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Abstract. Two simple mathematical models for the electrical activation pattern of the
AV-node action potential are considered. One is the model by Keener, and the other is
its modification by the present authors. Spectral analyses of the activation patterns are
carried out, and the power-laws in the range of high frequency are obtain. Some
comparisons are mode with measured data.

1. Introduction

The heart is a complicated pump that circulates the blood through the body. It
consists of specific muscles capable of spontaneous and rhythmical self-excitation. A
pacemaker generates the proper periodic stimulus. Its periodicity is determined by
integration of frequencies of cells forming the pacemaker. The resulting frequency is
considered as possibly the best one that drives the heartbeat. The pacemaker is called
sinoatrial(SA)-node (Fig. 1).

The SA-node is in the right atrial wall near the entrance of the superior vena cava,
and the wave excited by it spreads throughout the right atrium. At the base of the atrium,
the excitation wave encounters cells called atrioventricular(AV)-node, and then spreads
to the left and the right ventricles via a specialized bundle of fibers, His-Purkinje fibers
in the case of mammals. The AV-node brings the excitation wave from atrium to ventricle
with a little delay due to its low conduction velocity. The muscle contraction of heart is
caused by the depolarization of muscle membrane, caused by the spread of excitation
wave. Therefore, the contraction of ventricle occurs later than that of atrium. This process
leads to a high efficiency of blood-circulation work of heart.

Some simple mathematical models of such heartbeat cycle have been developed and
analyzed (LEVINE, 1952; VASSALLE, 1966; NOBLE and TSIEN, 1968, 1969; LECAR and
NOSSAL, 1971; FLAHERTY and HOPPENSTEADT, 1978; MILLER, 1979; GLASS et al., 1980).
KEENER (1981) modifies the mathematical model studied by LANDAHL and GRIFFEATH
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Fig. 1. The conduction system of mammal heart. Pulse from SA-node spreads to left and right ventricles
through AV-node and His-Purkinje fibers. His-Purkinje fibers have fractal-like structure.

(1971), combining two dynamics for the electrical activation of the ventricles and its
excitatory threshold. The model by KEENER (1981) can realize some of specific aperiodic
heartbeat patterns, which are known as cardiac arrythmia. Generally, the arrythmia has
some causes to drive abnormal rhythms. In KEENER’s model (1981), AV Conduction
Block is considered by using properties of circle maps for the model system, and it is
shown that large period and aperiodic heartbeat patterns occur only in narrow parameter
regions, and therefore are rarely observed in clinical situation.

On the other hand, GOLDBERGER et al. (1985) discuss the 1/f¥ power-law for high
frequency range in the heartbeat spectra ( v=3.8~4.3), based on a mathematical model for
a conduction process through the fractal structure of His-Purkinje fibers (as for fractal
concept, for instance, refer MANDELBROT, 1983). Although the spectral analyses of some
sampled pattern of heartbeat of human and animals indicate the 1/f¥ power-law in high
frequency range (HOOGE et al., 1981; KOBAYASHI and MUSHA, 1982; MONTROLL and
SHLESINGER, 1982; GOLDBERGER, 1990; WEST, 1990; CHIALVO and JALIFE, 1991; LEWIS
and GUEVARA, 1991), the argument by GOLDBERGER et al. (1985) seems not to explain
well every 1/f¥ power-laws, because their model is based on the fractal nature of
conduction path, which is not always expected for the conduction system of some animals.
LEwIS and GUEVARA (1991) showed that non-fractal conduction process can also lead the
1/f¥ power-law by analyzing a simple triangular pulse (v = 4.0) and a one-dimensional
cable model forthe ionic currents ( v=3.2). In addition, CHIALVO and JALIFE (1991) showed
the corresponding results by analyzing the data from a normal activated frog electrographic
complex (v=2.02) and a frog sciatic nerve (v = 2.84). Mathematical analysis of such
power-law independent of fractal structure is still an open-problem.

In this paper, is presented a mathematical analysis of AV-node firing by two types
of dynamical models: one studied by KEENER (1981) and the other modified by us. We
especially analyze the spectra for AV-node action potential pattern, as GOLDBERGER et
al. (1985) did for the electrocardiogram waveform. By our model analyses, it is found that
the power-law nature might be expected also for AV-node potential spectrum.
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2. Statement of Model

2.1. Modelling assumptions

We consider only the normal rhythmic firing of AV-node, excluding the arrythmia.
This means that our analysis is restricted to some region of parameters of our model.

Our model is based on two basic ideas. First, when SA-node fires, the tissue
surrounding AV-node receives an excitatory voltage impulse to increase its action
potential. If the action potential becomes sufficiently high beyond a threshold, AV-node
fires causing contraction of the ventricle. Second, whenever there are AV-node firing and
ventricular contraction, the threshold of AV-node instantaneously increases and then
gradually decreases, waiting for the next SA-node firing. The process of AV-node firing
satisfies the following assumptions: i

i)  SA-node fires regularly with period 7.

ii) Influence of excitatory voltage impulse by SA-node firing causes increase of the
AV-node action potential v.

iii) At the moment when the AV-node action potential v becomes equal to the
threshold u for AV-node, that is, when u = v, AV-node fires.

iv) Whenever AV-node fires, the threshold u increases by a fixed increment Au. After
the increase, the threshold switches to decrease.

v) The subsequent SA-node firing promotes the increase of the AV-node action
potential.

2.2. Model 1 (Keener’s model)
The n-th SA-node firing produces a current pulse which reaches AV-node at 7= 0.
The pulse takes the following form at AV-node until the next pulse arrives from SA-node:

I(0)=le™ (0st<T), (1)

where Iy and S are positive constants. Equation (1) is defined during 0 < < T, because
the pulse produced by the next SA-node firing reaches AV-node at t=T.

During0 =t< T after the arrival of the n-th pulse from SA-node, the AV-node action
potential v,(¢) is assumed to be governed by the following dynamics:

av,(t)
dt

= Klye ™ —av, (1) (O st< f‘), (2)

va(0)=v,1(7), (3)

where K and «a are positive constants. K indicates the effect of the current pulse from SA-
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node. a corresponds to the decay rate of the AV-node potential. Equation (3) means the
continuity of the AV-node potential.
The threshold for AV-node firing, u,(¢), is governed by

du#f”:—yu,,(t)+6(t—'r")Au (Ost<f'), (4)

1,(0) = (T, (5)

where Au is the increment of threshold at the n-th AV-node firing time 7, (0 < 7, < T ).
&(t) denotes the usual Dirac-delta function: 8(f) =+co for £=0; &) =0 otherwise. The firing
time 1, is given by the assumption (iii) as follows (see also Fig. 2):

o (52) = lim (1) (6)

Note that v,(f) changes independent of the behaviour of u,(f) in Model 1.
Inthe nextperiod of length T after the n+1-th pulse arrives at AV-node, v+ 1(f), #n+1(£)
and 7+ are defined in the same way.

2.3. Model 2

The potential v,(¢) possibly receive some effect of AV-node firing, since the action
potential could be influenced by the firing process. Therefore, it is meaningful to modify
Model 1. One natural way of modification is given below as Model 2:

Fig. 2. The stationary oscillations ve(r) and u«(r) of Model 1, computed with parameters: a = 10.0; 8= 9.0;
Au=0.20; T =0.72; 7, = 0.18. The ordinate axis has log-scale.
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dv, (1) _ Kl (0<t<z,),
dt —av,(?) (t,, <1< f),

(7)

v,(0)=u,_, (f') (8)

In this model, v,(¢) increases until the AV-node firing (¢ = 1,), and after that, it decreases
with the decay rate a. The threshold u,(f) is given the same as in Model 1.

3. Analysis
3.1. Model 1
The solution of Egs. (2), (3), (4) and (5) is (for derivation, see Appendix A)

(e—ﬂf' _ e-af')e—(n—l)af'

v,(t)=| A{-B- - +v0e_("_')“f e ™ + de” P
(1sn,0<ts’f), (9)
v (0)=v, >0, (10)
" (v,,_](r,,_,)+Au)e_r(f_r""+t) (2=n, 0=t<71,), a1
u,lt)=
n (vn(T,,)'*'A“)e_y('_rn) (2sn, T, st$f'),
uoe_ﬂ (0 < < TI ),

w(t)= (12)

(v,(rl)+Au)e_7('—r') (rl <r< f),

u(0)=uy > vy, (13)

where v and ug are initial values of v|(f) and u«,(¢), and
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l—e'ﬁf

K1, B

A= , -
a-pB 1-e @7

(14)

As mentioned before, we focus on the stationary regular behaviour, i.e. (Vao(f), 4e(?)).
In other words, it is assumed that, for each n, 7, is uniquely determined by (6) with the
initial 1) calculated from (9) and (12), and then converges to a 7, such that 0 =< 7, < T.
This assumption means a constraint on the parameters, as given analytically by KEENER
(1981). i

For n — oo, the periodic stationary state with period T is described as follows:

v,(t) = A(—Be'“' + e'p’) (0 st< f'), (15)

U (1) = ( (16)
(=)

Remark that v,(0) = vw(f‘l in this stationary state. 7, is determined as the root of the
following equation on [0, 7] (Appendix B):

Au

m. (17)

—Be ™= 4¢P =
The uniqueness of 7, requires the following conditions on parameters (Appendix B):
i) When aB/f =<1,
<1-B; (18)
ii) When 1< aB/f<é*PT,

min(l - B, —Be'“f + e'ﬂf) < -A(e—ﬁ:l:—l-) < B(% - l}(ﬁ)_a/(a_ﬂ); (19)

i) When ¢*#) < a8/,
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Au
A%ﬂ-q

Note that, in the case when 1 < aB/ < elap )T, there can be two distinct roots of (17).
Then, the smaller is chosen as 7., because of the definition for AV-node firing moment
(see the assumption (iii)). The above conditions are necessary for the regular behaviour
(of (veo(?), u(t)) (see KEENER, 1981). The stationary state (ve(?), Ux(?)) is shown in Fig.
2 fora=10.0, 8=9.0, Au=0.2, T =0.72, and 7, = 0.18.

Since our interest is the spectrum of normal periodic behaviour of AV-node
potential, we hereafter focus on the behaviour of v«(#). The Fourier transformation of v«(#)
gives the following power-energy spectrum function V(w):

1-B< <-Be 4o P, (20)

1 7 ;
V(iw)=—| vo(t)e " dr
(@) =3[, ()
-4 B el - ! e e'i“’f—i+ ! . (21)
27 [\ a+iw B+iw a+io P+iw

Now, we can derive the energy spectrum S(w) = |/(w)|? as follows:

R | G G G At

+2(1—B)cos(wf’)(Be'“f—e"’f)}( o’ > o’ ]

e+’ B+’

+2B(a —ﬁ)sin(wf')(e_af - e_pr')[ ol ‘:wz B2 fa)z ]
+{Bz (e'z”f +1- 2e'afcos(w7:))ﬂ2

—ZB(e_(‘"ﬂ)f +1- cos(a)f')(e'“f + e"ﬁf))aﬁ

+(e_2ﬁf +1 —2e_pfcos(wf’))a2}(a2 4]—(1)2 - 52 i o7 J:| (22)

After Taylor expansion in terms of 1/w, we obtain
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Fig. 3. Power spectrum of v,(r) shown in Fig. 2. In the high frequency range, 1/f2 power-law is observed.

2 - - .
S(w) = %{BZ(e—ZaT + 1)_ 2B(e—(a+[3)T + l)+ 28T 41
3

+2(1- B)cos(wf')(Be'“f -ef f) #
+%13(a —ﬁ)sin(cuf)(e‘“f —e"’f)}§+ 0(#} (23)

This result demonstrates the 1/f2 characteristics of AV-node action potential in the high
frequency range. An exemplifying power-energy spectrum computed numerically is
presented in Fig. 3 for = 10.0, $8=9.0, Au=0.2, T = 0.72, and 7, = 0.18.

3.2. Model 2
The solution of Eqgs. (7) and (8) is given by (see Appendix C)

(voe—aZ El(i_tk) + C(l - e_p')

-1 nelf
+ an(l _e-—ﬁt,‘ )e—aZl-l}(T—n) (2 <n 0<t< T”),
k=1

()= - 9
e-a(t-r,,){voe-aZk-l(r‘fk) + C(] _ e-ﬁfn)
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Fig. 4. The stationary oscillations ve(¢) and u.() of Model 2, computed with parameters: a = 10.0; = 9.0;
Au=0.20; T =0.72; 7, = 0.18. The ordinate axis has log-scale.

v +C(1-7)

vi(t)=

v(0)=v, >0,

e“'""l){vo +C(1-Pm )}

(r,sts

(0=r<7),

~

)

where 1, is assumed to be uniquely determined as in Model 1, and

The periodic stationary state for v.(?) is (see Fig. 4 and Appendix D)

C(l - e‘/") + DAu

V() =

De_a(‘_f)Au

where

(25)

(26)

(27)

(28)

(29)
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Fig. 5. Power spectrum v,(?) shown in Fig. 4. In the high frequency range, 1/f? power-law is observed.

and 7., is uniquely determined as the root for the following equation on [0, T ] (Appendix
E):

ci-e?)= D(e“’(’“f) - I]Au. (30)

Uux(t) is given by (17) with the above vo(f) and 7.
The spectrum function ¥(w) for the stationary behaviour of AV-node action potential

is

V(o) =ﬁ[$(C+ Daw)(1-e7™)

+ 1' eafDAu(e-(a”w)r"’ _e—(a+iw)f)
a+io

et c(e‘(”*"“’)‘m - 1)] (31)

B+io

and the energy spectrum S(w) after Taylor expansion is obtained as
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S(w) = 2—71t2—[(C+ DAu)2(1 - cos(wr,, ))

o -2aT i
ZaT(DAu)2 {i - e_a(t"”)cos(a’(% B T))
2
$ S DB ool (e ooy 0,
Au

e oou) e Tenfo( - )

+ %(e—ﬁ“c + l)(cos(wrw) - 1)}

+e“iCDAu{e—(a+mr“‘ —e TP cos(w(r' -1, ))

—e *™=cos(wT,, )+ e‘“fcos(wf)}:l%
+#[aeafDAu(C+ Dau){e™*"sin(01,,)

-fﬂhqwﬂ+e*%m@(f—anl

HC+ DAu)CB(e7P"= ~1sin(wz,,)

—e*T CDAu(a - B { ~af- ﬂ”"sm(w(T rm))

+e”"=sin(wr, )~ e sm )j!% (ﬁ) (32)

(1)

For sufficiently large w, we obtain 1//2 characteristics of AV-node action potential (see
Fig. 5).

4. Discussion

In this paper, we have proposed a model which is modified from Keener’s model by
considering the influence of the threshold variation u,(f) on the AV-node action potential
vy(f), and have given its exact solution. It can be shown that this solution yields also a
1/f2 spectrum as in Keener’s model.
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Our results indicate that non-fractal system for heartbeat can show the power-law
characteristics in its power spectrum in the high frequency region. Although our object
of modelling is not the electrocardiographic complex as in GOLDBERGER et al. (1985) and
the others, but the temporal variation pattern of AV-node action potential, the comparison
of the power-laws of AV-node action potential pattern with that of electrocardiographic
complex may be possible. For example, 1/f* power-law for large f does not necessarily
depend on any fractal structure of heartbeat system, which would be applied also to the
electrocardiographic complex.

It is worth nothing that both Model 1 and Model 2 yields 1/f¥ power-law with v=2
in the range of high frequency. On the other hand, a triangular pulse has 1//¥ power-law
nature with v=4 (LEWIS and GUEVARA, 1991), which is significantly different from our
v =2, This means that the shape of pulse causes 1/f* power-law characteristics, and the
index v significantly depends on the intrinsic dynamics which drives the pulse.

Moreover, 1/f¥ power-law characteristics sampled from human electrocardiographic
complex give v= 3.8~4.3 (GOLDBERGER et al., 1985), while v =2.02 for a normal ac-
tivated frog electrographic complex, and v=2.84 for a frog sciatic nerve (CHIALVO and
JALIFE, 1991). Our result v=2 is too small for human electrocardiographic complex, and
near to that for frog electrographic complex. Since, in our model, any structure of
conduction network system is not introduced, our model might be comparable with such
simple conduction systems as that of frog. In short, it is suggested that simple neural
conduction systems would have 1/f¥ power-law nature with v = 2, while more complex
ones, such as that by GOLDBERGER et al. (1985), would have the nature with larger v.

Although the model by GOLDBERGER et al. (1985), based on the fractal spatial
structure of His-Purkinje fibers, cannot explain some other power-law characteristics in
spatially non-fractal conduction system, there may be a possibility that a combination of
spatial and temporal fractal structure of conduction dynamics leads to 1/f¥ power-law nature
of relatively complex conduction system. Mathematical modelling by networking oscillator
coupled with our model, for example, seems to be another possible way to give some
valuable aspects on such conduction system. It should be noted also that we need to
consider low frequency fluctuations for a better discussion of fractality.

There are other complicated models of neuronal firing such as the FitzHugh-Nagumo
model (FITZHUGH, 1961; MCKEAN, 1970) or Hodgkin-Huxley model (HODGKIN and
HUXLEY, 1952) based on the ionic currents across an excitable. However, simplified
models can be treated regorously, and can still reflect physiological reality. Response of
more complicated models to periodic inputs is far from complete understanding and still
open-problem (FLAHERTY and HOPPENSTEADT, 1978).

The authors are grateful to Prof. Ryuji Takaki and anonymous referee for their helpful
comments to complete this paper.

APPENDIX A

From Egs. (2) and (3), we have
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v,(t) = n_,(f’)e“” +A(e‘p' —e‘“’), (A1)
where A is given by (14). At ¢t = T, this solution becomes

2 (T) =vpe ™ + A(e'ﬁf - e'“f), (A2)

vn(f') =v,_, (f")e'af + A(e‘ﬁi - e'af). (A3)
Solving (A3) with (A2), we arrive at
AT e ) il -naf
V"( ) = e -e l_e—-ai' +vye . (A4)

Then, substituting (A4) into (A1), we get (9).
APPENDIX B

Since 1, must satisfy Eq. (6), the following equation must be satisfied:

(vm(rw)+Au)e_"i = V(7o) (BI)

Substituting (15) into (B1), we obtain (17).
Now, we consider the following positive constant £ and function F(z):

E=—2% .o,

A(e"i - 1)
F(1)=-Be* +e? (0sts<T)

Then, from (17), 7 is given by the root of F(7) = E. Here, F(7) is smooth (C l.class) on
[0, T). The first derivative of F(7) can be calculated as follows:

F'(7)= aBe™®" - fe™*". (B2)



64 C. KoIDE and H. SENO

The value of 7, satisfying F'(7,)=01is

1 aB
log—.
a-f "B

T, =

From (B2), the following statements on 7, are obtained:
i) 7, =<0, when aB/f < 1. Then, F(7) is monotonically decreasing on [0, T]
Therefore, only when F(T') < E < F(0), 7 can be uniquely determined.

i) 0<r1, < T, when 1 < aB/p < P )T. Then, F(7) is unimodal. Therefore,

only when min(£(0), F( T)) E < F(1,), o can be determined. In the case when
max(F(0), F(T )) < E <F(t,), two different roots for F(7) = E can be obtained on [0, T]
The smaller is chosen as 7.

iii) T < r,, when P T < oaB/B. Then, F(7) is monotonically increasing on
(o, f’]. Therefore, only when F(0) < E < F(T), 7= can be uniquely determined.
These arguments lead to (18), (19) and (20).

APPENDIX C
From (7) and (8), the following solution is obtained:

Voot (T) + C(l - e“"') (0=t<7,),

va(£)= )
" ™= jim v, (1) (r,, S ES T),
Tr,

(cy

where C is given by (27), hence, we obtain

vl(f') = e_a(i_ t')(vo + C(l ~ePu )), (C2)

)= (1 i) ©

Solving (C3) with (C2), we can arrive at

va(7)= ype “ThATR) | ci(l —e P )e"“ZF‘*(f“ “) (C4)

Then, substituting (C4) into (C1), we get (24) and (25).
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APPENDIX D

From Egs. (6), (11) and (24), we have

Vn+1(Tn+l ) = (v,,(t")-i- Au)e_Y(T i HM)'

For the stationary state, i.e. n — o0, we obtain

vw(rw) = (vw(rw) + Au)e_"f,

hence,

A
V() = — (D1)

On the other hand, when #n —  in (24), we have
&(1 - e"") + vm(rm)ea(r‘_r) (0=t<ty,),
vo(0)=1 P (D2)
vw(rw )ea(t‘”") (rw SPES T)
Then, substituting (D1) into (D2), we get (27).
APPENDIX E

The quantity ve(7w) is obtained by putting ¢ = 7., in (27), which yields (29). Now, we
consider the following functions G(7) and H(t) on [0, T

G(r)=c(1-¢7),

H(t)= D(e"’('“"f) - IJAu.

Then, 7 is given by the root of G(z) = H(7). Functions G(7) and H(7) are smooth (C'-class)
on [0, T] G(7) is monotonically increasing on [0, T ], while H(7) is monotonically de-
creasing on [0, T] In addition it can be easily shown that G(0) = 0 < H(0) and H( T) 0
< G( T ). Therefore, 7., can be always uniquely determined.
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