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The problem of how the system of a brood-parasite with parasite-accepting host (i.e. a host that accepts
a parasite’s eggs) exists in stable equilibrium, is considered. We analyse a mathematical model of
host–parasite population dynamics for this system, corresponding to certain cases of brood-parasitic
animals where brood-parasitization causes drastic failure of the reproduction of the brood-parasitized
host, and discuss the possible benefit to the persistence of a parasite-accepting host from the viewpoint
of population dynamics.

1. Introduction

Brood-parasitism is a particular host–parasite re-
lationship that has attracted a good deal of research in
the ecological sciences (for an overview, see Krebs and
Davies, 1987). It has been observed for a variety of
birds (e.g. Rothstein, 1975a, b, 1982), insects
(e.g. Hölldobler, 1971), and mochokid catfish in Lake
Tanganyica, Synodontis multipunctatus (Sato, 1986,
1988). From an evolutionary viewpoint, the problem
of why a brood-parasite with parasite-accepting host
coexist stably is an interesting one. Rothstein (1982)
suggested that the host simply lacks the ability to
discriminate against the parasite’s eggs, although once
rejector genes appear in host population, they
immediately spread. On the other hand, Dawkins
& Krebs (1979) and Slatkin & Maynard Smith
(1979) presented some alternative hypotheses on this
problem:

(a) the parasite is sufficiently prudent to avoid
over-exploiting the host population to extinction;

(b) all other host–parasite systems are unstable and
have already gone extinct, so that we observe only
stable ones;

(c) the host is one step ahead in the arms race against
the parasite, driven by the life–dinner principle.

For a decreasing parasite population, the selection
pressure on the host for further improvement becomes
less and less. However, if a species of host population
density becomes low, the parasite switches its
preference for the host species to another, more
abundant species. These hypotheses have been
considered and examined in all observed brood-
parasitisms. Various theoretical models have con-
sidered this problem. Takasu et al. (1993) analysed a
mathematical model on the spread of rejector gene
population with the assumption of rejection cost and
showed the existence of the feasible evolutionarily
stable state with an intermediate ratio of rejector gene
population and that without rejector gene population.
Nee & May (1993) discussed the possible relation
between the evolutionary stability and the population
dynamical stability of intra-specific brood-parasitism,
making use of mathematical models. They stressed
that the optimality and the evolutionarily stable
strategy (ESS) of host and parasite strategies make
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sense only when the population dynamical equilibrium
is stable. May & Robinson (1985) considered a
mathematical model of the Nicholson–Bailey host–
parasite system, and discussed the impact of
brood-parasitismonhost population persistence. They
also considered the stability of equilibrium.

In case of the brood-parasitic mochokid catfish
Synodontis multipunctatus in Lake Tanganyica,
which can be regarded as an environment sufficiently
stable over a long period, the catfish spawns its
eggs into the eggs of its host, the mouth-brooder
cichlid fish; for example, Simochromis diagramma. The
catfish can reproduce only by brood-parasitism.
In this case, no rejection by the host of brood-
parasitization has yet been observed, so that it is
likely that the host might completely accept the
parasite’s eggs. The parasite’s eggs hatch before those
of the host, and the juvenile parasites are reared in the
host’s mouth, using the host’s eggs or juvenile hosts as
their food (Sato, 1986, 1988). The safety level of
mouth-brooding is very high for juveniles, so that
brood-parasitism causes major mortality in juvenile
hosts (i.e. drastic failure of reproduction in the
brood-parasitized host) and results in a high
survival rate for juvenile parasites in the parental care
period.

Similar situations have also been observed in
case of the brood-parasitic cuckoo, where the
host’s young are killed or the host’s eggs are ejected
from the nest (Krebs & Davies, 1987). For instance,
the hedge warbler (dunnock) Prunella modularis
has been observed as a parasite-accepting host
for the cuckoo Cuculus canorus (Brooke & Davies,
1988). In the brood-parasitic brown-headed cow-
bird Molothrus ater, many host species are observed
to be parasite acceptors (Rothstein, 1975a, b;
1982).

In such cases, where the host–parasite relationship
is kept stationary, how does such a system keep its
stability? Although the host appears to pay a high cost,
there might some possible benefits for it, or such a
system might be stable in either an evolutionary or
population-dynamical sense.

In this paper, we analyse a mathematical model
of host–parasite population dynamics for brood-
parasitism with a parasite-accepting host, in particular
referring to the case of the mochokid catfish,
Synodontis multipunctatus. We discuss the possible
benefit for the host from the standpoint of
population-dynamical stability, rather than from the
evolutionary viewpoint of other theoretical studies. In
contrast to the mathematical considerations by May &
Robinson (1985) and Nee and May (1993), we focus on
the lowest host population density at the stationary

state and include not only equilibriumbut also periodic
and chaotic states. We consider that it would be more
beneficial for the persistence of the host population if
the lowest population density at the stationary state is
higher, because the generation with the lower lowest
density can be regarded as relatively more vulnerable
to stochastic disturbance, which might drastically
damage the persistence of host population. The
host–parasite system can be maintained only when the
persistence of host population is sufficiently high. We
discuss how the persistence of the parasite-accepting
host population depends on coexistence with the
brood-parasite, compared to the case where the host
population exists without the brood-parasite. In this
sense, our work is related close to the second
hypothesis (b) mentioned above. We also discuss
hypothesis (a) in the framework of our mathematical
model.

2. Model

2.1.  

Since our interest is in the population-dynamical
nature of a stationarily persisting host–parasite
system, we do not consider any evolutionary exchange
of species (i.e. the process in which the evolutionarily
dominant parasite species succeeds in the invasion and
sweeps away the evolutionarily subordinant parasite
species that previously coexisted with the host). Hence,
the considered parasite may be regarded as one with an
evolutionarily stable strategy (ESS), so that the
host–parasite system is either a highly coevolved one,
or persists for a long period of evolutionary history
before any evolutionary change. Thus we assume that
there is no phenotypic variation in both host and
parasite populations.

Each generation is assumed to be composed of three
distinct periods: brood-parasitization period; parental
care period; and fertilization period (Fig. 1).

Brood-parasitization period

This corresponds to the breeding season for parasite
and host. In this period, brood-parasitization by
adult parasite occurs for adult host. As in case of
Synodontis multipunctatus in Lake Tanganyica, the
host completely accepts the brood-parasitization
without any sign of rejecting the parasite’s eggs.
Adult hosts consist of brood-parasitized and non-
parasitized individuals. The brood-parasite is assumed
to reproduce only by brood-parasitization. The
expected number of brood-parasite’s eggs can
be estimated from the brood-parasitized adult host
population.
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F. 1. Brood-parasitism composed of three distinct periods:
brood-parasitization period, parental care period, and fertilization
period. For detailed explanation, see text.

2.2.  

Let hn denote adult host population density at the
n-th generation, and h+

n and h−
n population density

of brood-parasitized and non-parasitized adult host,
respectively, at the n-th generation. Then, the relation
among hn , h+

n and h−
n is given by

hn=h+
n +h−

n . (1)

Adult host population density at the (n+1)-th
generation is assumed to depend only on the juvenile
population density of non-parasitized adult host at the
n-th generation, because the reproduction of the
brood-parasitized adult host is now assumed to fail
completely. In our model, adult host population
density hn+1 and adult parasite population density pn+1

at the (n+1)-th generation are as follows:

hn+1=ehh−
n gh (ehh−

n ) (2)

pn+1=eph+
n gp (eph+

n ), (3)

where eh and ep are the intrinsic reproduction rates per
unit adult density for host andparasite respectively (see
Fig. 1). So ehh−

n and eph+
n correspond respectively to

juvenile host and juvenile parasite population density
just after the parental care period for the (n+1)-th
generation. gi (i=h, p) introduces the survival rate
function through the fertilization period for juveniles
to grow up to adults reproductive in the breeding
season, such that

0Egi (x)E1 (i=h, p). (4)

On the other hand, the brood-parasitized adult host
population density at the n-th generation is given by

h+
n =f(pn )hn , (5)

where f(x) gives the parasitization rate per adult host
density when adult parasite population density is x.
It is assumed to satisfy the following natures:

0Ef(x)E1 (6)

f(0)=0 (7)

df(x)
dx

e0. (8)

Equation (7) means that parasitization does not
occur without parasite. Equation (8) shows that large
parasite population density causes a high parasiti-
zation rate. Now, from (1) and (5), non-parasitized
adult host population density h−

n can be expressed as
follows:

h−
n =[1−f(pn )]hn . (9)

Parental care period

The adult brood-parasite excludes all of host’s eggs,
or the juvenile parasites kill or exclude all of host’s eggs
or juvenile hosts after hatching, as in case ofSynodontis
multipunctatus. In the latter case, at the beginning of
this period, the host has both its own and parasite’s
eggs together. However, both the host’s eggs and
juvenile hosts with brood-parasitized adult host go
extinct in this period. The brood-parasitized host’s
parental care provides juvenile parasites with a high
survival rate in this period—by mouth-brooding the
brood-parasitized host cichlid fish in the case of
Synodontis multipunctatus.

Fertilization period

At the beginning of this period, adults and juveniles
coexist independently of each other. However,
for simplicity, it is assumed that both adult hosts
and parasites of the previous generation go extinct,
or become a small enough population (compared
to that of growing juveniles) to be neglected, before
their juveniles grow up to reproductive adults
(non-overlapping generation). Therefore, expected
adult host and parasite population densities in the
breeding season at each generation, just after
the fertilization period, are determined only by the
survival rate of juvenile populations through this
period.
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F. 2. Parasitization rate f(x) for parasite density x, given by
eqn (12). For larger b, f(x) becomes higher.

where ai and ci (i=h, p) are positive constants and
0QaiQ1. Parameter ai corresponds to the intrinsic
survival rate. In this model, the parameter value
represented by eici corresponds to the carrying capacity
for juvenile hosts (i=h) or juvenile parasites (i=p).
From (2) and (3), if juvenile population density, ehh−

n

or eph+
n , just after the parental care period is

respectively lower than and near to ehch or epcp , the
survival rate given by (13) becomes very small. This
corresponds to the case when juvenile population
decreases due to the shortage of resources or to the
relatively high predation risk, or to some other
environmental exhaustion because of the high juvenile
population density at the beginning of fertilization
period.

With (12) and (13), the system of (10) and (11) now
becomes

hn+1=aheh01−
ebpn

1+bpn1

×hn$1−01−
ebpn

1+bpn1 hn

ch% (14)

pn+1=apep
ebpn

1+bpn
hn01−

ebpn

1+bpn

hn

cp1. (15)

This system has a specific nature regarding the
reproduction of parasite and host, which we now
call logistic type: both (14) and (15) have the nature
of a unimodal map, as shown in Fig. 3. In
particular, when pn00, that is, when the parasite is
absent, the system of (14) and (15) becomes
one-dimensional:

hn+1=ahehhn01−
hn

ch1. (16)

This corresponds to the well-known discrete logistic
dynamical system studied by May (1976) and other
mathematical researchers (for instance, Baker &
Gollub, 1990). This system can provide a variety
of stationary states for the host population with
the absence of parasite, depending on the par-
ameters, to which we will return later. Such a
variety of stationary states have also been discussed
for real populations or in experiment, for example,
by Utida (1957) (see also Chapter 6 in Begon et al.,
1990).

Finally, from (5) and (9), the system of (2) and (3) can
be described as

hn+1=eh [1−f(pn )]hngh (eh [1−f(pn )]hn ) (10)

pn+1=ep f(pn )hngp (ep f(pn )hn ). (11)

2.3.   

We consider the following type of increasing
saturation function for the parasitization rate function
f, which satisfies conditions (7), (6) and (8) (Fig. 2):

f(x)=
ebx

1+bx
(xe0), (12)

where e is a positive constant E1, which now corres-
ponds to the upper bound of parasitization rate, and
b is a positive weight constant. For a fixed finite value
of b, as x increases, f(x) monotonically approaches e

from the below. As b:a, f(x) becomes constant:
f(x):e.

The relationship via parasitization between parasite
and host depends on a variety of factors, including
the behaviour of parasite and host, so that a
proportion of host population can escape from
parasitization even when parasite density is very high,
and the parasitization rate can be always less than e

which is the upper bound determined by such factors.
The parasitization rate f(x) for each parasite density

x becomes large as the b becomes large. Hence, b can
be regarded as related to the parasitization efficiency,
which depends on the parasite’s behaviour as its tactic
for parasitization, for example.

2.4.   

We consider the following survival rate function gi

(i=h, p):

gi (x)=8ai01−
x

eici1
0

when 0ExEeici

otherwise,

(13)
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F. 3. (a) Map hn /ch�hn+1/ch corresponding to eqn (14). When hn /che1/(1−f(pn )), hn+100. (b) Map bpn�bpn+1 corresponding to (15)
when hnqcp /e. When bpnecp /(ehn−cp ), pn+100. (c) Map bpn�bpn+1 when cp /2eQhnEcp /e. (d) Map bpn�bpn+1 when hnQcp /2e.

2.5. -  

With some appropriate non-dimensionalized vari-
ables, the system of (14) and (15) can be expressed in
the mathematically equivalent form:

Hn+1=AH [1−eF(Pn )]Hn{1−[1−eF(Pn )]Hn}
(17)

Pn+1=eAPF(Pn )Hn{1−eBPF(Pn )Hn}, (18)

where

Hi0
hi

ch

Pi0bpi

AH0ehah

AP0bepapch

BP0
ch

cp

F(x)0
x

1+x
.

2.6.  

Since ehch means the carrying capacity for
juvenile host population so that hi /ch=ehhi /ehchQ1 for
meaningful positive hi , the corresponding non-
dimensionalized variable Hi can be meaningfully
considered less than 1. Hence, we consider the initial
H0 less than 1.

As for the initial P0, we consider only a sufficiently
small value. This is because our interest is in the
stationary state approached after a large number of
generations, and it is regarded as biologically natural
to consider the initial parasite to be at the stage
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of invasion. Coexistence between parasite and host
requires the parasite to invade successfully at the first
stage.

2.7.    

For well-defined behaviour as a biological
model, our system should be considered under the
mathematical constraint for parameters below, which
assures that (Hn , Pn ) are non-negative for any ne1 and
for any non-negative initial condition (H0, P0)
satisfying the condition given in the previous section
(see Appendix A):

0EAHEmin64,
4
e 0 4

AP
+

1
BP17. (19)

Unless parameters satisfy this confinement condition,
there exist such some initial values (H0, P0) that Hn

or Pn becomes negative at some n.

2.8. PARAMETERS FOR SYNODONTIS

MULTIPUNCTATUS

Some, but not all, parameters of our model can
be estimated from observed data. In case of the
brood-parasitism of Synodontis multipunctatus, with
host mouth-brooder cichlid fish, Sato (1986, 1988)
reported that the parasitization rate ranges from 1.4%
to 15.0%, and is 6.3% on average. In our model, the
parasitization rate is given by the function of host
population density. Thus, following observations
by Sato (1986, 1988), we could, for example, set the
upper bound e of the parasitization rate as 0.1, that is,
10.0%.

On the other hand, from Sato’s observations, the
host mouth-brooder cichlid fish keeps about 20 eggs on
average per individual, and the number of brood-
parasite catfish eggs in the host mouth is about three
on average per parasitized host individual. These
data can be considered to correspond to parameters
eh and ep in our model. Since both juvenile cichlid fish
and juvenile catfish commonly feed benthos in
the mouth-brooding period, that is, in the parental
care period in our model, we assume that they
would share a common niche, so that they have
the same carrying capacity. This corresponds to
the following relation among parameters in our
model: ehch0epcp . With this supposition, we can
estimate the value of parameter BP in this case from the
definition:

BP0
ch

cp
=

ep

eh
·
ehch

epcp
0ep

eh
0 3

20
=0.15.

We remark that, with the assumption of common
carrying capacity between juvenile hosts and parasites,
the value of parameter BP is, in general, Q1 , because
the number of parasite eggs ep parasitized by adult
parasite is usually less than the number of host eggs eh

with them, which can be observed for a variety of
brood-parasitisms. For the case corresponding to an
observed brood-parasitism, we assume that e=0.1 and
BP=0.15.

3. Analysis

3.1.      

In this section, we consider the equilibrium state
(H*, P*) for the system of (17) and (18), which satisfies
the following:

6H*{1−AH [1−eF(P*)](1−[1−eF(P*)]H*)}=0

P*−eAPF(P*)H*{1−eBPF(P*)H*}=0.

(20)

One equilibrium state is such that both parasite
and host completely die out: (H*, P*)=(0, 0) (Case 1).
Another is such that host persists and parasite goes
extinct: (H*, P*)=(+, 0) (Case 2). In the latter case,
since F(0)=0, H* is given from
(20) by

H*=1−
1

AH
. (21)

In the case when parasite and host coexist:
(H*, P*)=(+, +) (Case 3), we must look for the
positive (H*, P*) which satisfies both conditions
of (20). Number of possible solutions for (H*, P*)
significantly depends on parameters. For any
parameters which satisfy the confinement condition
(19), making use of a number of numerical
calculations, only one meaningful positive solution
(H*, P*) for (20) can be found (see Appendix B).

For Case 1 when (H*, P*)=(0, 0), and for Case 2
when (H*, P)=(+, 0), the following conditions can be
analytically obtained for the local stability (Appendix
C):

Case 1: (H*, P*)=(0, 0):

0QAHQ1. (22)

Case 2: (H*, P*)=(+, 0):

max613, 1−
1

eAP7Q 1
AH

Q1. (23)
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F. 4. Parameter regions of the local stability for (H*, P*)=(0, 0)
and for (H*, P*)=(+, 0).

librium states (H*, P*) of three cases coincide
with their global stability, which will be shown in
the next section. The result for the parameter region
for the stability for Case 3, is given in the next
section.

3.2.  

Case without parasite (Pn00)

As already mentioned for (16), this corresponds to
the case of the well-known one-dimensional system
studied by May (1976) and other researchers. As
the parameter AH increases, the pitch-fork bifurcation
to chaos takes place, as shown in Fig. 5(a): The stable
stationary state subsequently changes from the
equilibrium (i.e. 1-periodic) to 2-periodic at AH=3.0,
then to 4-periodic, to 8-periodic, etc., in a
period-doubling manner (as for this type of bifurcation,
for instance, see Devaney, 1989). For AH larger than
3.569..., the chaotic stationary state appears with an
infinite number of windows of the other periodic
stationary states.

In Fig. 5(b), the mean and the lowest host
population densities at the stable stationary state in
this case are shown numerically. For the parameters
region corresponding to the equilibrium state, the
case where both the mean and the lowest densities
coincide with the equilibrium value of H* itself is
trivial. As indicated in Fig. 5(b), the lowest density
takes its maximum at AH=3 and is monotonically
decreasing as AHq3 increases. In contrast, the mean
density seems to tend to decrease AHq3 increases,
though it shows some complex behaviour in detail for
the parameter region corresponding to the chaotic
state.

As indicated in Fig. 4, the stability of the equilibrium
state (H*, P*)=(+, 0) becomes less as the value of eAP

gets larger. The stability of the equilibrium state
(H*, P*)=(0, 0) is independent of both e and AP .
Thus a parasite with a large value of eAP could
possibly be more successful in its invasion and
coexistence with a host with AHq1. This result will
be more clearly shown by the analysis carried out in the
next section.

In Case 3, since the equilibrium state (H*, P*)=
(+, +) could not be obtained in any practical
form, we examined local stability by numerical
calculations only. Numerical calculations show
that the resulting local stability for these equi-

F. 5. (a) Bifurcation structure for the stable stationary state in the case when parasite is absent (P*00). Population density H* at the
stationary state is plotted. (b) Plots of the lowest and the mean host population densities at the stationary state in the case when parasite
is absent.
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F. 6. (AH , e)-dependence of the stable stationary state, obtained by numerical calculations. H0=P0=0.1; AP=BP=10.0. Terms in brackets
[ ] express the period of the stable periodic state for the corresponding parameter region. Exceptionally, [2n]nej corresponds to the region where
period-doubling from 2 j to 2a as AH increases for fixed e. [C] corresponds to the region for the chaotic state with an infinite number of windows
of the other periodic states, and [QP] does that for the stable quasi-periodic state. For AHQ1, both parasite and host go extinct. For regions
Vi of e, see text.

Case with brood-parasite

In case of two-species system, the bifurcation
involves complex structure. In Fig. 6, the complex
structure is exemplified, with numerical calculations
for AP=BP=10.0. The result on the stability of
equilibrium state perfectly coincides with that of the
local stability analysis carried out in the previous
section.

When e is of the region V1 shown in Fig. 6,
the bifurcation structure of stable stationary state

coincides with that when the parasite is absent, because
the parasite eventually goes extinct (as indicated in
Fig. 7). For some e of the region V2 in Fig. 6, in
contrast, parasite and host can coexist (Fig. 7) and
every bifurcation point then appears to shift relatively
to the right-hand side, that is, to the side for the
larger value of AH . The bifurcation is lead to chaos as
AH increases (Fig. 8). In particular, as shown in Fig. 7
and Fig. 9, for e in the V3 subregion of V2, parasite and
host coexist only for some intermediate range of AH ,
while parasite goes extinct for sufficiently small or
large AH .

Our two-species system has the potential to
show other types of bifurcation. For instance, as AH

increases with fixed e in the V4 region in Fig. 6, the
equilibrium state becomes unstable and the orbit
is attracted to a closed curve in the phase space (Hn , Pn )
(see Figs 10 and 11). This is known as a
Naimark–Sacker bifurcation. If the initial point is on
the closed curve, the orbit densely wanders on the
whole curve (or some parts of it) without returning to
the same point. This type of stationary state in which
the orbit is wandering on a closed curve can be called
quasi-periodic (for instance, see Wiggins, 1990).

Further, the backward pitch-fork bifurcation can
appear. For one example, as AH increases with fixed
e in the V5 region in Fig. 6, the stationary state
changes from a quasi-periodic state to 4-periodic one,
and subsequently to 2-periodic (see Fig. 10). For
another example, as AH increases with fixed e in the V6

region in Fig. 6, the equilibrium state changes to

Fig. 7. (AH , e)-dependence of the coexistence between host and
parasite, obtained by numerical calculations. The region (+, 0)
corresponds to where host persists while parasite goes extinct. The
region (+, +) corresponds to coexistence host and parasite. For
AHQ1, both parasite and host go extinct.
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F. 8. Bifurcation of the stable stationary state for V2 in Fig. 6. H0=P0=0.1; AP=BP=10.0; e=0.35; 2.0EAHE4.0. Population densities
H* and P* at the stationary state are plotted. The orbit of (H*, P*) in the phase space is also shown for e=0.35 and AH=3.95.

2-periodic and again returns to the equilibrium state
(Fig. 11).

For e in the V8 region in Fig. 6, another pitch-fork
bifurcation structure exists. In the chaotic state
approached from the pitch-fork bifurcation, the
attractor appears similar to a Hénon attractor, as seen
in Fig. 12 (Hénon, 1976).

On the other hand, under the confinement condition
(19), the case exists where the system does not show

bifurcation to chaos as AH increases. With fixed e in V7

in Fig. 6, the bifurcation under consideration consists
of only a period-doubling structure with finite periods
(Fig. 13).

In spite of the potential of these complex bifurcation
structures for AP=BP=10.0, numerical calculations
for the case when e=0.1 and BP=0.15 show simpler
bifurcation structures as seen in Fig. 14. It seems very
similar to the bifurcation structure for the V1 and V2

regions in Fig. 6 for the case when AP=BP=10.0. As
shown in Figs 14 and 15, when parasite and host
coexist, compared to when parasite goes extinct, every
bifurcation point shifts relatively to the right-hand
side, that is, to the side with the larger value of AH .
Numerical calculations show that the bifurcation
points monotonically shift as AP increases, and no
other bifurcation structure appears in this case.
Therefore, in this case, if parasite succeeds to invade
and coexist with host, which would be in q0-periodic
stationary state without parasite, the coexistent
stationary state appears q+-periodic such that q+Eq0.
In particular, the generationally chaotic variation
of host population density without parasite could
disappear and stabilize to some periodic stationary
state by coexistence with parasite. Coexistence
between parasite and host might have the tendency to
suppress the generational variation of host density,
compared to the variation without parasite. This
tendency will be more clearly explained in the analysis
given in the next section.

In both cases, the result of the stability of the
equilibrium state perfectly coincides with that of the
local stability analysis carried out in the previous

F. 9. Bifurcation of the stable stationary state for V3 in Fig. 6.
H0=P0=0.1; AP=BP=10.0; e=0.16; 2.0EAHE4.0. Population
densities H* and P* at the stationary state are plotted. Vertical axis
is logarithmic.
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F. 10. Bifurcation of the stable stationary state for V5 in Fig. 6. H0=P0=0.1; AP=BP=10.0; e=0.5; 3.0EAHE4.0. Population densities
H* and P* at the stationary state are plotted. For some ranges of AH , (H*, P*) so rapidly changes state that numerical results appear
disconnected. Some orbits in the phase space and generational variations of (H*, P*) at the stationary state are shown: (a) AH=3.4; (b)
AH=3.75; (c) AH=3.8.

section. As already mentioned in the local stability
analysis, coexistence between parasite and host
depends significantly on the value of eAP . Indeed, the

parameter region for coexistence appears very similar
between two cases considered by numerical calcu-
lations (compare Fig. 7 with Fig. 15). Also in the case

F. 11. Bifurcation of the stable stationary state for V6 in Fig. 6. H0=P0=0.1; AP=BP=10.0; e=0.612; 2.0EAHE3.26797. Population
densities H* and P* at the stationary state are plotted. Some orbits in the phase space and generational variations of (H*, P*) at the stationary
state are shown: (a) AH=3.1; (b) AH=3.26.



     291

F. 12. Bifurcation of the stable stationary state of V8 in Fig. 6. H0=P0=0.1; AP=BP=10.0; e=0.89; 1.8EAHE2.24719. Population
densities H* and P* at the stationary state are plotted. Some orbits in the phase space and generational variations of (H*, P*) at the stationary
state are shown: (a) AH=2.1; (b) AH=2.247.

when e=0.1 and BP=0.15, analogously to the case for
the region V3 in Fig. 6, there exists a parameter region
of AP such that parasite and host coexist only for some
intermediate range of AH , while parasite goes extinct
for sufficiently small or large AH (see Fig. 15). This
result indicates that there exists an intermediate range
for the value of eAP such that parasite and host coexist
only for the intermediate range of AH , and parasite
goes extinct for AH out of the range. With eAP below

the range, parasite goes extinct for any AH , while,
with eAP beyond it, parasite and host coexists for
any AH greater than a certain threshold (see Fig. 7 and
Fig. 15).

3.3. -   



In this section, making use of numerical calcu-
lations, we compare the mean and the lowest
host population densities at the stable stationary
state when parasite and host coexist with those
when the parasite is absent [see Fig. 5(b)]. The
difference of these densities is naturally 0 between
the two cases for parameters such that parasite
eventually goes extinct: the corresponding par-
ameter region is indicated as D00 in Fig. 16(a) for
AP=BP=10.0 and in Fig. 16(b) for e=0.1 and
BP=0.15, which coincides with the parameter
region indicated by (+, 0) in Figs 7 and 15.
Our numerical calculations show the other
parameter regions shown in Fig. 16, for which there are
four cases.

(i) Both the mean and the lowest densities are
higher when parasite and host coexist than when
parasite is absent, D++;

(ii) the mean is larger while the lowest is smaller,
D+−;

(iii) the mean is smaller while the lowest is larger,
D−+;

(iv) both are smaller, D−−.
F. 13. Bifurcation structure at the stable stationary state forV7 in

Fig. 6. H0=P0=0.1; AP=BP=10.0; e=0.7; 2.0EAHE2.85714.
Population densities H* and P* at the stationary state are plotted.
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F. 14. (AH , AP )-dependence of the stable stationary state, obtained by numerical calculations. H0=P0=0.1; e=0.1; BP=0.15. Terms in
brackets [ ] are as in Fig. 6. The orbit of (H*, P*) in the phase space is also numerically shown for AP=35.0 and AH=3.95.

We consider that it would be more beneficial
for the persistence of host population if the lowest
population density at the stationary state is higher,
because the generation with the lower lowest density
can be regarded as relatively more vulnerable for

stochastic disturbance, which might cause drastic
damage to the persistence of host population. If the
coexistence at the stationary state corresponds to the
parameter region D++ or D−+, coexistence can be
regarded as beneficial for host from the viewpoint of
population persistence. The host–parasite system can
be maintained only when the persistence of host
population is sufficiently high.

Parameter regions D+− and D−+ are relatively small.
Roughly speaking, parameter region D++ exists for
large AH , while D−− is for small AH . The boundary
between D−− and D++ in Fig. 16 can be analytically
identified, as long as it is in the parameter region for
equilibrium state (Appendix D):

eAP=
e

1−e
·

1
BP+1

·
A2

H

02−e

1−e
−AH10AH−

2BP

BP+11
, (24)

where

2QAHQ2−e

1−e
. (25)

F. 15. (AH , AP )-dependence of the coexistence, obtained by
numerical calculations. The region of (+, 0) corresponds to where
host persists while parasite goes extinct. The region of (+, +)
corresponds to coexistence of host and parasite. For AHQ1, both
parasite and host go extinct.
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F. 16. Comparison of the mean and the lowest host population densities at the stationary state between when parasite and host coexist
and when parasite is absent. D00: both the mean and the lowest densities are coincides each other between two cases. D+−: the mean is higher
when they coexist than when parasite is absent, while the lowest when host and parasite coexist does not exceed that when parasite is absent.
D−+: the mean when they coexist does not exceed that when parasite is absent, while the lowest is higher when they coexist than when parasite
is absent. D++: both the mean and the lowest densities are higher when they coexist than when parasite is absent. (a) H0=P0=0.1;
AP=BP=10.0; (b) H0=P0=0.1; e=0.1; BP=0.15.

This boundary curve (24) between D++ and D−− for
equilibrium state (H*, P*) in Fig. 16 is connected
to the point given by AH=2 and eAP=2, and the
boundary (24) in Fig. 16(b) has the asymptote
AH=(2−e)/(1−e) (Appendix D). For fixed e, as
shown in Fig. 16(b), if AHe(2−e)/(1−e), when
parasite and host coexist, the lowest host population
density is higher independently of parameter AP , and
the mean density is also higher for almost every
parameter AP . In contrast, if AHE2, coexistence results
in some reduction of both the mean and the lowest
densities, independently of both e and AP .
If 2QAHQ(2−e)/(1−e), the coexistence shifts up both
the mean and the lowest densities only when host
coexists with parasite with sufficiently small AP , while
the invasion success of parasite with sufficiently large
AP causes to shift them down.

From the characteristics of the boundary curve in
Fig. 16, given by (24) and (25), we can prove that the
parameter region D−− expands as AP gets larger
for fixed e or as e gets larger for fixed AP (see Appendix
D). Therefore, coexistence is more likely to be
beneficial for the host from the viewpoint of
population persistence if the coexisting parasite has
smaller e and/or smaller AP .

4. Discussion

In this paper, we have analysed a mathematical
model, described by a discrete dynamical system,

of host–parasite population dynamics for brood-
parasitism with parasite-accepting host. The results
indicate that some coexistence between parasite and
host can be beneficial for the persistence of the
host population from the viewpoint of population
dynamics. In particular, we have examined the lowest
host population density at the stationary state of the
system. We consider that it would be more beneficial
for the persistence of the host population if the
lowest population density at the stationary state
is higher, because the generation with the lower
lowest density can be regarded as relatively more
vulnerable to stochastic disturbance. This might cause
drastic damage to the persistence of the host
population.

Our results show that the parasite-accepting host
population with the higher reproductive capacity, that
is, with the larger AH in our model, is more likely
to benefit from coexistence with brood-parasite (see
Fig. 16). There exists a threshold of the host quality,
represented by the parameter AH , beyond which
coexistence is beneficial for host from the viewpoint of
population persistence, if some parasite succeeds in
invasion. In contrast, for a host with poorer quality,
below the threshold, coexistence causes a reduction in
host population persistence (see Fig. 16). In such a
host–parasite system, the host population might
become threatened with extinction because the lowest
population density at the stationary state becomes
lower due to coexistence with the brood-parasite.



.   . 294

In addition, coexistence with a brood-parasite that
has a higher parasitization capacity, that is, a larger
value of eAP in our model, is more likely not to be
beneficial for the host from the viewpoint of host
population persistence. Since too low a parasitization
capacity of parasite causes failure of invasion, only a
parasite that has an intermediate parasitization
capacity is likely to benefit the host from the viewpoint
of host population persistence. In other words, the
host–parasite system with such a prudent parasite
could exist in a stationary state. This conclusion can be
regarded as corresponding to the hypothesis about
the stationary existence of brood-parasitism with
parasite-accepting host, i.e. ‘‘Parasite is sufficiently
prudent to avoid over-exploiting host population to
extinction’’. Sufficiently large a value of eAP could be
regarded as corresponding to over-exploitation by the
parasite.

Since decreasing the lowest density of host
population at the stationary state causes reduction in
host population persistence so that it is more likely to
go extinct due to some ecological disturbance, we
suggest that the host–parasite system with such a
handicap would be ecologically unstable. Over a long
period, such a host–parasite system might have
gone extinct one by one, as a hypothesis about the
stationary existence of brood-parasitism with parasite-
accepting host says that ‘‘All other host-parasite
systems are unstable and have already gone extinct, so
that we can observe only stable ones’’. From this
standpoint, it is expected that the existing stationary
system with brood-parasite and parasite-accepting
host would be likely to work to the benefit of
the persistence of the host population. May &
Robinson (1985) used mathematical models to
discuss certain host populations that seemed threat-
ened with extinction owing to parasitism. They
focused on the stationary equilibrium state. Such
host–parasite systems would correspond to those with
the above-mentioned handicap. In our results,
indicated in Fig. 16, the equilibrium state of the
stationary coexistence contains D−− and D++ regions.
The host–parasite coexisting system corresponding
to D−− causes a lower equilibrium density of
host population, which can be regarded as cor-
responding to the case discussed by May & Robinson
(1985).

As for the existence of parasite-rejecting hosts—for
example, the American robin Turdus migratorius and
the grey catbird Dumetella carolinensis against the
brood-parasitic cowbird (Rothstein, 1975a, b, 1982)—
we can present a conjecture, from the viewpoint of
population dynamical stability, that the coexistence of
brood-parasite and parasite-accepting host corre-

sponding to cowbird might result in reduction of
host population persistence. Such a system may be
likely to become extinct due to some ecological
disturbance. From this point, since our results show
that this is the situation for a brood-parasite with high
parasitization capacity (i.e. with a large value of eAP ),
the persistent system with such a brood-parasite
population might require a parasite-rejecting host
population. This agrees with the observations for
host–parasite relationships in birds, which show that
the proportion of parasite-rejecting hosts increases
with the parasitization rate, while that of parasite-
acceptors increases as the parasitization rate decreases
(Rothstein, 1975a, b, 1982). Further, since our results
suggest that a parasite-accepting host population of
poorer quality (i.e. with the smaller AH ) has its
population persistence reduced by coexistence with the
brood-parasite population, the coexistent system
might become extinct due to some ecological
disturbance, so that the persistent system with a
poor-quality host population requires rejective be-
haviour by the host. In other words, for a poor-quality
host population, only a system with a parasite-
rejecting host can be ecologically stable and persist in
a stationary state.

Note that the mean host population density at the
stationary state also increases in almost all cases where
parasite and host coexist and the lowest host
population density increases, compared to when
the parasite is absent. Conversely, the mean density
decreases in almost all cases when the lowest density
decreases and coexistence is disadvantageous from the
viewpoint of host population persistence. This implies
that ecologically stable (beneficial) coexistence can on
average result in abundant host population, while
ecologically unstable (non-beneficial) coexistence can
reduce it, compared to when parasite is absent.

In our model, some assumptions would be
unrealistic for host–parasite relations observed in
nature. However, as mentioned in the section on
modelling assumptions, for certain cases the assump-
tions are not necessarily unrealistic. For example, the
case of the brood-parasitic mochokid catfish Synodon-
tis multipunctatus in Lake Tanganyica. In particular,
one of the assumptions, that of non-overlapping
generations, is an oversimplification for the sake of
mathematical simplicity. Indeed, one of the simple
extensions of our model is to introduce the survival
ratio of adult population to the next breeding season:
sh for host and sp for brood-parasite. The model
then has additional terms shhn and sppn on the
right-hand sides of eqns (10) and (11). Some numerical
calculations about such an extended model for the case
when e=0.1 and BP=0.15 give qualitatively the
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same results as for non-overlapping generations. Other
extensions of the mathematical model are possible, for
example introducing age structure, age-dependent
birth and death, multiple parasites, multi-species of
hosts, and parasite-rejecting host.

In summary our results show the possible
benefit, from a population dynamics viewpoint, to
a host that might at first sight appear to be at a
disadvantage by accepting the parasite.
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work. The authors also thank Masayasu Mimura, Hiroyuki
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APPENDIX A

In this appendix we determine the confine-
ment condition (19) in the main text for the
non-negativeness of (Hn , Pn ) according to the map
corresponding to the systemof eqns (17) and (18).With
non-dimensionalized variables, when Pn00, the
system of (17) and (18) becomes one-dimensional:

Hn+1=AHHn (1−Hn ). (A.1)

The largest value of Hn+1 is AH /4 for Hn=1/2. Hence,
Hn+1 satisfies the following for non-negative Hn not
beyond 1 (see Fig. A1):

0EHn+1E
AH

4
. (A.2)

This means that the map Hn�Hn+1 maps the interval
[0, 1] to [0, AH ], as clearly shown in Fig. A1. If AH /4 is
larger than 1, Hn+1 for Hn sufficiently near 1/2 becomes
q1, and Hn+2 becomes negative by (A.1). On the other
hand, if AH /4 is not beyond 1, Hn+1 is on [0, 1] for any
Hn of [0, 1]. Therefore, the confinement condition for
the non-negativeness of Hn for any n and any initial
value H0 of [0, 1] should be as follows:

AH

4
E1. (A.3)

This is the well-known confinement condition for the
discrete logistic dynamical system (A.1).

F. A1. Map Hn�Hn+1 corresponding to eqn (A.3).
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Asmentioned in themain text, the systemof (17) and
(18) is of logistic nature: the maps Hn�Hn+1 and
Pn�Pn+1 are unimodal (see Fig. 3). By similar
argument to (A.1), the necessary condition for the
non-negativeness of Hn , corresponding to (A.3), is
expressed as follows for the map corresponding to (17)
[see Fig. 3(a)]:

AH

4
E 1

1−eF(Pn )
. (A.4)

Now, since the system (A.1) is of the particular case for
the system of (17) and (18) with Pn:0, the system of
(17) and (18) must satisfy the condition (A.3). Then,
since the right-hand side of (A.4) is always e1 for any
Pn , the condition (A.4) with (A.3) can be always
satisfied for any ne1 and any initial non-negative
value P0. Therefore, by this argument, it is also shown
thatHn of the systemof (17) and (18)with (A.3) satisfies
(A.2), that is, Hn $ I0[0, AH /4] for any ne1.

In contrast, as for the map Pn�Pn+1 given by (18)
according to positive Pn , the right-hand side of (18)
is always positive not beyond AP /4BP for Hn $ J1 0
[0, 1/eBP ], because 0QF(Pn )Q1 for any non-negative
Pn so that eBPF(Pn )Hn is less than 1 [see Fig. 3(c,d)]. For
Hn $ J20(1/eBP , +a), as indicated in Fig. 3(b), the
condition for non-negativeness of Pn+1, corresponding
to (A.3), can be expressed as follows:

AP

4BP
E 1

eBPHn−1
,

that is,

HnE
1
e 0 4

AP
+

1
BP1. (A.5)

As Hn $ I0[0, AH /4] for any ne1 as mentioned above,
the condition (30) is required when Hn $ I+J2. Now,
Hn can be classified depending on which inter-
val Hn is included in, I10I+J1 or In0I+J2. If
1/eBPeAH /4, then I2=9 and always Hn $ I1, while,
if 1/eBPQAH /4, I2$9 and some Hn can be in
I2=(1/eBP , AH /4]. We note that (A.5) is satisfied when
1/eBPeAH /4, provided (A.3), becauseHn satisfies (A.2)
and the right hand side of (A.5) is larger than 1/eBP .
Non-negativeness of Pn+1 is satisfied as long as Hn $ I1,
while it could be violated without the condition (A.5)
if Hn $ I2. Therefore, for the non-negativeness of Pn for
any ne1, it is now required that anyHn $ I2 satisfies the
condition (A.5). Lastly, this argument brings condition
(19).

APPENDIX B

From eqn (20) in the main text, we can easily drive
the following equation:

0Q*−
1

1−e1(Q*−AH )6(Q*−AH )(Q*−1)

+
AH

BP7= 1
1−e

A2
H

APBP
, (B.1)

where

Q*0
1

1−eF(P*)
. (B.2)

F. B1. (a) A numerical result for the (AH , BP )-dependence of the number of positive equilibrium states. H0=P0=0.1; e=0.6; AP=1000.0.
R0: no positive equilibrium exists. R1: only one positive equilibrium exists. R3: three different positive equilibria coexist for each (AH , AP ).
R3 is out of the confinement condition (19). (b) Numerical plots of the positive equilibria for a variety of AH . H0=P0=0.1; e=0.6; AP=1000.0;
BP=4.0.
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From definition (B.2), since 0QF(P*)Q1 for any
positive P*, the meaningful root Q* for (B.1) should
be in the following range:

1QQ*Q 1
1−e

. (B.3)

The number of roots Q* for (B.1) with (B.3) is
equivalent to that of positive solutions (H*, P*) for
(20). Without the confinement condition (19), the
number of solutions could be more than one (see
Fig. B1). However, under the confinement condition
(19), only one meaningful root Q*q1 for (B.1), that
is, only one positive solution (H*, P*) for (20) can be
found by numerical calculations.

APPENDIX C

In this appendix, we analyse the local stability of the
equilibrium state: Case 1 when (H*, P*)=(0, 0); Case
2 when (H*, P*)=(+, 0). For Case 3 when
(H*, P*)=(+, +), since the equilibrium state cannot
be obtained in any practical form, we examined the
stability only by numerical calculations.

By linearizing the system of (17) and (18), we get the
following linear dynamical system for the perturbation
(hn , pn ) around the equilibrium (H*, P*):

0nn+1

pn+11=M0hn

pn1, (C.1)

where

M=0m11

m21

m12

m221 (C.2)

m11=AH [1−eF(P*)]{1−2[1−eF(P*)]H*}

m12=−eAH{1−2[1−eF(P*)]H*} dF(P*)
dP*

m21=eAPH*(1−2eBPF(P*)H*)F(P*)

m22=eAPH*(1−2eBPF(P*)H*)
dF(P*)
dP*

.

Local stability of the equilibrium state depends on the
eigenvalues of the matrix M given by (C.2): If and only
if any eigenvalue for M has an absolute value of Q1,
the local stability is established for (H*, P*) (for
instance, see May, 1974).

In Case 1, eigenvalues of the matrix M are AH and
0. Therefore, the condition that the absolute value of
any eigenvalue is Q1, that is, for local stability, is given
by eqn (22) in the main text.

In Case 2, eigenvalues of matrix M are AH (1−2H*)
and eAPH*. Thus, the condition for local stability is as
follows:

6−1QAH (1−2H*)Q1

0QeAPH*Q1.

Since H*=1−1/AHq0 from eqn (21), lastly, the
condition for local stability for Case 2 becomes
eqn (23) in the main text.

APPENDIX D

In this appendix, the boundary between D++ and
D−− within the parameter region for the equilibrium
state (H*, P*) in Fig. 16 can be analytically derived. As
long as the equilibrium state is considered, since both
the mean and the lowest values of equilibrium H* are
identical to the value of H* itself, and since the
difference between the cases where parasite and host
coexist and where the parasite is absent should be zero
on the considered boundary, H* on the boundary is
given by (21) which gives the equilibrium when the
parasite is absent. Then, from the first equation of (20),
we obtain the equilibrium P* on the boundary as
follows:

P*=
1

1−e
·

AH−2
2−e

1−e
−AH

, (D.1)

which is non-negative only when (25) is satisfied.
Substituting (21) and (D.1) into the second equation of
(20), we get the relation (24) among parameters.

The right-hand side of (24) becomes 2 for AH=2,
independent of e and BP , which is the same parameter
relation as the local stability boundary given by (23) for
AH=2. Thus, since the boundary between D−− and D00

coincides with the local stability boundary given by
(23), the critical boundaries among D−−, D++, and D00

meet at the point corresponding to (AH , eAP )=(2, 2)
(see Fig. 16). The critical point (AH , e)=(2, 2/AP ) in
Fig. 16(a) decreases as AP gets larger, and
(AH , AP )=(2, 2/e) in Fig. 16(b) decreases as e gets
larger. Further, since the derivative 1e/1AP in terms of
the boundary curve given by (24) is negative under the
condition (25), the boundary curve monotonically
shifts down as AP gets larger [Fig. 16(a)], and as e gets
larger [Fig. 16(b)]. It is easily shown that the right-hand
side of (24) :+a as AH:(2−e)/(1−e) from below,
so that the boundary curve in Fig. 16(b) has asymptote
AH=(2−e)/(1−e), which is monotonically increasing
as e gets larger. These characteristics of the boundary
curve between D++ and D−− for the equilibrium state
(H*, P*) in Fig. 16 means that the parameter region
D−− expands as AP gets larger for fixed e or as e gets
larger for fixed AP .


