X

∣∣∣∣
X=Xi

δXi + o(δXi)
]
�t + o(�t)

=
n∑
i=1

[
B(Xi, 0, t)

∂U(X, t)

∂X

∣∣∣∣
X=Xi

δXi + o(δXi)
]
�t + o(�t)

=
n∑
i=1

[
B(Xi, 0, t)u(Xi, t)δXi + o(δXi)

]
�t + o(�t). (10.30)
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From (10.29) and (10.30), we find the equation

u(0, t) =
n∑
i=1

[
b(Xi, t)u(Xi, t)δXi + o(δXi)

]
(10.31)

with b(X, t) := B(X, 0, t) that means the momental per capita reproduction rate for
the individual of ageX. Taking the limit as n→ ∞ with supi δXi → 0 for the right
side of (10.31), we have

u(0, t) =
∫ amax

amin

b(a, t)u(a, t) da (10.32)

by the definition of Riemann integral. This equation is mathematically a boundary
condition for the partial differential Eq. (10.25). Alternatively we can use the
following formula instead of (10.32):

u(0, t) =
∫ ∞

0
b(a, t)u(a, t) da (10.33)

with b(a, t) = 0 for any a such that a < amin or a > amax. Since b(a, t) ≥ 0 only
for a ∈ [amin, amax) by this definition, the reproductive age belongs to [amin, amax).
In the modeling in a mathematical sense, we may consider that amin = 0 without
taking account of amax, that is, mathematically with amax = ∞.

To completely set a dynamical system about the temporal change of age
distribution with von Foerster equation (10.25), we need the other bound-
ary condition in addition to (10.32) or (10.33). From the reasonability of
modeling for the age structured population dynamics, it is generally given
by lim

a→∞u(a, t) = 0 or u(a, t) = 0 for any a > asup at any time t

where the supremum age asup defines the physiological or ecological life span
(Sect. 1.5). The latter boundary condition explicitly introduces a finiteness of
the life span. As long as a continuous age density distribution, we can have
the condition that u(asup, t) = 0 for any t . In contrast, the former boundary
condition could be regarded as a mathematically approximated one, and must
satisfy the other condition for the reasonable modeling such that

U(∞, t) :=
∫ ∞

0
u(a, t) da < ∞.

This is because the integral gives the total population size which must be finite
for the reasonable modeling.
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Exercise 10.5 When b(a, t) − μ(a, t) = r with a constant r for any a about the
population dynamics by von Foerster equation (10.25), show that the total popula-
tion size U(∞, t) follows the Malthus growth with the malthusian coefficient r .

10.2.4 Density Distribution Function on Characteristic Curve

The von Foerster equation (10.25) with the boundary conditions (10.32) or (10.33),
and lim

a→∞u(a, t) = 0 determines a unique solution u(a, t) for each appropriately

given initial age density distribution u(a, 0). We can find the mathematical theory
related to von Foerster equation (10.25) or the more general Eq. (10.27) about
the physiologically structured population dynamics in [4, 13]. Especially, Laplace
transformation or the method of characteristic curve is typically applied for the
analysis on the partial differential Eq. (10.25) or (10.27). For example, in the book
of Haberman [7, 8], the partial differential equation appears as a mathematical
model for the temporal change of traffic volume, and its mathematical analysis is
instructively described in detail.

In this section, we shall describe the application of the method of characteristic
curve to obtain the mathematical solution of von Foerster equation (10.25). As seen
in the following description, the characteristic curve becomes a line for (10.25),
while it is a curve in general for (10.27) with (10.26) according to a general
physiologically structured population dynamics.

Mathematial Solution Along Characteristic Curve

Let us focus on a cohort of the same age, and denote the age of the member at time
t by a = a(t) = t − τ + ξ with given (τ, ξ), which indicates that the member
is characterized by the age a = a(τ) = ξ at a specific time t = τ . The temporal
change of the cohort must be along the line a = a(t) = t− τ + ξ on the (t, a)-plane
as shown in Fig. 10.2.

Tracking the temporal change of the cohort size along the line a = t − τ + ξ , the
corresponding age density distribution u(a, t) is given by u(a(t), t) = u(t−τ+ξ, t)
as a function of time t . The line a = t−τ+ξ is what is called the characteristic curve
for the partial differential Eq. (10.25) according to the condition that a(τ) = ξ .

While the characteristic curve is given by a line for von Foerster equation
(10.25), it is given by a curve in general for the physiologically structured
population dynamics with (10.26) and (10.27), determined by the function
g(x, t) governing the temporal change of physiological state for the member
of cohort.
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Fig. 10.2 Schematic description of the temporal change of the cohort size along the characteristic
curve (line) for von Foerster equation (10.25)

Since

du(a(t), t)

dt
= ∂u(a, t)

∂a
· da(t)
dt

+ ∂u(a, t)

∂t
= ∂u(a, t)

∂a
+ ∂u(a, t)

∂t

and, from (10.25),

∂

∂t
u(a, t) = −μ(a, t)u(a, t)− ∂

∂a
u(a, t),

we can derive the following equation with respect to the temporal change of the age
density u(t − τ + ξ, t) according to the cohort:

du(t − τ + ξ, t)
dt

= −μ(t − τ + ξ, t)u(t − τ + ξ, t). (10.34)

This equation is an ordinary differential equation in terms of t . Hence we can obtain
the following mathematical solution:

u(t − τ + ξ, t) = u(ξ, τ ) exp
[

−
∫ t

τ

μ(s − τ + ξ, s) ds
]
. (10.35)
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From this result of (10.35), we find that the temporal change of the cohort
size δU(X, δX, t) = ∫ X+δX

X u(a, t) da = u(X, t)δX + o(δX) of individuals
in a range of age [X,X+ δX) with a sufficiently small age span δX along the
characteristic curve (that is actually a sufficiently narrow linear stripe on the
(t, a)-plane, as schematically shown in Fig. 10.2) follows

δU(X, δX, t) = u(ξ, τ ) exp
[

−
∫ t

τ

μ(s − τ + ξ, s) ds
]
δX + o(δX),

supposing that X = ξ at a given time t = τ for the cohort.

Two Kinds of Cohort

As shown in Fig. 10.2, we must distinguish the following two kinds of cohort with
respect to the age structured population dynamics:

• Cohort existing from the initial time t = 0;
• Cohort emerges at time t = t1 > 0 (τ ≥ t1).

The latter kind of cohort does not exist for t < t1. For a closed population, the latter
kind of cohort is produced by the reproduction of individuals existing until time t1.
We must consider the characteristic curve for these two kinds of cohort respectively.

First, let us consider the cohort existing from the initial time t = 0. Supposing
that the member of such a cohort has the age ξ at time τ ≥ 0, the age of the member
a at t is given by a = a(t) = t − τ + ξ with a(0) = a0 = −τ + ξ ≥ 0. Thus, for
such a cohort, it must be satisfied that ξ ≥ τ . Inversely, if ξ ≥ τ for the member of
a cohort, the cohort must be one that exists at the initial time t = 0. Such a cohort
existing from t = 0, the mathematical solution (10.35) gives

u(ξ, τ ) = u(a0, 0) exp

[
−
∫ τ

0
μ(s + a0, s) ds

]
(10.36)

with a0 = −τ + ξ ≥ 0. This equation holds for any (ξ, τ ) such that ξ ≥ τ .
Next let us consider a cohort which emerges at time t = t1 > 0. The member’s

age is zero at t = t1. Since the age a of the member in the cohort at time t is given
by a = t − t1, the characteristic curve is given by a = t − t1 for t ≥ t1 about the
cohort. For such a cohort with age ξ at time τ , it must hold that ξ < τ , as shown
by the arguments already described above. Besides, if ξ < τ for the member of a
cohort, the cohort is one emerges at a certain time t = t1 > 0. Therefore, from the
mathematical solution (10.35), we can find the following equation for such a cohort:

u(ξ, τ ) = u(0, t1) exp

[
−
∫ τ

t1

μ(s − t1, s) ds
]

(10.37)



10.2 Continuous Time Model 349

with t1 = τ − ξ > 0. This equation holds for any (ξ, τ ) such that ξ < τ .
Consequently, from (10.36) and (10.37), we can have the following mathematical

solution of von Foerster equation (10.25):

u(a, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(0, t − a) exp

[
−
∫ a

0
μ(s, s + t − a) ds

]
if a < t;

u(a − t, 0) exp

[
−
∫ t

0
μ(a − t + s, s) ds

]
if a ≥ t .

(10.38)

10.2.5 Renewal Equation

In the mathematical solution (10.38), u(0, t − a) is determined by the boundary
condition (10.33), while u(a − t, 0) is done by the initial condition u(a, 0). Since
u(a, 0) is given for the population dynamics (10.25), u(a − t, 0) can be determined
a priori by it. In contrast, u(0, t) is determined a posteriori through (10.33) by the
population dynamics (10.25) itself, so that u(0, t − a) is not trivial.

Substituting (10.38) for (10.33), we can derive the following equation with
respect to u(0, t) of von Foerster equation (10.25) (Exercise 10.6):

u(0, t) = F(t)+
∫ t

0
K(t − τ, t)u(0, τ ) dτ, (10.39)

where

F(t) :=
∫ ∞

t

b(a, t) exp
[

−
∫ t

0
μ(a − t + s, s) ds

]
u(a − t, 0) da;

K(ζ, t) := b(ζ, t) exp
[

−
∫ ζ

0
μ(s, s + t − ζ ) ds

]
.

Functions F(t) is determined by the initial condition u(a, 0). The Eq. (10.39) is
what determines the unknown function u(0, t), called the renewal equation for
von Foerster equation (10.25). It may be called Lotka equation. The mathematical
solution (10.38) for von Foerster equation (10.25) gives the unique u(a, t) for any
(a, t), with the given initial condition u(a, 0) and u(0, t) determined by the renewal
Eq. (10.39).

Exercise 10.6 Derive the renewal Eq. (10.39).
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The renewal Eq. (10.39) is one of what is called the Volterra integral equation
of the second kind in mathematics. The uniqueness of its solution u(0, t) can
be proved by the method of Laplace transformation or the method of iteration.

Exercise 10.7 Let us consider the case where μ and b are positive constants
independent of age a and time t . Derive the age density distribution function u(a, t)
and the age distribution function U(a, t) when the initial condition u(a, 0) is given
as u(a, 0) = δ(a) with Dirac delta function δ(x) for x ∈ R, which is a generalized
function satisfying now that δ(0) = ∞, and

δ(x) = 0;
∫ x

0
δ(ζ ) dζ = 1;

∫ x

0
δ(ζ )f (ζ ) dζ = f (0) for any x > 0.

10.2.6 Stationary Age Distribution

Now we shall define the relative age distribution ϕ(a, t) as

ϕ(a, t) := u(a, t)∫∞
0 u(ζ, t) dζ

= u(a, t)

U(∞, t) . (10.40)

We have
∫∞

0 ϕ(a, t) da = 1, which indicates that ϕ(a, t) can be regarded as the
distribution given by the normalization of the density distribution function u(a, t).
Since

δU(X, δX, t)

U(∞, t) =
∫ X+δX
X u(a, t) da

U(∞, t) = u(X, t)δX + o(δX)

U(∞, t) = ϕ(X, t)δX + o(δX),

ϕ(a, t)�a + o(�a) means the frequency of the subpopulation in the age range
[a, a + �a] within the population. Hence the function ϕ(a, t) gives the frequency
density distribution with respect to the age in the population.

Let us assume here for von Foerster equation (10.25) thatμ and b are independent
of time t , given as functions of age a: μ = μ(a); b = b(a). Besides, we suppose
that the age density distribution function u(a, t) can be expressed as the product of
A(a) of age a and T (t) of time t: u(a, t) = A(a)T (t). Then we have

U(∞, t) =
∫ ∞

0
u(ζ, t) dζ = T (t)

∫ ∞

0
A(ζ ) dζ,
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so that we find

ϕ(a, t) = A(a)∫∞
0 A(ζ ) dζ

from (10.40). Thus, in this case, the relative age distribution is independent of time
t . For this reason, the solution of von Foerster equation (10.25) with the renewal
Eq. (10.39) which has the form of u(a, t) = A(a)T (t) is called the solution of
stationary age distribution.

Substituting u(a, t) = A(a)T (t) for von Foerster equation (10.25), we can derive
the equation

−μ(a)− 1

A(a)

dA(a)

da
= 1

T (t)

dT (t)

dt
.

Since this equation must hold for any a and t , there must exist a constant λ such that

⎧⎪⎪⎨
⎪⎪⎩

−μ(a)− 1

A(a)

dA(a)

da
= λ;

1

T (t)

dT (t)

dt
= λ.

Each of these ordinary differential equations can be solved to give the solutions

⎧⎪⎨
⎪⎩
A(a) = A(â) exp

[
− λ(a − â)−

∫ a

â

μ(ζ ) dζ
]
;

T (t) = T (0) eλt ,

where â ≥ 0 is an appropriately chosen age such that u(â, 0) = A(â)T (0) > 0.
Then we obtain the age density distribution

u(a, t) = u(â, 0) exp
[
λ(t − a + â)−

∫ a

â

μ(ζ ) dζ
]
. (10.41)

If T (0) = 0, the initial age density distribution satisfies that u(a, 0) =
A(a)T (0) ≡ 0 for any a. Then we have U(∞, 0) = 0, which means that the
population size is zero at t = 0. In such a case, the formula (10.41) becomes
nonsense. Especially for a closed population, we have U(a, t) = 0 for any a
and t in such a case. Clearly this is a nonsense case. Thus we need to consider
the case of U(∞, 0) > 0 for a closed population, so that we must assume
that T (0) > 0. For an open population, it may hold that U(∞, t1) > 0 for a

(continued)
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certain time t = t1 > 0 even if T (0) = 0 and U(∞, 0) = 0. In such a case,
we can choose the moment t = t1 as the initial time, that is, replace t by t− t1.
Without loss of mathematical generality, we can assume that T (0) > 0.

Consequently, it is necessary for the reasonable modeling to assume that
U(∞, 0) > 0. So there must exist an age â ≥ 0 such that u(â, 0) > 0. Only
when u(0, 0) > 0, we can make â = 0.

Substituting (10.41) for the renewal Eq. (10.39) results in the following equation:

Q(â) eλt = F(t)+Q(â)
∫ t

0
K(t − τ ) eλτ dτ,

where

Q(â) := u(â, 0) exp
[
λâ −

∫ 0

â

μ(ζ ) dζ
]
;

F(t) := Q(â) eλt
∫ ∞

t

b(a) exp
[

− λa −
∫ a

0
m(s) ds

]
da;

K(ζ ) := b(ζ ) exp
[

−
∫ ζ

0
μ(s) ds

]
.

We can derive the following equation to determine λ, independently of â:

1 =
∫ ∞

t

b(a) exp
[

− λa −
∫ a

0
μ(s) ds

]
da

+ e−λt
∫ t

0
b(t − τ ) exp

[
λτ −

∫ t−τ

0
μ(s) ds

]
dτ

=
∫ ∞

0
b(a) exp

[
− λa −

∫ a

0
μ(s) ds

]
da =:  (λ). (10.42)

It can be shown that the function  (λ) of λ is continuous and monotonically
decreasing in terms of λ, satisfying that

lim
λ→−∞ (λ) = ∞; lim

λ→∞ (λ) = 0.

Therefore, the Eq. (10.42),  (λ) = 1, has a unique real root. With the value
of λ given by the root, the formula (10.41) gives a solution of von Foerster
equation (10.25) with the renewal Eq. (10.39), that is, the solution of stationary
age distribution.
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Case of Constant Death and Growth Rates

Let us consider here a closed population with constant death rate μ and birth rate b.
The renewal Eq. (10.39) for von Foerster equation (10.25) is given by

F(t) = b

∫ ∞

t

e−μtu(a − t, 0) da = be−μt
∫ ∞

0
u(ζ, 0) dζ = be−μtU(∞, 0)

andK(ζ, t) = be−μζ , and becomes

u(0, t) = be−μt[U(∞, 0)+
∫ t

0
eμτu(0, τ ) dτ

]
. (10.43)

Supposing u(0, t) = φ(t) e−μt , we find the following equation from (10.43):

φ(t) = b
[
U(∞, 0)+

∫ t

0
φ(τ) dτ

]
, (10.44)

and get φ(0) = bU(∞, 0). Next, differentiating both sides of (10.44) in terms of t ,
we can derive

dφ(t)

dt
= bφ(t).

Thus, with the initial condition φ(0) = bU(∞, 0), we obtain φ(t) = bU(∞, 0) ebt .
The renewal equation results in

u(0, t) = bU(∞, 0) e(b−μ)t .

Then the age density distribution (10.38) becomes

u(a, t) =
{
u(0, t − a) e−μa = bU(∞, 0) e(b−μ)t e−ba if a < t;
u(a − t, 0) e−μt if a ≥ t .

(10.45)

From this result on the age density distribution function u(a, t), we can derive the
age distribution function U(a, t) as follows:

U(a, t) =
∫ a

0
u(ζ, t) dζ

=

⎧⎪⎪⎨
⎪⎪⎩

∫ a

0
bU(∞, 0) e(b−μ)t e−bζ dζ if a < t;∫ t

0
bU(∞, 0) e(b−μ)t e−bζ dζ +

∫ a

t

u(ζ − t, 0) e−μt dζ if a ≥ t



354 10 Modeling for Age Structure

=
{
U(∞, 0) (1 − e−ba) e(b−μ)t if a < t;
e(b−μ)t

[
U(∞, 0) (1 − e−bt )+ U(a − t, 0) e−bt] if a ≥ t .

Hence we can find that U(∞, t) = U(∞, 0) e(b−μ)t , which indicates that the total
population size follows the Malthus growth with the malthusian coefficient b − μ.

Exercise 10.8 When μ and b are constants independent of age a and time t , derive
the ordinary differential equation with respect to U(∞, t) by integrating both sides
of von Foerster equation (10.25) in terms of a over [0,∞). Then solve it to get the
solution of U(∞, t).

From the obtained U(∞, t) and the age density distribution (10.45), the relative
age distribution (10.40) becomes

ϕ(a, t) =
⎧⎨
⎩

be−ba if a < t;
u(a − t, 0)
U(∞, 0) e−bt = ϕ(a − t, 0) e−bt if a ≥ t . (10.46)

This result indicates that the relative age distribution asymptotically approaches a
stationary age distribution as t → ∞:

ϕ(a, t) → be−ba. (10.47)

Since this convergence is independent of the initial age density distribution u(a, 0),
the above stationary age distribution can be called the stable age (density) distribu-
tion. As a consequence from (10.47), the stable age distribution is an exponential
distribution for the closed population with constant death rate μ and birth rate b.

We remark from (10.46) that the relative density ϕ(a, t) for any age a
BECOMES be−ba independent of time t after time t = a. It does NOT
asymptotically approach to be−ba . This feature indicates that the newborns
produced by the population following the age density distribution u(a, t) has
the relative age distribution independent of time t .

Density Effect on Death and Growth Rates

In this section, let us consider the general and simplest case of density-dependent
birth and death rates when they depends on the total population density given
by U(∞, t): b = b(U(∞, t)); μ = μ(U(∞, t)). This is the case where the
reproduction and death are independent of age, while they are influenced by the
population density within the population, that is, determined under the density
effect.



10.2 Continuous Time Model 355

Integrating both sides of von Foerster equation (10.25) in terms of a over [0,∞),
we can get

−μ(U(∞, t)) U(∞, t) = −u(0, t)+ dU(∞, t)
dt

(10.48)

with the boundary condition that lim
a→∞u(a, t) = 0, as done in Exercise 10.5 of

Sect. 10.2.3. Besides from (10.33), we have

u(0, t) = b(U(∞, t))
∫ ∞

0
u(a, t) da = b(U(∞, t)) U(∞, t). (10.49)

Therefore the Eq. (10.48) leads to

dU(∞, t)
dt

= {b(U(∞, t))− μ(U(∞, t))}U(∞, t). (10.50)

From (10.40), (10.49) and the mathematical solution (10.38), we now have

ϕ(a, t) =
⎧⎨
⎩
b(U(∞, t − a)) U(∞, t − a)

U(∞, t)
M(t)

M(t − a) if a < t;
ϕ(a − t, 0)M(t) if a ≥ t,

(10.51)

where

M(t) := exp

[
−
∫ t

0
μ(U(∞, s)) ds

]
.

Let us consider here a closed population such that the momental per capita
reproduction rate b is a constant independent of age and time while the per capita
death rate μ is linearly increasing in terms of the population density U(∞, t):
b(U(∞, t)) = b0; μ(U(∞, t)) = μ0 + βU(∞, t) with positive constants b0, μ0,
and β. In this case, the population dynamics about the total population size (10.50) is
equivalent to the logistic equation (5.10) with the intrinsic growth rate r0 = b0 −μ0
in Sect. 5.3.

From the Eq. (10.50), we now have

d lnU(∞, t)
dt

= b0 − μ0 − βU(∞, t).

Thus, integrating both sides of this equation in terms of t over [0, t), we can derive

β

∫ t

0
U(∞, s) ds = (b0 − μ0)t − ln

U(∞, t)
U(∞, 0) ,
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so that we find that

M(t) := U(∞, t)
U(∞, 0) e−b0t .

Therefore, from (10.51), we now obtain

ϕ(a, t) =
⎧⎨
⎩
b0 e−b0a if a < t;
ϕ(a − t, 0) U(∞, t)

U(∞, 0) e−b0t if a ≥ t . (10.52)

Since U(∞, t) is the solution of logistic equation, we know that U(∞, t) →
(b0 − μ0)/β if b0 > μ0, and U(∞, t) → 0 if b0 < μ0 as t → ∞ (Sect. 5.3).
However, independently of which the population persists or goes extinct, this result
of the relative age distribution (10.52) shows that it asymptotically approaches
the stable age distribution as t → ∞, given by b0 e−b0a that is an exponential
distribution.

This result does not mean that the age distribution of a population growing
with a logistic equation necessarily approaches an exponential distribution
as the stable age distribution. As seen in the above arguments on (10.51), it
depends on the detail of density-dependence for the birth and death rates, b
and μ.

10.3 Age Distribution from Death Process

In this section, we shall see the age structured population dynamics derived from
the death process described in Sect. 4.3 (for example, refer also to [6]). We consider
a closed population again.

As in Sect. 10.2.1, let us consider a cohort of individuals with a range of age
[X,X + δX) at time t , which size is given by δU(X, δX, t) = U(X + δX, t) −
U(X, t). For a given time t = t0 of the birth for an individual of the cohort, the
age at time t > t0 can be given by t − t0, so that the time when an individual
of the cohort has age X can be given by X + t0. Hence we have δU(X, δX, t) =
δU(X, δX,X + t0). Therefore the cohort size can be denoted by a function of age
X, N(X) := δU(X, δX,X + t0), with a given age span δX and birth time t0 which
characterize the cohort. We hereafter call the age X the representative age for the
cohort.
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When the representative age changes from a to a + �a with sufficiently small
�a, the decrease of the cohort size �N(a) is given by

�N(a) = N(a)−N(a +�a)

= N(a)−
{
N(a)+ dN(a)

da
�a + o(�a)

}
= −dN(a)

da
�a − o(�a),

(10.53)

making use of Taylor expansion. Remark that the decrease �N(a) occurs in the
time interval [t0 + a, t0 + a +�a). Now let us assume that

�N(a) = μ(a)�a · N(a)+ o(�t), (10.54)

where the per capita death rate during [a, a + �a) for an individual which has
age a at time t = a + t0 is given by μ(a)�a + o(�a). The death rate is now
assumed to depend only on the age. The momental per capita death rateμ(a)may be
regarded as corresponding to what is called hazard function in the survival analysis
of demography.

From (10.53) and (10.54), we can derive the following ordinary differential
equation with the limit as �a → 0:

dN(a)

da
= −μ(a)N(a). (10.55)

Then we can easily get

N(a′) = N(a) e− ∫ a′a μ(z) dz, (10.56)

which gives the cohort size after the representative age changes from a to a′ (> a).
The Eq. (10.55) can be regarded as equivalent to the death process with a time-

dependent death rate for an extinct population described in Sect. 4.3.5. Therefore,
from the arguments in Exercise 4.5 of the section, we can find the following
frequency density distribution fa(T ) with respect to the rest of life span for an
individual of age a:

fa(T ) = μ(a + T ) e− ∫ a+Ta μ(z) dz, (10.57)

which subsequently gives the cumulative frequency distribution

Fa(T ) = 1 − e− ∫ a+Ta μ(z) dz.
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Fa(T ) means the probability that an individual of age a has the rest of life span
shorter than T . Thus the probability Sa(T ) that an individual with age a has the rest
of life span longer than T is given by

Sa(T ) = 1 − Fa(T ) = e− ∫ a+Ta δ(z) dz. (10.58)

In the survival analysis of demography, the distribution Fa(T ) and the probability
Sa(T ) may be called survival distribution and survival function respectively.

Gurney & Nisbet [6] assumed the age-dependent per capita death rate as

μ(a) = p + 1

a0

( a
a0

)p
, (10.59)

where a0 is a positive constant, and parameter p characterizes the age-dependence.
As p is larger, the death rate gets large more steeply as the individual becomes older.
With the per capita death rate (10.59), Sa(T ) given by (10.58) becomes

Sa(T ) = exp

[( a
a0

)p+1 −
( a
a0

+ T

a0

)p+1
]
. (10.60)

Especially for the newborn, the probability S0(T ) that the life span is longer than T
is given by

S0(T ) = e−(T /a0)
p+1
. (10.61)

The probability distribution given by (10.60) or (10.61) is what is called
Weibull distribution. It appears in the survival analysis for the life span when
the death rate gets larger as the individual becomes older. It is sometimes
used also for some arguments in medicine, for example, on the duration from
the beginning of treatment for a disease to the end with the complete cure
or patient’s death. It can be applied for the arguments on the service life or
durable period of a manufacturing machine or another material which has an
error rate increasing as it is kept used.

Until now we have argued the temporal change of the size about a cohort which
contains individuals born in a given time interval [t0, t0 + δX). In contrast, we shall
consider next the temporal change of the subpopulation size in a fixed age range
[a, a+δa). Let us denote the subpopulation size at time t by n(a, t) = δU(a, δa, t).

From (10.56), we find that the subpopulation size n(a, t + �t) at time t + �t

satisfies

n(a, t +�t) = n(a −�t, t) e− ∫ aa−�t μ(z) dz. (10.62)
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The individual of age a at time t + �t had age a − �t at time t . Applying Taylor
expansion around (a, t) for the right side of (10.62), we have

n(a, t +�t) =
{
n(a, t)− ∂n(a, t)

∂a
�t + o(�t)

}{
1 − μ(a)�t + o(�t)

}

= n(a, t)− ∂n(t, a)

∂a
�t − n(a, t)μ(a)�t + o(�t). (10.63)

Hence we can obtain

n(a, t +�t)− n(a, t)
�t

= −∂n(a, t)
∂a

− μ(a)n(a, t)+ o(�t)

�t
.

Taking the limit as �t → 0, we finally find von Foerster equation:

−μ(a)n(a, t) = ∂n(a, t)

∂a
+ ∂n(a, t)

∂t
.

10.4 Leslie Matrix and von Foerster Equation

In this section, we shall consider the mathematical relation between the discrete
time model (10.1) with the Leslie matrix (10.2), that is, the Leslie matrix model in
Sect. 10.1.1, and the continuous time model with von Foerster equation (10.25) (for
example, refer to [4]).

10.4.1 From von Foerster Equation to Leslie Matrix Model

For the age-structured population with continuous age, we shall now divide the pop-
ulation into a finite and sufficiently large number of age classes as in Sect. 10.2.3:

X0 = 0 < X1 < X2 < · · · < Xk < · · · < Xm = asup,

where the terminal age asup satisfies that u(a, t) = 0 for any a > asup at any time
t , as already mentioned about the boundary condition for von Foerster equation
(10.25) in the last part of Sect. 10.2.3. We may include the case where asup = ∞
in the following argument, where the age class of range [Xm−1,Xm) contains all
individuals which has age greater than or equal to Xm−1. For this reason, we now
assume that the age range [Xi−1,Xi) has the same span Xi − Xi−1 = δX for
i = 1, 2, . . . ,m − 1, while the age range [Xm−1,Xm) has the same span δX when
asup < ∞, and is infinity when asup = ∞. Especially when asup < ∞, we have
δX = asup/m.
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The population size of the age class about age range [Xi−1,Xi) (i = 1, 2, . . . ,m)
is now given by

ni(t) :=
∫ Xi

Xi−1

u(a, t) da =
∫ Xi

Xi−δX
u(a, t) da = u(Xi, t)δX + o(δX). (10.64)

Integrating both sides of von Foerster equation (10.25) over [Xi−1,Xi), we can get

−
∫ Xi

Xi−1

μ(a, t)u(a, t) da =
∫ Xi

Xi−1

∂u(a, t)

∂a
da +

∫ Xi

Xi−1

∂u(a, t)

∂t
da

=
∫ Xi

Xi−1

∂u(a, t)

∂a
da + d

dt

∫ Xi

Xi−1

u(a, t) da

= u(Xi, t)− u(Xi−1, t)+ dni(t)

dt
,

where the left side can be led to

−
∫ Xi

Xi−1

μ(a, t)u(a, t) da = −
∫ Xi−1+δX

Xi−1

μ(a, t)u(a, t) da

= −μ(Xi−1, t)u(Xi−1, t)δX + o(δX)

= −μ(Xi−1, t)ni−1(t)+ o(δX),

for which we applied (10.64). Hence we have

dni(t)

dt
= u(Xi−1, t) − u(Xi, t)− μ(Xi−1, t)ni−1(t)+ o(δX). (10.65)

Since

ni(t + δX) = ni(t)+ dni(t)

dt
δX + o(δX),

we can derive the following equation from (10.64) and (10.65):

ni(t + δX) = {1 − μ(Xi−1, t)δX
}
ni−1(t)+ o(δX). (10.66)

We now need to give the equation for the temporal change of n0(t) = u(0, t)δX+
o(δX) defined by (10.64). From the Eq. (10.32) and (10.64), we now have

u(0, t) =
∫ asup

0
b(a, t)u(a, t) da =

m∑
i=1

∫ Xi

Xi−1

b(a, t)u(a, t) da

=
m∑
i=1

b(Xi, t)u(Xi , t)δX + o(δX) =
m∑
i=1

b(Xi, t)ni(t)+ o(δX).
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Multiplying both sides by δX, we get

n0(t) =
m∑
i=1

b(Xi, t)δX ni(t)+ o(δX). (10.67)

Consequently from (10.66) and (10.67), we can obtain the following equation:

n(t + δX) = A(t)n(t)+ o(δX), (10.68)

where

n(t) ≡

⎛
⎜⎜⎜⎝
n0(t)

n1(t)
...

nm(t)

⎞
⎟⎟⎟⎠ ; A(t) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b1(t) b2(t) b3(t) b4(t) · · · bm(t)

a0(t) 0 0 0 0 · · · 0
0 a1(t) 0 0 0 · · · 0
...

. . .
. . .

. . .
...

...

0 · · · 0 aj (t) 0 · · · 0
...

...
. . .

. . .
. . .

...

0 0 0 · · · 0 am−1(t) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with bi(t) = b(Xi, t)δX (i = 1, 2, . . . ,m) and aj (t) = 1 − μ(Xj , t)δX (j =
0, 1, . . . ,m− 1). Therefore, denoting ni(t) = ni,k with t = kδX (k = 0, 1, 2, . . . ),
the discrete time population dynamics (10.68) with time step size δX is clearly
approximated by a Leslie matrix model described in Sect. 10.1.1.

10.4.2 From Leslie Matrix Model to von Foerster Equation

As we did in Chap. 3, we shall now introduce the age span for the age class to the
Leslie matrix model as h := xi − xi−1 (i = 1, 2, . . . ,m), where x0 = 0 is the
moment of birth, xi−1 the minimal age in the age class i, xi the maximal age in the
age class i, and xm the supreme age in the oldest age class for the Leslie matrix
model. The subpopulation size ni,k in the Leslie matrix model corresponds to the
cohort size of the age class which consists of the individuals with the age in range
[xi−1, xi) = [(i − 1)h, ih) at time t = kh. In a sense, this idea could reintroduce
the age and the time step into the modeling as continuous values.

Supposing a closed population for the Leslie matrix model with (10.2), the above
modeling leads to the following equation derived from (10.1):

v(t + h, α + h) = ah(t, α)v(t, α), (10.69)

where v(t, α) = nj,k , v(t+h, α+h) = nj+1,k+1, and ah(t, α) = aj with α = xj =
jh and t = kh (j = 1, 2, . . . ,m− 1) according to the correspondence to the Leslie
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matrix model (10.1) with (10.2). Thus v(t, α) denotes the subpopulation size with
age in range [α − h, α) = [(j − 1)h, jh) at time t = kh. Especially ah(t, α) means
the survival rate in the time interval [t, t + h) = [kh, (k + 1)h), which generally
depends on time t and age α, further satisfying that 0 ≤ ah ≤ 1. It must depend
on the age span h too. As a reasonable assumption, ah is monotonically decreasing
in terms of h, since the longer time step or the larger age span induces the higher
likelihood to die before the transition to the next age class. Moreover, as introduced
about the time-step-zero limit in Sect. 3.3, it must be satisfied that

lim
h→0

ah(t, α) = 1 (10.70)

for any t and α, since the death cannot occur as the time step is zero.
Now let us consider the age distribution function U(α, t) introduced in

Sect. 10.2.1. From its definition, we have the equation

v(t, α) = U(α, t)− U(α − h, t). (10.71)

Hence we can derive the following equation:

v(t + h, α + h)− v(t, α)
h2

= {U(α + h, t + h)− U(α, t + h)} − {U(α, t)− U(α − h, t)}
h2

= 1

h

[U(α + h, t + h)− U(α, t + h)
h

− U(α + h, t)− U(α, t)
h

]

+ 1

h

[U(α + h, t)− U(α, t)
h

− U((α − h)+ h, t) − U(α − h, t)
h

]
.

(10.72)

On the other hand, from (10.69) and (10.71), we have

v(t + h, α + h)− v(t, α)
h2 = ah(t, α)− 1

h

U(α, t)− U(α − h, t)
h

. (10.73)

From the condition (10.70), we assume that there exists a function μ(α, t) such that

lim
h→0

1 − ah(t, α)
h

= μ(α, t). (10.74)

At this limit, we note that 1 − ah(t, α) means the death rate in the time interval
[t, t + h), so that the limit in (10.74) actually does the momental death rate at time
t for age α.
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Lastly by the time-step-zero limit as h→ 0 for (10.72) with (10.73) and (10.74),
we can derive the following partial differential equation:

−μ(α, t) ∂U(α, t)
∂α

= ∂

∂t

{∂U(α, t)
∂α

}
+ ∂2U(α, t)

∂α2 . (10.75)

This is the same as (10.22) derived in Sect. 10.2.1, and indicates that the limiting
dynamics follows von Foerster equation (10.25).

We must remark that the Leslie matrix model is defined for a finite number
of age classes, which implies a certain supreme age xm mentioned at the
beginning of this part. Hence, in the above arguments, the whole population
is classified into xm/h age classes with the age span h in a conceptual sense.
When xm/h becomes fractional, we may tune xm as the smallest number not
below the actual terminal age after which no individual can survive. With this
trick, the limit as h → 0 makes the number of age classes infinity, while the
subpopulation size of each age class becomes zero at the same time.

Answer to Exercise

Exercise 10.1 (p. 330)

Since the stable age distribution n∗ satisfies (10.5), we have nk+1 = λn∗ if nk = n∗.
Hence we find that

f k+1 = 1∑m
i=1 ni,k+1

nk+1 = 1∑m
i=1 λni,k

λnk

= 1∑m
i=1 ni,k

nk = 1∑m
i=1 n

∗
i,k

n∗ = f ∗.

Therefore, if f k = f ∗, then f k+1 = f ∗. That is, the age frequency distribution for
the stable age distribution n∗ is always given by f ∗ independently of the generation.

Exercise 10.2 (p. 332)

First we must considerm parallel equations of n∗
1, n

∗
2, . . . , n

∗
m which can be derived

from (10.5) with a constant matrix A of (10.2) and λ = λ+ > 0 that is the principal
eigenvalue for A. From the parallel equations, we can derive the expression with
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n∗
m about each of n∗

1, n
∗
2, . . . , n

∗
m−1, though we here leave the calculation itself to

the readers. In the calculation, we need to make use of the characteristic Eq. (10.7)
in order to get the formula (10.8) in which bj (j = 1, 2, . . . ,m) does not appear
explicitly. Dependence on the parameter bj is implicitly included in λ+ and n∗

m of
(10.8).

Exercise 10.3 (p. 336)

When a constant transition matrix A has m distinct eigenvalues, the right eigenvec-
tors corresponding to them are linearly independent of each other. So are the left
eigenvectors. Hence the m right eigenvectors make the base for the m dimensional
linear space, and so do the m left eigenvectors.

Let us introduce the complex conjugate and transposed vector v∗
j of the right

eigenvector for eigenvalue λj . Multiplying both sides of Aui = λiui about the right
eigenvalue ui for eigenvalue λi by v∗

j from the left makes the equation v∗
jAui =

λiv
∗
jui . In the same way, we have v∗

jAui = λjv
∗
jui which is derived by multiplying

v∗
jA = λjv

∗
j about the left eigenvector vj for λj by the right eigenvalue ui for λi .

Remark that vectors ui and vj are defined here as column vectors.
Since the left sides of them are the same as each other, we find the equation

λiv
∗
jui = λjv

∗
jui , so that v∗

jui = 0 for i 	= j because of λi 	= λj for i 	= j . This
result means that the inner product of any pair of the left and right eigenvalues for
different eigenvalues must be zero, that is, they are orthogonal.

On the other hand, since the m right eigenvectors {vj } make the base for the
m dimensional linear space, the m dimensional vector ui must be expressed by a
linear combination of m vectors {vj } like ui = ∑m

j=1 cjvj with real constants cj
(j = 1, 2, . . . ,m). From the orthogonality of vi and vj for i 	= j , we have

v∗
i ui =

m∑
j=1

cjv
∗
i vj = civ

∗
i vi = ci‖vi‖2. (10.76)

Since the eigenvector cannot be the zero vector, that is, ‖vi‖ > 0, v∗
i ui can become

zero only when ci = 0.
Now let us suppose that ci = 0. Then we have ui = ∑m

j=1,j 	=i cjvj . Since ui
and v� for i 	= � are orthogonal as shown in the above, and so are ui and v� for
i 	= �, we have

v∗
�ui =

m∑
j=1,j 	=i

cjv
∗
�vj = c�v

∗
�v� = c�‖v�‖2 = 0.

Thus we have c� = 0. This result holds for any � 	= i, so that cj = 0 for any j 	= i.
This is contradictory because it means that ui is the zero vector. Therefore, it must
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hold that ci 	= 0 for the above linear combination of {vj } for ui . Consequently from
(10.76), we have found that v∗

i ui 	= 0 for any i.

Exercise 10.4 (p. 338)

Making use of the definition of the sensitivity by (10.15), we find that

m∑
k,�=1

ei,k� =
m∑

k,�=1

ak�

λi

∂λi

∂ak�
=

m∑
k,�=1

ak�

λi

vi,kui,�

v∗
i ui

=
∑m
k,�=1 ak�vi,kui,�

λiv
∗
i ui

= v∗
i Aui

λiv
∗
i ui
.

Since v∗
i Aui = (v∗

i A)ui = (λiv
∗
i )ui = λiv

∗
i ui , the right side of the above equality

becomes unity.

Exercise 10.5 (p. 346)

By integrating the Eq. (10.25) in terms of age a over [0,∞), we have

−
∫ ∞

0
μ(a, t)u(a, t) da =

∫ ∞

0

∂

∂a
u(a, t) da +

∫ ∞

0

∂

∂t
u(a, t) da

=
[
u(a, t)

]∞
0

+ d

dt

∫ ∞

0
u(a, t) da = −u(0, t)+ d

dt
U(∞, t),

where we used the boundary condition that lim
a→∞u(a, t) = 0. Making use of (10.33),

we can derive

d

dt
U(∞, t) = u(0, t)−

∫ ∞

0
μ(a, t)u(a, t) da

=
∫ ∞

0
b(a, t)u(a, t) da −

∫ ∞

0
μ(a, t)u(a, t) da

=
∫ ∞

0

{
b(a, t)− μ(a, t)}u(a, t) da = r

∫ ∞

0
u(a, t) da = rU(∞, t).

As seen from this result, if b(a, t) − μ(a, t) = r − βU(∞, t) with positive
constants r and β for any a and t , the total population size U(∞, t) follows
the logistic equation. For example, this could be regarded as the case for a
closed population such that the momental per capita reproduction rate b is

(continued)
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a constant independent of age and time while the per capita death rate μ
is linearly increasing in terms of the population density U(∞, t). We shall
revisit such a modeling in the last part of Sect. 10.2.6.

Exercise 10.6 (p. 349)

Substituting (10.38) for (10.33), we can derive

u(0, t) =
∫ t

0
b(a, t) exp

[
−
∫ a

0
μ(s, s + t − a) ds

]
u(0, t − a) da

+
∫ ∞

t

b(a, t) exp

[
−
∫ t

0
μ(a − t + s, s) ds

]
u(a − t, 0) da

=
∫ t

0
b(t − τ, t) exp

[
−
∫ t−τ

0
μ(s, s + t − (t − τ )) ds

]
u(0, τ ) dτ

+
∫ ∞

t

b(a, t) exp

[
−
∫ t

0
μ(a − t + s, s) ds

]
u(a − t, 0) da,

where we used the variable transformation τ = t − a for the former integral. This
equation becomes (10.39).

Exercise 10.7 (p. 350)

Since μ and b are positive constants independent of age a and time t , we have

F(t) = b

∫ ∞

t

e−μtu(a − t, 0) da

= be−μt
∫ ∞

t

δ(a − t) da = be−μt
∫ ∞

0
δ(ζ ) dζ = be−μt

and K(ζ, t) = be−μζ about the renewal Eq. (10.39) for von Foerster equation
(10.25), making use of the initial condition given by u(a, 0) = δ(x) with Dirac
delta function δ(x). Then the renewal Eq. (10.39) gives

u(0, t) = be−μt + b
∫ t

0
e−μ(t−τ )u(0, τ ) dτ = be−μt[1 +

∫ t

0
eμτu(0, τ ) dτ

]
.
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Putting u(0, t) = φ(t) e−μt in this equation, we can get the following equation with
respect to φ(t):

φ(t) = b
[
1 +

∫ t

0
φ(τ) dτ

]
.

We find that φ(0) = b. Differentiating both sides of this equation in terms of t , we
can derive the following ordinary differential equation with respect to φ(t):

dφ(t)

dt
= bφ(t).

We can easily solve this equation with the initial condition φ(0) = b, and find
φ(t) = bebt . Therefore we finally obtain

u(0, t) = be(b−μ)t .

Making use of this result about u(0, t), the mathematical solution (10.38)
becomes

u(a, t) =
{
u(0, t − a) e−μa = be(b−μ)t e−ba if a < t;
u(a − t, 0) e−μt = δ(a − t) e−μt if a ≥ t . (10.77)

Subsequently we can derive

U(a, t) =
∫ a

0
u(ζ, t) dζ =

⎧⎪⎪⎨
⎪⎪⎩

∫ a

0
be(b−μ)t e−bζ dζ if a < t;∫ t

0
be(b−μ)t e−bζ dζ +

∫ a

t

δ(ζ − t) e−μt dζ if a ≥ t,

that is,

U(a, t) =
{
(1 − e−ba) e(b−μ)t if a < t;
e(b−μ)t if a ≥ t.

For this model, the total population size at time t is mathematically given by
U(∞, t) := lim

a→∞U(a, t) = e(b−μ)t . We find that it exponentially grows with the

malthusian coefficient b − μ, that is, it shows a Malthus growth.
From the initial condition u(a, 0) = δ(a), we have U(∞, 0) = 1 which could

be translated as the situation such that there is only one newborn in the population
at time t = 0. Hence, as long as the initial individual is alive, the possibly oldest
individual must be the initial individual which has age t . There is no individual
beyond age t for this reason, so that u(a, t) = 0 for any a > t . Actually from the
mathematical solution of u(a, t) given by (10.77), we find that u(a, t) = 0 for any
a > t because of the nature of Dirac delta function. In the above arguments, we
mathematically defined the total population size by U(∞, t), though it can be given
instead by U(t, t) from the meaning of modeling.
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We must remark that the above results contain further mathematically special
features due to the assumption for the initial condition with Dirac delta function.
From the mathematical solution of u(a, t) given by (10.77), we find also that
u(a, a) = δ(0) = ∞ for any time t = a. From the above arguments, this could be
regarded as corresponding to the oldest individual in the population. Whereas it
may seem that there could be always an alive oldest individual in the population,
this is not valid as the appropriate translation about the mathematical feature, as
already mentioned at the end of Sect. 10.2.2. From the above result of U(a, t), we
can find that the population goes extinct if b < μ even though mathematically
u(a, a) = δ(0) = ∞ for any time t = a.

Exercise 10.8 (p. 354)

When μ and b are constants independent of age a and time t , we can integrate both
sides of von Foerster equation (10.25) over [0,∞) as follows:

−μU(∞, t) =
∫ ∞

0

∂u(a, t)

∂a
da +

∫ ∞

0

∂u(a, t)

∂t
da

=
∫ ∞

0

∂u(a, t)

∂a
da + d

dt

∫ ∞

0
u(a, t) da

= lim
ζ→∞

[
u(a, t)

]ζ
0

+ dU(∞, t)
dt

= lim
a→∞u(a, t)− u(0, t) + dU(∞, t)

dt
. (10.78)

From the renewal Eq. (10.39)

u(0, t) = b

∫ ∞

0
u(a, t) da = bU(∞, t)

and the boundary condition lim
a→∞u(a, t) = 0 (refer to Sect. 10.2.3), the above

Eq. (10.78) becomes

−μU(∞, t) = −bU(∞, t)+ dU(∞, t)
dt

,

that is,

dU(∞, t)
dt

= (b − μ)U(∞, t).
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Finally, we can easily solve this ordinary differential equation and get U(∞, t) =
U(∞, 0) e(b−μ)t .

Actually, this exercise is on a specific case of what was considered in Exer-
cise 10.5 of Sect. 10.2.3.
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Part II
Mathematical Equipments



Chapter 11
Homogeneous Linear Difference
Equation

Abstract This chapter describes the fundamentals on the homogeneous linear
difference equation, which are closely related to the contents of Chaps. 1 and 2 about
the discrete time models.

11.1 Second Order Linear Equation

The general second order linear difference equation (recurrence relation) with
constant coefficients is expressed as

an+2 = pan+1 + qan + r, (11.1)

where p, q and r are real constants independent of n with q 	= 0. For given initial
values a1 and a2, the recurrence relation (11.1) determines a unique sequence {an}.

In this section, we consider the general term for the sequence {an} determined by
the homogeneous equation

an+2 = pan+1 + qan, (11.2)

which is one with r = 0 in (11.1). Now, suppose that an = λn with a non-zero
constant λ as the general term to satisfy (11.2). By substituting an = λn, an+1 =
λn+1 and an+2 = λn+2 for (11.2), we obtain the following equation in terms of λ:

λn+2 = pλn+1 + qλn, that is, λ2 − pλ − q = 0. (11.3)

Let denote two roots of this quadratic equation by λ1 and λ2. Both of an = λn1
and an = λn2 can satisfy the recurrence relation (11.2). The Eq. (11.3) is called the
characteristic equation for the recurrence relation (11.2). λn1 and λn2 are the base
solutions for (11.2).

On the other hand, if two formulas f (n) and g(n) of n satisfy the recurrence
relation (11.2), the linear combination sf (n)+ tg(n) with arbitrary constants s and
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t can satisfy (11.2). This is easily seen by substituting an = sf (n)+tg(n) for (11.2).
Therefore, an = sλn1 + tλn2 satisfies the recurrence relation (11.2).

Let us consider first the case where λ1 	= λ2. For an = sλn1 + tλn2 , we have
a1 = sλ1 + tλ2 and a2 = sλ2

1 + tλ2
2, so that

s = a1λ2 − a2

λ1(λ2 − λ1)
; t = a1λ1 − a2

λ2(λ1 − λ2)
. (11.4)

As a result, we obtain the following unique formula of an for the initial condition
given by a1 and a2 as a function of n:

an = a1λ2 − a2

λ1(λ2 − λ1)
λn1 + a1λ1 − a2

λ2(λ1 − λ2)
λn2 . (11.5)

That is, this is the general term for an as proven in the following arguments.
From the relation of roots to the coefficients in the quadratic Eq. (11.3), we have

p = λ1 +λ2 and q = −λ1λ2. Substituting these for the Eq. (11.2), we can transform
the equation to

an+2 − λ1an+1 = λ2(an+1 − λ1an) (11.6)

or

an+2 − λ2an+1 = λ1(an+1 − λ2an). (11.7)

For the Eq. (11.6), letting bn = an+1 − λ1an, we have bn+1 = λ2bn. Then the
sequence {bn} is a geometric progression with the common ratio λ2. Thus we have
bn = b1λ

n−1
2 , that is,

an+1 − λ1an = (a2 − λ1a1)λ
n−1
2 . (11.8)

In the same way, we can get the following equation from (11.7):

an+1 − λ2an = (a2 − λ2a1)λ
n−1
1 . (11.9)

Solving (11.8) and (11.9) with respect to an+1 and an, we can get the Eq. (11.5) for
an.

These arguments are applicable even when the roots λ1 and λ2 are imaginary
numbers. Since we are considering the sequence of real values, this is to be
explained a little more. When the roots λ1 and λ2 of are imaginary, they must be
conjugate to each other: λ1 = λ2. Let us denote the argument of λ1 by θ = argλ1,
and the absolute value by ρ = |λ1|. With Euler’s formulation, we have the
expressions λ1 = ρ(cos θ+ i sin θ) and λ2 = ρ(cos θ− i sin θ), where i is imaginary
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unit. From de Moivre’s theorem, we can find that λn1 = ρn(cos nθ + i sinnθ) and
λn2 = ρn(cos nθ − i sinnθ). Hence, in this case, we have

an = sλn1 + tλn2 = ρn{(s + t) cos nθ + (s − t) i sin nθ}. (11.10)

From (11.4), we can find that

s + t = a1(λ1 + λ2)− a2

λ1λ2
;

(s − t) i = (λ2
1 + λ2

2)a1 − (λ1 + λ2)a2

λ1λ2

i(λ2 − λ1)

(λ2 − λ1)2
.

It can be easily proven that both of s+ t and (s− t) i are real, since λ1 +λ2, λ2
1 +λ2

2,
and λ1λ2 are real, while λ2 − λ1 is purely imaginary from λ1 = λ2. Finally we
can see that the right side of the general term (11.10) is real for the case where the
characteristic Eq. (11.3) has imaginary roots. These arguments show that the general
term (11.5) is applicable even when the characteristic Eq. (11.3) has imaginary roots.

Next let us consider the case where the characteristic Eq. (11.3) has a multiple
root, that is, when λ1 = λ2. In this case, the general term (11.5) is not applicable.
Although λn1 is the base solution for the recurrence relation (11.2), we cannot find
the general term only with it.

Actually the other base solution is given by nλn1. Indeed, substituting an = nλn1,
an+1 = (n+ 1)λn+1

1 and an+2 = (n+ 2)λn+2
1 for (11.2), we have

(n+ 2)λ2
1 = p(n+ 1)λ1 + qn. (11.11)

Since the characteristic Eq. (11.3) must now become (λ−λ1)
2 = 0, so that p = 2λ1

and q = −λ2
1 hold, we can find that the Eq. (11.11) is the identical equation.

Therefore, when the characteristic Eq. (11.3) has a multiple root, the general
term for the recurrence relation (11.2) becomes the linear combination of two base
solutions λn1 and nλn1. Substituting p = 2λ1 and q = −λ2

1 for (11.2), we can get

an+2 − λ1an+1 = λ1(an+1 − λ1an),

and find that the sequence {an+1 − λ1an} is a geometric progression with the
common ratio λ1:

an+1 − λ1an = λn−1
1 (a2 − λ1a1).

Moreover from this equation, we can get the following equation

an+1

λn+1
1

− an

λn1
= a2 − λ1a1

λ2
1

,
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which indicates that the sequence {an/λn1} is an arithmetic progression with the
common difference (a2 − λ1a1)/λ

2
1. Consequently we can obtain the following

general term of an:

an =
{a1

λ1
+ a2 − λ1a1

λ2
1

(n− 1)
}
λn1 (11.12)

Those general terms (11.5), (11.10), and (11.12), obtained in the above, we can
get the following conclusion:

Theorem 11.1 The sequence {an} generated by the second order homogeneous
linear difference Eq. (11.2) converges to zero as n→ ∞ independently of the initial
value if |λ1| < 1 and |λ2| < 1 hold for the roots λ1 and λ2 of the characteristic
Eq. (11.3). If |λ1| > 1 or |λ2| > 1 holds, the sequence {an} diverges for almost
every initial value.

If |λ1| = 1 and |λ2| < 1 hold, the sequence {an} converges to a certain finite
value. If |λ1| = |λ2| = 1 hold, the sequence {an} diverges for almost every initial
value when λ1 and λ2 are real and converges to a permanent oscillatory variation
with a finite supremum of the amplitude for almost every initial value when they are
imaginary.

Whereas some details in this theorem were not described in this section, readers can
easily prove them, making use of those results obtained there.

11.2 Two Dimensional System of First Order Linear
Equations

11.2.1 Simultaneous First Order Equations

The following type of two dimensional autonomous system of first order difference
equations in terms of (xn, yn)

⎧⎨
⎩
xn+1 = f (xn, yn)

yn+1 = g(xn, yn)

(11.13)

appears as a mathematical model for a variety of phenomena. When both of
functions f and g are linear in terms of xn and yn with constant coefficients, the
general term for (xn, yn) can be mathematically obtained as shown in the subsequent
sections. In contrast, when they are nonlinear, it is generally difficult to get the
explicit solution (i.e., general term), and instead, some mathematical techniques are
applied to investigate the qualitative feature of the solution (for example, see [1–6]).
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Like (11.13), the system of difference equations which consists of only the
dependent variable(s) and its derivative(s) is called autonomous. If the system
contains some functions of independent variable t in any part of it, it is called
non-autonomous.

For the system of nonlinear difference Eq. (11.13), the qualitative analysis
frequently uses the following type of a system of homogeneous linear difference
equations (refer to Sect. 12.2.1):

⎧⎨
⎩
un+1 = a11 un + a12 vn

vn+1 = a21 un + a22 vn,

(11.14)

where coefficients a11, a12, a21 and a22 are mathematically determined for each
analysis. The system (11.14) can be expressed by the two dimensional column

vector vn :=
(
un

vn

)
and 2 × 2 matrix A :=

(
a11 a12

a21 a22

)
as follows:

vn+1 = A vn. (11.15)

In the following part,1 we discuss the general solution for the system of homoge-
neous linear difference Eq. (11.14) with constant coefficients, that is, (11.15) with
matrix A which elements a11, a12, a21 and a22 are all constant.

11.2.2 Case of Distinct Real Eigenvalues

The characteristic equation det(A− λE) = 0 for the eigenvalue λ of matrix A with

the unit matrix E :=
(

1 0
0 1

)
becomes the following quadratic equation:

λ2 − (trA)λ+ detA = 0, (11.16)

where detA := a11a22 − a12a21 and trA := a11 + a22.
In this section, we consider the case where eigenvalues λ+ and λ− given by the

roots for the characteristic Eq. (11.16) are real and different from each other. With

1 The arguments in this part are mathematically analogous to those in Sect. 13.2 for the two
dimensional system of first order linear differential equations. It would be very helpful for readers’
clearer understanding to compare one with the other.
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column (right) eigenvectors p1 := T(p11 p12) and p2 := T(p21 p22) respectively for
λ+ and λ−, let us define the 2 × 2 matrix

P := (p1 p2) =
(
p11 p21

p12 p22

)
.

It can be mathematically proved that matrix P is regular. Now we can diagonalize
matrix A as

P−1AP =
(
λ+ 0

0 λ−

)
,

where P−1 is the inverse matrix of P .
Next let us define wn = T(wn,1 wn,2) := P−1vn. Then we have vn = Pwn. From

A vn = AP wn, we can find the following recurrence relation:

wn+1 = P−1vn+1 = P−1A vn = P−1AP wn =
(
λ+ 0

0 λ−

)
wn.

Hence we have

{
wn+1,1 = λ+ wn,1
wn+1,2 = λ− wn,2,

and subsequently find that wn,1 = w1,1 λ
n−1+ and wn,2 = w1,2 λ

n−1− . From this
result, we can get the general solution for the system of difference Eq. (11.15):

vn = Pwn = (p1 p2)

⎛
⎝wn,1
wn,2

⎞
⎠ = w1,1 λ

n−1+ p1 + w1,2 λ
n−1− p2, (11.17)

where w1 = T(w1,1 w1,2) is uniquely determined for given v1 = T(u1 v1) with
w1 = P−1v1.

From these arguments, we find that the system of homogeneous linear difference
Eq. (11.15) has the following general form of solution when matrix A has distinct
real eigenvalues:

{
un = cu λ

n+ + c′u λn−
vn = cv λ

n+ + c′v λn−,
(11.18)

where cu, c′u, cv and c′v are constants uniquely determined for an initial condition
given as (u1, v1).
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11.2.3 Case of Multiple Eigenvalues

In this section, we consider the case where the roots for the characteristic Eq. (11.16)
is degenerated as λ, that is, the case of multiple eigenvalues, λ1 = λ2 = λ. The case
where A = λE is included. In such a case, that is, when a11 = a22 = λ and
a12 = a21 = 0, we have

{
un+1 = λun

vn+1 = λvn.

Then the general solution for the system of difference Eq. (11.15) is given by un =
u1 λ

n−1 and vn = v1 λ
n−1.

For A 	= λE, let us define a column vector p′ such that (A − λE)p′ = p with
eigenvector p for eigenvalue λ. The vector p′ is called generalized eigenvector, and
is linearly independent of p. As before, let us define 2 × 2 matrix P = (p p′). Since
Ap = λp and Ap′ = p + λp′, we have

AP = (Ap Ap′) = (λp p + λp′) = λ (p p′)+ (0 p) = λP + PN,

where N :=
(

0 1
0 0

)
. With wn = P−1vn, we can derive the following recurrence

relation as before:

wn+1 = P−1AP wn = P−1(λP + PN)wn = (λE +N)wn =
(
λ 1

0 λ

)
wn.

Hence we obtain
⎧⎨
⎩
wn+1,1 = λwn,1 +wn,2
wn+1,2 = λwn,2.

From the second equation, we can find that wn,2 = w1,2 λ
n−1. By substituting this

for the first equation, we get the following recurrence relation:

wn+1,1

λn+1 − wn,1

λn
= w1,2

λ2 .

This relation indicates that the sequence {wn,1/λn} is an arithmetic progression with
the common difference w1,2/λ

2, and thus we can derive

wn,1 =
{w1,1

λ
+ w1,2

λ2
(n− 1)

}
λn.
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From these arguments, we can obtain the following general solution for the
system of difference Eq. (11.15) when matrix A has multiple eigenvalues:

vn = Pwn =
{w1,1

λ
+ w1,2

λ2
(n− 1)

}
λnp +w1,2 λ

n−1p′. (11.19)

As a result, it is shown that the system of homogeneous linear difference Eq. (11.15)
has the following general form of solution when matrix A has multiple eigenvalues:

{
un = (cu + c′u n) λn
vn = (cv + c′v n) λn,

(11.20)

where cu, c′u, cv and c′v are constants uniquely determined for a given initial
condition as (u1, v1).

11.2.4 Case of Imaginary Eigenvalues

In this section, we consider the case where matrix A has conjugate imaginary
eigenvalues λ and λ, for which corresponding eigenvectors are given by p and p.
As before, let us define 2 × 2 matrix P := (p p), which is now a complex matrix.

Although vectors p, p, and matrix P contain imaginary elements, we can apply
the same arguments as for the case where matrixA has distinct real eigenvalues. We
can obtain the following general solution for the system of difference Eq. (11.15):

vn = w1,1 λ
n−1p +w1,2 λ

n−1
p, (11.21)

where constants w1,1 and w1,2 are both real or conjugate to each other, because vn
must be a real vector for any n now. First we shall prove this in the subsequent part.

Since vn1 must be a real vector for any natural number n = n1 about the system
of difference Eq. (11.15), it must hold that vn1 = vn1 . Hence, the following equation
must hold:

w1,1 λ
n1−1p +w1,2 λ

n1−1
p = w1,1 λ

n1−1
p +w1,2 λ

n1−1p,

that is,

λn1−1(w1,1 −w1,2)p = λ
n1−1

(w1,1 −w1,2)p.

Since the right side is conjugate to the left side, this equation indicates that
λn1−1(w1,1 − w1,2)p is a real vector for n = n1. Here λn1−1 can be regarded as
imaginary for almost every natural number n1. Therefore, it must be satisfied that
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w1,1 − w1,2 = 0. Thus we find that w1,1 = w1,2, which means that w1,1 and w1,2
are both real or conjugate to each other. Applying this result for (11.21), we can
rewrite the general solution as follows:

vn = w1,1 λ
n−1p +w1,1 λ

n−1
p. (11.22)

Since the right side is the sum of mutually conjugate vectors, it is real.
Let us put λ = |λ|eiθ = |λ|(cos θ + i sin θ) with imaginary unit i, where |λ| is the

absolute value of imaginary number λ, and θ = argλ is the argument of λ. Besides,
denote the complex vector p as p = α + i β with appropriate real vectors α and β.
From Euler’s formulation, we have λn = ei nθ = cosnθ + i sin nθ . Then the general
solution (11.22) becomes

vn = w1,1|λ|n−1{cos(n− 1)θ + i sin(n− 1)θ}(α + i β)

+w1,1 |λ|n−1{cos(n− 1)θ − i sin(n− 1)θ}(α − i β)

= |λ|n−1{c1 cos(n− 1)θ + c2 sin(n− 1)θ}α
+ |λ|n−1{c2 cos(n− 1)θ − c1 sin(n− 1)θ}β, (11.23)

where c1 = w1,1 + w1,1 = 2 Rew1,1 and c2 = i (w1,1 −w1,1) = −2 Imw1,1.
Consequently we find that the system of homogeneous linear difference

Eq. (11.15) has the following general form of solution when matrixA has imaginary
eigenvalues:

{
un = |λ|n(cu cos nθ + c′u sin nθ)

vn = |λ|n(cv cos nθ + c′v sin nθ),
(11.24)

where cu, c′u, cv and c′v are real constants uniquely determined for the initial
condition given as (u1, v1).

11.2.5 Asymptotic Behavior of the Sequence

Consequently from those results in Sects. 11.2.2–11.2.4, we can find the following
theorem about the asymptotic behavior of the sequence {(un, vn)} generated by
(11.14) as n→ ∞:

Theorem 11.2 The sequence {(un, vn)} generated by the system of homogeneous
linear difference Eq. (11.14) has the following asymptotic behavior as n→ ∞:

• If every eigenvalue λ of matrix A defined by (11.15) has the absolute value less
than one, |λ| < 1, it converges to (0, 0) as n → ∞ independently of the initial
condition.
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• If matrixA has an eigenvalue λwhich absolute value is greater than one, |λ| > 1,
it diverges, that is, |un| → ∞ or |vn| → ∞ for almost every initial condition.

• If one eigenvalue of matrix A is 1 and the other has the absolute value less than
one, it converges to a certain finite point for almost every initial condition.

• If one eigenvalue of matrix A is −1 and the other has the absolute value less than
one, it converges to the sequence of a repetition of positive and negative numbers
with the same absolute value for almost every initial condition.

• If the absolute value of every eigenvalue of matrix A is unity, it diverges for
almost every initial condition when the eigenvalues are real, and converges to
an oscillatory variation with a finite supremum of the amplitude for almost every
initial condition when they are imaginary.

Some readers may find the similarity of Theorem 11.2 here with Theorem 11.1
for the homogeneous second order linear difference equation in Sect. 11.1. It
is mathematically right, because the second order linear difference Eq. (11.2)
can be rewritten as the following mathematically equivalent system of
homogeneous two dimensional linear difference equations:

{
an+1 = pan + bn;
bn+1 = qan.

It is easy to find that the matrix A =
(
p 1
q 0

)
has the same characteristic

equation as (11.3).
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Chapter 12
Qualitative Analysis for Discrete Time
Model

Abstract In this section, some mathematical equipments are introduced for the
qualitative analysis on the one dimensional discrete time model, which are closely
related to the contents of Chap. 2.

12.1 One Dimensional Discrete Time Model

In this section, some mathematical equipments are introduced for the qualitative
analysis on one dimensional discrete time model given by an autonomous difference
equation

xn+1 = g(xn), (12.1)

which defines the sequence {xn}.

12.1.1 Local Stability of Equilibrium

Equilibrium x∗ for the model (12.1) is given by the root of the following equation:

x∗ = g(x∗). (12.2)

The equilibrium means a state of the dynamics such that the value of xn is unchanged
and kept being x∗ if x1 = x∗. The local stability about equilibrium x∗ depends on
the behavior of the sequence {xn} when x1 is different from equilibrium x∗ and
sufficiently near it.
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The equilibrium may be called equilibrium state, equilibrium point, steady
state, steady point, or rest point, while each of those words could be some-
times used in a definition different from that of the above “equilibrium” in a
rigorous sense, depending on the context. For example, from the viewpoint
of map to give a correspondence between elements of different sets, the
equilibrium for such a map may be called fixed point. Although we do
not usually have to distinguish them from each other, we must know the
possibility of such a difference in the use. It is to be remarked that the
definition of equilibrium or the above words does not have no relation to its
stability in general.

Let x1 = x∗ + ε1 with 0 < |ε1| � 1. The value ε1 is sometimes called
perturbation from equilibrium x∗. It must be remarked that ε1 can be negative. We
shall consider the sequence {εn} defined as εn = xn−x∗. If |εn| becomes larger as n
gets larger for some ε1, such an equilibrium x∗ is called unstable equilibrium. This
indicates that a slight change of xn from equilibrium x∗ may cause a state transition
far away from x∗. In contrast, if |εn| becomes smaller toward zero as n gets larger
for any ε1, it indicates that any slight change of the state from x∗ diminishes as n
gets larger, so that the state returns to equilibrium x∗. Such an equilibrium x∗ is
called locally asymptotically stable.

Let us now assume that the function g(x) can have the following expansion:

g(x) = g(x∗)+ g′(x∗)(x − x∗)+ o(x − x∗),

where g′(x∗) = dg/dx
∣∣
x=x∗ . This may be derived by Taylor expansion around

x = x∗ for the differentiable function g.

The mathematical symbol o is called Landau o (Landau small o). In the above
expansion, it means all the rest terms which have higher order than x − x∗,
satisfying

lim
x→x∗

o(x − x∗)
x − x∗ = 0.

More generally, p(x) = o(q(x)) as x → a when lim
x→a

p(x)/q(x) = 0. It

must be remarked that there is the other symbol called Landau O (Landau
big o) with the different definition: p(x) = O(q(x)) as x → a when
lim
x→a

∣∣p(x)/q(x)∣∣ < ∞.
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From (12.1) with xn = x∗ + εn, we have

x∗ + εn+1 = g(x∗ + εn) = g(x∗)+ g′(x∗)εn + o(εn) ≈ x∗ + g′(x∗)εn,

since g(x∗) = x∗. Hence, the sequence {xn} sufficiently near x∗ can be approx-
imately determined by the sequence {̃εn} defined by the following recurrence
relation, because it is uniquely determined by the sequence {εn}:

ε̃n+1 = g′(x∗)̃εn. (12.3)

This approximation is applicable only when g′(x∗) 	= 0. In case of g′(x∗) = 0, since
the sequence {εn} is governed by the term with a higher order than ε, the following
way to determine the local stability of x∗ is useless. Although such a case would be
mathematically interesting, we shall not go into such a case because it is singular
generally for a mathematical model of population dynamics.

For the local stability analysis on the model with a non-linear function g, it is
essential to derive the linear recurrence relation (12.3) from the original (12.1).
The derivation is called linearization of the model around equilibrium x∗, and the
derived linear equation is called linearized equation.

Since the linear recurrence Eq. (12.3) is of a geometric progression, we find that,
if |g′(x∗)| < 1, ε̃n → 0 as n → ∞. Inversely, if |g′(x∗)| > 1, |̃εn| becomes larger
as n gets larger. As a consequence of these results about the sequence {̃εn}, we can
get the following theorem on the local stability of x∗ for (12.1):

Theorem 12.1 Equilibrium x∗ for the model (12.1) is locally asymptotically stable
if |g′(x∗)| < 1, while it is unstable if |g′(x∗)| > 1.

12.1.2 Cobwebbing Method

In this section, we introduce a method to discuss the qualitative nature of the
sequence {xn}, well-known as cobwebbing method. It is a technique to understand
the qualitative nature of the sequence {xn} generated by (12.1), making use of the
graph of y = g(x) in the (x, y)-plane (Fig. 12.1). The reader can easily find its
introduction in many textbooks about the discrete dynamical system or population
dynamics model (for example, [2, 4, 7, 8, 10–12]).

For x = x0, we can get y = g(x0) = x1, which means that the point (x0, x1) is on
the curve of y = g(x). In this method, we shall add a line y = x in the same plane
as xn+1 = xn shown in Fig. 12.1. The intersection of the horizontal line passing the
point (x0, x1) with y = x gives the point (x1, x1). The intersection of vertical line
passing the point (x1, x1) with y = g(x) gives the point (x1, g(x1)) = (x1, x2).
With these relations about points, we can draw the orbit {xn} on the graph, repeating
the following two steps (see Fig. 12.1):
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Fig. 12.1 Illustrative examples of the orbit {xn} generated by (12.1), drawn with the cobwebbing
method. (a) The orbit is monotonically increasing; (b) The orbit shows a damped oscillation. See
the detail in the main text

1. Draw a horizontal line from (xn, g(xn)) = (xn, xn+1) on y = g(x) to the line
y = x, and find the intersection (xn+1, xn+1);

2. Draw a vertical line from (xn+1, xn+1) on y = x to the curve y = g(x), and find
the intersection (xn+1, g(xn+1)) = (xn+1, xn+2).

A resemblance of the process drawing lines to the spider’s cobwebbing is the reason
of its naming.

It should be remarked that the intersection between the curve y = g(x) and
the line y = x indicates the equilibrium for the model (12.1), since it is the point
(x∗, x∗) such that x∗ = g(x∗). In Fig. 12.1a, the orbit {xn} generated by (12.1)
asymptotically approaches equilibrium x∗

s in a monotonic manner. From the above
process to draw the orbit, it is clear that the sequence {xn} converges to equilibrium
x∗

s as n→ ∞. Further, we can easily find that the other equilibrium x∗
u is unstable.

In contrast, Fig. 12.1b gives an example such that the orbit {xn} appears
oscillatory around equilibrium x∗ in a damping manner. It should be remarked that
it is in general difficult to determine only by the cobwebbing method which the orbit
asymptotically approaches equilibrium x∗ in a damping manner or shows the other
behavior, when such an oscillatory orbit appears. As shown in Fig. 12.1a, generally
the cobwebbing method is a strong technique to investigate the qualitative nature
of the sequence {xn} for the range where y = g(x) is increasing, while it is just
a supplementarily useful technique of the qualitative analysis for the range where
y = g(x) is decreasing.

As shown by Fig. 12.1a for the range where y = g(x) is increasing,
the cobwebbing method can identify the stability of the equilibrium not

(continued)
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necessarily about the neighborhood around it but about a certain range of
x. This means a possibility to identify the set of initial values x0 which will
approach the equilibrium as n → ∞. Such a set of initial values is called
basin of attraction for the equilibrium. Differently from the local stability
analysis introduced in Sect. 12.1.1, such a result on the basin of attraction
shows the global stability about the equilibrium. In Fig. 12.1a, equilibrium x∗

s
is globally asymptotically stable in a wider sense, with the basin of attraction
which contains the interval (x∗

u , x
∗
s ].

12.1.3 Logistic Map

In this section, we shall consider the model (12.1) with g(x) = ℛ0(1 − x)x where
ℛ0 is a positive constant:

xn+1 = ℛ0(1 − xn)xn. (12.4)

This is the logistic map introduced by (2.13) in Sect. 2.1.3, to which the recurrence
relation (12.4) mathematically corresponds with xn = cn/cc.

We can easily apply the cobwebbing method for the qualitative analysis on the
sequence {xn} generated by the logistic map (12.4) in case of 0 <ℛ0 ≤ 2, although
we can find only in part the nature of {xn} in case of ℛ0 > 2 as shown in the
following description.

When 0 < ℛ0 ≤ 1, the graph of y = g(x) is as shown in Fig. 12.2a. We can
easily see that it has no intersection with y = x in the first quadrant, and has the

Fig. 12.2 The application of the cobwebbing method for the logistic map (12.4). Numerically
drawn for different two initial values. (a) ℛ0 = 0.9; (b) ℛ0 = 1.8; (c) ℛ0 = 2.8. In (a), the
orbit asymptotically approaches equilibrium 0 in a monotonic manner. In (b), it asymptotically
approaches equilibrium 1 − 1/ℛ0 in a monotonic manner. In (c), it asymptotically approaches
equilibrium 1 − 1/ℛ0 with a damped oscillation
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intersection at the origin. From the graph of y = g(x) in this case, the cobwebbing
method can show the following result:

Result (0 < ℛ0 ≤ 1) The orbit {xn} asymptotically approaches zero in a
monotonic manner for any initial value x0 such that 0 ≤ x0 ≤ 1: xn → 0 as
n→ ∞.

This is the case of population extinction mentioned in Sect. 2.1.3.
With the local stability analysis described in Sect. 12.1.1, it can be easily found

that equilibrium 0 is locally asymptotically stable since 0 < g′(0) < 1 when
0 < ℛ0 < 1. Furthermore, the cobwebbing method can show that it is globally
asymptotically stable when 0 <ℛ0 ≤ 1.

This result can be proved also in the following way: First, for x0 = 0 or x0 = 1,
it is easily shown from (12.4) that xk = 0 for any k > 0. Next, for 0 < x0 < 1, it
can be easily proved from (12.4) that 0 < xk < 1, that is, 0 < 1 − xk < 1 for any
k > 0. Then we have xk+1 = ℛ0(1 − xk)xk < xk for any k ≥ 0. These arguments
clearly show that the sequence {xn} is monotonically decreasing toward zero.

As shown by Fig. 12.2b, in case of 1 <ℛ0 ≤ 2, there are two different equilibria
0 and 1 − 1/ℛ0. We find that f ′(0) > 1 and 0 ≤ f ′(1 − 1/ℛ0) < 1, so that
equilibrium 0 is unstable while 1 − 1/ℛ0 is locally asymptotically stable. In this
case, the cobwebbing method can show the following result:

Result (1 <ℛ0 ≤ 2) For any initial value x0 such that 0 < x0 < 1, xn → 1−1/ℛ0
as n→ ∞. The sequence {xn} asymptotically approaches 1−1/ℛ0 in a monotonic
manner when it becomes sufficiently near equilibrium 1 − 1/ℛ0. (See Fig. 2.9 in
p. 43)

We can see that equilibrium 1 − 1/ℛ0 is globally asymptotically stable. The
qualitative nature of the sequence {xn} is certainly similar to that of the growth
curve of logistic Eq. (5.10) (p. 140) in this case, whereas the sequence {xn} can
show a variation which can never occur for the logistic equation as numerically
demonstrated for ℛ0 = 1.5 in Fig. 2.9 (p. 43).

When 2 < ℛ0 ≤ 3, we can see with the cobwebbing method that the orbit {xn}
goes near equilibrium 1 − 1/ℛ0, as shown in Fig. 12.2c. However, only with the
cobwebbing method, it is unclear whether it approaches equilibrium 1 − 1/ℛ0 or
not. On the other hand, we can easily show that, when 2 < ℛ0 < 3, there exist
two equilibria 0 and 1 − 1/ℛ0, where g′(0) > 1 and −1 < g′(1 − 1/ℛ0) < 0.
Therefore, when 2 < ℛ0 < 3, equilibrium 0 is unstable while 1 − 1/ℛ0 is locally
asymptotically stable.

The case of ℛ0 = 3 must be treated in a different way. It is impossible to
investigate the local stability by the linearization around equilibrium 1 − 1/ℛ0,
as described in Sect. 12.1.1, because g′(1 − 1/ℛ0) = −1 in this case. However, a
little expansion of the mathematical arguments for the linearization, we can show
that equilibrium 1 − 1/ℛ0 = 2/3 is locally asymptotically stable (Exercise 12.1
below).

From these arguments, we can get the following result:
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Result (2 <ℛ0 ≤ 3) For any initial value x0 such that 0 < x0 < 1, xn → 1−1/ℛ0
as n → ∞. The sequence {xn} asymptotically approaches 1 − 1/ℛ0 with a damped
oscillation. (See Fig. 2.9 in p. 43)

Exercise 12.1 When ℛ0 = 3, show that, equilibrium 1 − 1/ℛ0 = 2/3 for (12.4)
is locally asymptotically stable.

12.1.4 Periodic Orbit

When ℛ0 > 3, it is easily shown by the local stability analysis that equilibrium
1 − 1/ℛ0 for the logistic map (12.4) is unstable, because g′(1 − 1/ℛ0) < −1.
The other equilibrium 0 is unstable too, as easily seen by the cobwebbing method
(Fig. 12.3). For the logistic map (12.4), when every equilibrium is unstable, the
orbit {xn} approaches a periodic solution that repeats a finite sequence of specific
values, or causes a chaotic variation (Fig. 2.9 in p. 43). The parameter dependence
of the existence and stability of such solutions is in general called bifurcation of the
solution.

Fig. 12.3 The application of the cobwebbing method for the logistic map (12.4). Numerically
drawn for different two initial values. (a) ℛ0 = 3.15; (b) ℛ0 = 3.46; (c) ℛ0 = 3.5; (d) ℛ0 = 3.6;
(e) ℛ0 = 3.65; (f) ℛ0 = 3.8. The orbit approaches a period-2 solution in (a), a period-4 solution
in (b), and a certain period-2k solution in (c)
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The simplest periodic solution is the period-2 solution, which repeats two
different values A and B as ABABAB · · · . The logistic map (12.4) has a period-2
solution of the following nature (Exercise 12.2 below):

Result (3 < ℛ0 ≤ 1 + √
6) The orbit {xn} approaches a period-2 solution for any

initial value x0 (0 < x0 < 1) as k → ∞, which is uniquely determined by the value
of ℛ0.

See Fig. 12.3a in this section and Fig. 2.9 in p. 43.
When the discrete time model (12.1) has a period-2 solution with two different

values A and B, it is satisfied that B = g(A) and A = g(B). Thus we have A =
g(g(A)) and B = g(g(B)). This means that, if a period-2 solution exists, it is given
by the roots of equation g(g(x)) = x which are different from the root of equation
g(x) = x. Remark that the former roots necessarily contain the latter. There may
not exist such roots, that is, the period-2 solution does not necessarily exist.

Hence when there is a period-2 solution with different valuesA and B, the values
A and B must be equivalent to the equilibria for the discrete dynamical system
defined by yn+1 = g(g(yn)) = g ◦ g(yn). The stability of the period-2 solution for
(12.1) coincides with the stability of those equilibriaA and B for yn+1 = g(g(yn)).

When a period-2 solution is locally asymptotically stable, the orbit {xn} for the
initial value x0 sufficiently near it asymptotically approaches it. The sequences {x2k}
and {x2k+1} must converge to those values of the period-2 solution respectively.
The stability of a period-2 solution is equivalent to the stability of the equilibria
for the discrete dynamical system yn+1 = g(g(yn)), which are different from
the root of equation g(x) = x. Inversely, when the discrete dynamical system
yn+1 = g(g(yn)) has locally asymptotically stable equilibria different from the root
of equation g(x) = x, there exists a locally asymptotically stable period-2 solution
for (12.1).

Therefore we can investigate the stability of a period-2 solution for (12.1) by
considering the stability of the equilibria for the discrete dynamical system yk+1 =
g(g(yk)). From Theorem 12.1 in Sect. 12.1.1, the local stability can be argued by
the absolute value of dg(g(x))/dx = g′(g(x))g′(x) at the equilibria.

If the absolute values of
∣∣∣∣ ddx g(g(x))

∣∣∣∣
x=A

= ∣∣g′(g(A))g′(A)
∣∣ = ∣∣g′(B)g′(A)

∣∣

and
∣∣∣∣ ddx g(g(x))

∣∣∣∣
x=B

=
∣∣∣∣ ddx g(g(x))

∣∣∣∣
x=g(A)

= ∣∣g′(g(g(A)))g′(g(A))
∣∣ = ∣∣g′(A)g′(B)

∣∣.

are less than one, the period-2 solution is locally asymptotically stable, while
it is unstable if they are greater than one. As seen from the above results, the
local stability of equilibrium y = A necessarily coincides with that of the other
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equilibrium y = B = g(A) for the discrete dynamical system yk+1 = g(g(yk)),
where the values A and B = f (A) define a period-2 solution for (12.1).

Exercise 12.2 Prove the following features of the period-2 solution for the logistic
map (12.4):

(a) A period-2 solution exists when and only when ℛ0 > 3.
(b) The period-2 solution is locally asymptotically stable if ℛ0 < 1 + √

6.
(c) The period-2 solution is unstable if ℛ0 > 1 + √

6.

To mathematically prove the above result on the convergence to a period-2
solution, the local stability analysis on the period-2 solution is clearly unsatisfactory.
This is because the local stability analysis cannot prove the convergence to the
period-2 solution for any x0 (0 < x0 < 1). It is impossible to show it even with
the cobwebbing method for (12.4) as seen from Fig. 12.3a. Instead, from the above
arguments about the relation of a period-2 solution for (12.4) to equilibria for the
composed map with respect to the existence and stability, we can investigate the
stability of a period-2 solution by the cobwebbing method for the composed map,
as shown in Fig. 12.4a.

Fig. 12.4 Application of the cobwebbing method for the composed map of (12.4). Numerically
drawn some orbits from different initial values. (a) double composed map xn+2 = g(g(xn)) with
a = 3.2; (b) threefolds composed map xn+4 = g(g(g(g(xn)))) with a = 3.46. In (a), the obits
converge to two equilibria which define a period-2 solution for (12.4), while they converge to four
equilibria which define a period-4 solution for it
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Suppose that a period-k solution exists for (12.1). Its local stability can be
determined by the absolute value of the first derivative about the k-fold
composed map of g:

Gk(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
k

(x). (12.5)

This is because each value of the period-k solution is an equilibrium for the
discrete dynamical system given by yi+1 = Gk(yi). By the chain rule of the
derivative for the composition function, we have

dGk(x)

dx
=

k∏
�=1

g′(G�−1(x)), (12.6)

where G0(x) = x. Now for a value x� belonging to the period-k solution, all
of k values composing it are given by {x�,G1(x

�),G2(x
�), . . . ,Gk−1(x

�)}.
Thus, from (12.6), we can get the following theorem:

Theorem 12.2 If the product of all the absolute values of the first derivative
g′ for each value of a period-k solution for (12.1) is less than one, it is locally
asymptotically stable. If the product is greater than one, it is unstable.

12.1.5 Period-Doubling Bifurcation

Logistic map (12.4) manifests its special character when ℛ0 > 1+√
6. There exists

a certain value r4 > 1 + √
6 such that the orbit {xn} asymptotically approaches a

period-4 solution from any initial value x0 (0 < x0 < 1) when 1 + √
6 < ℛ0 ≤ r4

(Fig. 12.4b). As illustrated by Fig. 2.9 with ℛ0 = 3.5 (p. 43), the sequence {xn}
asymptotically approaches a stationary variation such that specific four different
values are repeated as ABCDABCDABCD · · · . Further, when r4 < ℛ0 ≤ r8
with a specific value r8 > r4, the orbit {xn} asymptotically approaches a period-8
solution from any initial value x0 (0 < x0 < 1).

It has been proved about the bifurcation of the solution that there exists an
infinite sequence {r2n | 3 ≤ r2n < r∞ < 4, r2n < r2n+1; n = 1, 2, 3, . . .},
which is monotonically increasing toward a finite value r∞ < 4, such that the
orbit {xn} asymptotically approaches a period-2n+1 solution from any initial value
x0 (0 < x0 < 1) when r2n < ℛ0 ≤ r2n+1 . The limit of r2n as n → ∞, that
is, r∞ is known to be near 3.57, and sometimes called Feigenbaum point. Such a
parameter dependence of the solution with doubling the period is called period-
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doubling bifurcation. Moreover, it is one of what is called pitchfork bifurcation in
the theory of dynamical system [1, 6, 10, 12, 13].

The size of range (r2n−1, r2n ] shrinks as n gets larger. Mitchell J. Feigen-
baum [3] numerically observed

lim
n→∞

r2n − r2n−1

r2n+1 − r2n
= 4.669201609 · · · [Feigenbaum constant].

Subsequentmathematical researches showed that the Feigenbaum constant
appears for a wide class of discrete dynamical system [5, 12], and it is still
an attractive mathematical problem.

For ℛ0 > r∞, the orbit {xn} may approach a periodic solution with period
different from any power of 2. For example, there exist ranges of ℛ0 for which
a period-3 solution or the other with odd number of period appear (Fig. 12.5). The
ranges of ℛ0 for which such solutions with different periods are distributed in a
disconnected manner within r∞ < ℛ0 < 4. For ℛ0 between nearest ranges for
such periodic solutions, the orbit {xn} does not approach any periodic solution or
equilibrium for almost every initial value x0, but continues to take different values,
which is today called chaotic variation (see Fig. 2.9 with ℛ0 = 3.8 in p. 43).

Visualization of such a bifurcation of the solution about a dynamical system is
given by the bifurcation diagram introduced in Sect. 2.1.1 and its subsequent part.
Numerically drawn bifurcation diagram for the logistic map (12.4) is shown in
Fig. 2.10 (p. 45). It shows the bifurcation structure of the solution with the pitchfork
bifurcation toward the chaotic variation in terms of the bifurcation parameter ℛ0.

Fig. 12.5 Period-3 solution for (12.4). Numerically drawn with ℛ0 = 3.84. (a) The orbits {xn}
by the cobwebbing method for two different initial values; (b) The orbits {x3n} by the cobwebbing
method for three different initial values, generated by the threefolds composed map defined by
xn+3 = g(g(g(xn))); (c) Plots of the sequence {xn} from x1 = 0.1
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As described in Sect. 2.1.1, the numerical drawing of the bifurcation diagram
like Fig. 2.10 and the others cannot clearly show any periodic solution with
a much long period, since it is drawn only with plots of the value xn over a
limited range of large n. Especially for ℛ0 > r∞, there must be a lot of points
which are not plotted by the numerical calculation.

For the logistic map (12.4) with ℛ0 = r > r∞, it is mathematically shown
that there exists any periodic solution which appears for the value of ℛ0 < r,
as explained below. However, they are necessarily unstable except for the one
which is asymptotically stable for ℛ0 = r. This means that, if there exists
an asymptotically stable periodic solution for a given value of ℛ0 about the
logistic map (12.4), it is the unique asymptotically stable periodic solution,
and there does not exist any other asymptotically stable periodic solution or
equilibrium.

For these reasons, such a numerically drawn bifurcation diagram is just an
approximation for the mathematically exact one. Hence it may be sometimes
called orbit diagram instead of bifurcation diagram.

Such a numerically drawn bifurcation diagram can be regarded as a drawing of
ω-limit set by numerics. The ω-limit set for an initial value x0 is defined as the set
of values which the orbit {xn} asymptotically approaches. When it asymptotically
approaches an equilibrium, the ω-limit set is the set containing only a single value of
the equilibrium. When it asymptotically approaches a period-k solution, it is the set
of k different values which define the period-k solution. Especially, when it shows
a chaotic variation, the ω-limit set is the set of infinite number of values which are
specifically determined by the dynamical system itself. It is called strange attractor.
For example, see [5] for more detail, and [1, 6, 10, 13] for the further mathematical
contents about it.

As seen in the bifurcation diagram of Fig. 2.10 for the logistic map (12.4), there
is a range of ℛ0 around 3.84 where a period-3 solution appears (see Fig. 12.5, and
Fig. 2.9 in p. 43 of Sect. 2.1.3). Such a finite range beyond r∞ for a periodic solution
is called window in the theory of dynamical system. The following theorem is well-
known [9]:

Theorem 12.3 (Li-York Theorem) When a period-3 solution exists for a one
dimensional dynamical system given by (12.1) with a function g continuous over
R, the system has every period-q solution for any positive integer q .

From this theorem, if a period-3 solution appears, any other periodic solution exists
and they are unstable. More precisely in a mathematical sense, for an initial value
which is included in the values of a certain periodic solution, the orbit {xn} becomes
the periodic solution even if it is unstable. Since all periodic solutions exist, the
reader may think that such a periodic solution would be likely to appear. However,
note that there are infinite initial values from which the orbit approaches the period-
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3 solution. In an actual numerical calculation with an inevitable rounding error, the
orbit on any unstable period solution would eventually become out of it. Thus we
can expect that it would at least approximately approach the asymptotically stable
period-3 solution even in the numerical calculation.

The above theorem may be regarded as included in the following famous
theorem:

Theorem 12.4 (Sharkovskii Theorem) When a period-p solution exists for a one
dimensional dynamical system given by (12.1) with a function g continuous over R,
the system has all period-q solutions for q such as p � q in the following order,
called Sharkovskii ordering:

3 � 5 � 7 � 9 � · · · � 2 · 3 � 2 · 5 � 2 · 7 � · · · � 22 · 3 � 22 · 5 � 22 · 7 � · · ·
�2k · 3 � 2k · 5 � 2k · 7 � · · · � 2k+1 � 2k � 2k−1 � · · · � 23 � 22 � 2 � 1

In this order, if p1 � p2 � p3, then p1 � p3.

As for the mathematical proofs of these theorems, for example, see [1, 12]. As seen
in the bifurcation diagram of Fig. 2.10 for the logistic map (12.4), for ℛ0 less than
the window for the period-3 solution, there are windows of periodic solutions with
period which has an odd factor.

From Sharkovskii theorem, there are infinite number of different periodic
solutions when a periodic solution with an odd period appears. It must be remarked
that the theorem does not claim the appearance of stable periodic solution in the
Sharkovskii ordering. It is the theorem about the existence of periodic solutions. For
example, if a one dimensional discrete dynamical system has a period-12 solution,
it cannot have any periodic solution with odd period. Logistic map (12.4) is one
of one dimensional discrete dynamical systems for which the asymptotically stable
periodic solutions appear in the bifurcation following all the Sharkovskii ordering.
In the next section to get the better understanding of the analysis on the nature of
one dimensional discrete dynamical system (12.1), we shall see another example for
which all periodic solutions exist and they are always unstable.

12.1.6 Tent Map

In this section, we shall consider the one dimensional dynamical system given by
(12.1) with

g(x) =

⎧⎪⎨
⎪⎩

2αx
(
0 ≤ x ≤ 1

2

)

2α(1 − x) ( 1

2
< x ≤ 1

)
,

(12.7)
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Fig. 12.6 The graph of xn+1 = g(xn) for the tent map (12.1) with (12.7)

where α is a positive constant such that 0 < α ≤ 1. This simple dynamical
system is sometimes called tent map, and has made an important contribution to
the development of the theory of discrete dynamical system [1, 5, 6, 10, 13].

As seen from the above definition of the function g, let us consider the range of
the initial value x0 only in [0, 1]. Since α ∈ (0, 1], the range of g is [0, a] ⊂ [0, 1].
Hence, for any initial value x0 ∈ [0, 1], the value xn remains in [0, 1] for any n ≥ 0.

Existence of Equilibrium

As shown in Fig. 12.6, the graph of xn+1 = g(xn) in [0, 1] intersects with the line
xn+1 = xn only at the origin when α < 1/2, while it has two intersections at the
origin and at x = 2α/(2α + 1) when α > 1/2. That is, the existence of equilibrium
x∗ for the tent map (12.1) with (12.7) depends on the value of the parameter α:

x∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for α <
1

2
;

[
0,

1

2

]
for α = 1

2
;

0,
2α

2α + 1
for α >

1

2
.

The case of α = 1/2 is special, because xn = x0 for any n ≥ 0 when x0 ∈
[0, 1/2], and xn = 1 − x0 ∈ [0, 1/2] for any n ≥ 1 when x0 ∈ (1/2, 1].
Hence we may call any point in [0, 1/2] “equilibrium”, whereas it depends
on the initial value x0. In general, such “equilibrium” must be distinguished
from the equilibrium in the other case. The stability of such “equilibrium”
is mathematically categorized as Lyapunov stable (L-stable), weakly stable,

(continued)
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neutrally stable, or simply stable, as introduced in Sect. 14.3 (see p. 427).
Such a stability does not indicate the asymptotical stability since any small
perturbation from an “equilibrium” results in a small change of “equilibrium”
value. However, such a change of “equilibrium” value is sufficiently small
for any sufficiently small perturbation of the previous “equilibrium”. In this
sense, such an “equilibrium” cannot be classified as “unstable”, following the
mathematical definition of the unstable equilibrium.

In the following arguments, we shall consider only the case of α 	= 1/2. The
non-trivial equilibrium x∗ = 2α/(2α + 1) exists when and only when α > 1/2.

Stability of Equilibrium

The absolute value of the slope of g(x) is 2α for any x 	= 1/2. When α > 1/2,∣∣g′(x∗)
∣∣ = 2α > 1 for both of equilibria 0 and 2α/(2α + 1). Therefore, both of

equilibria 0 and 2α/(2α + 1) are unstable when α > 1/2.
When α < 1/2, the absolute value of the slope of g(x), 2α, is less than 1 for

any x 	= 1/2. Thus, the unique equilibrium x∗ = 0 is locally asymptotically stable.
Further, by the cobwebbing method, it is easy to show that equilibrium x∗ = 0 is
globally asymptotically stable (see Fig. 12.7).

Period-2 Solution

Let us consider the existence and stability of a period-2 solution for the tent map
(12.1) with (12.7). If it exists, it must be given by the roots of the equation g(g(x)) =

Fig. 12.7 Orbits {xn} by the cobwebbing method for the tent map (12.1) with (12.7). Numerically
drawn up to x50 with x0 = 0.351 and x0 = 0.801 respectively
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x except for the roots of g(x) = x (refer to Sect. 12.1.4). Remark that the former
roots necessarily contain the latter.

When α ≤ 1/2, no period-2 solution exists. The orbit {xn} for any initial value
x0 ∈ (0, 1] satisfies that g(xn) < xn for any n ≥ 0. Hence it is satisfies that
g(g(x)) < g(x) < x for any x ∈ (0, 1]. This means that any period-2 solution
cannot exist.

When α > 1/2, if there exists a period-2 solution with its values x� and g(x�)
such that x� < g(x�), it must be satisfied that x� < 2α/(2α + 1) < g(x�).
This is because of the following reason. From Fig. 12.6, we can easily see that,
when α > 1/2, x < g(x) for x ∈ [0, 2α/(2α + 1)) while x > g(x) for
x ∈ (2α/(2α + 1), 1]. Hence, in order to satisfy that x� < g(x�), it must be satisfied
that x� < 2α/(2α + 1). Further, since it is satisfied that g(g(x�)) = x� for the
period-2 solution, we can find that 2α/(2α + 1) < g(x�).

Now suppose that x� > 1/2. Then we have g(x�) = 2α(1 − x�). Since g(x�) >
1/2 from the above arguments, it is satisfied that g(g(x�)) = 2α{1 − g(x�)}. Thus,
from the equation g(g(x�)) = x�, we get the equation 2α{1 − 2α(1 − x�)} = x�,
and find the root

x� = 2α(1 − 2α)

1 − 4α2 = 2α

2α + 1
.

This is the root of the equation g(x) = x, and thus is not the root for the period-2
solution.

Next, suppose that x� < 1/2. Then we have g(x�) = 2αx�, and g(g(x�)) =
2αx�{1 − g(x�)}. Thus, from the equation g(g(x�)) = x�, we get the equation
2α(1 − 2αx�) = x�. The root of this equation is

x� = 2α

4α2 + 1
. (12.8)

The assumption x� < 1/2 is necessarily satisfied for (12.8) when α > 1/2. Further
from (12.8), we get

g(x�) = 4α2

4α2 + 1
.

We can easily show that it is always satisfied when α > 1/2 that 2α/(2α + 1) <
g(x�), as is required from the above arguments.

For α > 1/2, there cannot exist any period-2 solution such that x� = 1/2. Since
g(1/2) = α, we have g(α) = 1/2 if there exists such a period-2 solution. However,
for α > 1/2, it is only when α = 1/2. This is contradictory.

From these arguments, we can conclude that there exists a period-2 solution
with the values x� and g(x�) defined by (12.8) when and only when α > 1/2.
Moreover, since

∣∣g′(x)
∣∣ = 2α > 1 for any x 	= 1/2 when α > 1/2, we find that
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∣∣g′(g(x�))g′(x�)
∣∣ = 4α2 > 1. This means that the period-2 solution is necessarily

unstable (refer to Sect. 12.1.4 about the local stability of period-2 solution).

Period-k Solution

Suppose that there exists a period-k solution which does not contain 1/2. From the
above arguments, it is necessary that α > 1/2. Same as argued about the period-2
solution in the above, for the value ζ ∗ ( 	= 1/2) of the period-k solution, the other
k − 1 values are given by

G�(ζ
∗) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸

�

(ζ ∗)

over � = 1, 2, . . . , k − 1. From (12.6), we find that

∣∣∣∣dGk(x)dx

∣∣∣∣
x=ζ ∗

= (2α)k > 1

for any k when α > 1/2, because
∣∣g′(x)

∣∣ = 2α > 1 for x 	= 1/2. This means that
any period-k solution which does not contain 1/2 is necessarily unstable (refer to
Sect. 12.1.4).

If a period-k solution contains 1/2, the above arguments cannot be applied
because g is not differentiable at x = 1/2. It is the case to be separately considered.
Now, let x0 = 1/2 + ε with 0 < |ε| � 1 when α > 1/2. Then we have

g(
1

2
+ ε) =

{
2α
(
1 − 1

2 − ε) (ε > 0)

2α
( 1

2 + ε) (ε < 0)

}
= α − 2α|ε| > 1

2
.

Since x = 1/2 is now an equilibrium for the one dimensional dynamical system

xi+1 = Gk(xi) = Gk−1 ◦ g(xi),

we find that

1

2
= Gk(

1

2
) = Gk−1 ◦ g( 1

2
) = Gk−1(α).

On the other hand, we have

Gk(
1

2
+ ε) = Gk−1 ◦ g( 1

2
+ ε) = Gk−1(α − 2α|ε|).



400 12 Qualitative Analysis for Discrete Time Model

Since |2αε| � 1,

Gk−1(α − 2α|ε|) = Gk−1(α)− dGk−1(x)

dx

∣∣∣∣
x=α

2α|ε| + o(|ε|)

≈ 1

2
− 2α

{
k−1∏
i=1

g′(Gi−1(α))

}
|ε|,

with
∣∣g′(Gi−1(α))

∣∣ = 2α > 1 because Gi−1(α) (i = 1, 2, . . . , k − 1) is a value of
the period-k solution, different from 1/2. Therefore, we can get

∣∣∣∣Gk( 1

2
+ ε)− 1

2

∣∣∣∣ ≈
∣∣∣∣∣2α
{
k−1∏
i=1

g′(Gi−1(α))

}
|ε|
∣∣∣∣∣ = (2α)k|ε| > |ε|.

This means that, if |x0 −1/2| = |ε| for 0 < |ε| � 1 when α > 1/2, then necessarily
|Gk(x0) − 1/2| > |ε|. As a result, we find that equilibrium x = 1/2 for the one
dimensional dynamical system xi+1 = Gk(xi) is unstable. Finally we can result
that any period-k solution which contains 1/2 for the tent map (12.1) with (12.7) is
necessarily unstable if it exists.

Consequently we have shown that any period-k is necessarily unstable if it exists
when α > 1/2. It is trivial that the existence of a period-k solution depends on the
value of α. It can be seen from Fig. 12.8 that, when a period-2 solution exists, the

Fig. 12.8 Graphs of the �-fold composed mapG�(x) = g ◦ g ◦ · · · ◦ g(x) (� = 1, 2, 3, 4, 5, 6) for
the tent map (12.1) with (12.7). Numerically drawn for α = 0.8
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existence of the other periodic solution depends on the value of α. In the special
case of α = 1, any periodic solution exists. Since we can get the explicit simple
formula for the k-fold composed function Gk for any k, it can be easily proved by
using its graph for the general k. We skip the proof here.

Chaotic Variation

From the above arguments about the tent map (12.1) with (12.7), we have seen that
xn → 0 as n→ ∞ for α < 1/2, while the orbit {xn} for α > 1/2 does not converge
any equilibrium or periodic solution for almost every initial value x0 except for the
case where x0 is the value of an equilibrium or periodic solution. In such a case,
the orbit {xn} shows a variation of values different from each other. As shown in
Fig. 12.9, it becomes a chaotic variation. Figure 12.10 shows the bifurcation diagram
numerically drawn for α > 1/2 about the tent map (12.1) with (12.7). Especially
for α = 1, The ω-limit set becomes dense in the interval [0, 1] with a non-uniform
specific distribution.

Fig. 12.9 Chaotic variations of {xn} generated by the tent map (12.1) with (12.7). Numerical plots
from x0 = 0.311 to x50 for each value of α
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Fig. 12.10 The bifurcation diagram numerically drawn for α > 1/2 about the tent map (12.1)
with (12.7), with x0 = 0.4. The plots are from x300 to x400. This may be regarded as a figure to
show the ω-limit set numerically approximated for each value of α (refer to Sect. 12.1.5)

12.2 Two Dimensional Discrete Time Model

12.2.1 Linearization Around Equilibrium

In this section, we introduce the linearization for the two dimensional system of first
order difference Eq. (11.13) (Sect. 11.2.1) around an equilibrium (x∗, y∗):

⎧⎨
⎩
xn+1 = f (xn, yn)

yn+1 = g(xn, yn)

(11.13)

It is similar with the linearization for the one dimensional case described in
Sect. 12.1.1. The application of Taylor expansion for two variable functions f (x, y)
and g(x, y) around an equilibrium (x∗, y∗) gives

f (xn, yn) = f (x∗, y∗)+ fx(x∗, y∗)(xn − x∗)+ fy(x∗, y∗)(yn − y∗)
+ o(xn − x∗, yn − y∗);

g(xn, yn) = g(x∗, y∗)+ gx(x∗, y∗)(xn − x∗)+ gy(x∗, y∗)(yn − y∗)
+ o(xn − x∗, yn − y∗),

(12.9)

where fx(x, y) := ∂f (x, y)/∂x, fy(x, y) := ∂f (x, y)/∂y, gx(x, y) :=
∂g(x, y)/∂x, and gy(x, y) := ∂g(x, y)/∂y. The residual terms of higher order
expressed by o(xn − x∗, yn − y∗) satisfy that

lim
(xn,yn)→(x∗,y∗)

o(xn − x∗, yn − y∗)
xn − x∗ = 0; lim

(xn,yn)→(x∗,y∗)

o(xn − x∗, yn − y∗)
yn − y∗ = 0.
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Since f (x∗, y∗) = x∗ and g(x∗, y∗) = y∗, we can derive the following system
of first order linear difference equations with respect to the perturbation of (x, y)
from equilibrium (x∗, y∗), un = xn − x∗ and vn = yn − y∗, from (11.13):

⎧⎨
⎩
un+1 = fx(x

∗, y∗)un + fy(x∗, y∗)vn + o(un, vn);
vn+1 = gx(x

∗, y∗)un + gy(x∗, y∗)vn + o(un, vn).
(12.10)

If and only if (un, vn) → (0, 0) as n → ∞ for any (u0, v0) such that 0 < |u0| � 1
and 0 < |v0| � 1, equilibrium (x∗, y∗) is called locally asymptotically stable.

Similarly with the arguments for the one dimensional case in Sect. 12.1.1, we
focus on the behavior of the solution (xn, yn) for (11.13) in a neighborhood of
equilibrium (x∗, y∗). Thus, supposing that |xn − x∗| = |un| � 1 and |yn − y∗| =
|vn| � 1, we consider the following system of (̃un, ṽn) which temporal variation
approximates that of (un, vn) by (12.10) in a neighborhood of (x∗, y∗):

⎧⎨
⎩
ũn+1 = fx(x

∗, y∗)̃un + fy(x∗, y∗)̃vn;

ṽn+1 = gx(x
∗, y∗)̃un + gy(x∗, y∗)̃vn.

(12.11)

This is called linearized system around equilibrium (x∗, y∗) for (11.13).
The linearized system (12.11) for (11.13) corresponds to (11.14) for (11.13) in

Sect. 11.2, and matrix A defined by (11.15) now becomes

A =
(
fx(x

∗, y∗) fy(x∗, y∗)

gx(x
∗, y∗) gy(x∗, y∗)

)
. (12.12)

This matrix defined by partial derivatives of f and g is called Jacobian matrix at
the point (x∗, y∗). The determinant of A, detA, is called Jacobian determinant. The
behavior of (̃un, ṽn) by (12.11) is determined by the eigenvalues of A, as described
in Sect. 11.2. This means that the behavior of (un, vn) by (12.10) in a neighborhood
of (0, 0) corresponding to equilibrium (x∗, y∗) is determined by the eigenvalues
of Jacobian matrix A at equilibrium (x∗, y∗). In conclusion, from Theorem 11.2
in Sect. 11.2, the local stability of equilibrium (x∗, y∗) for the system (11.13) is
determined as follows:

Theorem 12.5 If every eigenvalue λ of Jacobian matrix A for an equilibrium
(x∗, y∗) of the system (11.13) has the absolute value less than one, |λ| < 1,
equilibrium (x∗, y∗) is locally asymptotically stable. If the absolute value of an
eigenvalue λ is greater than one, |λ| > 1, it is unstable.
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Table 12.1 Classification of the equilibrium and its stability for the two dimensional system of
first order difference Eq. (11.13). For the case of purely imaginary eigenvalue, the local stability
must be investigated with some additional analysis as mentioned in the main text

Eigenvalues Classification of equilibrium Local stability

Real and |λ1| ≥ |λ2| > 1
Source

Unstable node

Unstable
Imaginary and
|λ1| = |λ2| > 1 Unstable spiral/focus

Real and |λ1| < 1 < |λ2| Saddle

Real and |λ1| ≤ |λ2| < 1
Sink

Stable node Locally
asymptotically
stable

Imaginary and
|λ1| = |λ2| < 1 Stable spiral/focus

Purely imaginary Center

(
Lyapunov stable

Neutrally stable

)

In the next section,1 we will see the classification of equilibrium with respect to the
local stability.

12.2.2 Classification of Equiliblium

As already described in the previous section, the local stability of an equilibrium
about the model with a two dimensional system of first order difference Eq. (11.13)
can be investigated by analyzing the behavior of the system of first order linear
difference Eq. (12.11) derived by the linearization of (11.13) around the equilibrium.
Technically the eigenvalues of Jacobian matrix A defined by (12.12) determine the
asymptotic behavior of (̃un, ṽn) by (12.11), and subsequently the asymptotic behav-
ior of (un, vn) by (12.10). Therefore, as described in Sect. 11.2, the eigenvalues of
Jacobian matrix A defined by (12.12) determine the local stability of equilibrium
(x∗, y∗) for the system (11.13) as described above in Theorem 12.5, and classify it
as shown in Table 12.1.

If the following condition is satisfied for an equilibrium x∗ = (x∗, y∗) of the
system (11.13), equilibrium x∗ is called Lyapunov stable, L-stable, neutrally stable,
weakly stable, or sometimes simply stable:

• For any ε > 0, there exists a sufficiently small positive δ such that ||xn−x∗|| < ε
for all n > 0 about xn = (xn, yn) generated by (11.13) with any initial condition
x0 = (x0, y0) satisfying that ||x0 − x∗|| < δ.

1 The arguments in the section are mathematically analogous to those in Sect. 14.3 for the two
dimensional system of first order linear differential equations. It would be very helpful for readers’
clearer understanding to compare one with the other.
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The mathematical definition of this stability means that the sequence {(xn, yn)}
generated by (11.13) stays in a neighborhood of equilibrium (x∗, y∗) if the
perturbation is sufficiently small. In other words, the distance of point xn from
equilibrium x∗ keeps sufficiently small for any n if the perturbation is sufficiently
small. We must remark that the definition does not require an asymptotic approach
of the sequence toward the equilibrium.

If the following condition about such an asymptotic approach of the sequence
toward the equilibrium is satisfied in addition, equilibrium x∗ is called locally
asymptotically stable:

• With a sufficiently small positive δ, ||xn − x∗|| → 0 as n → ∞ for all x0 such
that ||x0 − x∗|| < δ.

We must remark here the treatment of Lyapunov stability, as mentioned also
at p. 221 about the stability of an equilibrium for a continuous time model,
Lotka-Volterra prey-predator model (8.15) in Sect. 8.4. If an equilibrium x∗
for (11.13) is Lyapunov stable, both of two eigenvalues for the equilibrium
have the absolute value 1. However, the inverse is not true. That is, the
equilibrium cannot be identified as Lyapunov stable only from the fact that
both of two eigenvalues have the absolute value 1. Even when they have the
absolute value 1, the equilibrium may not be Lyapunov stable.

This is because the local stability analysis is based on the linearized system
(12.11) only. It is a sort of linear approximation of the system (11.13) in
a neighborhood of equilibrium x∗. Hence, when both of two eigenvalues
have the absolute value 1, the terms of higher order in (12.10) determine
the actual behavior of the sequence near the equilibrium, which may cause
its asymptotic approach toward it or its leaving from it. In a mathematical
sense, two eigenvalues with the absolute value 1 only imply the possibility of
Lyapunov stability about the equilibrium. A further investigation in addition
to the local stability analysis is necessary to get the result on the stability.

12.2.3 Jury Stability Test

Every root of the following equation has the absolute value less than one as |λ| < 1,

f (λ) = λn + a1λ
n−1 + · · · + an−1λ+ an = 0,
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if and only if every value of Ji,0 (i = 0, 1, 2, . . . , n) defined below is positive:

J0,j := aj ; Ji,j := 1

Ji−1,0

∣∣∣∣∣
Ji−1,0 Ji−1,n+1−i−j

Ji−1,n+1−i Ji−1,j

∣∣∣∣∣ ,

where i = 1, 2, . . . , n, j = 0, 1, . . . , n−i, and a0 = 1. This necessary and sufficient
condition is called Jury stability test, and practically used to investigate the local
stability (may be called the linear stability as well) about an equilibrium state for a
dynamical system, though it is rarely applied for the analytical proof for the higher
or general dimensional system because of a complicated mathematical expression
of inequalities about the condition. We note that there are some different formulas
to show Jury stability test and mathematically equivalent condition, which has been
studied and derived until now in applied mathematics. In most cases of its use, the
condition is checked by an iterative calculation following the definition of Ji,0 given
in the above.

From the above condition, we can derive the following conditions respectively
about the coefficients of the above equation f (λ) = 0 for low dimensional cases of
n = 2 and n = 3:

For n = 2 : a2
2 < 1, a2

1 − 2a2 − a2
2 < 1.

For n = 3 :

⎧⎪⎪⎨
⎪⎪⎩

a2
3 < 1;
a2

2 + (2 + a2
1)a

2
3 − a4

3 − 2a1a2a3 < 1;
a2

1 − a2
2 − 2a2 + 2a1a3 + a2

3 < 1.

It is easy to see that the condition must appear complicated even for the case of n =
3, though the condition must be useful to numerically estimate the local stability
of an equilibrium with a specific set of parameter values in the dynamical system
under the analysis.

Answer to Exercise

Exercise 12.1 (p. 389)

Let us consider the perturbation of xn from equilibrium 1 − 1/ℛ0 = 2/3: εk =
xn − 2/3. Substituting this into (12.4) with ℛ0 = 3, we can get

2

3
+ εn+1 = 3

(
1 − 2

3
− εn

)( 2

3
+ εn

)
= 2

3
− εk − 3ε2

k ,
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that is,

εn+1 = −(1 + 3εn)εn.

From this recurrence relation, we can further get

εn+2 = −(1 + 3εn+1)εn+1

= {1 − 3(1 + 3εn)εn}(1 + 3εn)εn = (1 − 18ε2
n − 27ε3

n)εn.

Since |1 − 18ε2
n − 27ε3

n| < 1 for |εn| � 1, we find that |εn+2| < |εn|. Therefore,
ε2n → 0 and ε2n+1 → 0 as n → ∞. This means that, when ℛ0 = 3, equilibrium
1 − 1/ℛ0 = 2/3 for (12.4) is locally asymptotically stable.

As for the local stability of an equilibrium x∗ with g′(x∗) = −1 about the
general discrete time model (12.1), we can apply the above arguments with Taylor
expansion. Let us consider the perturbation εn = xn−x∗ as before. Taylor expansion
around x∗ leads to

x∗ + εn+2 = g(xn+1) = g(g(xn)) = g(g(x∗ + εn))

= x∗ + εn − 1

6

[
2g′′′(x∗)+ 3{g′′(x∗)}2

]
ε3
n + o(ε3

n),

that is,

εn+2 =
(

1 − 1

6

[
2g′′′(x∗)+ 3{g′′(x∗)}2

]
ε2
n + o(ε2

n)
)
εn.

Therefore, when |εn| � 1, if

2g′′′(x∗)+ 3{g′′(x∗)}2 > 0, (12.13)

we have |εk+2| < |εk|. Consequently we can get the following result:

Theorem 12.6 For an equilibrium x∗ with g′(x∗) = −1 about the discrete
time model (12.1), if the condition (12.13) is satisfied, equilibrium x∗ is locally
asymptotically stable. If the condition with the inverse inequality in (12.13) is
satisfied, it is unstable.

For the logistic map (12.4), the condition (12.13) is necessarily satisfied since
g′′(x∗) 	= 0 and g′′′(x) = 0. Similarly to the logistic map, we can find the following
more general result about the discrete time model (12.1) with a quadratic polynomial
function g:

Corollary 12.1 For the discrete time model (12.1) with a quadratic polynomial
function g, any equilibrium x∗ with g′(x∗) = −1 is necessarily locally asymp-
totically stable.
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This corollary can be proved simply for the general quadratic polynomial function
g(x) = ax2 + bx + c (a 	= 0). Indeed, the condition (12.13) is necessarily satisfied
since g′′(x∗) = 2a 	= 0 and g′′′(x) = 0.

Exercise 12.2 (p. 391)

(a) As described in the main text, when the logistic map (12.4) has a period-2
solution defined by different two values A and B, these values are equivalent to
the equilibria for the discrete dynamical system yn+1 = g ◦ g(yn). That is, A and B
are given by the roots for equation

y = ℛ0{1 − g(y)}g(y) = ℛ0{1 − ℛ0(1 − y)y}ℛ0(1 − y)y.

The equilibria 0 and 1 − 1/ℛ0 for the logistic map (12.4) must be the roots for
the above equation, since it holds that g ◦ g(x∗) = g(g(x∗)) = g(x∗) = x∗ for
equilibrium x∗ with g(x∗) = x∗ for (12.4). This fact helps us to factorize the above
equation as follows:

y
{
y −

(
1 − 1

ℛ0

)}{
ℛ0y

2 − (ℛ0 + 1)y + 1 + 1

ℛ0

}
= 0.

Thus the values A and B of the period-2 solution are given by the roots of equation

ℛ0y
2 − (ℛ0 + 1)y + 1 + 1

ℛ0
= 0 (12.14)

such that they are different from each other and in (0, 1). It is easy to show that the
necessary and sufficient condition for the existence of such roots about the above
equation is given by ℛ0 > 3. Further we can explicitly get the values A and B by
solving the above quadratic equation:

ℛ0 + 1 ± √
(ℛ0 + 1)(ℛ0 − 3)

2ℛ0
. (12.15)

(b) From the arguments in p. 390 of Sect. 12.1.4, a period-2 solution with the values
A and B is locally asymptotically stable if |g′(A)g′(B)| < 1. For the logistic map
(12.4), the condition becomes ℛ2

0 |(1 − 2A)(1 − 2B)| < 1. Since these values A
and B are the roots of the quadratic Eq. (12.14), given by (12.15), they satisfy that
A+B = 1 + 1/ℛ0 and AB = (1 + 1/ℛ0)/ℛ0. With these relations, the sufficient
condition for the local stability of the period-2 solution, ℛ2

0 |(1−2A)(1−2B)| < 1,
becomes

∣∣ℛ2
0 − 2ℛ0 − 4

∣∣ < 1,
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which can be solved under the condition for the existence of a period-2 solution that
ℛ0 > 3. From this inequality, we can finally get the sufficient condition for the
local stability that ℛ0 < 1 + √

6.
(c) From the arguments in (b), when ℛ0 > 1 + √

6, we have
∣∣ℛ2

0 − 2ℛ0 − 4
∣∣ > 1,

so that |g′(A)g′(B)| > 1. This indicates that the equilibria A and B for the discrete
dynamical system yn+1 = g ◦ g(yn) are unstable. Therefore the period-2 solution
with the values A and B is unstable when ℛ0 > 1 + √

6.
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Chapter 13
First Order Linear Ordinary Differential
Equation

Abstract This chapter describes the fundamentals on the first order linear ordinary
differential equation, which are closely related to many parts in the main text
especially about the continuous time model.

13.1 One Dimensional First Order Linear Equation

13.1.1 First Order Ordinary Differential Equation

One dimensional differential equation is a mathematical expression of the relation
about an unknown function and its derivative(s). A function identically satisfying a
differential equation is called solution of it. Analysis to find a solution is called
“solving the differential equation”. In this section, we shall describe the least
fundamentals about it.

The most general expression of first order ordinary differential equation with
respect to an unknown function y(t) of an independent variable t is given by a
function F of t , y and y ′ := dy(t)/dt:

F(t, y, y ′) = 0. (13.1)

The simplest form of first order ordinary differential equation has the following
normal form:

dy(t)

dt
= f (t), (13.2)

where a function f (t) is given a priori for the unknown function y(t). The general
solution can be expressed by the improper integral:

y(t) =
∫
f (t) dt,
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since the equation means that the first derivative of y(t) is given by a known function
f (t). For example, about the first order ordinary differential Eq. (13.2) has the
general solution y(t) = sin t + C with an arbitrary constant C when f (t) = cos t .

To find the solution of (13.1) which satisfying that y(t0) = y0 is called initial
value problem or Cauchy problem, and the condition y(t0) = y0 is called initial
condition for (13.1). For example, the first order ordinary differential Eq. (13.2) with
f (t) = cos t and the initial condition y(0) = 1 leads to the solution y(t) = sin t+1,
which is one of what is called special solutions for (13.2).

The initial value problem for a first order ordinary differential equation may have
no solution or multiple solutions. The following theorem is well-known and most
fundamental about the existence and uniqueness of solution for the initial value
problem:

Theorem 13.1 (Cauchy Theorem) Consider the following initial value problem:

dy(t)

dt
= f (t, y), y(t0) = y0. (13.3)

If f is continuous in a domainD := {(t, y) | |t − t0| ≤ a, |y − y0| ≤ b}, and there
exists a positive constant L such that |f (t, z)− f (t, y)| ≤ L|z − y| for any (t, z)
and (t, y) in D (what is called Lipschitz condition), then the solution of the initial
value problem (13.3) uniquely exists for |t − t0| ≤ min

{
a, b
M

}
with the maximal

valueM of |f (t, y)| in D.

This theorem assures the existence and uniqueness of solution for t sufficiently near
t0 for the initial value problem satisfying the condition given there.

13.1.2 Separation of Variables

For the first order ordinary differential equation

dy(t)

dt
= f (t, y), (13.4)

if the function f (t, y) can be expressed by the product of single variable functions
T = T (t) of t and Y = Y (y) of y, that is, if it can be expressed as

dy(t)

dt
= T (t)Y (y), (13.5)

it is called separation of variables for (13.4).
Firstly let us consider the solution satisfying Y (y) 	= 0. From (13.5), we have

1

Y (y)

dy

dt
= T (t).
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Taking the improper integral for both sides,

∫
1

Y (y)

dy

dt
dt =

∫
T (t) dt,

and changing the variable for the integrand of left side, we have

∫
1

Y (y)
dy =

∫
T (t) dt. (13.6)

We may obtain the general solution by calculating the integral of (13.6).
Next, if there exists a value of y = ys such that Y (y) = 0, it is easily proved that

the constant function y(t) ≡ ys satisfies (13.5), so that y(t) ≡ ys is a solution of
(13.5). This solution may be included as a special case in the solution obtained for
Y (y) 	= 0. When it is not included, it may be called singular solution of (13.5).

Some of first order ordinary differential equations which is not the separation of
variables may be transformed to the separation of variables by appropriate variable
changes. It could be solved by the method of integration as above [2].

13.1.3 Linear Ordinary Differential Equation

The nth order linear ordinary differential equation is expressed as

y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = r(t), (13.7)

where pi(t) (i = 0, 1, . . . , n − 1) and r(t) are defined in a region !, and y(k) =
dky(t)/dtk . When r(t) = 0, it is called homogeneous linear ordinary differential
equation.

The following theorem is on the existence and uniqueness of the initial value
problem about (13.7) with the initial condition

y(t0) = c0, y
′(t0) = c1, . . . , y

(n−2)(t0) = cn−2, y
(n−1)(t0) = cn−1. (13.8)

Theorem 13.2 The initial value problem of (13.7) with (13.8) has the unique
solution of C1 class (i.e., differentiable, and the derivative is continuous) for
arbitrarily given t0 and ci (i = 0, 1, . . . , n − 1) if pi(t) (i = 0, 1, . . . , n − 1)
and r(t) are continuous in !.
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Now let us consider the following first order equation with p(t) and r(t) defined
in a certain region:

dy(t)

dt
+ p(t)y(t) = r(t). (13.9)

We shall derive the general solution of (13.9). Firstly let us consider the correspond-
ing homogeneous equation:

dy(t)

dt
= −p(t)y(t), (13.10)

which is clearly the separation of variables. Thus, from (13.6), the general solution
of (13.10) mathematically becomes

y(t) = C e− ∫ p(t) dt (13.11)

with an arbitrary constant C.
To get the solution of the corresponding non-homogeneous Eq. (13.9), we

suppose the following form about it:

y(t) = u(t) e− ∫ p(t) dt, (13.12)

which can be derived by the substitution of the arbitrary constant C in (13.11) by
an unknown function u(t) of t . This is called method of variation of constants.
Substituting (13.12) for (13.9), we can get the following first order ordinary
differential equation about u(t):

du(t)

dt
= r(t) e

∫
p(t) dt.

This can be easily solved by the integration, and we can get the general solution as

u(t) =
∫
r(t) e

∫
p(t) dtdt + C

with an arbitrary constant C. Hence, from (13.12), we can get the following general
solution of (13.9):

y(t) = 1

�(t)

[ ∫
r(t) �(t) dt + C

]
, (13.13)

where �(t) := exp
[ ∫
p(t) dt

]
, and C is an arbitrary constant.
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13.1.4 Bernoulli Equation

The following first order ordinary differential equation is called Bernoulli equation:

dx(t)

dt
= a(t)x(t)+ b(t)[x(t)]q,

where a(t) and b(t) are appropriate functions of t , and the exponent q is an
arbitrarily given real number. When q = 0 or q = 1, it becomes a linear ordinary
differential equation, and can be solved as described in Sect. 13.1.3.

When q 	= 0 and q 	= 1, we can apply the variable transformation such that
y(t) = [x(t)]1−q , and subsequently obtain the following linear equation with
respect to y(t):

dy(t)

dt
= (1 − q)a(t)y(t)+ (1 − q)b(t).

Since this is a first order linear ordinary differential equation, we can get the solution
y(t) as before. Then we can derive the solution x(t) with x(t) = [y(t)]1/(1−q). As
mentioned in Sect. 5.3, the logistic equation is a Bernoulli equation.

13.2 Two Dimensional System of First Order Linear
Equations

13.2.1 Simultaneous First Order Equations

A two dimensional system of first order ordinary differential equations in terms of
(u, v)

⎧⎪⎨
⎪⎩
dx(t)

dt
= f (x, y)

dy(t)

dt
= g(x, y)

(13.14)

appears as a mathematical model for a variety of phenomena. When both of
functions f and g are linear in terms of x and y, the general solution for (x, y) can
be found in most cases. In contrast, when f or g is nonlinear, it is generally difficult
to get the explicit solution, and instead some mathematical techniques are applied
to investigate the qualitative feature of the solution (for example, see [1, 3–5]).
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For the system of nonlinear ordinary differential Eq. (13.14), the qualitative
analysis frequently uses the following system of homogeneous linear ordinary
differential equations:

⎧⎪⎨
⎪⎩
du(t)

dt
= a11 u(t)+ a12 v(t)

dv(t)

dt
= a21 u(t)+ a22 v(t),

(13.15)

where coefficients a11, a12, a21 and a22 are mathematically determined for each
analysis on the original system (13.14). This system can be expressed by two

dimensional column vector v(t) :=
(
u(t)

v(t)

)
and 2 × 2 matrix A :=

(
a11 a12

a21 a22

)

as follows:

d

dt
v(t) = A v(t). (13.16)

In the following part,1 we discuss the general solution for the system of
homogeneous linear ordinary differential Eq. (13.15) with constant coefficients, that
is, (13.16) with matrix A which elements a11, a12, a21 and a22 are all constant.

13.2.2 Case of Distinct Real Eigenvalues

The characteristic equation det(A− λE) = 0 for the eigenvalue λ of matrix A with

the unit matrix E :=
(

1 0
0 1

)
becomes the quadratic equation (11.16) in Sect. 11.2.2

Here we consider the case where the eigenvalues λ+ and λ− given by the roots
for the characteristic equation (11.16) are real and different from each other. With
column eigenvectors p1 := T(p11 p12) and p2 := T(p21 p22) respectively for λ+ and
λ−, let us define the 2 × 2 matrix

P = (p1 p2) =
(
p11 p21

p12 p22

)
.

1 The arguments in this part are mathematically analogous to those in Sect. 11.2 for the two
dimensional system of first order linear difference equations. It would be very helpful for readers’
clearer understanding to compare one with the other.
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It can be mathematically proved that matrix P is regular. We can diagonalize matrix
A as

P−1AP =
(
λ+ 0

0 λ−

)
,

where P−1 is the inverse matrix of P .
Now let w(t) = P−1v(t) = T(w1(t) w2(t)). Then we have v(t) = Pw(t). From

d

dt
v(t) = d

dt
Pw(t) = P

d

dt
w(t)

and A v(t) = AP w(t), we can find the following ordinary differential equation:

d

dt
w(t) = P−1AP w(t) =

(
λ+ 0

0 λ−

)
w(t).

Then we have

⎧⎪⎨
⎪⎩
dw1(t)

dt
= λ+w1(t)

dw2(t)

dt
= λ−w2(t),

and find that w1(t) = C1eλ+t and w2(t) = C2eλ−t with arbitrary constants C1 and
C2. From this result, we can get the general solution for the system of ordinary
differential Eq. (13.16):

v(t) = Pw(t) = (p1 p2)

⎛
⎝w1(t)

w2(t)

⎞
⎠ = C1eλ+tp1 + C2eλ−tp2. (13.17)

From these arguments, we find that the system of homogeneous linear ordinary
differential Eq. (13.16) has the following general form of solution when matrix A
has distinct real eigenvalues:

{
u(t) = cueλ+t + c′ueλ−t

v(t) = cveλ+t + c′veλ−t ,
(13.18)

where cu, c′u, cv and c′v are constants uniquely determined for a given initial
condition (u(0), v(0)).
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13.2.3 Case of Multiple Eigenvalues

In this section, we consider the case where the roots for the characteristic equation
(11.16) is degenerated as λ, that is, the case of multiple eigenvalues, λ1 = λ2 = λ.
The case where A = λE is included. In such a case, that is, when a11 = a22 = λ

and a12 = a21 = 0, we have

⎧⎪⎪⎨
⎪⎪⎩

du(t)

dt
= λu(t)

dv(t)

dt
= λv(t).

Then the general solution for the system of ordinary differential Eq. (13.16) is given
by u(t) = C1eλt and v(t) = C2eλt with arbitrary constants C1 and C2.

For A 	= λE, let us define a column vector p′ such that (A − λE)p′ = p with
eigenvector p for eigenvalue λ. The vector p′ is called generalized eigenvector, and
is linearly independent of p. Similarly as before, let us define 2 × 2 matrix P =
(p p′). Since Ap = λp and Ap′ = p + λp′, we have

AP = (Ap Ap′) = (λp p + λp′) = λ (p p′)+ (0 p) = λP + PN,

where N :=
(

0 1
0 0

)
. With w(t) = P−1v(t), we can derive the following ordinary

differential equation as before:

d

dt
w(t) = P−1AP w(t) = P−1(λP + PN)w(t) = (λE +N)w(t) =

⎛
⎝ λ 1

0 λ

⎞
⎠w(t).

Hence we obtain
⎧⎪⎪⎨
⎪⎪⎩

dw1(t)

dt
= λw1(t)+w2(t)

dw2(t)

dt
= λw2(t).

From the second equation, we can find thatw2(t) = C2eλt with an arbitrary constant
C2. By substituting this into the first equation, we get the following ordinary
differential equation:

dw1(t)

dt
− λw1(t) = C2eλt .

We can solve this equation with (13.13), and obtain the solution w1(t) = (C1 +
C2 t) eλt with an additional arbitrary constant C1.
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From these arguments, we can obtain the following general solution for the
system of ordinary differential Eq. (13.16) when matrix A has multiple eigenvalues:

v(t) = Pw(t) = (C1 + C2 t) eλtp + C2eλtp′. (13.19)

As a result, it is shown that the system of homogeneous linear ordinary differential
Eq. (13.16) has the following general form of solution when matrix A has multiple
eigenvalues:

{
u(t) = (cu + c′u t)eλt
v(t) = (cv + c′v t)eλt ,

(13.20)

where cu, c′u, cv and c′v are constants uniquely determined for a given initial
condition (u(0), v(0)).

13.2.4 Case of Imaginary Eigenvalues

In this section, we consider the case where matrix A has conjugate imaginary
eigenvalues λ and λ, for which corresponding eigenvectors are given by p and p.
As before, let us define 2 × 2 matrix P = (p p), which is now a complex matrix.

Although vectors p, p, and matrix P contain imaginary elements, we can apply
the same arguments as for the case where matrixA has distinct real eigenvalues. We
can obtain the following general solution for the system of differential Eq. (13.16):

v(t) = C1eλ tp + C2eλ tp, (13.21)

where constants C1 and C2 are imaginary numbers to make the right side a real
vector for any time t because v(t) must be a real vector for any time t now. First we
shall prove this in the subsequent part.

Since v(t1) must be a real vector for any real number t = t1 about the system
of ordinary differential Eq. (13.16), it must hold that v(t1) = v(t1). Hence, the
following equation must hold:

C1eλ t1p + C2eλ t1p = C1eλ t1p + C2eλ t1p,

that is,

eλ t1(C1 − C2)p = eλ t1(C1 − C2)p.
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Since the right side is conjugate to the left side, this equation indicates that eλ t1(C1−
C2)p is a real vector for any real number t = t1. For t1 	= 0, eλ t1 becomes imaginary.
Hence, as eλ t1(C1 − C2)p is a real vector for any real number t = t1, it must be
satisfied that C1 − C2 = 0. Therefore we find that C1 = C2, which means that C1
and C2 are conjugate to each other. Applying this result for (13.21), we can rewrite
the general solution as follows:

v(t) = C1eλ tp + C1eλ tp. (13.22)

Since the right side is the sum of mutually conjugate vectors for any imaginary
number C1, it is real.

Let us put λ = |λ|eiθ = |λ|(cos θ + i sin θ) with imaginary unit i, where |λ| is the
absolute value of imaginary number λ, and θ = argλ is the argument of λ. Besides,
denote the complex vector p as p = α + i β with appropriate real vectors α and β.
From Euler’s formulation, we have λn = ei nθ = cosnθ + i sin nθ . Then the general
solution (13.22) becomes

v(t) = C1eρ t (cosωt + i sinωt)(α + i β)+ C1eρ t (cosωt − i sinωt)(α − i β)

= eρ t (c1 cosωt + c2 sinωt)α + eρ t (c2 cosωt − c1 sinωt)β, (13.23)

where c1 = C1 + C1 = 2 ReC1 and c2 = i(C1 − C1) = −2 ImC1. Since C1 is
an arbitrary imaginary number, c1 and c2 are arbitrary real numbers independent of
each other.

Consequently we find that the system of homogeneous linear ordinary differ-
ential Eq. (13.16) has the following general form of solution when matrix A has
imaginary eigenvalues:

{
u(t) = eρt (cu cosωt + c′u sinωt)

v(t) = eρt (cv cosωt + c′v sinωt),
(13.24)

where cu, c′u, cv and c′v are real constants uniquely determined for a given initial
condition (u(0), v(0)).

13.2.5 Asymptotic Behavior of the Solution

Consequently from those results in Sects. 13.2.2–13.2.4, we can find the following
theorem about the asymptotic behavior of the solution (u(t), v(t)) for (13.15) as
t → ∞:

Theorem 13.3 The solution (u(t), v(t)) for the system of homogeneous linear
differential Eq. (13.15) has the following asymptotic behavior as t → ∞:
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Fig. 13.1 Numerically drawn vector flows in the (u, v)-phase plane for the system of homoge-
neous linear differential Eq. (13.15) with matrix A defined by (13.16). Matrix A has (a) non-zero
and distinct real eigenvalues; (b) multiple positive eigenvalues; (c) imaginary eigenvalues with a
non-zero real part; (d) purely imaginary eigenvalues; (e) zero and non-zero real eigenvalues

• If every eigenvalue λ of matrix A defined by (13.16) has a negative real part,
Re λ < 0, it converges to (0, 0) as t → ∞ independently of the initial condition
(Fig. 13.1a-1 and c-1).

• If matrix A has an eigenvalue λ with a positive real part, Re λ > 0, it diverges,
that is, |u(t)| → ∞ or |v(t)| → ∞ for almost every initial condition (Fig. 13.1a-
2, a-3, b, c-2, and e-2).

• If one eigenvalue of matrix A is 0 and the other is negative, it converges to a
certain finite point for almost every initial condition (Fig. 13.1e-1).
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• If every eigenvalue of matrix A is purely imaginary, it converges to an oscillatory
variation with a finite supremum of the amplitude for almost every initial
condition (Fig. 13.1d).
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Chapter 14
Qualitative Analysis for Continuous Time
Model

Abstract This chapter provides the important least knowledge about the fundamen-
tal mathematical theories to understand or find the dynamical nature of continuous
time model.

14.1 Local Stability Analysis for One Dimensional Model

The qualitative analysis on the behavior of solution in the neighborhood of an
equilibrium is generally called local stability analysis about the equilibrium. The
stability determined by the analysis is called local stability of the equilibrium. In this
section, we shall see how the local stability analysis is applied for one dimensional
continuous time model given by the following ordinary autonomous differential
equation:

dN(t)

dt
= g(N(t)). (14.1)

LetN∗ be an equilibrium for (14.1), satisfying that g(N∗) = 0. We consider now
the temporal change of the difference n(t) = N(t)−N∗, which uniquely determines
the temporal change of N(t) itself. Especially the sufficiently small difference n is
sometimes called perturbation of N from equilibrium N∗. Since dN/dt = d(n +
N∗)/dt = dn/dt , the temporal change of n(t) is governed by

dn(t)

dt
= g(n(t)+ N∗). (14.2)

We must remark that the value of nmay be negative. When and only when n(t) → 0
as t → ∞, we have N(t) → N∗ as t → ∞. If and only if n(t) → 0 as t → ∞ for
any n(0) such that 0 < |n(0)| � 1, equilibrium N∗ is called locally asymptotically
stable (refer also to Sect. 12.1.1). Hence it is necessary and sufficient for the locally
asymptotic stability of equilibrium N∗ that n(t) → 0 as t → ∞ for any n(0) such
that 0 < |n(0)| � 1.
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By Taylor expansion of the function g(x) around x = N∗,

g(x) = g(N∗)+ g′(N∗)(x −N∗)+ o(x −N∗)

with g′(N∗) = dg/dx|x=N∗ , we have

g(n(t) +N∗) = g(N∗)+ g′(N∗)n(t) + o(n(t)),

since g(N∗) = 0. As long as considering the temporal change of N(t) in a
neighborhood of equilibrium N∗, we can use the assumption that |N(t) − N∗| =
|n(t)| � 1 and |o(n(t))| � |n(t)|. Therefore, when g′(N∗) 	= 0, we have g(n(t) +
N∗) ≈ g′(N∗)n(t). Then we find that the dynamics of (14.2) in a neighborhood of
equilibriumN∗ for (14.1) can be approximated well by the temporal change of ñ(t)
governed by

dñ(t)

dt
= g′(N∗)̃n(t). (14.3)

Since g′(N∗) is a constant, this is mathematically equivalent to Malthus model (5.3).

This approximation is valid only when g′(N∗) 	= 0. When g′(N∗) = 0,
the term of the higher order in the above Taylor expansion determines the
temporal change of n(t). The arguments in this section to investigate the local
stability are not applicable. Such a case could be regarded as singular usually
for a model with (14.1), and we shall not go into such a case any more in this
book.

From (14.3), we can get the following result (Exercise 14.1), taking into account
that the value of ñ may be negative:

Lemma 14.1 If g′(N∗) < 0, then ñ(t) monotonically approaches 0 for t > 0,
while, if g′(N∗) > 0, then |̃n(t)| monotonically increases for t > 0.

Exercise 14.1 Prove Lemma 14.1.

From Lemma 14.1, we can immediately get the following theorem about the local
stability of equilibriumN∗ for (14.1):

Theorem 14.1 If g′(N∗) < 0, equilibrium N∗ for (14.1) is locally asymptotically
stable. If g′(N∗) > 0, it is unstable.

In the local stability analysis described here, it is essential to derive the
ordinary differential Eq. (14.3) from the original Eq. (14.1). Especially it is called
linearization of (14.1) around equilibrium N∗ to derive the approximate linear
differential Eq. (14.3) in order to investigate the local stability ofN∗. The Eq. (14.3)
is called linearized equation for (14.1) around equilibrium N∗.
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14.2 Linearization of Two Dimensional System around
Equilibrium

In this section, let us consider the linearization of the following two dimensional sys-
tem of autonomous ordinary differential equations around an equilibrium (x∗, y∗):

⎧⎪⎪⎨
⎪⎪⎩

dx(t)

dt
= f (x, y);

dy(t)

dt
= g(x, y).

(14.4)

The way is similar with that for the one dimensional case in the previous section.
The application of Taylor expansion for two variable functions f (x, y) and g(x, y)
around equilibrium (x∗, y∗) gives

f (x, y) = fx(x
∗, y∗)(x − x∗)+ fy(x∗, y∗)(y − y∗)+ o(x − x∗, y − y∗);

g(x, y) = gx(x
∗, y∗)(x − x∗)+ gy(x∗, y∗)(y − y∗)+ o(x − x∗, y − y∗),

(14.5)

where fx(x, y) := ∂f (x, y)/∂x, fy(x, y) := ∂f (x, y)/∂y, gx(x, y) :=
∂g(x, y)/∂x, and gy(x, y) := ∂g(x, y)/∂y. We used the relation that f (x∗, y∗) = 0
and g(x∗, y∗) = 0. The residual terms of higher order expressed by o(x−x∗, y−y∗)
satisfy that

lim
(x,y)→(x∗,y∗)

o(x − x∗, y − y∗)
x − x∗ = 0; lim

(x,y)→(x∗,y∗)

o(x − x∗, y − y∗)
y − y∗ = 0.

Then from (14.4), we can derive the following system of ordinary differential
equations with respect to the perturbation of (x, y) from equilibrium (x∗, y∗),
u(t) = x(t)− x∗ and v(t) = y(t)− y∗:

⎧⎪⎪⎨
⎪⎪⎩

du(t)

dt
= fx(x

∗, y∗)u(t)+ fy(x∗, y∗)v(t)+ o(u, v);
dv(t)

dt
= gx(x

∗, y∗)u(t)+ gy(x∗, y∗)v(t) + o(u, v).
(14.6)

If and only if (u(t), v(t)) → (0, 0) as t → ∞ for any (u(0), v(0)) such that
0 < |u(0)| � 1 and 0 < |v(0)| � 1, equilibrium (x∗, y∗) is called locally
asymptotically stable.

Similarly with the arguments for the one dimensional case in the previous
section, we focus on the behavior of the solution (x(t), y(t)) for (14.4) in a
neighborhood of equilibrium (x∗, y∗). Thus, supposing that |x(t)− x∗| = |u(t)| �
1 and |y(t) − y∗| = |v(t)| � 1, we consider the following system of (̃u(t), ṽ(t))
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which temporal change approximates that of (u, v) by (14.6) in a neighborhood of
(x∗, y∗):

⎧⎪⎪⎨
⎪⎪⎩

dũ(t)

dt
= fx(x

∗, y∗)̃u(t)+ fy(x∗, y∗)̃v(t)

dṽ(t)

dt
= gx(x

∗, y∗)̃u(t)+ gy(x∗, y∗)̃v(t)
(14.7)

This is called linearized system for (14.4) around equilibrium (x∗, y∗).
The linearized system (14.7) for (14.4) corresponds to (13.15) for (13.14) in

Sect. 13.2.1, and matrix A defined by (13.16) now becomes Jacobian matrix at the
point (x∗, y∗) (refer to Sect. 12.2.1):

A =
(
fx(x

∗, y∗) fy(x∗, y∗)

gx(x
∗, y∗) gy(x∗, y∗)

)
. (14.8)

The behavior of (̃u(t), ṽ(t)) by (14.7) is determined by the eigenvalues of A,
as described in Sect. 13.2. This means that the behavior of (u(t), v(t)) by (14.6)
in a neighborhood of (0, 0), that is, the behavior of (x(t), y(t)) by (14.4) in a
neighborhood of equilibrium (x∗, y∗) is determined by the eigenvalues of Jacobian
matrix A for the equilibrium. Finally, from Theorem 13.3 in Sect. 13.2, the local
stability of equilibrium (x∗, y∗) for the system (14.4) is determined as follows:

Theorem 14.2 If every eigenvalue λ of Jacobian matrix A for equilibrium (x∗, y∗)
has negative real part,Re λ < 0, equilibrium (x∗, y∗) for the system (14.4) is locally
asymptotically stable. If the real part of an eigenvalue λ is positive, Re λ > 0, it is
unstable.

In the next section,1 we will see the classification of equilibrium with respect to the
local stability.

14.3 Classification of Equiliblium

As already mentioned in the previous section, the local stability of an equilibrium
about the model with a two dimensional system of autonomous ordinary differ-
ential Eq. (14.4) can be investigated by analyzing the behavior of the system of
homogeneous linear ordinary differential Eq. (14.7) derived by the linearization
of (14.4) around the equilibrium. Technically the eigenvalues of Jacobian matrix
A defined by (14.8) determine the asymptotic behavior of (̃u(t), ṽ(t)) by (14.7),

1 The arguments in the section are mathematically analogous to those in Sect. 12.2.2 for the two
dimensional system of first order linear difference equations. It would be very helpful for readers’
clearer understanding to compare one with the other.
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and subsequently the asymptotic behavior of (u(t), v(t)) by (14.6). Therefore, as
described in Sect. 13.2, the eigenvalues of Jacobian matrix A defined by (14.8)
determine the local stability of the equilibrium, and classify it as shown in Table 14.1
(refer also to Fig. 13.1 in Sect. 13.2).

If the following two conditions are satisfied for equilibrium x∗ = (x∗, y∗) about
the system (14.4), equilibrium x∗ is called Lyapunov stable, L-stable, neutrally
stable, weakly stable, or sometimes simply stable:

(i) With a sufficiently small ρ > 0, the solution of (14.4), x(t) = (x(t), y(t)),
exists for all t > 0 and for any initial condition x0 = (x(0), y(0)) such that
||x0 − x∗|| < ρ.

(ii) For any ε > 0, there exists a sufficiently small positive δ < ρ such that ||x(t)−
x∗|| < ε for all t > 0 about x0 satisfying that ||x0 − x∗|| < δ.

The mathematical definition of this stability means that stays for all t > 0 in
a neighborhood of equilibrium (x∗, y∗) if the perturbation is sufficiently small.
In other words, the distance of point x(t) from equilibrium x∗ keeps sufficiently
small for all t > 0 if the perturbation is sufficiently small. We must remark that
the definition does not require an asymptotic approach of the solution toward the
equilibrium.

If the following condition about such an asymptotic approach of the solution
toward the equilibrium is satisfied in addition, equilibrium x∗ is called asymptoti-
cally stable:

(iii) With a sufficiently small δ such that 0 < δ < ρ, ||x(t) − x∗|| → 0 as t → ∞
for all x0 such that ||x0 − x∗|| < δ.

We must remark the treatment of Lyapunov stability, as mentioned also at
p. 221 about the stability of an equilibrium for Lotka-Volterra prey-predator
model (8.15) in Sect. 8.4. If an equilibrium (x∗, y∗) for (14.4) is Lyapunov
stable, two eigenvalues for the equilibrium are purely imaginary. However,
the inverse is not true. That is, only from the fact that two eigenvalues are
purely imaginary, the equilibrium cannot be identified as Lyapunov stable
only from the fact that two eigenvalues are purely imaginary. Even when
two eigenvalues are purely imaginary, the equilibrium may not be Lyapunov
stable. This is because the local stability analysis is based on the linearized
system (14.7) only. It is a sort of linear approximation of the system (14.4) in
the neighborhood of equilibrium (x∗, y∗). Hence, even when two eigenvalues
are purely imaginary, the terms of higher order in (14.6) determines the
actual behavior of the solution near the equilibrium, which may cause its
asymptotic approach toward it or its leaving from it. In a mathematical sense,
two purely imaginary eigenvalues only imply the possibility of Lyapunov
stability about the equilibrium. A further investigation in addition to the local
stability analysis is necessary to get the result on the stability.
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14.4 Lotka-Volterra Two Species Competition Model

In this part, let us see an actual local stability analysis on the equilibrium of Lotka-
Volterra two species competition model (7.4) in Sect. 7.1.2 as an example for it. The
linealized system (14.7) now becomes

⎧⎪⎪⎨
⎪⎪⎩

dñ1(t)

dt
= (r1 − β1N

∗
1 − γ12N

∗
2 )̃n1(t)−

{
β1ñ1(t)+ γ12ñ2(t)

}
N∗

1 ;
dñ2(t)

dt
= (r2 − β2N

∗
2 − γ21N

∗
1 )̃n2(t)−

{
β2ñ2(t)+ γ21ñ1(t)

}
N∗

2

(14.9)

with respect to equilibrium (N∗
1 , N

∗
2 ), where ñi (i = 1, 2) is the approximation for

the perturbation ni(t) = Ni(t)−N∗
i from the equilibrium value N∗

i for (7.4).
Now let us consider equilibrium E3 defined by (7.5) as (N∗

1 , N
∗
2 ), supposing the

condition that it exists as given in Exercise 7.1 of p. 195. The characteristic equation
det(A − λE) = 0 with unit matrix E for the eigenvalue λ of Jacobian matrix A
defined by (14.8) can be easily derived as

λ2 + (β1N
∗
1 + β2N

∗
2 )λ+ (β1β2 − γ12γ21)N

∗
1N

∗
2 = 0.

Since the discriminant is positive from

(β1N
∗
1 +β2N

∗
2 )

2−4(β1β2−γ12γ21)N
∗
1N

∗
2 = (β1N

∗
1 −β2N

∗
2 )

2+4γ12γ21N
∗
1N

∗
2 > 0,

we find that every eigenvalue must be real. From the relation of the coefficients
of quadratic equation to the roots λ1 and λ2, we can find that there is at least one
negative eigenvalue since β1N

∗
1 + β2N

∗
2 = −(λ1 + λ2) > 0. Hence, if the constant

term satisfies that (β1β2 − γ12γ21)N
∗
1N

∗
2 = λ1λ2 > 0, every eigenvalue is negative,

so that equilibrium E3 is locally asymptotically stable (stable node). In contrast, if
(β1β2 − γ12γ21)N

∗
1N

∗
2 = λ1λ2 < 0, one eigenvalue must be positive and the other

negative. In this case, equilibriumE3 is unstable (saddle). From these results and the
condition for the existence of E3, we can get the conclusion about the local stability
of E3 given by (7.6) in Sect. 7.1.2. Remark that the condition β1β2 − γ12γ21 > 0
coincides with R1R2 > 1 of (7.6) with the definitions of R1 and R2 in Exercise 7.1
(p. 195 of Sect. 7.1.2).

14.5 Rosenzweig-MacArthur Model

In this part, we describe the local stability analysis on the coexistent equilibriumE2
given by (8.41) for the Rosenzweig-MacArthur model (8.40) in Sect. 8.6. Jacobian
matrix A for equilibrium E2 becomes
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A =
(
ã∗ −μ/k
c̃∗ 0

)

from the linearized system around E2 for (8.40), where

ã∗ := 1 − 2H̃ ∗+ − 1 − H̃ ∗+
1 + ηH̃ ∗+

; c̃∗ := k(1 − H̃ ∗+)
1 + ηH̃ ∗+

.

Hence the characteristic equation det(A− λE) = 0 for the eigenvalue λ becomes

λ2 − ã∗λ+ μ c̃∗

k
= 0.

Since μ c̃∗/k > 0 when equilibrium E2 exists, we find that the roots of this
characteristic equation, that is, the eigenvalues are alternatively real with the same
sign or imaginary, from the relation between the roots and constant term. Therefore,
from the relation between the roots and coefficient, if ã∗ > 0, the eigenvalues are
both positive or imaginary with a positive real part. If ã∗ < 0, they are both negative
or imaginary with a negative real part.

Consequently, equilibrium E2 is unstable as a source if ã∗ > 0, and locally
asymptotically stable as a sink if ã∗ < 0. For the critical case where ã∗ = 0 and
c̃∗ > 0, that is,

η > 1 and
k

μ
− η = 2 + 2

η − 1
, (14.10)

the eigenvalues forE2 are purely imaginary, so that it is a center point. These results
lead to the stability of E2 given by (8.44) in Sect. 8.6.

14.6 Routh-Hurwitz Criterion

Although Sects. 14.1–14.3 describe only the local stability analysis on the equi-
librium for one or two dimensional model with autonomous ordinary differential
equations, the similar local stability analysis is applicable also for the model with the
system of ordinary differential equations of more than two dimension. However, it is
very likely that the derivation of explicit eigenvalues for Jacobian matrix is difficult.
In such a case, since the local stability of equilibrium is essentially determined by
the sign of the real part of eigenvalue, another qualitative analysis could be used
to estimate it. The Routh-Hurwitz criterion is very popular as such a way for the
qualitative analysis, introduced in this section, whereas it provides in general a set
of more complicated conditions than those obtained by the eigenvalue analysis on
the corresponding Jacobian matrix for the local stability of equilibrium.
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The Routh-Hurwitz criterion is not specified to the eigenvalue analysis or the
stability analysis on the dynamical system. It is a specific condition on the root of
polynomial equation, which is really useful for the eigenvalue analysis in a variety
of mathematical contexts. In this section, we shall give the criterion for the general
nth order polynomial equation.

Theorem 14.3 (Routh-Hurwitz Criterion) Every root of the nth order equation
in terms of λ

λn + a1λ
n−1 + · · · + an−1λ+ an = 0 (14.11)

has a negative real part, Re λ < 0, if and only if the following condition is satisfied
for any k = 1, 2, . . . , n:

�k :=

∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 0 0 · · · 0
a3 a2 a1 a0 0 0 · · · 0
a5 a4 a3 a2 a1 a0 · · · 0
...

...
...

...
...

...
. . .

...

a2k−1 a2k−2 a2k−3 a2k−4 a2k−5 a2k−6 · · · ak

∣∣∣∣∣∣∣∣∣∣∣
> 0, (14.12)

where let am = 0 for m > n and a0 = 1.

The necessary and sufficient condition mathematically consists of n inequalities for
the nth order equation. For example, when n = 3, that is, about the cubic equation,
the above condition is described as

�1 = a1 > 0; �2 =
∣∣∣∣∣
a1 a0

a3 a2

∣∣∣∣∣ =
∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣ > 0; �3 =

∣∣∣∣∣∣∣
a1 a0 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

0 0 a3

∣∣∣∣∣∣∣
> 0,

which can be easily proved equivalent to the following simpler condition:

a1 > 0; a3 > 0; a1a2 − a3 > 0.

When and only when these three inequalities are satisfied, the cubic Eq. (14.11) has
only roots with negative real part. In the same way, the conditions for n = 4 and
n = 5 are expressed as follows:

When n = 4,

a1 > 0; a3 > 0; a4 > 0; a1a2a3 > a
2
3 + a2

1a4.
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When n = 5,

a1 > 0; a3 > 0; a5 > 0; a1a2a3 > a
2
3 + a2

1a4 − a1a5;
(a1a4 − a5)(a1a2a3 − a2

3 − a2
1a4 + a1a5) > a5(a1a2 − a3)

2.

As seen from these examples, as the degree n gets larger, the condition by the
Routh-Hurwitz criterion becomes less convenient because of its complexity in the
formulas, even though the criterion may be very useful for the mathematical analysis
in some specific cases, or for a numerical estimation of the local stability about an
equilibrium with a specific set of parameter values in the system under the analysis.

The Routh-Hurwitz criterion has been studied and given by some other expres-
sions mathematically equivalent to it. One of them is the Liénard-Chipart criterion
which is sometimes more useful than the Routh-Hurwitz criterion shown in the
above.

Theorem 14.4 (Liénard-Chipart Criterion) Every root of the nth order
Eq. (14.11) has a negative real part, Re λ < 0, if and only if one of the following

four conditions for k = 1, 2, . . . ,
[ n

2

]+ 1 is satisfied:

(i) an > 0, an−2k > 0, and �2k−1 > 0;
(ii) an > 0, an−2k > 0, and �2k > 0;
(iii) an > 0, an−2k+1 > 0, and�2k−1 > 0;
(iv) an > 0, an−2k+1 > 0, and�2k > 0,

where let am = 0 for m > n and a0 = 1. The notation [ x ] is the Gauss symbol to
indicate the maximal integer less than or equal to x.

In brief, the Liénard-Chipart criterion is such that all odd (or even) numbered
coefficients and determinants of {�1,�2, . . . ,�n} defined by (14.12) are positive
with an > 0. In comparison to the Routh-Hurwitz criterion, the Liénard-Chipart
criterion requires almost half number of inequalities.

Anyway it is clear that, for the eigenvalue analysis on an equilibrium about the
n dimensional system of autonomous ordinary differential equations, the Routh-
Hurwitz/Liénard-Chipart criterion could provide the sufficient condition for its local
stability.

14.7 Isocline Method

In this section, we describe a method of qualitative analysis on the existence and
stability of equilibrium for the two dimensional system of autonomous ordinary
differential equations like (14.4) in p. 425 of Sect. 14.2. It is called isocline method,
which can be regarded as a phase plane method, or more generally phase space
method. It could provide some important qualitative and general results on the
existence and stability of equilibrium for the dynamics of a continuous time model.
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Here to show the actual way of applying it for the system, we shall use Lotka-
Volterra two species competition model (7.4) of Sect. 7.1.2. Shortly saying, the
isocline method uses only the signs of dN1(t)/dt and dN2(t)/dt determined by
(7.4).

Let us consider the set of states (N1, N2) satisfying that dN1(t)/dt = 0 in (7.4).
It is expressed as

{
(N1, N2) | (r1 − β1N1 − γ12N2)N1 = 0

}
.

This set defines two lines on which the velocity of the temporal change of N1
becomes zero in the (N1, N2)-phase plane. Such lines (curves in the general case)
are called nullcline forN1. The nullcline becomes the boundary line/curve to divide
the phase plane into the regions of positive and negative dN1(t)/dt . Hence with the
sign of dN1(t)/dt , the region in which N1 increases (resp. decreases) is identified
in the phase plane.

For Lotka-Volterra two species competition model (7.4), the nullclines for N1
correspond to two lines in the (N1, N2)-phase plane, N1 = 0 and r1 − β1N1 −
γ12N2 = 0 as shown in Fig. 7.2 in p. 196 of Sect. 7.1.2. The former nullcline
coincides to the axis of N2 in the (N1, N2)-phase plane. In the same way, the
nullclines for N2 correspond to two lines in the (N1, N2)-phase plane, N2 = 0
and r2 − β2N2 − γ21N1 = 0.

As shown in Fig. 7.2, we can find that there are four different cases with respect
to the spatial configuration of those nullclines for N1 and N2 in the (N1, N2)-
phase plane. Nullclines divide the first quadrant of the (N1, N2)-phase plane into
three or four regions with respect to the combination of signs of dN1/dt and
dN2/dt . Intersections between nullclines for N1 and N2 indicate the equilibria for
the system (7.4), since they correspond to the pairs of values N1 and N2 to satisfy
that dN1/dt = 0 and dN2/dt = 0.

With the regions about the combination of signs of dN1/dt and dN2/dt , we can
find the qualitative direction of vector (dN1/dt, dN2/dt) in each region bounded
by the nullclines. In this method, the qualitative direction in a region is one of
upper rightward, down rightward, upper leftward, and down leftward. Especially
on the nullcline, the vector direction becomes vertical or horizontal, since no
temporal change of N1 or N2 occurs on it. Even with such rough informations
on the qualitative direction of the state change in the phase plane, we could get
some mathematical results on the behavior of the system, though they would not
be definitive but be supplementarily useful for the arguments on the existence and
stability of the equilibria. Fig. 14.1 illustratively shows the procedure of this method.

For example, in the case of Fig. 7.2a and d, we can find that the trajectory
eventually enters in the middle region, and subsequently approaches equilibriumE1
or E2. In the case of Fig. 7.2c, the trajectory eventually approaches the coexistent
equilibrium E3 in the first quadrant. In the case of Fig. 7.2b, both of equilibria E1
and E2 on the axes are approachable, which indicates a bistable situation.

The isocline method cannot mathematically reveal all nature of the behavior
of Lotka-Volterra two species competition model (7.4), while it is successful to
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Fig. 14.1 Illustrative procedure of the isocline method. (a) to draw the nullclines in the (N1, N2)-
phase plane; (b) to identify the combination of signs of dN1/dt and dN2/dt in each region
bounded by the nullclines; (c) to identify the direction of vector (dN1/dt, dN2/dt) in each region;
(d) to find the possible shape of trajectories of (N1, N2) coincident with the direction of vectors

Fig. 14.2 An illustrative example of the phase plane in which the isocline method gives only
supplementary informations on the stability of equilibrium, where the stability of the interior
equilibrium cannot be estimated by it. Remark that this case does not occur for Lotka-Volterra
two species competition model (7.4)

give satisfactory mathematical informations on the behavior. Actually, numerical
examples of the trajectories and vector flow in the (N1, N2)-phase plane shown in
Figs. 7.3 and 7.4 indicate its success.

On the other hand, for example, in the case shown in Fig. 14.2, the isocline
method can indicate that every equilibrium on the axes is unstable, though it cannot
give any information on the stability of the equilibrium in the first quadrant.The
isocline method is certainly useful, and becomes more useful to understand the
dynamical nature of two dimensional system when it is used in addition to
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some other mathematical informations obtained by another analytical method, for
example, the local stability analysis (refer to Sects. 14.2 and 14.3).

In the case of Fig. 14.2 no determinative information on the stability of
equilibrium in the first quadrant is available only by the isocline method.
However, since the isocline method implies that the trajectory tends to spiral
around it, the eigenvalue analysis on its local stability would be expected to
give the imaginary eigenvalue.

14.8 Lyapunov Function

In this section, as one of mathematical approaches to show the asymptotical stability
of an equilibrium, we shall see the method by Lyapunov function. This is a strong
method, though there is no general way to find or construct a Lyapunov function
for a given dynamical system. It is found out or constructed by some mathematical
analogies or by a mathematically intuitive step-by-step process. This means that
there is no mathematically general proof of its existence for a dynamical system.
Once a Lyapunov function is found out for an equilibrium, its stability can be
investigated not necessarily in the sense of local stability but also in that of global
stability.

First let us see a well-known Lyapunov function for the coexistent equilibrium
E2 about Lotka-Volterra prey-predator system (8.22) in Sect. 8.4. The following
arguments are under the condition for the existence of E2. Making use of the
equilibrium values at E2(H

∗, P ∗) = (δ/(κγ ), r/γ − βδ/(κγ 2)), we shall rewrite
the system (8.22) as follows:

⎧⎪⎪⎨
⎪⎪⎩

dH(t)

dt
= γ

[
P ∗ − P(t) + β

γ
{H ∗ −H(t)}]H(t)

dP (t)

dt
= κγ {H(t)−H ∗}P(t)

(14.13)

This rewriting is convenient for the following arguments, although it is not essential.
Let us introduce the following function V (H,P ) of H = H(t) and P = P(t):

V (H,P ) := κ
{
H −H ∗ −H ∗(lnH − lnH ∗)

}+ P − P ∗ − P ∗(lnP − lnP ∗).
(14.14)
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Fig. 14.3 Numerically
drawn contour map in terms
of the value of Lyapunov
function (14.14) in the
(H, P )-phase plane about
Lotka-Volterra prey-predator
system (8.22). Nullclines for
the system is shown too.
r = 0.2; β = 0.05; γ = 0.1;
δ = 0.1; κ = 0.8

It is clear that V (H ∗, P ∗) = 0. Further we have

VH (H,P ) = ∂V (H,P )

∂H
= κ
(

1 − H ∗

H

)
; VP (H,P ) = ∂V (H,P )

∂P
= 1 − P ∗

P
;

VHH(H,P ) = ∂2V (H,P )

∂H 2
= κH ∗

H 2
; VPP (H,P ) = ∂2V (H,P )

∂P 2
= P ∗

P 2
;

VHP (H,P ) = ∂2V (H,P )

∂H∂P
= ∂2V (H,P )

∂P ∂H
= 0.

Since VH(H ∗, P ∗) = 0, VP (H ∗, P ∗) = 0, VHH(H ∗, P ∗) = κ/H ∗ > 0, and

VHH(H
∗, P ∗)VPP (H ∗, P ∗)− {VHP (H ∗, P ∗)

}2 = κ

H ∗P ∗ > 0,

it is mathematically proved that the function V (H,P ) takes its extremal minimum
V (H ∗, P ∗) = 0 at (H, P ) = (H ∗, P ∗). The function V (H,P ) is continuous
for H > 0 and P > 0. Therefore, it becomes zero only at (H, P ) = (H ∗, P ∗),
while it takes positive value, that is, V (H,P ) > 0 for any H > 0 and P > 0
except for (H, P ) = (H ∗, P ∗). In other mathematical words, V (H,P ) is positive
definite in R

2+\{(H ∗, P ∗)}. Hence, the function V (H,P ) has the unique minimum
V (H ∗, P ∗) = 0 at the unique point E2(H

∗, P ∗) (see Fig. 14.3).
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On the other hand, making use of (14.13), we can derive

dV (H(t), P (t))

dt
= ∂V (H,P )

∂H
· dH(t)
dt

+ ∂V (H,P )

∂P
· dP(t)
dt

= −κβ{H(t)−H ∗}2 ≤ 0

This means that the value of V (H(t), P (t)) monotonically decreases with the
passage of time as long as H(t) 	= H ∗. From (14.13), even if H(t1) = H ∗ at a
certain time t1, we have

dH(t)

dt

∣∣∣∣
t=t1

= γH ∗{P ∗ − P(t1)} 	= 0

unless P(t1) = P ∗. Thus H(t) must change from H ∗ at t = t1. As a result, we
can find that V (H(t), P (t)) is temporally decreasing unless P(t1) = P ∗ even when
H(t1) = H ∗ at any time t1. Therefore, V (H(t), P (t)) is temporally decreasing as
long as (H(t), P (t)) 	= (H ∗, P ∗).

From these arguments, we can result that V (H(t), P (t)) approaches the mini-
mum as t → ∞. This means that (H(t), V (t)) → E2(H

∗, P ∗) as t → ∞. Thus,
when equilibrium E2 exists, the solution of the system (14.13) from any positive
initial point approaches E2 with the passage of time. Consequently, the coexistent
equilibrium E2 is globally asymptotically stable when it exists.

The function V (H(t), P (t)) defined by (14.14) can be called the Lyapunov
function with respect to equilibrium E2 of the system (14.13).

Definition 14.1 For the system of first order nonlinear ordinary differential
Eq. (14.4) for (x, y), a real-valued function V (x, y) defined in a region D ⊆ R

2,
which contains an equilibrium (x∗, y∗) of (14.4) is called weak Lyapunov function
for equilibrium (x∗, y∗) if the following conditions (i) and (ii) are satisfied:

(i) V (x, y) > V (x∗, y∗) for any point (x, y) 	= (x∗, y∗) in D;
(ii) For any (x(t), y(t)) in D,

dV (x(t), y(t))

dt
≤ 0.

If the following condition is further satisfied, V (x, y) is called strict Lyapunov
function, or simply Lyapunov function for equilibrium (x∗, y∗) of (14.4):

(iii) For any (x(t), y(t)) 	= (x∗, y∗) in D,

dV (x(t), y(t))

dt
< 0 and

dV (x(t), y(t))

dt

∣∣∣∣
(x(t),y(t))=(x∗,y∗)

= 0.
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Following these definitions, the function V (H(t), P (t)) defined by (14.14) is
just a weak Lyapunov function for equilibrium E2 of the system (14.13). As shown
by the above arguments, since V (H(t), P (t)) is temporally decreasing for any
(H, P ) 	= (H ∗, P ∗) in R

2+, we may regard it as a Lyapunov function in a wider
sense. This corresponds to its generalized definition with the replacement of the
above condition (iii) by

(iii’) For any (x(t), y(t)) 	= (x∗, y∗) in D and any �t > 0,

V (x(t +�t), y(t +�t)) < V (x(t), y(t))

and

dV (x(t), y(t))

dt

∣∣∣∣
(x(t),y(t))=(x∗,y∗)

= 0.

Exercise 14.2 For Lotka-Volterra competition system (7.4) in Sect. 7.1, when the
coexistent equilibrium E3(N

∗
1 , N

∗
2 ) given by (7.5) exists and is locally asymptoti-

cally stable, show that the following function becomes a Lyapunov function for E3:

V (N1, N2) := β1

γ12
(N1 − N∗

1 )
2 + β2

γ21
(N2 −N∗

2 )
2 + 2(N1 −N∗

1 )(N2 −N∗
2 ).

(14.15)

In the above, we showed the definition of Lyapunov function for the two
dimensional system of ordinary differential equations. Lyapunov function can
be defined for the higher dimensional system in the same way (for example,
see [1, 7]). Especially, when the so-called Lotka-Volterra system of ordinary
differential equations

dxi(t)

dt
= {ri +

n∑
j=1

γij xj (t)
}
xi(t), (14.16)

where the signs of coefficients ri and γij are arbitrary, has a unique locally
asymptotically stable equilibrium (x∗

1 , x
∗
2 , . . . , x

∗
n) in R

n+, it is shown by

(continued)
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Goh [4] that there exists the following form of a Lyapunov function for the
equilibrium:

V (x1, x2, . . . , xn) :=
n∑
i=1

ci
{
(xi − x∗

i )− x∗
i (ln xi − ln x∗

i )
}
, (14.17)

where the positive coefficient ci can be appropriately determined by the
parameters of the system (14.16).

For example, for Lotka-Volterra competition system (7.4) in Sect. 7.1,
when the coexistent equilibrium E3(N

∗
1 , N

∗
2 ) exists and is locally asymptoti-

cally stable with β1β2 − γ12γ21 > 0, the function V (N1, N2) by (14.17) for
n = 2 becomes a Lyapunov function for E3 in a wider sense, taking

c1 =
√
β1β2 − √

β1β2 − γ12γ21

γ12
; c2 =

√
β1β2 + √

β1β2 − γ12γ21

γ21
,

(14.18)

which are determined from c1γ12 + c2γ21 = 2
√
β1β2 and c1c2 = 1.

This Lyapunov function is different from that shown in Exercise 14.2 for
equilibriumE3 of the same system (7.4) (see Fig. 14.4). This is an example to
indicate that Lyapunov function for an equilibrium is not necessarily unique
even though one is found out.

As known in the above, finding a Lyapunov function for an equilibrium leads to
getting an important information about its stability:

Theorem 14.5 For a region D ⊆ R
2 including equilibrium (x∗, y∗) for the two

dimensional system of autonomous ordinary differential Eq. (14.4),

(i) the existence of a weak Lyapunov function V (x, y) indicates that equilibrium
(x∗, y∗) is Lyapunov stable (refer also to Sect. 14.3);

(ii) the existence of a strict Lyapunov function V (x, y) indicates that equilibrium
(x∗, y∗) is asymptotically stable in D.

As already seen in the above description about equilibrium E2 of Lotka-Volterra
prey-predator system (14.13), even when we have only a weak Lyapunov function
for an equilibrium, we may be able to find its global stability with an additional
mathematical arguments on the dynamical behavior of system or with the general-
ized definition of Lyapunov function.
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Fig. 14.4 Numerically drawn contour map of the value of Lyapunov function in the (N1, N2)-
phase plane about Lotka-Volterra competition system (7.4) in Sect. 7.1. Nullclines for the system
is shown too. r1 = r2 = 1.0; β1 = 1.8; β2 = 1.0; γ12 = 0.8; γ21 = 1.2. (a) Lyapunov function
(14.15); (b) Lyapunov function (14.17) for n = 2 with (14.18). This is the case where the coexistent
equilibrium is asymptotically stable, corresponding to Figs. 7.1c, 7.2c, and 7.3c

14.9 Poincaré-Bendixson Theorem

In this section, let us see a theorem about the set of points to which approaches the
trajectory "(x0, t) of the autonomous two dimensional system (14.4) for the initial
point x0 := (x0, y0), called ω-limit set for x0 (refer also to Sect. 12.1.5). It was
presented by Jules H. Poincaré (1854–1912) and Ivar O. Bendixson (1861–1935),
and is known well in the theory of dynamical system today:

Theorem 14.6 (Poincaré-Bendixson Theorem) When the trajectory "(x0, t) for
the autonomous two dimensional system (14.4) is a finite closed set, and its ω-limit
set does not contain any equilibrium, one of the followings holds:

(i) The trajectory "(x0, t) forms a periodic orbit;
(ii) The ω-limit set for x0 is a periodic orbit.

The former (i) is the case where the initial point x0 belongs to the ω-limit set. The
latter (ii) is the case where x0 is not included in the ω-limit set. The finite closeness
of the trajectory "(x0, t) is essential for the theorem. This theorem shows that,
when the trajectory "(x0, t) for x0 always remains in a finite domain ! of (x, y)-
phase plane, if there is no asymptotically stable equilibrium in!, then the trajectory
necessarily becomes or approaches a periodic orbit. Especially in the latter case (ii)
when the trajectory asymptotically approaches a periodic orbit, the periodic orbit is
called limit cycle too.

As a consequence from the above Poincaré-Bendixson Theorem, the following
theorem holds, which is sometimes called Poincaré-Bendixson Trichotomy:
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Theorem 14.7 (Poincaré-Bendixson Trichotomy) When the trajectory "(x0, t)

of the autonomous two dimensional system (14.4) always remains in a finite closed
domain ! which contains a finite number of equilibria, the ω-limit set for x0
becomes one of the following three:

(i) an equilibrium;
(ii) a periodic orbit;
(iii) a cycle graph consisting of a finite number of equilibria and some component

trajectories each of which has one of those equilibria as the ω-limit set or the
α-limit set.

The α-limit set is defined as the set of points which the trajectory "(x0, t) for
x0 approaches as t → −∞. It can be regarded as the ω-limit set for the system
(14.4) with the inverse sign in the right hand. In comparison to Poincaré-Bendixson
Trichotomy, the previous theorem may be called Poincaré-Bendixson Dichotomy.

In the third case of the above Poincaré-Bendixson Trichotomy, the cycle graph
means a set which contains homoclinic orbit(s) and heteroclinic orbit(s) in the
domain !. The homoclinic orbit is a trajectory of closed curve containing only
one of equilibria in !. The heteroclinic orbit is a trajectory of curve connecting two
different equilibria in !.

Since Poincaré-Bendixson Theorem states that the trajectory of the autonomous
two dimensional system (14.4) approaches alternatively an equilibrium or a periodic
orbit if it does not diverge, that is, if it remains in a certain bounded domain.
Therefore, it is mathematically assured that the autonomous two dimensional
system (14.4) cannot show any chaotic variation. This mathematical nature is
applicable only for the autonomous two dimensional system (14.4). For more than
two dimensional system, there are a lot of examples to show a chaotic variation
[2, 3, 5, 6, 8] (see Fig. 14.5).

It is possible to mathematically show the existence of a finite closed domain !
of positive region in the phase plane about Rosenzweig-MacArthur model (8.38),
equivalently the system (8.40), in Sect. 8.6, such that the trajectory for any initial
point in ! always remains in it (Exercise 14.3). Then Poincaré-Bendixson Theorem
and Poincaré-Bendixson Trichotomy can be applied for the system. It results that
the existence of an asymptotically stable periodic solution can be mathematically
assured for Rosenzweig-MacArthur model (8.38), as mentioned in Sect. 8.6.

Exercise 14.3 Consider the trajectory of Rosenzweig-MacArthur model (8.40) in
the (H̃ , P̃ )-phase plane for the initial condition x0 = (H̃0, P̃0) in the following
triangle closed domain of the first quadrant

!(Q) := {(H̃ , P̃ ) | H̃ ≥ 0, P̃ ≥ 0, kH̃ + P̃ ≤ Q}

with an arbitrarily chosenQ such that

Q > Qc := k(1 + μ)2
4μ

.
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Fig. 14.5 Examples of a chaotic variation by the autonomous three dimensional system. The
trajectory in the three dimensional phase space and the temporal change are numerically shown.
The trajectory approaches an ω-limit set called strange attractor. (a) Lorenz equations: dx/dt =
−10x + 10y, dy/dt = 28x − y − xz, dz/dt = −8z/3 + xy; (b) Rössler equations: dx/dt =
−y− z, dy/dt = x+ 0.3, dz/dt = 2 + xz− 10z. Numerical calculation commonly for the initial
condition (x(0), y(0), z(0)) = (1.0, 0.0, 0.0)

Show that the trajectory always remains in the domain !(Q), that is, any point
(H̃ (τ ), P̃ (τ )) on the trajectory is included in the domain!(Q) for any time τ > 0.

The meaning of Poincaré-Bendixson Theorem must not be regarded as an
implication that a chaotic variation could occur only with more than two
dimensional dynamical system. As seen in Sects. 2.1, 12.1.5, and 12.1.6,
there are many discrete time one dimensional dynamical system to cause a
chaotic variation. For a phenomenon which could have a chaotic variation,
Poincaré-Bendixson Theorem implies that a more than two dimensional
autonomous dynamical system of ordinary differential equations would be
necessary to model it. Such a mathematical viewpoint may be valuable to
theoretically consider the kinetics of such a variation, since the implication

(continued)
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could be regarded as the necessity of more than two variable factors to
drive the dynamics. However, this is not always an appropriate direction of
theoretical/mathematical consideration on such a chaotic dynamics, because
the discrete time dynamical system of lower dimension could cause it as
mentioned before. For these reasons, it is important that we must design
a reasonable modeling to clarify a scientific standing point about which
the modeling is applied for the dynamics in the theoretical/mathematical
consideration with a mathematical model. It must include which the model
becomes of discrete or continuous time.

Answer to Exercise

Exercise 14.1 (p. 424)

The solution of ordinary differential Eq. (14.3) is given by

ñ(t) = ñ(0) eg
′(N∗)t .

Thus, if ñ(0) > 0, we have ñ(t) > 0 for any t > 0, and if ñ(0) < 0, ñ(t) < 0 for
any t > 0. Hence from the above solution, we can find that, if g′(N∗) < 0, then ñ(t)
monotonically approaches 0, independently of the sign of ñ(0). On the other hand,
since

|̃n(t)| = |̃n(0)| eg
′(N∗)t ,

|̃n(t)| monotonically increases for t > 0 if g′(N∗) > 0.

Exercise 14.2 (p. 439)

We can derive the following partial derivatives about V (N1, N2) defined by (14.15):

∂V (N1, N2)

∂N1
= 2β1

γ12
(N1 −N∗

1 )+ 2(N2 −N∗
2 );

∂V (N1, N2)

∂N2
= 2β2

γ21
(N2 −N∗

2 )+ 2(N1 −N∗
1 );
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∂2V (N1, N2)

∂N2
1

= 2β1

γ12
; ∂2V (N1, N2)

∂N2
2

= 2β2

γ21
; ∂2V (N1, N2)

∂N2∂N1
= ∂2V (N1, N2)

∂N1∂N2
= 2.

Making use of the condition that β1β2 − γ12γ21 	= 0, satisfied when the coexistent
equilibrium E3 exists, we can find that the rest point satisfying that VN1(N1, N2) =
0 and VN2(N1, N2) = 0 uniquely exists and is given by (N1, N2) = (N∗

1 , N
∗
2 ). Then

we have VN1N1(N
∗
1 , N

∗
2 ) = 2β1/γ12 > 0 and

VN1N1(N
∗
1 , N

∗
2 )VN2N2(N

∗
1 , N

∗
2 )− {VN1N2(N

∗
1 , N

∗
2 )}2 = 4(β1β2 − γ12γ21)

γ12γ21
.

Hence we can result that V (N∗
1 , N

∗
2 ) = 0 is

{
the extremal minimum if β1β2 − γ12γ21 > 0;
the extremal maximum if β1β2 − γ12γ21 < 0.

Now let us consider the case of β1β2 − γ12γ21 > 0 when V (N∗
1 , N

∗
2 ) = 0 is the

extremal minimum of V (N1, N2) in R
2+. Since

V (N1, N2) = β1

γ12

{
(N1 −N∗

1 )+
γ12

β1
(N2 −N∗

2 )
}2 + β1β2 − γ12γ21

β1γ21
(N2 −N∗

2 )
2,

the function V (N1, N2) is definitely positive for any (N1, N2) 	= (N∗
1 , N

∗
2 ) in R

2+,
and it takes the minimum (= 0) at (N∗

1 , N
∗
2 ).

Next we can derive the following:

dV (N1(t),N2(t))

dt
= ∂V (N1, N2)

∂N1
· dN1(t)

dt
+ ∂V (N1, N2)

∂N2
· dN2(t)

dt

=
{

2β1

γ12
(N1 − N∗

1 )+ 2(N2 −N∗
2 )

}
dN1(t)

dt

+
{

2β2

γ21
(N2 −N∗

2 )+ 2(N1 −N∗
1 )

}
dN2(t)

dt

= − 2

γ12

{
β1(N1 −N∗

1 )+ γ12(N2 −N∗
2 )
}2
N1

− 2

γ21

{
β2(N2 −N∗

2 )+ γ21(N1 −N∗
1 )
}2
N2

≤ 0.

Therefore we find that dV (N1(t),N2(t))/dt is negative at any (N1, N2) 	=
(N∗

1 , N
∗
2 ) in R

2+, and it becomes zero at (N∗
1 , N

∗
2 ).
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With these arguments, from the definition of Lyapunov function in p. 438, the
function V (N1, N2) given by (14.15) is a strict Lyapunov function for equilibrium
E3 of Lotka-Volterra competition system (7.4). Consequently, when the coexistent
equilibrium E3 exists with β1β2 − γ12γ21 > 0, it is globally asymptotically stable
in R

2+. This is the other description of the case (c) for Lotka-Volterra competition
system (7.4) in p. 193.

Besides the condition that β1β2 − γ12γ21 > 0 coincides with the necessary
condition for the locally asymptotic stability of E3 that R1R2 > 1 given by (7.6) in
Sect. 7.1.2 (refer to Sect. 14.4). Therefore, the above result on the Lyapunov function
(14.15) mathematically indicates that the coexistent equilibrium E3 is globally
asymptotically stable whenever it is locally asymptotically stable, as already found
by the isocline method in Sect. 7.1.2.

Exercise 14.3 (p. 442)

First the system (8.40) can be expressed in the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

H̃ (τ )

dH̃ (τ )

dτ
= ℱ(H̃ (τ ), P̃ (τ )) := 1 − H̃ (τ )− P̃ (τ )

1 + ηH̃ (τ ) ;
1

P̃ (τ )

dP̃ (τ )

dτ
= 𝒢(H̃ (τ ), P̃ (τ )) := −μ+ k H̃ (τ )

1 + ηH̃ (τ ) .
(14.19)

Hence we mathematically have

⎧⎪⎪⎨
⎪⎪⎩
H̃ (τ ) = H̃0 exp

[ ∫ τ

0
ℱ(H̃ (s), P̃ (s)) ds

];
P̃ (τ ) = P̃0 exp

[ ∫ τ

0
𝒢(H̃ (s), P̃ (s)) ds

]
,

(14.20)

and we can say that the temporal change of point (H̃ (τ ), P̃ (τ )) on the trajectory for
the initial condition v0 = (H̃0, P̃0) in the (H̃ , P̃ )-phase plane follows the equations
of (14.20). The equations of (14.20) indicate that H̃ (τ ) ≥ 0 for any τ > 0 if H̃0 ≥ 0,
and P̃ (τ ) ≥ 0 for any τ > 0 if P̃0 ≥ 0. The same mathematical logic is used also in
Exercise 8.5 (p. 225) of Sect. 8.4.3.

Next, from (8.40), we find that

d

dτ

{
kH̃ (τ )+ P̃ (τ )} = k

dH̃ (τ )

dτ
+ dP̃ (τ )

dτ
= k{1 − H̃ (τ )}H̃ (τ )− μP̃ (τ).
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Hence, if kH̃ (τ0)+ P̃ (τ0) > Qc at τ = τ0 ≥ 0, then we have

d

dτ

{
kH̃ (τ )+ P̃ (τ )}

∣∣∣∣
τ=τ0

< k{1 − H̃ (τ0)}H̃ (τ0)− μ{Qc − kH̃ (τ0)}

= k

[
(1 + μ)2

4
−
{
H̃ (τ0)− 1 + μ

2

}2
]

− μQc

≤ k(1 + μ)2
4

− μQc = 0,

since P̃ (τ0) > Qc − kH̃ (τ0). Therefore we have shown that

d

dτ

{
kH̃ (τ )+ P̃ (τ )} < 0

if kH̃ (τ )+ P̃ (τ ) > Qc. This means that, if kH̃ (τ )+ P̃ (τ ) > Qc, kH̃ (τ )+ P̃ (τ ) is
monotonically decreasing in terms of τ .

As a result, for the initial condition v0 = (H̃0, P̃0) such that kH̃0 + P̃0 > Qc,
we have kH̃ (τ ) + P̃ (τ ) < kH̃0 + P̃0 for any time τ > 0. Subsequently, if v0
satisfies that kH̃0 + P̃0 ≤ Q for a Q > Qc, then it cannot be satisfied for any
τ > 0 that kH̃ (τ ) + P̃ (τ ) ≥ Q, and in other words, it is satisfied for any τ > 0
that kH̃ (τ ) + P̃ (τ ) < Q. These arguments show that, for the initial condition v0
belonging to !(Q) with Q > Qc, the trajectory of (8.40) must always remain in
!(Q).
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Chapter 15
Essentials of Poisson Process/Distribution

Abstract As the simplest and most important stochastic process for the mathemat-
ical modeling about population dynamics, the Poisson process is introduced and
used in some parts of this book. This chapter serves to provide the mathematical
fundamentals about it.

15.1 Poisson Process

Let us assume the probability that an event occurs just one time in a sufficiently
short interval [t, t+�t] from time t by λ(t)�t+o(�t) with a non-negative function
λ(t) of t . The stochastic process for the event with this probability is called Poisson
process, and λ is called intensity (intensity parameter) of Poisson process [1–4].

For Poisson process defined as above, the probability that the event occurs
more than one times in a sufficiently short interval [t, t + �t] is given by
o(�t). For example, when the event occurs just two times in the interval,
suppose a time t1 between the first and second occurrences of the event, and
each event occurs respectively in the interval [t, t1] and [t1, t + �t]. Thus
the probability of each occurrence is given by λ(t)(t1 − t) + o(t1 − t) and
λ(t1)(t+�t− t1)+o(t+�t− t1) from the above definition, because we have
t1 − t ≤ �t and t +�t − t1 ≤ �t with t ≤ t1 ≤ t +�t . The probability that
the event occurs just two times in [t, t +�t] is given by the product of them,
and becomes o(�t). The same arguments are applicable for the probability
that the event occurs more than two times in [t, t +�t].

Poisson process with a time-dependent parameter λ = λ(t) is called non-
homogeneous Poisson process. For example, the probability of a biological event
could seasonally change under a seasonally variable environment.

When the parameter λ is constant independently of time t , Poisson process
is called homogeneous. The event occurrence with the homogeneous Poisson
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process has a specific randomness, called independent increments and stationary
independent increments defined as follows:

Definition 15.1 A stochastic process is said to have independent increments if the
stochastic variableX(t) is continuous in terms of t > 0 and satisfies that differences
X(t1) − X(t0) and X(t3) − X(t2) are independent of each other for any time t0, t1,
t2 and t3 such that t0 < t1 ≤ t2 < t3.

Definition 15.2 A stochastic process is said to have stationary independent incre-
ments if the stochastic variable {X(t), 0 ≤ t < ∞} is continuous in terms of t
and satisfies that the difference X(t + h)− X(t ′ + h) follows the same probability
distribution as X(t)−X(t ′) does for any time t , t ′, and any interval h > 0.

The number of event occurrences Q(t) until time t and Q(s + t) − Q(s) in an
interval [s, s+ t] are discrete stochastic variables. The stochastic process aboutQ(t)
is called counting process. Poisson process can define a counting process. When
Poisson process has independent increments, the stochastic variableQ(t+s)−Q(s)
follows the same probability distribution for any t , s ≥ 0.

15.2 Poisson Distribution

Let us denote by P(n, t) the probability that an event occurs just n times until
time t . With the probability λ(t)�t + o(�t) that an event occurs just one time
in a sufficiently short interval [t, t + �t], we can derive the following equations to
govern the transition of the probabilities {P(n, t) | n = 0, 1, 2, . . . } in [t, t +�t]:

P(0, t +�t) = [1 − {λ(t)�t + o(�t)}]P(0, t);
P(1, t +�t) = [1 − {λ(t)�t + o(�t)}]P(1, t) + {λ(t)�t + o(�t)}P(0, t);
P(n, t +�t) = [1 − {λ(t)�t + o(�t)}]P(n, t) + {λ(t)�t + o(�t)}P(n− 1, t)

+
n−2∑
k=0

o(�t)P (k, t) (n = 2, 3, . . . ).

The factor 1 − {λ(t)�t + o(�t)} in the first term of the right side means the
probability that the event does not occur in [t, t + �t]. The factor λ(t)�t + o(�t)
in the second term of the right side about the second and third equations means the
probability that the event occur only once in [t, t+�t]. We used the mathematically
conventional expression o(�t) as the probability that the events occur more than
once in [t, t +�t], as before.
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From the above equations, we have

P (0, t +�t) − P (0, t)
�t

= −
{
λ(t)+ o(�t)

�t

}
P (0, t);

P (1, t +�t) − P (1, t)
�t

= −
{
λ(t)+ o(�t)

�t

}
P (1, t) +

{
λ(t)+ o(�t)

�t

}
P (0, t);

P (n, t +�t)− P (n, t)
�t

= −
{
λ(t)+ o(�t)

�t

}
P (n, t)+

{
λ(t) + o(�t)

�t

}
P (n− 1, t)

+
n−2∑
k=0

o(�t)

�t
P (k, t) (n = 2, 3, . . . ),

and, taking the limit as �t → 0, subsequently

dP(0, t)

dt
= −λ(t)P (0, t);

dP(n, t)

dt
= −λ(t)P (n, t) + λ(t)P (n − 1, t) (n = 1, 2, . . . ).

(15.1)

Let us consider this system of non-homogeneous linear differential equations with
the initial condition that P(n, 0) = δn0, where δnm denotes what is called Kronecker
delta which satisfies that δnn = 1 and δnm = 0 for n 	= m. That is, P(0, 0) = 1
and P(n, 0) = 0 for any n > 0. Thus, the initial condition means that the event
does not occur at the initial time t = 0 from which we start to observe the event
occurrence. We may consider that the observation of the event occurrence starts just
after a moment of its occurrence as t = 0.

From the first equation of (15.1), we can easily get the solution

P(0, t) = exp
[

−
∫ t

0
λ(τ) dτ

]
, (15.2)

making use of the initial value P(0, 0) = 1 mentioned in the above. Next we
suppose

P(n, t) = un(t) exp
[

−
∫ t

0
λ(τ) dτ

]
(n = 1, 2, . . . ), (15.3)

and substitute this for the second equation of (15.1). Since it becomes as follows:

−un(t)λ(t) exp
[

−
∫ t

0
λ(τ) dτ

]
+ dun(t)

dt
exp
[

−
∫ t

0
λ(τ) dτ

]

= −λ(t)un(t) exp
[

−
∫ t

0
λ(τ) dτ

]
+ λ(t)un−1(t) exp

[
−
∫ t

0
λ(τ) dτ

]
,
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we can obtain the following system of ordinary differential equations with respect
to {un(t)}:

dun(t)

dt
= λ(t)un−1(t) (n = 1, 2, . . . ).

From the initial value P(n, 0) = 0 for any n > 0, it must be satisfied that un(0) = 0
(n = 1, 2, . . . ). The above differential equations can be mathematically transformed
into the following integral recurrence relation:

un(t) =
∫ t

0
λ(τ)un−1(τ ) dτ (n = 1, 2, . . . ).

Now, since u0(t) = P(0, t) = 1 from (15.2), we can immediately find

u1(t) =
∫ t

0
λ(τ) dτ.

Subsequently we have

u2(t) =
∫ t

0
λ(τ2)u1(τ2) dτ2 =

∫ t

0
λ(τ2)

{ ∫ τ2

0
λ(τ1) dτ1

}
dτ2

=
∫ t

0

1

2

d

dτ2

{ ∫ τ2

0
λ(τ1) dτ1

}2
dτ2 = 1

2

{ ∫ t

0
λ(τ) dτ

}2
.

We can prove by the mathematical induction that

un(t) = 1

n!
{ ∫ t

0
λ(τ) dτ

}n
(n = 1, 2, . . . ).

Consequently, from (15.3), we get the solution of P(n, t):

P(n, t) = (〈λ〉t t)n
n! e−〈λ〉t t (n = 1, 2, . . . ), (15.4)

where

〈λ〉t := 1

t

∫ t

0
λ(τ) dτ.

The value of 〈λ〉t means the mean of λ over the interval [0, t]. When λ is constant
independently of time t , 〈λ〉t becomes equivalent to the constant. Making use of the
mathematically conventional definition as 0! = 1, the solution (15.4) can include
(15.2), so that (15.4) can be regarded as the solution for n = 0, 1, 2, . . . It is easy to
prove that

∑∞
n=0 P(n, t) = 1, making use of the equation

∑∞
n=0 x

n/n! = ex . The
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Fig. 15.1 Poisson
distribution with intensity ν,

�(j ; ν) = νj

j ! e−ν

probability distribution {P(n, t) | n = 0, 1, 2, . . . } defined by (15.2) and (15.4) is
called Poisson distribution (Fig. 15.1).

The expected number 〈n〉t of events which occur until time t with the probability
distribution {P(n, t)} is defined as

〈n〉t :=
∞∑
n=0

nP(n, t). (15.5)

For Poisson distribution defined by (15.2) and (15.4), it becomes

〈n〉t =
∞∑
n=0

n · (〈λ〉t t)
n

n! e−〈λ〉t t = e−〈λ〉t t
∞∑
n=1

(〈λ〉t t)n
(n− 1)!

= e−〈λ〉t t 〈λ〉t t
∞∑
n=1

(〈λ〉t t)n−1

(n− 1)! = e−〈λ〉t t 〈λ〉t t
∞∑
k=0

(〈λ〉t t)k
k!

= e−〈λ〉t t 〈λ〉t t · e〈λ〉t t = 〈λ〉t t =
∫ t

0
λ(τ) dτ. (15.6)

As is intuitively expected, the expected number 〈n〉t is monotonically increasing
in terms of t , since λ(t) takes non-negative value. Especially when λ is a positive
constant, the expected number 〈n〉t is proportional to time t .

15.3 Interarrival Time

In Poisson process, the length Yn of the time interval from the nth event to the
n+ 1th one is a continuous stochastic variable. The sequence of time lengths {Yn |
n = 1, 2, . . . } is called interarrival time.
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Let us denote by Prob{Y1 ≤ t} the probability that the first event occurs until time
t . Here Prob{Y1 > t} means the probability that the first event does not occur until
time t , which is equivalent to P(0, t) in the previous section. Hence, for Poisson
process, we have

Prob{Y1 ≤ t} = 1 − Prob{Y1 > t} = 1 − P(0, t) = 1 − e−〈λ〉t t

=
∫ t

0
λ(τ) exp

[
−
∫ τ

0
λ(s) ds

]
dτ

with Poisson distribution {P(n, t) | n = 0, 1, 2, . . . } defined by (15.2) and (15.4).
This result indicates that the probability Prob{Y1 ≤ t} is given by an exponential
distribution determined by parameter λ.

Especially when λ is a positive constant, we have Prob{Y1 ≤ t} = 1 − e−λt .
As described in Sect. 15.1, in this case, Poisson process is homogeneous and has
stationary independent increments defined by Definition 15.2. We can obtain the
conditional probability Prob{Y2 ≤ t | Y1 = s} that, when the first event occurs at
time s, the second event occurs until time t > s:

Prob{Y2 ≤ t | Y1 = s} = 1 − Prob{Y2 > t | Y1 = s}
= 1 − Prob{Q(s + t)−Q(s) = 0 | Y1 = s}
= 1 − Prob{Q(s + t)−Q(s) = 0}
= 1 − Prob{Q(t)−Q(0) = 0}

= 1 − P(0, t) = 1 − e−λt
(

=
∫ t

0
λ e−λτ dτ

)
,

where Q(t) is the number of events which occurs until time t as introduced in
Sect. 15.1. The equation Q(s + t) − Q(s) = 0 means that no event occurs in the
interval [s, s + t], in other words, the second event occurs after time s + t . Since
the conditional probability Prob{Y2 ≤ t | Y1 = s} is independent of s, it is clearly
shown that the probability distribution for Prob{Y2 ≤ t | Y1 = s} is independent
of that for Prob{Y1 ≤ s}, while they are the same as the cumulative exponential
distribution F(t) = 1 − e−λt . Consequently, we can find the following theorem:

Theorem 15.1 For the homogeneous Poisson process with intensity λ, the interar-
rival time {Yn | n = 1, 2, . . . } is independent of each other, and follows the same
exponential distribution λe−λt with the mean 1/λ.

When a counting process has the interarrival times independent of each other, and
follows the same distribution F(t), it is called renewal process. The homogeneous
Poisson process with a constant λ is a renewal process which has the interarrival
time following the exponential distribution λe−λt and the cumulative exponential
distribution F(t) = 1 − e−λt .
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Next let us consider the time at which the nth event occurs, Sn = Y1 + Y2 +
· · ·+ Yn. The probability Prob{Sn ≤ t} that at least n events occur until time t is the
cumulative probability for Sn, which is now given by

Prob{Sn ≤ t} =
∞∑
k=n

P (k, t) =
∞∑
k=n

(〈λ〉t t)k
k! e−〈λ〉t t .

Since Prob{S1 ≤ t} = Prob{Y1 ≤ t}, we can prove by mathematical induction that

Prob{Sn ≤ t} =
∫ t

0
λ(t)

(〈λ〉τ τ )n−1

(n− 1)! e−〈λ〉τ τ dτ, (15.7)

making use of the relation Prob{Sn+1 ≤ t} = Prob{Sn ≤ t} − P(n, t). Especially
when λ is a constant independent of time, we find from (15.7) that the probability
density function for Sn is given by

λ
(λt)n−1

(n− 1)! e−λt .

This is a kind of gamma distribution, called Erlang distribution (of phase n).
On the other hand, we can derive the following conditional probability Prob{Y1 >

t + τ | Y1 > t} that, when no event occurs until time t , no event occurs until t + τ
either:

Prob{Y1 > t + τ | Y1 > t} = Prob{Y1 > t + τ and Y1 > t}
Prob{Y1 > t} = Prob{Y1 > t + τ }

Prob{Y1 > t}

= e−〈λ〉t+τ (t+τ )

e−〈λ〉t t = exp
[

−
∫ t+τ

t

λ(s) ds
]
.

Therefore we find that, when λ is a constant independent of time t , the conditional
probability Prob{Y1 > t + τ | Y1 > t} is independent of time t and determined
only by the time interval τ . This feature of stochastic process is called memoryless
property. The memoryless property essentially indicates that Prob{Y > t +
τ }/Prob{Y > t} is independent of time t and determined only by the time interval
τ . It has been mathematically proven that the memoryless property holds only when
the probability Prob{Y > t} follows the exponential distribution.
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