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Abstract
We construct and analyze an SIRI+Q model with a piecewise smooth system of ordinary differential equations for the epi-
demic dynamics of a reinfectious disease, in which a limited capacity of isolation is incorporated. To consider the relation of 
the limited isolation capacity to the epidemic consequence, we derive the condition that the isolation reaches the capacity at 
finite time along the path of the epidemic process, and that the disease becomes endemic. We investigate in particular how 
the endemicity, the endemic size, or the final epidemic size could depend on the isolation capacity. From the obtained math-
ematical results, we find theoretical implications on the relevance of the isolation capacity and the difficulty of its measure 
to control the spread of the disease in the community.
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Introduction

The active globalization of human mobility makes it cru-
cial to consider side effects such as disease spread (Cos-
sar 1994). For history, many infectious diseases disappear, 
recur, and become less deadly due to people getting immune. 
Such notable epidemics include “Spanish” flu (1918–1919), 
Black Deaths (1346–1350) which invaded Europe from Asia 
and recurred for three decades afterward before getting 
eliminated (Brauer 2017), SARS beginning with some infec-
tion on an airplane in 2003 (Wang and Wu 2018), and the 
COVID-19 pandemic in this century since mid-December 
2019 after the outbreak in China (NIID 2023; CDC 2024; 
ECDC 2024; WHO 2024). The significantly large num-
ber of cases and large-scale spread of the emerging virus 
about COVID-19 have been initiated and aroused by human 
mobility at global and local scales (Walters et al. 2018; Du 
Toit 2020; Liu and Saif 2020; Munster et al. 2020; Phan 

et al. 2020; Hara and Yamaguchi 2021; Nagata et al. 2021; 
Ramaswamy et al. 2021; Zhang et al. 2022).

Mathematical modeling of epidemic dynamics could 
serve to discuss how an infectious disease could spread, the 
expected duration of the epidemic, the expected number of 
infected, and the epidemiological indices to characterize the 
epidemic severity, including the basic reproduction number 
(Keeling and Rohani 2008; Brauer et al. 2008; Brauer and 
Castillo-Chavez 2012; Diekmann et al. 2012; Martcheva 
2015; Lewis et al. 2019). The early work by Kermack and 
McKendrick in 1927 is regarded as one of the important ori-
gins of mathematical modeling on epidemic dynamics, and 
has been widely applied for a variety of epidemic problems 
(Kermack and McKendrick 1927). According to Chowell 
et al. (2016), it is crucial to formulate reliable models that 
embody the basic transmission characteristics of specific 
pathogens and social scenarios. They further stated that 
improved models are required to capture the variation in 
early growth dynamics of real epidemics in order to gain 
a better understanding of the dynamics as they reviewed 
trends in modeling and classifying early epidemic pro-
gression. Recently, mathematical models of the epidemic 
dynamics are used to estimate or evaluate some epidemi-
ological parameters and to predict the temporal variation 
in the morbidity about a spreading disease, making use of 
an epidemiological data (Siettos and Russo 2013). This is 
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particularly the case for the spread of COVID-19 (for exam-
ple, Kobayashi et al. 2020; Athayde and Alencar 2022; Lin 
et al. 2022; Musa et al. 2022), while this paper of ours is 
not the case.

To reduce the risk of the spread of an infectious disease 
in the community, the strategies of quarantine, isolation, 
vaccination, and treatment are important. To manage vari-
ous kinds of infectious diseases like severe acute respiratory 
syndrome, plague, smallpox, cholera, yellow fever, influenza 
virus, and SARS-COV-2, the quarantine, isolation, and vac-
cination are primary. Martcheva (2015) gives a summary 
of such policies used to manage the spread of infectious 
diseases. Actually in the pandemic of COVID-19, there have 
been different policies for the public health from place to 
place (for example, Pearce et al. 2020; Mendez-Brito et al. 
2021; Unruh et al. 2022; Baker et al. 2023). Until now a lot 
of works have been done with mathematical models includ-
ing the isolation process for the purpose to consider its con-
tribution to the suppression of a disease spread (for exam-
ple, Feng and Thieme 1995; Brauer and Castillo-Chavez 
2012; Chowell et al. 2016 and references therein). Hethcote 
et al. (2002) proposed SIR+Q and SIQS models introduced 
a quarantined/isolated state (Q) with three forms of inci-
dence. In their SIR+Q model with a quarantine-adjusted 
incidence, the endemic equilibrium is an unstable spiral for 
a set of parameter values, and a periodic solution arises with 
Hopf bifurcation. Castillo-Chavez et al. (2003) considered a 
mathematical model for the purpose to discuss whether the 
quarantine/isolation can manage the SARS for a limited time 
frame within a single outbreak. Their model implied that the 
quarantine/isolation could significantly reduce the size of 
SARS outbreak. Vivas-Barber et al. (2014) considered an 
SIR+Q model with the perfect isolation and an asympto-
matic state, and got the damped oscillation.

There was a shortage of medical resources in many coun-
tries during the COVID-19 outbreak (Unruh et al. 2022). 
In recent times, some works using mathematical models 
considered how the limited medical resources could affect 
the transmission and management of an infectious disease 
(Abdelrazec et al. 2016; Qin et al. 2016; Wang et al. 2018; 
Saha and Samanta 2019; Mu et al. 2019; Kumar et al. 2020b; 
Sepulaveda-Salcedo et al. 2020; Zhao et al. 2020; Wei et al. 
2021). Hu et al. (2022) considered an SAIQR model to con-
sider the transmission dynamics of COVID-19 with a limited 
medical resource under the human migration between two 
regions, taking account of the asymptomatic state (A). Their 
results implied that making the basic reproduction number 
below 1 is not sufficient in order to manage the COVID-19, 
and it should be significantly below 1. A local outbreak may 
occur when the medical resources are limited, even if the 
disease is indexed by a reproduction number below 1.

In addition, the quarantine/isolation may be perfect or 
imperfect depending on the nature of the epidemic and 

policies implemented by the community. Erdem et  al. 
(2017) considered a mathematical model for the case of 
imperfect quarantine/isolation, and found a periodic solu-
tion or damped oscillation that indicates recurring outbreaks, 
depending on the quarantine effectiveness. It is obvious that 
the isolation requires a specific space with rigorously con-
trolled conditions to keep the infected individuals away from 
the other community members, so that it must have a certain 
capacity. With its very small capacity, the isolation strategy 
may break down at finite time along the path of the epi-
demic process. Amador and Gomez-Corral (2020) consid-
ered a stochastic SIQS model with susceptible, infected, and 
two quarantine states in which the quarantine has a limited 
capacity. Their numerical calculation showed a case where 
the quarantine compartment tends to become full before the 
outbreak ends, whereas they did not clarify the exact condi-
tion for such a case since their numerics were not to discuss 
the biological meaning of the results but to investigate the 
mathematical nature of their stochastic model. Since the 
quarantine/isolation must have an effect on the epidemic 
dynamics even when it breaks down after a certain moment, 
we are interested in how the final epidemic/endemic size 
depends on the isolation capacity.

Ahmad and Seno (2023) considered an SIR+Q model 
with a system of ordinary differential equations, introducing 
a limited capacity of isolation. It may be regarded as what 
is called a piecewise smooth system, or sometimes called 
Filippov system or switching system (Filippov 1988; Kuznet-
sov et al. 2003; di Bernardo et al. 2008; di Bernardo and 
Hogan 2010; Antali and Stepan 2018; Belykh et al. 2023, 
and references therein). They investigated the dependence 
of the final epidemic size on the limited isolation capacity, 
and derived the necessary and sufficient condition that the 
isolation reaches the capacity at finite time along the path 
of the epidemic process. The final epidemic size is defined 
as the proportion of individuals in the community who have 
experienced the infection until the final stage of the epidemic 
dynamics. They showed that the final epidemic size could 
have a discontinuous change at the critical value of isolation 
capacity below which the isolation reaches the capacity at 
finite time. Their results imply that the breakdown of isola-
tion with a limited capacity would cause a drastic increase in 
the final epidemic size. Insufficient capacity of the isolation 
would lead to an unexpectedly severe epidemic situation, 
while such a severity could be suppressed with a sufficient 
isolation capacity.

In this paper, we focus on the relation of such a limited 
capacity of isolation to the endemicity and the final epi-
demic/endemic size for a simplest SIRI+Q model on the 
epidemic dynamics of a reinfectious disease, expanding the 
modeling by Ahmad and Seno (2023). The reinfectivity of 
disease in this paper means that the acquired immunity by 
either vaccination or recovery is imperfect for a reinfectious 
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disease, such that the recovered individuals could have rein-
fection risk. Actually there are not a few transmissible dis-
eases with a reinfectivity, including influenza (Davies et al. 
1984; Hay et al. 2001; Earn et al. 2002; Price et al. 2022; 
Wang et al. 2022, pertussis  (Hethcote 1999; van Boven 
et al. 2000), Lyme disease (Nadelman et al. 2012), hand, 
foot, and mouth disease (Zhang et al. 2019), malaria (Arias 
et al. 2022; Rehman et al. 2022), tuberculosis (Vynnycky 
and Fine 1997; Horsburgh et al. 2022; Qiu et al. 2022), 
Ebola virus disease (MacIntyre and Chughtai 2016; Agusto 
2017), chronic lung diseases (Yum et al. 2014), invasive 
pneumococcal disease (Lipsitch 1997), meningococcal dis-
ease (Gupta and Maiden 2001), and COVID-19 (Kumar 
et al. 2020a; Crawford 2022; Le Page 2022; Mensah et al. 
2022; Nguyen et al. 2022; Ren et al. 2022; Saad-Roy et al. 
2022; Salzer et al. 2022; Shaheen et al. 2022), while the 
reinfectivity of not a few transmissible diseases has been still 
requiring scientific researches to understand its kinetics and 
some other relevant nature.

We will derive the condition that the isolation reaches the 
capacity at finite time along the path of the epidemic process, 
and investigate the existence and stability of disease-elimi-
nated and endemic states. Then, we will show that the final 
epidemic/endemic size would not be necessarily continuous 
in terms of the isolation capacity, and there is a case where 
the final epidemic/endemic size depends on the isolation 
capacity discontinuously at its critical value beyond which 
the isolation keeps functioning in the epidemic dynamics. 
Our theoretical results would highlight the importance of 
satisfactory infrastructure for the public health as indicated 
by Unruh et al. (2022) on the social response to the COVID-
19 pandemic. Since the satisfactory infrastructure for the 
public health needs a sufficient social investment, arguments 
on our model would imply a difficulty in the management of 
even quarantine/isolation policy against an infectious disease 
spreading in a community too.

Assumptions

We consider a modeling on the epidemic dynamics of 
a reinfectious disease during a short-term period, that is, 
an epidemic season, satisfying the following assumptions 
on the epidemic dynamics, most of which are the same as 
those in Ahmad and Seno (2023) except for that about the 
reinfection:

•	 The demographic change due to the natural birth, death, 
and migration is negligible in the season.

•	 The fatality of disease is negligible in the season.
•	 The infection occurs by the contact of susceptible indi-

vidual to not only organic but also potentially inorganic 
subjects contaminated with the pathogen to cause the 

disease. This assumption indicates that the considered 
epidemic dynamics would be on a disease, for example, 
transmitted with aerosols or droplets emitted from the 
infective individuals. The transmission may not neces-
sarily require person-to-person contacts.

•	 The quarantine/isolation/hospitalization has a capacity 
beyond which the isolation is impossible.

•	 As long as the isolation has not reached the capacity, 
the accessibility of the isolation is constant indepen-
dently of how many infectives are isolated.

•	 The isolated individuals cannot contact others or be 
discharged in the epidemic season. Hence, the infec-
tives come to make no contribution to the epidemic 
dynamics once they enter the isolated state.

•	 Once the isolation reaches the capacity, its function 
breaks down to become incapable onward in the sea-
son. Then, the epidemic dynamics continues without 
the quarantine/isolation.

•	 Even after the recovery from the infection, the indi-
vidual may get the infection again, that is, the disease 
is reinfectious.

Since the recovery generates an immunity against the dis-
ease, the assumption of possible reinfection means here 
that the immunity is imperfect or partial against the dis-
ease as already mentioned in the introduction section, for 
example, due to the multiplicity of pathogen types (e.g., 
mutated variants) (Gökaydin et  al. 2007; Wang et  al. 
2022). As long as we consider a specific pathogen, there 
may be an immune response as the cross-immunity for the 
invasion of such similar pathogens by the antigen gener-
ated for a specific type of pathogen: The cross-immunity 
may suppress the reinfection or the effective symptom 
to reproduce and discharge the pathogen out of the host 
to cause the disease transmission, while the immunity 
obtained by the recovery from the disease works only to 
reduce the risk of reinfection and there is a risk for the 
recovered individual to get the infection again. For the 
reasonable modeling, we assume that the reinfection after 
the recovery from the disease generally has a likelihood 
not beyond that of the infection for the susceptible.

Since we assume that the reinfection follows the imper-
fectness of immunity obtained by the recovery from the 
disease, we will not introduce any specific period or 
time scale to get reinfected after getting the immunity in 
our model. Thus, the state transition in terms of the dis-
ease follows the susceptible–infective–recovered/immu-
nized–infective (SIRI) structure in our modeling, as used, 
for example, in Gomes et al. (2004, 2005); Gökaydin et al. 
(2007); Stollenwerk et al. (2007); Martins et al. (2009); 
Pinto et al. (2010); Song et al. (2011); Georgescu and 
Zhang (2013); Guo et al. (2014); Pagliara et al. (2018); 
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Buonomo (2020); Ghosh et al. (2020); Wang (2021); Sriv-
astava and et al. (2022).

Modeling and model

Infection and reinfection forces

From the assumption given in the previous section, the 
reinfection force is introduced here not beyond the infection 
force � for the susceptible. For the simplest introduction of 
such a reinfection force, we assume now it as �� with a con-
stant � ∈ [0, 1] . For the extremal case of � = 1 , the recovery 
does not work at all to reduce the reinfection risk. For � = 0 , 
the recovery gives the perfect immunity so that there is no 
likelihood of reinfection. The parameter � means the index 
for the likelihood of reinfection after the recovery.

We introduce the infection force � for the susceptible in 
this paper as

where I and Q are, respectively, the infective and isolated 
population sizes (densities), N total population size in the 
community, and � the infection coefficient. This formula 
of the infection force is lead from the following idea with 
the assumption on the transmission route through the sub-
jects contaminated with the pathogen. For the continuous 
time model, the infection force is generally defined by the 
probability of infection per susceptible individual in a suffi-
ciently short time interval �t , which is mathematically given 
as ��t + o(�t).

We ignore any change/shift in the custom and style of 
daily life in the community under the epidemic dynamics. 
This indicates an assumption that the free (non-isolated) 
individual has a daily life independent of the situation of 
epidemic dynamics. Then, the free individual is assumed to 
have a probability to contact to the subjects which may be 
contaminated with the pathogen, given by c�t + o(�t) with 
a positive constant c in a sufficiently short time interval �t . 
The frequency of such contacts to the subjects depends only 
on the custom and style of daily life, and it is now assumed 
to be represented by a constant c. The probability of the 
contact to contagious subjects is assumed to be proportional 
to the ratio of infective population density I to the free popu-
lation density N − Q , that is given by I∕(N − Q) . In other 
words, with the mean-field approximation, the probability 
that a subject is contaminated by the pathogen is assumed 
to be proportional to I∕(N − Q) . The infection by such a 
contagious contact follows a probability characterizing the 
infectivity of the pathogen too. The product of these three 
factors results in the infection probability per susceptible 

(1)� = �(I,Q) ∶= �
I

N − Q
,

individual in a sufficiently short time interval �t , given as 
�(I,Q)�t + o(�t) by the above formula (1) with the infec-
tion coefficient � representing the constant parameters deter-
mined by those three factors.

Epidemic phases

From the assumptions of the availability of isolation, we 
need to take account of two different epidemic phases in our 
modeling, as Ahmad and Seno (2023) did: isolation effective 
phase and isolation incapable phase.

Isolation effective phase: This is the epidemic phase at 
which the isolated subpopulation size Q is less than the 
capacity, a given positive constant Qmax , when the isola-
tion works with quarantine/isolation rate � . The epidemic 
dynamics at this phase is governed by

The variables S, I, and R denote the sizes of suscepti-
ble, infective, and recovered subpopulations, respec-
tively. The total population size of the community is 
denoted by a positive constant N, and it is satisfied that 
S(t) + I(t) + Q(t) + R(t) = N  for any t ≥ 0 . The parameter 
� denotes the natural recovery rate of infective individual. 
The reinfection coefficient is given by �� , where 0 < 𝜀 < 1 , 
as given in the previous section. The quarantine/isolation 
rate of infective individual at this phase � represents the 
efficiency of quarantine operation to detect and isolate an 
infective.

Isolation incapable phase: This is the epidemic phase 
at which the isolated subpopulation size Q has reached the 
capacity Qmax , and then the isolation breaks down to become 
incapable. The epidemic dynamics at this phase is governed 
by

Once the isolation reaches the capacity, the system switches 
to the isolation incapable phase. Since we assume no 

(2)

dS

dt
= −�

I

N − Q
S;

dI

dt
= �

I

N − Q
S + ��

I

N − Q
R − �I − �I;

dQ

dt
= �I;

dR

dt
= �I − ��

I

N − Q
R.

(3)

dS

dt
= −�

I

N − Qmax

S;

dI

dt
= �

I

N − Qmax

S + ��
I

N − Qmax

R − �I;

dQ

dt
= 0;

dR

dt
= �I − ��

I

N − Qmax

R.
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discharge of isolated infectives from the isolation state, the 
subpopulation size of free individuals is N − Qmax at this 
phase. The extremal case with Qmax ≥ N  corresponds to 
the situation where the isolation never reaches the capacity, 
that is, it always works in the epidemic dynamics. Only if 
Qmax < N  , the isolation could reach the capacity to cease 
functioning. Therefore, we consider hereafter only the case 
of Qmax < N  as a reasonable setup for our model in this 
paper.

Full system for epidemic dynamics

With the above modeling of the epidemic dynamics at two 
different epidemic phases, we shall consider the following 
system as our mathematical model in this paper:

with

and the initial condition (S(0), I(0),Q(0),R(0)) = (S0, I0, 0, 0) 
where S0 > 0 , I0 > 0 , and S0 + I0 = N . The individual state 
transition according to the epidemic dynamics is schemati-
cally shown in Fig. 1. This model with � = 0 coincides with 
the SIR+Q model in Ahmad and Seno (2023).

The piecewise function Φ(Q, I) denotes the net quaran-
tine/isolation rate of infected individuals. As long as the 
isolated subpopulation size Q is less than the capacity Qmax , 
the isolation is available, and the epidemic dynamics is at 
the isolation effective phase with Φ(Q, I) = �I  . Once Q 
reaches Qmax , the isolation becomes ceased after it. Then, 

(4)

dS

dt
= −�

I

N − Q
S;

dI

dt
= �

I

N − Q
S + ��

I

N − Q
R − �I − Φ(Q, I);

dQ

dt
= Φ(Q, I);

dR

dt
= �I − ��

I

N − Q
R

Φ(Q, I) =

{
𝜎I for Q < Qmax;

0 for Q = Qmax,

the epidemic dynamics switches to the isolation incapable 
phase with Φ(Q, I) = 0.

As was the model considered by Ahmad and Seno 
(2023), our model (4) may be regarded as a piecewise 
smooth system, especially what is sometimes called Filip-
pov system or switching system (Filippov 1988; Kuznetsov 
et al. 2003; di Bernardo et al. 2008; di Bernardo and Hogan 
2010; Antali and Stepan 2018; Belykh et al. 2023, and ref-
erences therein), while we shall not intend to analyze the 
system (4) deeply as such a Filippov system in applied 
mathematics since we focus on the discussion about the 
relation of the isolation capacity to the endemicity and the 
final epidemic/endemic size for the SIRI+Q model (4) on 
the epidemic dynamics of a reinfectious disease.

With the transformation of variables and parameters,

and with the basic reproduction number R0 ∶= �∕(� + �) for 
the model (4), we can derive the following non-dimension-
alized system mathematically equivalent to the system (4):

with

and the initial condition (u(0), v(0), q(0),w(0)) = (u0, v0, 0, 0) 
where u0 > 0 and v0 = 1 − u0 > 0 . We will consider only 
the case of qmax < 1 as already mentioned in the previous 
section. For a mathematical convention, we show here the 
following mathematical feature about the solution of (5) 
(Appendix A):

L e m m a  3 . 1   Fo r  t h e  i n i t i a l  c o n d i t i o n 
(u(0), v(0), q(0),w(0)) = (u0, v0, 0, 0) w i th  v0 > 0  and 
u0 = 1 − v0 > 0 , the solution of (5) belongs to the set 
{(u, v, q,w) ∈ ℝ

4
+
∣ u + v + q + w = 1} for 𝜏 > 0.

As numerically exemplified by Fig. 2a for a sufficiently 
large capacity qmax , the epidemic dynamics can always 
remain at the isolation effective phase with �(q, v) = �v , 
when the isolation never reaches the capacity. In contrast, 

� ∶= (� + �)t; u ∶=
S

N
; v ∶=

I

N
; q ∶=

Q

N
; w ∶=

R

N
;

� ∶=
�

� + �
; qmax ∶=

Qmax

N
; R0 ∶=

�

� + �
,

(5)

du

d�
= −R0

v

1 − q
u;

dv

d�
= R0

v

1 − q
u + �R0

v

1 − q
w − (1 − �)v − �(q, v);

dq

d�
= �(q, v);

dw

d�
= (1 − �)v − �R0

v

1 − q
w

𝜙(q, v) =

{
𝛾v for q < qmax;

0 for q = qmax,

Fig. 1   The individual state transition according to the epidemic 
dynamics of our model (4)
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as numerically exemplified by Fig. 2b, c, if the isolation 
capacity is insufficient, it reaches the capacity, and then the 
isolated subpopulation size q remains qmax at the isolation 
incapable phase since any isolated individual is not dis-
charged from the isolation, following the assumption and 
modeling given in the previous and present sections.

Conserved quantities in the epidemic 
dynamics

In addit ion to the t ime-independent equali ty 
u + v + q + w = 1 , we can find the following time-inde-
pendent equalities for the variables as the conserved quanti-
ties in the epidemic dynamics governed by the system (5) 
(Appendix B).

At the isolation effective phase:

 At the isolation incapable phase:

with

(6)1 − q =
(
u

u0

)�∕R0

;

(7)
u + v = F(u) ∶=

⎧
⎪⎨⎪⎩

1 − �R0

� − �R0

�
u

u0

��∕R0

−
1 − �

� − �R0

�
u

u0

��

for �R0 ≠ �;

�
1 + �

1 − �

�
ln

u

u0

��
u

u0

��

for �R0 = � .

(8)

q = qmax;

u + v = G(u) ∶=
(
1 −

1 − �

�R0

)
(1 − qmax) + B

(
u

u0

)�

(9)

B ∶=

⎧
⎪⎨⎪⎩

1 − �

�R0(1 − �R0∕�)

�
(1 − qmax)

1−�R0∕� −
�R0

�

�
for �R0 ≠ �;

1 − �

�

�
ln(1 − qmax) + 1

�
for �R0 = � .

The equations for �R0 = � in (7) and (9) can be mathemati-
cally derived also by taking the limit as �R0 → � for those 
for �R0 ≠ � . Hence, we may use only the equations for 
�R0 ≠ � without distinguishing the case of �R0 = � unless 
it would be necessary in the mathematical argument. That is, 
we may use the equations for �R0 ≠ � as those mathemati-
cally including the specific case of �R0 = �.

As described about the derivation of (8) in Appendix B, 
we used the continuity of the temporal variation of the 
variables in the system (5) at the moment that the isola-
tion reaches the capacity and the system (5) switches to the 
isolation incapable phase. Then, we have noted the follow-
ing feature of the system (5), which will be useful for our 
subsequent mathematical analysis on the model:

Lemma 4.1  If the system enters the isolation incapable 
phase at a finite time 𝜏 = 𝜏⋆ , then the susceptible subpopu-
lation size at the moment becomes

Note that, from the continuity of variables u and v at 
𝜏 = 𝜏⋆ , equalities (6), (7), and (8) simultaneously holds at 
𝜏 = 𝜏⋆ , so that we have F(u⋆) = G(u⋆).

Equilibrium for the isolation effective phase

In this section, suppose that the system (5) always remains 
at the isolation effective phase, when it never reaches its 
capacity at finite time along the path of the epidemic pro-
cess. Then with the arguments given in Appendix C, we 

(10)u(𝜏⋆) = u⋆ ∶= u0
(
1 − qmax

)R0∕𝛾 .

Fig. 2   Numerical examples for the temporal variation of the model 
(5). a qmax = 0.45 , R0 = 1.2 ( �R0 = 0.24 ); b qmax = 0.35 , R0 = 1.2 
( �R0 = 0.24 ); c qmax = 0.45 , R0 = 2.5 ( �R0 = 0.50 ). Commonly, 

u0 = 0.99 ; � = 0.2 ; � = 0.6 . In (a), the isolation never reaches the 
capacity, while it reaches the capacity and becomes incapable after a 
moment 𝜏 = 𝜏⋆ in (b) and (c)
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can obtain the following results on the consequence of the 
epidemic dynamics when the system (5) always remains at 
the isolation effective phase.

First, we find the following result implying that a suf-
ficiently large isolation capacity could lead the system to a 
disease-eliminated equilibrium E−

0
 , even though the disease 

is reinfectious for the recovered individuals (Appendix C):

Lemma 5.1  If the system always remains at the isolation 
effective phase, the disease is eventually eliminated.

Next, we can obtain the following important feature of the 
epidemic dynamics by the system (5):

Lemma 5.2  If the system (5) can always remain at the isola-
tion effective phase, there are necessarily some susceptibles 
who can escape from the infection at the end of the epidemic 
dynamics.

The existence of such susceptibles at the end of the epi-
demic dynamics is well known for the Kermack-McKendrick 
SIR model (Brauer et al. 2008; Keeling and Rohani 2008; 
Brauer and Castillo-Chavez 2012; Diekmann et al. 2012; 
Martcheva 2015; Seno 2022), while the above lemma indi-
cates such a case even for the epidemic dynamics with a 
reinfectious disease in our model.

Consequently with these lemmas, we can obtain the fol-
lowing result (Appendix C):

Theorem 5.1  If the system always remains at the isolation 
effective phase, it eventually approaches a disease-elimi-
nated equilibrium E−

0
 given by

with a positive susceptible subpopulation size u−
∞
∈ (0, u0) , 

which is determined by the unique positive root of equation 

Equation (12) is derived by taking � → ∞ for the equal-
ity (7) with v → 0 . The disease-eliminated equilibrium E−

0
 

is uniquely determined for each given initial condition with 
u0 > 0 . In other words, the disease-eliminated equilibrium 
E−
0
 depends on the initial condition given by the initial infec-

tive subpopulation size v0 (alternatively u0).
In the next section, we will show the necessary and suf-

ficient condition that the system (5) always remains at the 
isolation effective phase, and alternatively the condition that 
the isolation reaches the capacity at finite time along the path 
of the epidemic process. As an important preliminary found 

(11)
E−
0
(u−

∞
, v−

∞
, q−

∞
,w−

∞
) =(

u−
∞
, 0, 1 −

(u−
∞

u0

)�∕R0

,
(u−

∞

u0

)�∕R0

− u−
∞

)
,

(12)u−
∞
= F(u−

∞
).

by the arguments in Appendix C for Theorem 5.1, we obtain 
the following lemma too:

Lemma 5.3  The system (5) can always remain at the isola-
tion effective phase only if 𝜀R0 < 1 . Otherwise, if �R0 ≥ 1 , 
then the isolation reaches the capacity, and the system enters 
the isolation incapable phase at finite time.

This result shows a sufficient condition that the isolation 
reaches the capacity at finite time. Even when 𝜀R0 < 1 , there 
could be such a case as shown in the next section.

Condition for the isolation incapable phase

Taking account of the results shown in the previous sec-
tion, we can prove the following theorem to show the neces-
sary and sufficient condition that the isolation reaches the 
capacity at finite time along the path of the epidemic process 
(Appendix D):

Theorem 6.1  Isolation reaches the capacity and becomes 
incapable at finite time along the path of the epidemic pro-
cess if and only if one of the following conditions is satisfied: 

	 (i)	 �R0 ≥ 1;
	 (ii)	 𝜀R0 < 1 and 

Otherwise, if both conditions (i) and (ii) are not satisfied, 
the isolation never reaches the capacity in the epidemic 
dynamics.

In other words, the system always remains at the isolation 
effective phase when and only when both conditions (i) and 
(ii) are not satisfied. The inequality (13) for � = 0 matches 
the condition obtained in Ahmad and Seno (2023) on the 
SIR+Q model without reinfection.

This result of Theorem 6.1 can be translated in the follow-
ing way with the critical value qc for the isolation capacity 
qmax (Appendix D):

Corollary 6.1.1  Isolation reaches the capacity and becomes 
incapable at finite time if and only if qmax < qc , where qc is 
defined as the smallest positive root of equation

If and only if qmax ≥ qc , the system always remains at the 
isolation effective phase, where the isolation never reaches 
the capacity.

(13)u0(1 − qmax)
R0∕𝛾 < F

(
u0(1 − qmax)

R0∕𝛾
)
.

(14)u0(1 − qc)
R0∕� = F

(
u0(1 − qc)

R0∕�
)
.
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As shown in Appendix D and Fig. 3, the critical value qc 
defined in Corollary 6.1.1 becomes less than 1 for 𝜀R0 < 1 , 
while it becomes 1 for �R0 ≥ 1 . Since qmax < 1 from our 
assumption, it is impossible to satisfy that qmax ≥ qc when 
�R0 ≥ 1 . That is, the system necessarily enters the isolation 
incapable phase at finite time, in accordance with the result 
shown in Theorem 6.1.

From equation (14), we can easily find that the critical value 
qc for the isolation capacity qmax is monotonically increasing 
in terms of the basic reproduction number R0 , the index for 
the reinfection � , and the initial infective subpopulation size v0 . 
The stronger infectivity, the higher likelihood of reinfection, or 
the larger number of the initial infected individuals leads to the 
demand of a larger isolation capacity to avoid its breakdown 
in the epidemic dynamics, as numerically illustrated in Fig. 3.

Moreover, we note that qc → �v0 = �(1 − u0) as R0 → 0 
with (14) (see Fig. 3a). We can easily find that the condi-
tion (13) becomes qmax < 𝛾(1 − u0) as R0 → 0 . This is a 
reasonable mathematical feature about our model (5). When 
no disease transmission occurs with R0 = 0 , every initial 
infective belonging to v0 alternatively recovers or is iso-
lated, and the system eventually approaches the equilibrium 
(u, v, q,w) = (u0, 0, �v0, (1 − �)v0) , if the isolation capacity is 
not below �v0 , which can be easily found by considering the 
system (5) with R0 = 0 . Otherwise, if qmax < 𝛾v0 , the isola-
tion reaches the capacity on the way of the infective elimina-
tion, and it becomes incapable.

As clearly indicated by Theorem 6.1, the isolation reaches 
the capacity at finite time if qmax < qc even when 𝜀R0 < 1 . 
It has been already shown in Lemma 5.3 that the system can 
always remain at the isolation effective phase only when 
𝜀R0 < 1 , and now we can find the following subsidiary result 
too (Appendix D):

Corollary 6.1.2  When 𝜀R0 < 1 , if

the system always remains at the isolation effective phase 
and the isolation never reaches the capacity.

This corollary gives a sufficient condition that the sys-
tem always remains at the isolation effective phase when 
𝜀R0 < 1 , that is, the right side of (15) gives a sufficient iso-
lation capacity for it, independently of the initial condition 
given by the value u0 . The sufficient isolation capacity qc is 
the supremum of qc in terms of u0 : It holds that qc > qc , so 
that we have qmax > qc if qmax ≥ qc (see Fig. 3). Only if the 
condition (15) is unsatisfied, the system enters the isolation 
incapable phase at finite time along the path of the epidemic 
process.

As the other important subsidiary result obtained in the 
proof for Corollary 6.1.1 in Appendix D, we can find

Lemma 6.1  u−
∞
= u0(1 − qc)

R0∕�.

This result will be useful in the subsequent analysis. Note 
that the equilibrium value u−

∞
 is independent of the isolation 

capacity qmax because it is for the equilibrium at the isolation 
effective phase when the isolation never reaches the capacity.

Revival of outbreak

As already seen in Fig. 2b, c, there could be a case where 
the infective subpopulation size turns from decreasing to 
increasing at the moment that the isolation reaches the 
capacity and the system enters the isolation incapable phase. 

(15)

qmax ≥ qc ∶=

⎧
⎪⎨⎪⎩

1 −
�1 − �R0

1 − �

��∕(�R0−�)

for �R0 ≠ �;

1 − e−�∕(1−�) for �R0 = � ,

Fig. 3   a R0-dependence; b �-dependence; c v0-dependence of the 
critical value qc of the isolation capacity qmax . Numerically drawn by 
Theorem  6.1, Corollaries  6.1.1 and  6.1.2 with a � = 0.2 , u0 = 0.9 ; 
b R0 = 4 , u0 = 0.9 , c � = 0.2 , R0 = 4 , and commonly � = 0.6 . The 

boundary qc is given by (14), and the dotted curve of qc is by (15). 
The difference between qc and qc appears rather slight in (b) and (c). 
In (c), qc = 0.875 independently of v0 while qc depends on v0 = 1 − u0
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Such a case appears as a revival of outbreak of the disease 
spread in the community. We can get the following condition 
that such a revival of outbreak occurs (Appendix E):

Theorem 7.1  When the isolation reaches the capacity at 
finite time, a revival of outbreak occurs if

where u⋆ is defined by (10).

Figure 4 shows numerically obtained parameter regions 
for the revival of outbreak. It is implied that the parame-
ter dependence is not simple. Roughly the larger isolation 
capacity or the larger infectivity is more likely to cause the 
revival of outbreak, while the sufficiently small isolation 
capacity is less likely. We may expect that the breakdown 
of the isolation operation along the path of the epidemic 
process could lead to the revival of outbreak.

Equilibria for the isolation incapable phase

We obtain the following lemma and theorem about the feasi-
ble equilibria at the isolation incapable phase (Appendix F):

Lemma 8.1  At  the isolation incapable phase , 
u → u+

∞
∈ (0, u⋆) as � → ∞ , if and only if 𝜀R0 < 1 − 𝛾 . The 

equilibrium value u+
∞

 is determined by the unique positive 
root in (0, u⋆) of equation

where G is defined by (8) and (9). If �R0 ≥ 1 − � , then u → 0 
as � → ∞.

𝜀R0 − 1

R0

(1 − qmax) < 𝜀F(u⋆) − u⋆

<
𝜀R0 − (1 − 𝛾)

R0

(1 − qmax),

(16)u+
∞
= G(u+

∞
),

Theorem 8.1  At the isolation incapable phase, if and only 
if 𝜀R0 < 1 − 𝛾 , the system (5) approaches a disease-elimi-
nated equilibrium E+

0
:

where u+
∞

 is determined by the unique positive root in ( 0, u⋆) 
of equation (16). If �R0 = 1 − � at the isolation incapable 
phase, it approaches the disease-eliminated equilibrium E+

0
 

given as (0, 0, qmax, 1 − qmax) . Otherwise, if 𝜀R0 > 1 − 𝛾 at 
the isolation incapable phase, it approaches the endemic 
equilibrium E+

∗
:

As a result, the system approaches an endemic equilib-
rium if and only if 𝜀R0 > 1 − 𝛾 at the isolation incapable 
phase. Otherwise, it approaches a disease-eliminated equi-
librium, independently of whether it enters the isolation 
incapable phase or not.

Figure 2b, c numerically exemplifies the cases in which 
the system approaches an disease-eliminated equilibrium E+

0
 

and the endemic equilibrium E+
∗
 , respectively, after it enters 

the isolation incapable phase. The endemic state arises in the 
community necessarily after the isolation reaches the capac-
ity. The endemic state is sustained by the reinfection for the 
recovered individuals, since there is no susceptible who has 
not experienced the disease in the community (i.e., u+

∞
= 0 ). 

From Theorems 5.1 and 8.1, even after the isolation reaches 
the capacity, the elimination of the disease may occur if the 
reinfectivity is weak enough to satisfy that �R0 ≤ 1 − �.

(17)E+
0
(u+

∞
, v+

∞
, q+

∞
,w+

∞
) =

(
u+
∞
, 0, qmax, 1 − u+

∞
− qmax

)
,

(18)
E+
∗
(u+

∞
, v+

∞
, q+

∞
,w+

∞
) =(

0,
(
1 −

1 − �

�R0

)
(1 − qmax), qmax,

1 − �

�R0

(1 − qmax)

)
.

Fig. 4   Parameter region for the revival of outbreak, numerically 
drawn by Theorem  7.1 with the parameter values used in Fig.  3: a 
R0-dependence; b �-dependence; c v0-dependence. The revival of 
outbreak occurs for the filled region. For the other region, the infec-

tive subpopulation size keeps decreasing or increasing even at the 
moment that the isolation reaches the capacity and the system enters 
the isolation incapable phase
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Endemic size

The endemic size is defined here as the equilibrium 
value of the infective subpopulation size v∞ , which is 
hence zero if the system approaches a disease-eliminated 
equilibrium. From Theorem  8.1, it can become posi-
tive only at the isolation incapable phase, and given as 
v+
∞
= {1 − (1 − �)∕(�R0)}(1 − qmax) from E+

∗
 given by (18).

From Theorem 6.1, Corollary 6.1.1, and Theorem 8.1, 
we have noted that, when �R0 ≥ 1 , the system necessarily 
approaches an endemic equilibrium at the isolation inca-
pable phase. Then, the endemic size v+

∞
 is monotonically 

decreasing in terms of the isolation capacity qmax as shown 
by (18). See the numerical example in Fig. 5c.

In contrast, especially when the disease spreads with 
�R0 ∈ (1 − � , 1 ) , the disease becomes eliminated if 
qmax ≥ qc ∈ (0, 1) , while it becomes endemic if qmax < qc , 
as seen in the numerical examples of Fig. 5a, b. Then, the 
endemic size shows a discontinuity at qmax = qc , where it is 
continuous and positive in terms of qmax < qc , and zero for 
qmax > qc . Thus, in such a case, the isolation capacity is a 
crucial factor for the endemicity of the spreading disease.

Final epidemic size

The final epidemic size z∞ is defined here as the propor-
tion of individuals in the community who have experienced 
the infection until the final stage of the epidemic dynamics. 
Hence, it is given by z∞ ∶= 1 − u∞ for the system (5). From 
this definition of the final epidemic size, when the system 
(5) approaches an endemic equilibrium, we have z∞ = 1 , 
because every individual in the community has experi-
enced the infection at the end of the epidemic dynamics 
with u∞ = 0.

First, as shown by Theorems  6.1,  8.1, and Corol-
lary 6.1.1, when the isolation never reaches the capacity 
in the epidemic dynamics with 𝜀R0 < 1 and qmax ≥ qc , 
the system (5) approaches a disease-eliminated equi-
librium, and then the final epidemic size z∞ is given by 

z−
∞
∶= 1 − u−

∞
 with u−

∞
 given by Lemma 6.1. That is, we have 

z−
∞
= 1 − u0(1 − qc)

R0∕� ∈ (0, 1).
Next, from those results obtained in the previous sec-

tions, when the isolation reaches the capacity at finite time 
with qmax < qc , we have the following results on the final 
epidemic size z∞:

•	 If 𝜀R0 < 1 − 𝛾 , the system (5) approaches a disease-
eliminated equilibrium as shown by Theorem 8.1. Then, 
the final epidemic size z∞ is given by z+

∞
∶= 1 − u+

∞
 with 

the unique positive root u+
∞

 of equation (16).
•	 If �R0 = 1 − � , the system (5) approaches a disease-elim-

inated equilibrium accompanied with u → 0 as � → ∞ , 
as shown by Theorem 8.1. Then, the final epidemic size 
z∞ is given by z+

∞
= 1.

•	 If 𝜀R0 > 1 − 𝛾 , the system (5) approaches the endemic 
equilibrium (18) as shown by Theorem 8.1. Then, the 
final epidemic size becomes z∞ = 1 accompanied with 
u → 0 as � → ∞.

Especially as for the final epidemic size at the isolation 
incapable phase z∞ = z+

∞
 with 𝜀R0 < 1 − 𝛾 and qmax < qc , 

we can find the following feature (Appendix G):

Lemma 10.1  The final epidemic size z∞ = z+
∞

 is monotoni-
cally decreasing in terms of qmax ∈ (0, qc) at the isolation 
incapable phase with 𝜀R0 < 1 − 𝛾.

Figure 6 numerically shows the qmax-dependence of the 
final epidemic size z∞ . It is seen that the larger isolation 
capacity makes the final epidemic size smaller. Figure 6b 
shows a case where the final epidemic size z∞ becomes dras-
tically large if the isolation reaches the capacity at finite 
time. The same tendency is seen also in Fig. 6d, whereas 
the difference between z−

∞
 (around 0.9965) and z+

∞
= 1 is 

rather small. In contrast, the final epidemic size z∞ can be 
continuous in terms of the isolation capacity qmax as shown 
in Fig. 6a, c.

Fig. 5   qmax-dependence of the endemic size v∞ . Numerically drawn 
with a � = 0.12 ( �R0 = 0.48 ; qc = 0.7305 ); b � = 0.2 ( �R0 = 0.8 ; 
qc = 0.8750 ); c � = 0.3 ( �R0 = 1.2 ; qc = 1 ), and commonly u0 = 0.9 ; 

� = 0.6 ; R0 = 4.0 . Note that v∞ = 0 independently of qmax if 
�R0 ≤ 1 − � , as indicated in Theorem 8.1
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We can obtain the following analytical result on such the 
discontinuity in the qmax-dependence of the final epidemic 
size z∞ (Appendix H):

Theorem 10.1  When 𝜀R0 < 1 , the final epidemic size z∞ has 
a discontinuity at qmax = qc such that

if and only if one of the following conditions is satisfied: 

	 (i)	 1 − 𝛾 ≤ 𝜀R0 < 1;
	 (ii)	 𝜀(1 − 𝛾) < 𝜀R0 < 1 − 𝛾 and 

I f  t he  cond i t i on  (19 )  i s  unsa t i s f i ed  fo r 
�R0 ∈ (�(1 − �), 1 − �) , then it holds that z†

∞
= z−

∞
.

The condition (ii) for � = 0 becomes coincident with the 
condition obtained in Ahmad and Seno (2023) for such a 
discontinuity about the SIR+Q model without reinfec-
tion. The numerical example Fig. 6d shows the case (i) 
in Theorem 10.1, and Fig. 6b does the case (ii). Figure 6c 
shows the case where the condition (19) is unsatisfied with 
�R0 ∈ (�(1 − �), 1 − �) . In contrast, Fig. 6a corresponds to 
the case of R0 < 1 − 𝛾.

In Fig. 7, we numerically show the (�,R0)-dependence of 
the discontinuity of the final epidemic size z∞ at qmax = qc . 
For the region corresponding to the case (i) in Theorem 10.1, 
that is, for the region between two solid boundary curves 
�R0 = 1 and �R0 = 1 − � , we have an endemic equilibrium 
(18) with z+

∞
= 1 for qmax < qc , when we can observe the dis-

continuity at qmax = qc as Fig. 6d. For the filled region below 
the solid boundary curve �R0 = 1 − � , corresponding to the 
case (ii) in Theorem 10.1, we have a disease-eliminated equi-
librium (17) with z+

∞
< 1 for qmax > qc , when we can observe 

the discontinuity at qmax = qc as Fig. 6b. For the blank region 
below the solid boundary curve �R0 = 1 − � in Fig. 7, we 
have z+

∞
→ z−

∞
 as qmax → qc − 0 , when the final epidemic 

z†
∞
∶= lim

qmax→qc−0
z+
∞
> z−

∞

(19)u0(1 − qc)
R0∕𝛾−1 >

𝜀

1 − 𝜀

(1 − 𝛾

𝜀R0

− 1
)
.

Fig. 6   qmax-dependence of the final epidemic size z∞ . Numerically 
drawn for a R0 = 0.65 ( �R0 = 0.195 ; qc = 0.0084 ); b R0 = 1.1 
( �R0 = 0.33 ; qc = 0.1192 ); c R0 = 1.5 ( �R0 = 0.45 ; qc = 0.3000 ); 
d R0 = 2.5 ( �R0 = 0.75 ; qc = 0.4925 ), and commonly u0 = 0.99 ; 
� = 0.3 ; � = 0.3 . In (d), z+

∞
= 1 because the system approaches an 

endemic equilibrium with 𝜀R0 > 1 − 𝛾 as indicated in Theorem 8.1

Fig. 7   (�,R0)-dependence of 
the discontinuity of the final 
epidemic size z∞ at qmax = qc . 
For the filled region, we have 
z†
∞
> z−

∞
 as shown in Theo-

rem 10.1. Numerically drawn 
with a � = 0.2 ; b � = 0.3 ; c 
� = 0.4 ; d � = 0.6 , and com-
monly u0 = 0.9 . The upper solid 
boundary curve is of �R0 = 1 , 
and the lower is of �R0 = 1 − � . 
The horizontal dotted line is of 
R0 = 1 − � . The detail is in the 
main text
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size z∞ is continuous even at qmax = qc as Fig. 6a. For the 
blank region beyond the solid boundary curve �R0 = 1 in 
Fig. 7, we have an endemic equilibrium (18) at the isolation 
incapable phase for any qmax ∈ [0, 1) , and there is no case of 
qmax ≥ qc = 1 . As indicated by Fig. 7, although not simple 
is the dependence of the discontinuity of the final epidemic 
size z∞ on the nature of spreading disease, represented by 
the parameters R0 and � , it is implied that the higher risk 
of reinfection (i.e., with the larger � ) is more likely to cause 
such the discontinuity. Moreover, the faster isolation (i.e., 
with the larger � ) is more like to do so too. The faster isola-
tion means the more effective quarantine, which could be 
regarded as a better feature in the isolation operation for 
the public health measure. Therefore, sufficiently effective 
quarantine and fast isolation would be highly important to 
suppress the endemic size or the final epidemic size, because 
the sufficient capacity of isolation may drastically reduce 
such sizes as the consequence of the epidemic dynamics.

Dependence on the quarantine efficiency

Figure 8 shows the numerical calculation of the (�∕�, �∕�)
-dependence of qc for our model (5), where we used qc deter-
mined by (14) in Corollary 6.1.1, which can be expressed by 
only four parameters u0 , � , �∕� , and �∕� with the original 
parameters in our model (4). The parameter �∕� corresponds 
in fact to the basic reproduction number of the epidemic 
dynamics by (4) without isolation. Hence, in contrast to R0 
with isolation, we may call �∕� the primitive basic repro-
duction number at the stage of the disease invasion in the 
community when the quarantine measure has not yet been 
applied.

Numerical results in Fig. 8 clearly demonstrate that the 
severe epidemic with the larger primitive basic reproduction 

number requires the larger isolation capacity to avoid its 
breakdown, which matches our intuitive expectation as seen 
in the R0-dependence of qc in Sect. 6 (refer to Fig. 3). On the 
whole, a sufficiently high efficiency of the quarantine could 
make the isolation capacity smaller to avoid its breakdown, 
and a sufficiently low efficiency could induce the breakdown, 
as mentioned also at the end of the previous section. On the 
other hand, the critical isolation capacity qc appears to have 
a nontrivial relation to the efficiency of quarantine operation, 
represented by the parameter � . There are some cases where 
qc becomes relatively large in an intermediate range of � , 
while qc gets smaller for sufficiently small or large � . Such a 
nontrivial dependence of the qc on the quarantine efficiency 
was found and discussed also in Ahmad and Seno (2023) on 
the SIR+Q model without reinfection (refer to Fig. 8a). Our 
numerical calculations in Fig. 8 imply that such a feature 
appears remarkably for � = 0 , that is, for the model without 
reinfection, and it becomes more complicated for the model 
with reinfection.

Actually as for the dependence of the final epidemic size 
z∞ on the quarantine efficiency, it can result in an unex-
pected feature as shown in Fig. 9. As Ahmad and Seno 
(2023) investigated for the model without reinfection, the 
final epidemic size z∞ could have a non-monotone rela-
tion to � , and then z∞ could take a local maximum for an 
intermediate value of � . Sufficiently high quarantine effi-
ciency (i.e., sufficiently large � ) can make the critical isola-
tion capacity qc rather small, and thus it can significantly 
reduce the final epidemic size z∞ . As indicated by Fig. 9, 
it is necessary for the quarantine to have a sufficiently high 
efficiency in order to avoid the breakdown of isolation and 
to successfully suppress the final epidemic size. However, 
as shown by the numerical calculations in Figs. 8 and 9, 
the reinfection could make complicated the relation of the 
quarantine efficiency to the critical isolation capacity, and 

Fig. 8   Numerically drawn contour plots of qc in terms of ( �∕�, �∕� ), 
making use of Theorem  6.1, Corollary  6.1.1, and Theorem  8.1: a 
� = 0 ; b � = 0.2 . Commonly, u0 = 0.99 . In (b), the endemic equi-
librium may appear only for 𝜀R0 > 1 − 𝛾 , that is, for 𝛽∕𝜌 > 1∕𝜀 . 

For �R0 ≥ 1 , that is, for ��∕� ≥ 1 + �∕� , the system (5) necessarily 
enters the isolation incapable phase for any isolation capacity qmax , 
corresponding to qc = 1
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such a complicatedness implies a difficulty to prepare an 
appropriate measure of the quarantine and isolation for the 
public health in a community.

From the definition of parameters � and � for the epi-
demic dynamics by (4), the expected duration of the infectiv-
ity (i.e., the transmissibility of the disease by an infective) is 
given by 1∕� , and the expected duration of the detection of 
an infective until it gets isolated is given by 1∕� at the isola-
tion effective phase. In a sense, it would be reasonable to 
assume that 1∕𝜎 < 1∕𝜌 , that is, 𝜌∕𝜎 < 1 , because the detec-
tion of an infective is possible only when the individual 
has the infectivity. However, the quarantine efficiency must 
depend on the availability of medical services and the vol-
untary access of infectives to such a service. Therefore, with 
the dependence on such factors, poor quarantine efficiency 
could make �∕� ≥ 1.

Concluding remarks

Results on our mathematical model clearly indicate that the 
increase in the isolation capacity makes the endemic size 
and the final epidemic size smaller as implied by the math-
ematical results on the SIR+Q model in Ahmad and Seno 

(2023), while mathematical arguments required to show 
important features are rather different from those in their 
work because of the reinfection introduced in our model. 
More significantly, it is implied that the breakdown of iso-
lation due to its limited capacity could induce a consider-
able change of the epidemic severity accompanied with the 
revival of outbreak, the emergence of endemicity, or a stag-
geringly wide spread of the disease, for example. In other 
words, the isolation capacity could be a crucial factor for the 
public health policy not only to reduce the epidemic size but 
also to suppress the endemicity.

The higher risk of reinfection leads to the larger critical 
capacity of isolation: The larger isolation capacity is neces-
sary to avoid the severe consequence of the epidemic dynam-
ics with a reinfectious disease. In general, the reinfectivity 
of spreading disease must induce the higher importance of 
the isolation capacity for the effective public health measure, 
because the recovered individual may get infected again and 
further become a spreader of the disease. Actually, since 
the existence of reinfectivity could induce the endemicity 
of the disease, the isolation capacity must be rather impor-
tant to control the disease spread. Figure 10 gives numerical 
examples with our model (5) to indicate the importance. An 
increase in the isolation capacity may result in the effective 

Fig. 9   �∕�-dependence of the 
critical isolation capacity qc 
and the final epidemic size 
z∞ . Numerically drawn for a 
� = 0.0 ; b � = 0.15 ; c � = 0.30 , 
and commonly u0 = 0.99 ; 
qmax = 0.4 ; �∕� = 4.0

Fig. 10   Numerical examples for the temporal variation of the model 
(5) with a change of the isolation capacity at � = �s : a qmax = 0.65 
to 0.75, �s = 60 ; b qmax = 0.75 to 0.65, �s = 15 . Commonly, � = 0.5 ; 
R0 = 2.0 ; � = 0.3 ( �R0 = 0.6 ); u0 = 0.99 ; qc = 0.6554 . In (a), the 
isolation reaches the capacity and becomes incapable at a moment 

𝜏 = 𝜏⋆ , and then the disease tends to become endemic until � = �s , 
whereas it turns to be eliminated after the raise of isolation capac-
ity at � = �s . In (b), the disease tends to be eliminated until � = �s , 
whereas it revives after the reduction of isolation capacity after it
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suppression of the endemicity and drive the disease to its 
elimination as in Fig. 10a. In contrast, a careless reduction 
of the isolation capacity, as in Fig. 10b, for example, because 
of the low prevalence monitored in the epidemic dynamics, 
may induce the revival of the disease spread by the released 
endemicity with the reinfectivity.

In our results as illustrated by Fig. 7, when the isolation 
capacity is insufficient, the higher risk of reinfection is more 
likely to not only induce an endemic state but also lead to 
a discontinuously larger epidemic size even though the dis-
ease finally gets eliminated. Further, as was shown in our 
mathematical results, the highly effective quarantine with a 
sufficient capacity of isolation could result in a successful 
suppression of the endemic size or the final epidemic size 
to an unexpectedly distinct extent. This implies the impor-
tance of the isolation capacity as a measure for the public 
health, while such a sufficient capacity of the isolation or an 
effective quarantine must be ready before the outbreak of a 
disease spread because it would generally become hard to 
prepare after it (Baker et al. 2023).

The smaller critical value of the isolation capacity qc is 
better for the management of the epidemic dynamics. That 
is, the smaller critical value for the isolation capacity makes 
an isolation policy with a feasible capacity more likely to 
be invulnerable to avoid its breakdown. The larger critical 
value for the isolation capacity indicates a harder situation 
for the public health policy since a large capacity of isola-
tion is necessary to avoid its breakdown and to suppress the 
endemicity or make the final epidemic size at a low level. As 
the factors to determine the effectiveness of a public health 
policy against a spreading disease, the isolation capacity and 
the quarantine efficiency could be independently improved. 
Our results clearly indicate their relevance, and it is implied 
that the improvement about one of them could make that 
about the other more feasible, as discussed in Shahverdi 
et al. (2023). Inversely, when one of them could not be suf-
ficiently improved, the improvement of the other becomes 
less effective.

Naturally the quarantine/isolation could not be necessar-
ily the principal factor for the public health policy against 
the spread of an infectious disease, while it must be impor-
tant and could have a significant contribution to the sup-
pression of the epidemic size, accompanied with the other 
measures against the epidemic. Our theoretical results would 
highlight the importance of satisfactory infrastructure for 
the public health as indicated by Unruh et al. (2022) on the 
social response to the COVID-19 pandemic. Since the sat-
isfactory infrastructure for the public health needs a suffi-
cient social investment, these arguments on our model would 

imply a difficulty of the management of even quarantine/
isolation policy against an infectious disease spreading in 
a community too.

In our modeling, we assumed no discharge from the isola-
tion. However, in most real cases, it may occur even to make 
effective the use of available medical resources (space, med-
ical equipments, medical workers, etc.), and very probably 
also in the epidemic dynamics with a reinfectious disease. 
However, such a discharge of recovered individuals from 
the isolation could serve a supply of potential hosts for the 
disease spread because of its reinfectivity. In this sense, the 
discharge rate must be one of the important factors to deter-
mine the effectivity of quarantine/isolation measure for the 
public health. It is worth considering the model with such a 
discharge of recovered individuals from the isolation which 
has a limited capacity. We would like to study further such 
a model elsewhere in future, for example, concerning the 
efficiency of lockdown policy or self-responsible isolation 
according to the suppression of epidemic size.

Appendix A: Proof for Lemma 3.1

Note that the isolated population size q never becomes 
greater than qmax in the epidemic dynamics governed by (5) 
with the initial value q(0) = 0 . From (5), we have dq∕d� = 0 
for q = qmax . Thus, also in accordance with the modeling 
assumption, the isolated population size q never becomes 
greater than qmax < 1 for any � ≥ 0.

Then from (5), we formally have

with v(0) > 0 for any � such that q(𝜈) < qmax for any 𝜈 < 𝜏 . 
If the system gets in the isolation incapable phase after 
𝜏 = 𝜏⋆ > 0 , we have v(𝜏⋆) > 0 from the above argument, 
and

for any 𝜏 ≥ 𝜏⋆ because the system remains at the isolation 
incapable phase once it enters the phase. Therefore from 
these arguments, we have v(t) > 0 for any � ≥ 0 about the 
system (5) with v(0) = v0 > 0 . Thus, we have dq∕d𝜏 > 0 

v(𝜏) = v(0) exp

[
∫

𝜏

0

R0

u(𝜈)

1 − q(𝜈)
+ 𝜀R0

w(𝜈)

1 − q(𝜈)
d𝜈 − 𝜏

]
> 0

v(𝜏) = v(𝜏⋆) exp

[
∫

𝜏

𝜏⋆
R0

u(𝜈)

1 − q(𝜈)

+𝜀R0

w(𝜈)

1 − q(𝜈)
d𝜈 − (1 − 𝛾)(𝜏 − 𝜏⋆)

]
> 0
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with q = 0 for any � ≥ 0 . Since dq∕d𝜏 > 0 at � = 0 , we 
finally find that q ∈ (0, qmax) for any 𝜏 > 0.

With the same arguments, we can prove that u > 0 and 
w > 0 for any 𝜏 > 0 . Finally, since it holds from the equa-
tions of (5) that u + v + q + w = 1 for any � ≥ 0 , we obtain 
the lemma.

Appendix B: Derivation of conserved 
quantities

At the isolation effective phase:This is the phase when 
the system (5) follows the isolation effective phase with 
�(q, v) = �v . First, from the equations of du∕d� and dq∕d� 
in (5), we can derive the following differential equation:

We can easily solve equation (B1), and find equation (6) 
between u and q, making use of u(0) = u0 > 0 , and q(0) = 0.

Next, from the equations of du∕d� and dv∕d� in (5), we 
can derive the following differential equation:

using the relation w = 1 − u − v − q . Then substituting (6) 
for (B2), we can solve it and derive equation (7), making use 
of u(0) = u0 and v(0) = v0 = 1 − u0.

At the isolation incapable phase: Once the isolation 
reaches the capacity at finite time, the system (5) switches 
to the isolation incapable phase with �(q, v) = 0 . From the 
equations of du∕d� and dv∕d� in (5) at the isolation incapa-
ble phase, we can obtain the following differential equation:

We can easily solve (B3) and get the following equation

from the general solution of (B3) with an undetermined con-
stant C.

Since the isolation incapable phase arises only after the 
isolation reaches the capacity, suppose now that it arises at 
𝜏 = 𝜏⋆ > 0 . From the continuity of the temporal variation 
of the variables in the system (5), both of equations (7) and 
(B4) are satisfied at 𝜏 = 𝜏⋆ . This is the continuity condition 
that is satisfied by the system (5) if it switches the isolation 
effective phase to the isolation incapable phase at 𝜏 = 𝜏⋆.

(B1)
du

dq
= −

R0

�

u

1 − q
.

(B2)
dv

du
= �

v

u
− �

(
1 −

1

�R0

)1 − q

u
− (1 − �),

(B3)
dv

du
= �

v

u
− �

(
1 −

1 − �

�R0

)1 − qmax

u
− (1 − �).

(B4)u(�) + v(�) =
(
1 −

1 − �

�R0

)
(1 − qmax) + C{u(�)}�

First, as shown in Lemma 4.1, we find the susceptible 
subpopulation size u = u⋆ defined by (10) at the moment 
𝜏 = 𝜏⋆ from (6), because q(𝜏⋆) = qmax at the moment when 
the isolation reaches the capacity. Next, from the continuity 
condition about equations (7) and (B4), we have the follow-
ing equality which holds at 𝜏 = 𝜏⋆:

when � ≠ �R0 , and

when � = �R0 . Hence with (10), we find

Finally, substituting (B5) for (B4), we can derive equation 
(8) for the isolation incapable phase.

Appendix C: Proof for Lemmas 5.1, 5.2, 
Theorem 5.1, and Lemma 5.3

If the system remains at the isolation effective phase, the 
isolated subpopulation size q monotonically increases 
for any � ≥ 0 since the infective subpopulation size v > 0 
from Lemma 3.1. Since it holds that q < qmax < 1 for any 
� ≥ 0 , q must converge to a positive finite value less than 
or equal to qmax < 1 as � → ∞ , so that we have dq∕d� → 0 
as � → ∞ . Therefore, it is necessary that v → 0 as � → ∞ . 
This proves Lemma 5.1. Then, from the equation in (5), we 
have du∕d� → 0 as � → ∞ at the same time. Subsequently, 
from the relations u + v + q + w = 1 and (6), we can get the 
disease-eliminated equilibrium E−

0
 given by (11), and find 

that u−
∞

 must be positive. This leads to Lemma 5.2.
Note that this is necessary also for the consistency with 

the supposition that the system always remains at the isola-
tion effective phase. If u → 0 as � → ∞ , we have q → 1 as 
� → ∞ because of the conserved quantity (6). This is con-
tradictory to the supposition which means that q < qmax < 1 
for any � ≥ 0 . Hence, the convergence such that u → u−

∞
> 0 

as � → ∞ is necessary when the system always remains at 
the isolation effective phase.

1 − 𝜀R0

𝛾 − 𝜀R0

(
u⋆

u0

)𝛾∕R0

−
1 − 𝛾

𝛾 − 𝜀R0

(
u⋆

u0

)𝜀

=
(
1 −

1 − 𝛾

𝜀R0

)
(1 − qmax) + C(u⋆)𝜀

[(
1

R0

− 𝜖

)
ln

u⋆

u0
+ 1

](
u⋆

u0

)𝜀

=
(
1 −

1 − 𝛾

𝜀R0

)
(1 − qmax) + C(u⋆)𝜀

=
(
2 −

1

𝛾

)
(1 − qmax) + C(u⋆)𝜀

(B5)
C =

⎧
⎪⎨⎪⎩

1 − �

�ℛ0(1 − �ℛ0∕�)

�
(1 − qmax)

1−�ℛ0∕� −
�ℛ0

�

�
(u0)

−� when �ℛ0 ≠ �;

1 − �

�

�
ln(1 − qmax) + 1

�
(u0)

−� when �ℛ0 = � .
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By applying equations (6) and (7) for the equation of 
du∕d� in (5), we can reduce the system (5) to the following 
mathematically equivalent one dimensional system:

From the above arguments to show that du∕d� → 0 as 
� → ∞ while the value u is positive, we find it necessary 
that F(u) − u → 0 as � → ∞ , while u → u−

∞
 which is given 

by a positive root in (0, u0) for equation (12).
Since u is monotonically decreasing from u0 as time 

passes, and F(u0) − u0 = 1 − u0 > 0 , we have u → u−
∞
> 0 

as � → ∞ if and only if equation (12) has a positive root u−
∞

 
in (0, u0) . Now the function F(u) is continuous and differen-
tiable in (0, u0) , with F(u) → 0 as u → +0 , and F(u) → 1 as 
u → u0 − 0 . Moreover, from the derivative

we can easily find that F�(u) > 0 and further F��(u) < 0 
for u ∈ (0, u0) when �R0 ≥ 1 . In contrast, when 𝜀R0 < 1 , 
there is a unique critical value u = uc ∈ (0, u0) such that 
F�(uc) = 0 , F�(u) < 0 for u ∈ (0, uc) , and F�(u) > 0 for 
u ∈ (uc, u0) , where

From these features of the function F, we have F(u) − u > 0 
for any u ∈ (0, u0) when and only when �R0 ≥ 1 . This is the 
case where equation (16) has no positive root in (0, u0) . In 
contrast, there exists a unique positive root u = u−

∞
 in (0, u0) 

for equation (16) when and only when 𝜀R0 < 1 , proved by 
the intermediate value theorem for the continuous func-
tion F(u) in [0, u0] , because F(u) − u → 0 as u → +0 and 
F(u) − u → 1 − u0 > 0 as u → u0 − 0 while F(u) − u < 0 for 
u ∈ (0, uc).

Consequently, the system can always remain at the 
isolation effective phase only when 𝜀R0 < 1 , and then 
u → u−

∞
> 0 as � → ∞ , where u−

∞
 is determined by the unique 

positive root in (0, u0) for equation (16). This indicates the 
equilibrium E−

0
 given by (17) is uniquely determined, and it 

(C6)
du

d�
= −R0u0{F(u) − u}

(
u

u0

)1−�∕R0

.

(C7)F�(u) =

⎧
⎪⎨⎪⎩

�

u0

1 − �

� − �R0

�
u

u0

��∕R0−1
�

�

1 − �

�
1

�R0

− 1
�
−
�
u

u0

��−�∕R0

�
when �R0 ≠ �;

�

�
1 + �

1 − �

�
ln

u

u0
+

1 − �

�

1

u0

�
when �R0 = � ,

(C8)

uc ∶=

⎧
⎪⎨⎪⎩

u0

�
�

1 − �

�
1

�R0

− 1
��R0∕(�R0−�)

when �R0 ≠ �;

u0 exp
�
−

1

�

�
�

1 − �
+

1

u0

��
when �R0 = � .

is globally asymptotically stable because the temporal vari-
ation is determined by the above one dimensional ordinary 
differential equation (C6) when the system always remains 
at the isolation effective phase, about which we find from 
the features of F that F(u) − u < 0 for u ∈ (0, u−

∞
) , and 

F(u) − u > 0 for u ∈ (u−
∞
, u0) . Lastly, these arguments prove 

Theorem 5.1.
Further from the above arguments, when �R0 ≥ 1 , the 

susceptible subpopulation size u is monotonically decreas-
ing toward zero, and then the isolated subpopulation size 
q monotonically increasing toward one, which is impos-
sible unless there is no capacity for the isolation, that is, 
qmax = 1 . Hence, we can conclude that q reaches qmax < 1 
when �R0 ≥ 1 . This proves Lemma 5.3.

Appendix D: Proof for Theorem 6.1, 

Corollaries 6.1.1, 6.1.2, and Lemma 6.1

Since we have the result of Lemma 5.3 for the case of 
�R0 ≥ 1 , it is sufficient to consider only the case of 
𝜀R0 < 1 . As shown in (11) by the conserved quantity (6), 
we have equation

for the equilibrium values u−
∞

 and q−
∞

 at the equilibrium E−
0
 

if the system always remains at the isolation effective phase. 
Then, it must be satisfied that q−

∞
≤ qmax . Since q(�) is mono-

tonically increasing in terms of � , if q−
∞
> qmax , it means that 

the system cannot remain at the isolation effective phase, and 
the isolation reaches the capacity at finite time. Inversely, 
in a mathematical sense, when the isolation reaches the 
capacity at finite time, it never holds that q−

∞
≤ qmax , and 

instead it holds that q−
∞
> qmax . From (D9), the condition 

that q−
∞
> qmax is mathematically equivalent to

This can be regarded as the necessary and sufficient condi-
tion that the isolation reaches the capacity at finite time. As 
shown in Appendix C to prove Theorem 5.1 and the related 

(D9)q−
∞
= 1 −

(u−
∞

u0

)�∕R0

(D10)u−
∞
< u0(1 − qmax)

R0∕𝛾 .
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results, we have found that F(u) − u < 0 for u ∈ (0, u−
∞
) , and 

F(u) − u > 0 for u ∈ (u−
∞
, u0) when 𝜀R0 < 1 . Hence, the con-

dition (D10) becomes equivalent to (13) of Theorem 6.1. 
Further, the condition (13) cannot hold if the right side

is not positive, which leads to (15) in Corollary 6.1.2.
The critical value qc for the isolation capacity qmax 

must be defined as the upper bound of qmax that satis-
fies the condition (D10). Therefore, it must hold that 
u−
∞
= u0(1 − qc)

R0∕� . This proves Lemma 6.1. Then, this 
is the case that u = u0(1 − qc)

R0∕� becomes the unique posi-
tive roof of the equation u = F(u) when 𝜀R0 < 1 , as the 
definition of u−

∞
 . This result shows Corollary 6.1.1.

Appendix E: Proof for Theorem 7.1

From the equation of dv∕d� in the system (5) before and after 
the isolation reaches the capacity at 𝜏 = 𝜏⋆ , we can obtain 
the value of dv∕d� at q = qmax , respectively, as follows:

where u(𝜏⋆) = u⋆ defined by (10), and we used

from the continuity of u(�) and v(�) at 𝜏 = 𝜏⋆ . Besides, as 
already mentioned at the end of Sect. 4, from the continuity 
of u(�) and v(�) at 𝜏 = 𝜏⋆ , it holds that F(u⋆) = G(u⋆).

Note that the former of (E12) is necessarily less than the 
latter because

Hence, the value v may continuously increase or decrease 
at 𝜏 = 𝜏⋆ unless the revival does not occur. If the former 
is negative and the latter is positive, it occurs. Thus, these 
arguments result in Theorem 7.1.

(D11)F
�
u0(1 − qmax)

R0∕�
�
=

⎧
⎪⎨⎪⎩

1 − �

� − �R0

(1 − qmax)
� 1 − �R0

1 − �
− (1 − qmax)

�R0∕�−1
�

when �R0 ≠ �;

(1 − qmax)
�
1 +

1 − �

�
ln(1 − qmax)

�
when �R0 = �

(E12)

dv

d𝜏

|||𝜏→𝜏⋆−0
=

R0v
⋆

1 − qmax

{
u⋆ − 𝜀F(u⋆) +

𝜀R0 − 1

R0

(1 − qmax)
}
;

dv

d𝜏

|||𝜏→𝜏⋆+0
=

R0v
⋆

1 − qmax

{
u⋆ − 𝜀G(u⋆) +

𝜀R0 − (1 − 𝛾)

R0

(1 − qmax)
}
,

lim
𝜏→𝜏⋆−0

v(𝜏) = v⋆ ∶= F(u⋆) − u⋆; lim
𝜏→𝜏⋆+0

v(𝜏) = G(u⋆) − u⋆

lim
𝜏→𝜏⋆−0

𝜙(q, v) = 𝛾v⋆ > lim
𝜏→𝜏⋆+0

𝜙(q, v) = 0.

Appendix F: Proof for Lemma 8.1 
and Theorem 8.1

Applying equation (8) for the equation of du∕d� in (5), we 

can obtain the following one dimensional ordinary equa-
tion which determines the dynamics by (5) for 𝜏 ≥ 𝜏⋆ at the 
isolation incapable phase:

Let us consider the case of 𝜀R0 < 1 first. Then, from the 
condition (ii) of Theorem 6.1, it holds that

since G(u∗) = F(u∗) as already used in Appendix  E for 
the proof for Theorem 7.1. Thus, we have du∕d𝜏 < 0 at 
𝜏 = 𝜏⋆ with G(u⋆) − u⋆ > 0 . Now we consider the function 
G(u) − u with B ≠ 0 in order to investigate the sign of du∕d� 
in (0, u⋆) . From the definition of G and B by (8) and (9), we 
have

and

If B < 0 , then the function G(u) − u is convex and mono-
tonically decreasing for u ∈ (0, u⋆) since G��(u) > 0 and 
G�(u) − 1 < 0 from (F16) in this case. Hence, there is no 
positive root of the equation G(u) − u = 0 if B < 0 , because 
G(u) − u > 0 for all u ∈ (0, u⋆) with G(u⋆) − u⋆ > 0.

If B > 0 , then the function G(u) − u is concave for all u > 0 
and has at most one extremal maximum value in (0, u⋆) since 
G��(u) < 0 , and the number of positive root for the equation 
G�(u) − 1 = 0 is only one from (F16). The function G(u) − u 
is unimodal in (0, u⋆) if the extremal maximal value exists 
there, while it is monotonically increasing in (0, u⋆) if the 
extremal maximal value exists out of (0, u⋆) . Thus, indepen-
dently of whether the function G(u) − u is unimodal or mono-
tonically increasing, there is no positive root of the equation 

(F13)
du

d�
= −

R0

1 − qmax

{G(u) − u}u.

(F14)G(u⋆) > u0(1 − qmax)
R0∕𝛾 = u⋆ = u(𝜏⋆),

(F15)G(0) =
(
1 −

1 − �

�R0

)
(1 − qmax)

(F16)
G�(u) − 1 = �B

(
u

u0

)�−1

− 1;

G��(u) = −�(1 − �)B
(
u

u0

)�−2

.
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G(u) − u = 0 if G(0) ≥ 0 , because then G(u) − u > 0 for all 
u ∈ (0, u⋆) with G(u⋆) − u⋆ > 0 . In contrast, if G(0) < 0 , 
there is a unique positive root of the equation G(u) − u = 0 
in (0, u⋆) , that is u+

∞
 , independently of whether the function 

G(u) − u is unimodal or monotonically increasing. Then, it 
holds that G(u) − u > 0 for u ∈ (u+

∞
, u⋆) and G(u) − u < 0 

for u ∈ (0, u+
∞
) . Therefore, from the temporally continuous 

decreasing change of u, we can conclude that u must converge 
to u+

∞
∈ (0, u⋆) as � → ∞ if B > 0 and G(0) < 0 , while it must 

converge to 0 if B < 0 or if B > 0 and G(0) ≥ 0.
When B = 0 , G(u) becomes constant for all u ∈ [0, u⋆]:

from (8) and (9). Then, the condition (F14) results in

Hence, under the condition (F14) with which the system 
enters the isolation incapable phase, we find it necessary 
that 𝜀R0 > 1 − 𝛾 . Thus, we find that G(u) ≡ G(0) ∈ (0, 1) 
in this case. Since u is temporally monotonically decreas-
ing from u = u⋆ with G(u) ≡ G(0) > u⋆ ,  we have 
G(u) − u = G(0) − u > 0 for any 𝜏 > 𝜏⋆ and any u ∈ (0, u⋆) . 
Therefore, u must converge to 0 as � → ∞ in this case 
because du∕d𝜏 < 0 for any u ∈ (0, u⋆) . Finally, we can con-
clude that, when 𝜀R0 < 1 , u converges to u+

∞
∈ (0, u⋆) as 

� → ∞ if and only if B > 0 and G(0) < 0 , and otherwise it 
converges to 0.

Next let us consider the case of �R0 ≥ 1 . Then, we 
have G(0) > 0 from (F15). Further we necessarily have 
G(u⋆) = u⋆ + v⋆ > u⋆ in this case, because v(𝜏⋆) = v⋆ > 0 
at 𝜏 = 𝜏⋆ from Lemma 3.1. Thus, we can apply the same argu-
ments as those for the case of 𝜀R0 < 1 , and find that u con-
verges to 0 as � → ∞ in this case. Consequently, we have the 
following result:

Lemma F.1  At  the isolat ion incapable phase , 
u → u+

∞
∈ (0, u⋆) as � → ∞ if and only if 𝜀R0 < 1 , B > 0 

and G(0) < 0 . Otherwise, u → 0 as � → ∞.

From the condition G(0) < 0 , we have 𝜀R0 < 1 − 𝛾 . From 
the condition B > 0 , we have

(F17)
G(u) ≡ G(0) =

(
1 −

1 − �

�R0

)
(1 − qmax)

=
(
1 −

1 − �

�R0

)(�R0

�

)�∕(�−�R0)

(
1 −

1 − 𝛾

𝜀R0

)(𝜀R0

𝛾

)(𝛾−R0)∕(𝛾−𝜀R0)

> u0.

(F18)

⎧
⎪⎨⎪⎩

�
1 −

𝜀R0

𝛾

��
(1 − qmax)

1−𝜀R0∕𝛾 −
𝜀R0

𝛾

�
> 0 when 𝜀R0 ≠ 𝛾;

ln(1 − qmax) + 1 > 0 when 𝜀R0 = 𝛾 .

When 𝜀R0 < 1 − 𝛾 and �R0 = � , the condition 𝛾 < 1∕2 must 
be satisfied. In this case, the condition (ii) of Theorem 6.1 
can be written as

and we find that the right side of this inequality is necessar-
ily positive. Thus, when 𝜀R0 < 1 − 𝛾 and �R0 = � , the con-
dition (F18) for B > 0 holds at the isolation incapable phase. 
Therefore, the condition 𝜀R0 < 1 − 𝛾 is necessary and suf-
ficient to have u → u+

∞
∈ (0, u⋆) as � → ∞ when �R0 = �.

When 𝜀R0 < 1 − 𝛾 and �R0 ≠ � , the condition (F18) 
becomes equivalent to the following:

or

Now, from Corollary 6.1.2, it is necessary in order to have 
the isolation incapable phase that the condition (15) is unsat-
isfied, which we can find equivalent to the following:

On the other hand, we have

Hence, when 𝜀R0 < 1 − 𝛾 , we find that the conditions (F21) 
and (F22) are sufficient for (F19) and (F20), respectively. 
That is, since the condition (F19) or (F20) necessarily holds 
when (F21) or (F22) is satisfied with 𝜀R0 < 1 − 𝛾 , the 
condition (F19) or (F20) is satisfied at the isolation inca-
pable phase with 𝜀R0 < 1 − 𝛾 . Therefore, when �R0 ≠ � , 
the condition 𝜀R0 < 1 − 𝛾 is necessary and sufficient to 
have u → u+

∞
∈ (0, u⋆) as � → ∞ . Finally, this result and 

Lemma F.1 prove Lemma 8.1.
Then, from the conserved quantity (8), we note 

that v → 0 when u → u+
∞
∈ (0, u⋆) as � → ∞ , while 

v → G(0) > 0 when u → 0 as � → ∞ . Thus, the system 
(5) approaches a disease-eliminated equilibrium at the 
isolation incapable phase if u → u+

∞
∈ (0, u⋆) as � → ∞ . 

Besides, exceptionally with �R0 = 1 − � , the disease goes 
extinct even when u → 0 as � → ∞ at the isolation incapa-
ble phase. In contrast, the system approaches the endemic 

1 + ln(1 − qmax) > u0(1 − qmax)
1∕𝜀−1 −

1 − 2𝛾

𝛾
ln(1 − qmax),

(F19)(1 − qmax)
1−𝜀R0∕𝛾 >

𝜀R0

𝛾
with

𝜀R0

𝛾
< 1

(F20)(1 − qmax)
1−𝜀R0∕𝛾 <

𝜀R0

𝛾
with

𝜀R0

𝛾
> 1.

(F21)(1 − qmax)
1−𝜀R0∕𝛾 >

1 − 𝛾

1 − 𝜀R0

for
𝜀R0

𝛾
< 1;

(F22)(1 − qmax)
1−𝜀R0∕𝛾 <

1 − 𝛾

1 − 𝜀R0

for
𝜀R0

𝛾
> 1.

1 − �

1 − �R0

−
�R0

�
=

(1 − �) − �R0

1 − �R0

(
1 −

�R0

�

)
.
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equilibrium if u → 0 as � → ∞ when 𝜀R0 > 1 − 𝛾 . These 
results with Lemma 8.1 prove Theorem 8.1.

Appendix G: Proof for Lemma 10.1

Taking into account the continuity of u+
∞

 in terms of 
qmax ∈ (0, qc) when 𝜀R0 < 1 − 𝛾  , we prove first its 
monotonicity:

Lemma G.1  z+
∞

 is monotone in terms of qmax ∈ (0, qc).

Proof  Suppose that �z+
∞
∕�qmax = −�u+

∞
∕�qmax becomes zero 

for qmax = q⋄ ∈ (0, qc) . First let us consider the case with 
�R0 ≠ � . From the qmax-derivative of equation (16) with (8) 
and (9), we can find that such q⋄ must satisfy the following 
equation:

that is,

Then from (8) and (9) again, we have

This is contradictory to the existence of u+
∞
> 0 that satisfies 

equation (16) for each qmax ∈ (0, qc) as shown by Lemma 8.1. 
Therefore, such q⋄ cannot exist in (0, qc) . Thus, the derivative 
�z+

∞
∕�qmax has a constant sign for qmax ∈ (0, qc).

For the case with �R0 = � , we can apply the same argu-
ments to have

since 2𝛾 < 1 when 𝜀R0 = 𝛾 < 1 − 𝛾 . Hence from the con-
tradiction again, we find that the derivative �z+

∞
∕�qmax has a 

constant sign for qmax ∈ (0, qc) also in this case. Lastly, these 
arguments prove the lemma. 	�  ◻

Next to complete the proof for Lemma 10.1, we prove 
the following feature of the derivative �z+

∞
∕�qmax:

Lemma G.2 
𝜕z+

∞

𝜕qmax

|||||qmax→0+

< 0.

Proof  As qmax → 0+ , equation (16) becomes

−
1 − � − �R0

�R0

+
1 − �

�R0

(1 − q⋄)−�R0∕�

(
u+
∞

u0

)�

qmax=q
⋄

= 0,

(
u+
∞

u0

)�

qmax=q
⋄

=
1 − � − �R0

1 − �
(1 − q⋄)�R0∕� .

G(u+
∞
)||qmax=q

⋄ =
1 − 𝛾 − 𝜀R0

𝛾(1 − 𝜀R0∕𝛾)
(1 − q⋄)

[
1 − (1 − q⋄)𝜀R0∕𝛾−1

]
< 0.

G(u+
∞
)||qmax=q

⋄ =
1 − 2𝛾

𝛾
ln(1 − q⋄) < 0

for both cases of �R0 ≠ � and �R0 = � . It is easily found that 
this equation has a unique positive root u+

∞
= u+0

∞
∈ (0, u0) . 

From equation (16) with (8) and (9), we can derive

making use of (G23).
First let us consider the case with �R0 ≠ � . Then from (8) 

and (9) with (G23) again, we have

Now consider the function �(�) ∶= �a�∕(1 − a�) for 
� ∈ (0, 1) with a ∈ (0, 1) . We can easily find that

because the function h(x) ∶= 1 − x� + � ln x is negative for 
x ∈ (0, 1) about any � ∈ (0, 1) . Hence, the function �(�) is 
monotonically decreasing in terms of � , so that we have 
𝜁(𝜀) > 𝜁(1) = 𝜉(a) ∶= a∕(1 − a) . Since �(a) is monotoni-
cally increasing in terms of a ∈ (0, 1) , we finally find the 
following order:

because u+0
∞

< u0 < 1 . Then, since equation (G25) can be 
rewritten as

we conclude that 1 − G�(u+0
∞
) < 0 , so that the derivative 

(G24) is negative. These arguments can be simply applied 
for the case of �R0 = � , and show that the derivative (G24) 
is negative. Consequently, we have proved that the derivative 
(G24) is negative. 	�  ◻

From the continuity of u+
∞

 in terms of qmax ∈ (0, qc) , Lem-
mas G.1 and G.2 prove that the qmax-derivative of z+

∞
 is nega-

tive for qmax ∈ (0, qc) . As a result, Theorem 10.1 has been 
proven.

(G23)1 − u+
∞
=

1 − �

�R0

[
1 −

(u+
∞

u0

)�]

(G24)
�z+

∞

�qmax

|||||qmax→0+

= −
�u+

∞

�qmax

|||||qmax→0+

=
u+0
∞

1 − G�(u+0
∞
)
,

(G25)

1 − G�(u+0
∞
) = 1 −

�

u0

(u+0
∞

u0

)�−1(1 − �

�R0

)

= 1 −
�

u+0
∞

(u+0
∞

u0

)�(1 − �

�R0

)

=
1 − u+0

∞

u+0
∞

[
u+0
∞

1 − u+0
∞

− �
(u+0

∞
∕u0)

�

1 − (u+0
∞
∕u0)

�

]
.

𝜁 �(𝜀) =
a𝜀

(1 − a𝜀)2

(
1 − a𝜀 + 𝜀 ln a

)
< 0

𝜁(𝜀)||a=u+0
∞
∕u0

> 𝜁(1)||a=u+0
∞
∕u0

= 𝜉
(
u+0
∞
∕u0

)
> 𝜉

(
u+0
∞

)

1 − G�(u+0
∞
) =

1

�
(
u+0
∞

)
[
�
(
u+0
∞

)
− �(�)||a=u+0

∞
∕u0

]
,



	 Theory in Biosciences

Appendix H: Proof for Theorem 10.1

First we show the following lemma:

Lemma H.1  z†
∞
≥ z−

∞
.

Proof  If the system (5) enters the isolation incapable phase 
at time 𝜏 = 𝜏⋆ with qmax < qc , we have u+

∞
< u(𝜏⋆) = u⋆ 

because  du∕d𝜏 < 0  even af ter  𝜏 = 𝜏⋆  .  Hence , 
z+
∞
∶= 1 − u+

∞
> 1 − u⋆ for qmax < qc with u(𝜏⋆) = u⋆ given 

by (10). Therefore, we find that

Then from Lemma 6.1, the right side of (H26) is equal to z−
∞

 , 
which proves this lemma. 	� ◻

As shown in the first part of Sect. 10, if �R0 ≥ 1 − � and 
qmax < qc , we have the final epidemic size z∞ = z+

∞
= 1 . 

From Theorem 6.1 and Corollary 6.1.1, if �R0 ≥ 1 , we have 
qc = 1 , and thus there is no critical capacity for the isolation. 
Then, we do not have any case of the final epidemic size at 
the isolation effective phase, that is, z−

∞
 does not exist. Only 

if 𝜀R0 < 1 , we can have z−
∞

 as the final epidemic size at the 
isolation effective phase. Therefore, we can conclude that, 
the final epidemic size z∞ shows a discontinuity at qmax = qc 
for �R0 ∈ [ 1 − � , 1) , when z+

∞
= 1 > z−

∞
 which is given by 

Lemma 6.1.
If 𝜀R0 < 1 − 𝛾 and qmax < qc , we have the final epidemic 

size z∞ = z+
∞
< 1 when the system (5) approaches a disease-

eliminated equilibrium E+
0
 given by (17). Then, the final 

epidemic size z+
∞
∶= 1 − u+

∞
 is determined by the unique 

positive root u+
∞

 of equation (16) in Lemma 8.1. As argued 
in Appendix F for the proof of Lemma 8.1, the unique exist-
ence of the positive root u+

∞
 of equation (16) follows the con-

dition that G(u⋆) − u⋆ > 0 and G(0) < 0 , where the function 
G(u) − u with qmax ∈ (0, qc) is unimodal or monotonically 
increasing in (0, u⋆).

Now we can find that

Lemma H.2  u⋆ → u−
∞

 , G(u⋆) − u⋆ → G(u−
∞
) − u−

∞
= 0 , and 

G(0) < 0 as qmax → qc − 0 with 𝜀R0 < 1 − 𝛾.

This lemma can be easily proved by the straightforward 
calculation with (7–9), (10), (14), and Lemma 6.1. Hence 
from the continuity of u+

∞
 in terms of qmax ∈ (0, qc) , we have 

u+
∞
→ u−

∞
 as qmax → qc − 0 if the function G(u) − u becomes 

monotonically increasing in (0, u⋆) as qmax → qc − 0 . This 
is because there is no root of the equation G(u) − u = 0 in 
(0, u⋆) as qmax → qc − 0 , while u+

∞
 is continuous in terms 

of qmax ∈ (0, qc) . In contrast, if the function G(u) − u 
becomes unimodal with a maximal extremum in (0, u⋆) 

(H26)

lim
qmax→qc−0

z+
∞
= z†

∞
≥ lim

qmax→qc−0
(1 − u⋆) = 1 − u0(1 − qc)

R0∕𝛾 .

as qmax → qc − 0 , the equation G(u) − u = 0 has a root 
u++
∞

∈ (0, u⋆) , and we have u+
∞
→ u++

∞
 as qmax → qc − 0 

because of the continuity of u+
∞

 in terms of qmax ∈ (0, qc).
As shown in Appendix  F, the continuous func-

tion G(u) − u has at most one extremum for u > 0 , and 
G�(u) − 1 = (�∕u0)B(u∕u0)

�−1 − 1 → ∞ as u → +0 with 
𝜀R0 < 1 − 𝛾 . Thus, it is monotonically increasing in (0, u⋆) 
if and only if the derivative of G(u) − u , that is, G�(u) − 1 
is nonnegative for u = u⋆ , while it is unimodal in (0, u⋆) if 
G�(u) − 1 is negative for u = u⋆ . As a result, taking account 
of Lemma H.2 and the above arguments on the limit of u+

∞
 

as qmax → qc − 0 , we get

Lemma H.3  As qmax → qc − 0 with 𝜀R0 < 1 − 𝛾,

Therefore, if and only if G�(u−
∞
) < 1 with 𝜀R0 < 1 − 𝛾 , 

we have z†
∞
= 1 − u++

∞
> 1 − u−

∞
= z−

∞
 . The condition 

G�(u−
∞
) < 1 with 𝜀R0 < 1 − 𝛾 becomes (19) in Theorem 10.1 

by the straightforward calculation with Lemma 6.1 and (14). 
The calculation must be carried out, respectively, for the 
cases of �R0 ≠ � and �R0 = � , while the final result for 
�R0 = � appears to be included in (19).

Making use of (14) in a different way, the condition (19) 
can be rewritten as

Since 1 − qc ∈ (0, 1) , it is necessary that the right side of 
(H27) is greater than (1 − �)∕(� − �R0) , and the right side 
of (H28) is negative. Then, we can find the following neces-
sary condition:

Lemma H.4  For G�(u−
∞
) < 1 with 𝜀R0 < 1 − 𝛾 , it is neces-

sary that R0 > 1 − 𝛾.

Finally, Lemmas H.3 and H.4 prove Theorem 10.1.
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u+
∞
→

{
u−
∞

if G�(u−
∞
) ≥ 1;

u++
∞

< u−
∞

if G�(u−
∞
) < 1.

(H27)

1 − 𝛾

𝛾 − 𝜀R0
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