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Abstract

In this paper, we consider an aspect of the intra-specific brood-parasitism with a
mathematical modelling. As in case of moorhen Gallinula chloropus, the case dealt with
in this paper in such that just a part of the whole population has the parasitising be-
haviour against the individuals belonging to another part of non-parasite subpopulation
that does not have such behaviour. Analysing the expected fitness gain from the brood-
parasitism, we consider the condition in order that parasite individuals coexist with non-
parasite ones within a population. From the mathematical modelling analysis, it is
shown that the stable equilibrium frequency of parasite individuals within a population,
if exists, depends on the difference among individuals in terms of the individual quality
reflected to the survival probability of bred offsprings. © 1999 Elsevier Science Inc. All
rights reserved.
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1. Introduction

For a number of species of birds, brood-parasitism by laying eggs in the
nest of the other individuals has been reported (for instance, see Refs. [1,2]).
There are two categories of such nest parasitism. One is inter-specific brood-
parasitism in which eggs are laid in the nest of different species, and another is
intra-specific brood-parasitism in which eggs are laid in the nest of the other
individual of the same species.

Many researchers have studied intra- and inter-specific brood-parasitisms
from various points of view. Hamilton and Orians [3] and Payne [4] argued that
intra-specific brood-parasitism is at an intermediate stage in the evolution toward
inter-specific brood-parasitism, and Yamauchi [5,6] discussed their opinions
from some theoretical points of view. Takasu et al. [7] analysed a mathematical
model of population dynamics between parasite and host, and discussed the
evolution of such behaviour that host refuses the eggs laid by the parasite.

Intra-specific brood-parasitism has been reported in many articles. And the
number of reports have been increasing in this decade. Rohwer and Freeman
[2] reported the intra-specific brood-parasitism of 64 species of waterfowl and
77 species of the other birds: White-fronted bee-eater Meropus bullockoides,
swallow Hirundo rustica, cliff swallow Hirundo pyrrhonota, eastern kingbird
Tyrannus tyrannus, moorhen Gallinula chloropus, and so on.

The moorhen inhabits all over the world except for Australia. Its breeding
season is generally from April to August or September. On the average, the fe-
male lays just one egg a day, and the expected clutch size per female is generally
from five to eight. But the number of eggs in some nests could be significantly
larger than it. We could consider that some female birds which are not the owner
of the nest lays eggs in such a nest. Three evidences would indicate that more than
one female have laid eggs in a nest [1]: (i) More than one egg were laid in a single
nest in a day; (i1) Eggs were laid in the nest after the owner female had finished
laying her eggs; (iii) Eggs with characteristics different from those of the owner
female were laid in the nest. Eggs from different females are in general different in
size, weight, shape, background colour and spot patterns. [8,1,9]

Field work by Gibbons [9] was conducted in 1982, 1983 and 1984 at the
Wildfowl Trust’s Peakirk Waterfowl Gardens in Cambridgeshire. Gibbons [9]
found that the number of moorhen nests in which more than two females lay
eggs is 31 of 128 investigated nests. There could be two types of phenomena
that more than one bird lay eggs in the same nest. First is the cooperative
nesting. Moorhen is generally monogynous and its pair cooperates in defending
the breeding territory. Gibbons [9] reported that 10% of pairs consisted of a
group of one male and some females. In each group, two or three females laid
eggs in a common nest, and they incubated eggs and brought up fledglings
cooperatively. In five cases out of 11 polygynous territories of totally 97
breeding territories, females consisted of mothers and daughters.
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Second is the brood-parasitism. In the investigation by Gibbons [9], 59 out of
75 females laid eggs only in their own nests. 11 females laid eggs in both their own
nest and another. Four females laid eggs in her own nest and the other two, and
one female did in her own and the other five. That is, roughly saying, about 20%
females out of 75 were parasites, and about 70% of parasites laid eggs only in a
certain unique nest of host. Therefore, in our modelling, we assume that parasitic
individuals are related to the host’s nests different from each other, that is, with
one-to-one relationship. In addition, Gibbons [9] reported that 97 clutches out of
128 were laid by only one female, 20 clutches laid by two, 9 clutches laid by three,
and 2 clutches laid by four. That is, about 65% out of 128 parasitised nests were
parasitised by only one parasite. So, we again assume in our modelling that the
parasitisation for each non-parasitic individual’s nest could not occur by more
than one parasitic individual, that is, with one-to-one relationship.

The averaged number of such parasite’s eggs laid in the other nest was four.
The parasitised nest was in the territory defended by the other pair. In case of
moorhen, after parasitic female had laid eggs in the nest of a host in an earlier
period of breeding season, it constructed its own nest and turned to lay eggs in it.
On the other hand, the host did not remove eggs laid by parasites, and brought
them up as well as or better than her own. However, the expected survival rate of
parasitised eggs could be regarded as lower than that of host’s ones. The reasons
are as follows: Parasitic females dumped their eggs when some period had passed
after the host had initiated her clutch. Therefore, those parasitised eggs hatch in
general later than the eggs of host does, so that the parasite’s fledglings are
expected to be subordinate in the physical strength in comparison with those of
the host own. And the parasite’s eggs dumped in the later period of host’s
hatching are deserted because host does not hatch eggs after the fledglings of
host’s own have left the nest. From this argument, we could consider that the
parasitised eggs are in a disadvantageous condition for their survival.

In this paper, we consider a mathematical modelling for the intra-specific
brood-parasitism with regard to the coexistence between parasitic and non-
parasitic individuals within a population. From the viewpoint of natural se-
lection, only the individuals that could adapt themselves to the environment
could persist within a population. A cuckoo lays eggs only in the nest of others.
A hen lays eggs only in her nest. We could consider that such consequent
behaviour is to gain the possibly highest fitness. Why and how parasitic and
non-parasitic individuals could coexist in the population of moorhen? In our
mathematical modelling consideration, we focus the existence of the stationary
ratio of parasitic individuals within a population.

2. Modelling assumptions

In this paper, we consider the mathematical modelling with the following
assumptions: The whole population consists of parasitic and non-parasitic
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subpopulations, of which the non-parasite might become the host for the
brood-parasitism by the parasite. The parasite does not parasitise the nest of
any other parasite. For each non-parasitic individual, the parasitisation by
more than one parasite could not occur in the considered breeding season.
Each parasite makes its parasitisation for a specific non-parasite, and does not
utilise more than one non-parasite, that is, each parasitic individual is related
to its host’s nest different from the other’s, that is, with one-to-one relationship.

Now, ks and ky, are respectively the number of eggs laid by the parasite in its
own nest and that in the nest of host. And let &; denote the total number of eggs
the bird lays, that is, the clutch size per parasitic individual. Then, the relation
among kg, ky, and k is

ks + ky = k. (1)
In our modelling consideration, for mathematical simplification, host and
parasite bear the common total number of eggs. We could regard the total
number k; of eggs and/or the number k, of parasitised eggs as the parasite’s
reproductive strategy, and try to discuss the optimal strategy. However, in this
paper, we will not analyse our model from such viewpoint. (As for a mathe-
matical modelling consideration from such a viewpoint, we have already ac-
complished it and will publish the work elsewhere sooner or later.) Instead,
each individual is assumed to have such a strategy as to be able to select al-
ternatively the behaviour as non-parasite or parasite. In order to clarify such a
viewpoint, we consider that the above-mentioned numbers k, and k, are given.
Thus, we will discuss the possibility of coexistence between non-parasitic and
parasitic individuals with a stationary population frequency in the considered
population with a given set of &, and ky,. As clearly indicated in the following
sections, since the expected fitness of each individual is significantly influenced
by the population frequency of parasites or non-parasites within the considered
population, the selection of behaviour as non-parasite or parasite considerably
affects the fitness of the selector.

Now, we assume the rank among females, in terms of the breeding capacity,
for instance, to discover foods or bring up their fledglings. Such qualitative
difference among females is to be reflected to the survival probability of
fledglings in the nests. The survival probability of the fledglings with their own
mother of rank / is assumed to be given by

Pis(k) = p' e (1=1,2,...), )
while that with the host mother of rank / is assumed to be given by
Pylky) = u e o (1=1,2,...), (3)

where u, o and f are constants such that O<u <1 and 0 < o < 8. These survival
probability functions are under such hypothetical condition that the total
number of eggs in the nest of the female with rank / would be just & for Eq. (2)
or ky for Eq. (3), and indicate that the survival probability of the fledgling
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decreases as the number of kin eggs in the same nest gets larger. This is because
the larger the number of kin eggs in the same nest, the less the expected amount
of food per fledgling. In case of Py, it gives the survival probability per
fledgling with the total number of eggs just &y, provided that no eggs of any
other mother existed in the nest. The effect of another mother’s eggs on the
survival probability in the same nest, which is the case for the host’s nest, will
be introduced as another factor defined below. The condition o <  means that
the survival probability with its own mother’s care is not less than that with the
host mother’s care, if the ranks for those mothers would be equivalent. So
Pis(k) < Pp(k) for any k > 0. If a parasite could select the host of the rank
higher than its own, the survival probability of the parasite’s fledglings might
be greater for those with the host than with their own mother. The case with
1 =1 corresponds to when there is no qualitative difference among females. In
this case, the survival probability of fledglings is independent of which their
mother is their own or the host.

Besides, we assume that, the more is the number of eggs which have less
relatedness with the considered egg in the same nest, the lower the survival
probability of the egg is. Let o(x) denote the factor of such effect as to re-
duce the survival probability given by Eq. (2) or Eq. (3), where x is the
number of eggs which have less relatedness in the same nest, that is, the
number of host’s eggs for the parasitised egg or that of parasite’s eggs for
the host’s one. So ¢(x) is monotonically decreasing function of x, given in
our modelling by

ox)=e", (4)
where 7y is a non-negative constant. Without eggs with the less relatedness, that
is, when x =0, this effect does not exist so that ¢(0) = 1.

3. Females without qualitative difference

In this section, we consider the case when every females have no qualitative
difference, that is, when u=1 in Egs. (2) and (3) and let P;(k) = P(ks);
Piy(kv) = Py(ky) for any /. We consider the fitnesses W, and W, which are re-
spectively the expected fitness for the parasitic individual and that for the non-
parasitic one. We consider in this paper that the fitness for mother is defined by
the expected number of survived eggs. Moreover, the success of parasitisation
of one egg is assumed to be independent of the success or the failure of any
other parasitisation. In this case, W, is given as follows (Appendix A)

Wy = kPy(ks) + ﬁ;{ (lz.b)n"(l — ) in(i)O'(kn)}’ (5)

where 7 is the probability that the parasite succeeds in parasitising one egg to its
host. For the second term, as described in Appendix A, we now assume that,
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when the parasite fails to parasitise an egg, the egg is lost from the clutch. The
first term of Eq. (5) is the expected fitness gain from the fledglings under the care
of its own mother which is a parasite. The second term is the expected fitness gain
from the fledglings under the host mother’s care. If we introduced the parasitism
also to the parasite’s nest, /¥, must be considerably modified, although such case
would be contrary to some observations at least for moorhen [9].

On the other hand, W, is given as follows (Appendix A)

_ 0 0
W, = (1 —W)kt Py(ky) +@kﬁ

Ps<kt>kzb{ (% )=o), (©)

=0
where Q denotes the proportion of parasitic individuals in the considered fe-
male population. As we assume that each parasitic individual can partner with
a host individual different from hosts for the other parasites, that is, with one-
to-one relationship, we will consider our model only with the following range
of the parameter Q

0<0o<t (7)
This is a confinement for our modelling analysis. If we eliminated the as-
sumption of one-to-one relationship between parasite and host, Q could be
beyond 1/2. However, in such case, the fitness %, could not be given by Eq. (6),
and would require some considerable modification of Eq. (6), with some ac-
count of multi-parasitism.

The parasitic individual is assumed to select at random a non-parasite as its
host. The first term of Eq. (6) denotes the expected fitness gain in the case when
the non-parasitic individual could avoid being parasitised. The second term
denotes the expected fitness gain in the case when the non-parasitic individual
is parasitised and becomes host for a parasite.

If non-parasites stationarily coexist with parasites in the considered popu-
lation, we could suppose that the fitness of the non-parasite is equal to that of
the parasite

W = .
This equation should determine the stationary frequency Q = O of parasites in
the population. With the mathematical argument described in Appendix B,
however, in the case when there is not any qualitative difference among females
in the breeding capacity, we can obtain the following result:

Proposition 1. Without any qualitative difference among females in terms of the
breeding capacity, there could exist no stable equilibrium parasite frequency in a
fixed population.

From the argument in Appendix B, our mathematical modelling consider-
ation concludes that, if the total number (k) of eggs laid per female is suffi-
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ciently small, for instance, under some unfavourable habitat condition, the
parasites would eventually disappear from the population, whereas if the total
number of eggs laid per female is sufficiently large under some favourable
habitat condition, the frequency of parasites would gradually increase within
the population. The discussion for the latter case is out of the present frame-
work of our mathematical modelling with the confinement Eq. (7). It may be
suggested that such case would lead to the evolution of multi-parasitism.
From this result, within the framework of our modelling, we could consider
that the population with a parasitic subpopulation might be on the way of
evolution, that is, the frequency of parasitic individuals might be still changing.

4. Females with qualitative difference

At first, we suppose that the female population consists only of non-parasites
at the initial phase, and then at a moment the female of rank / changes to behave
as a parasite. Should she remain to behave as a parasite, if all the females of rank
higher than / are kept as non-parasites and if the number of parasitic females of
rank lower than / increases? Provided that parasitic individual selects its host at
random from non-parasitic individuals, the higher the rank of host individual is,
the more is the fitness gain for the parasitic individual.

We assume that the total number of females is 2N (For the case of 2N + 1,
the following result can be proved valid, too.) If the number of parasites of
rank lower than /is ¢( < 2N — /), the expected fitness gain #;, for the female of
rank / when it would remain to behave as a parasite is

2N 1 bk ;
Wip = kPio(k) + Y {mZG)"I

{1 gty ) =0
X(l—nf“ﬁﬂdﬁawd}, -
where {x,x,,...,x,} is the ranks of parasitic females lower than / (for the

modelling derivation, see Appendix C). In contrast, in this case, the expected
fitness gain W, ;, for the female of rank / when it would change to a non-parasite is

Wlh = (1 - ZNq— q)ktpl,s(kt> + 2Nq—_qktpl,s(kt)

xﬁi(?)wu—nﬁ*du ©)

By comparing W, to W, in the above, we can obtain the following result (for
the argument, see Appendix D):
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Proposition 2. If all the females of rank higher than [ are non-parasites, the
parasitic female of rank [ remains to be parasite even though the number of
parasites of rank lower than | increases.

This means in other words that the behavioural choice by the highest rank of
parasite is not affected by the number of parasites of the lower rank.

Next, we suppose such a configuration of non-parasites and parasites that
the higher ranks from 1 to m of females are non-parasitic, and the lower than m
are parasitic. For this configuration, let us further suppose the following:

I/Vm,h > VVm,pa

Wm+1Ah < Wm+l,p~ (10)
Would some females change their behaviours from non-parasite or parasite to
another? With mathematical arguments described in Appendix E, we can ob-
tain the following result:

Proposition 3. Once established is such a configuration that the females of rank
higher than m + 1 are all non-parasites and those of rank lower than m are all
parasites, as long as the female of rank m remains to be non-parasite and that of
rank m + 1 does to be parasite, any other non-parasite remains to be non-parasite
and any other parasite does to be parasite, that is, the configuration could be
stationarily stable.

In this result, we use the term ‘stationarily stable’ for the configuration as to
mean that, in the stationarily stable configuration, any change of behaviour of
any individual decreases the expected fitness for the individual which changes
the behaviour.

Now, we consider the existence of stationary proportion of parasites in the
population. Is it possible to determine such a unique m as to satisfy Eq. (10)?
We assume again that the total number of females is 2N (For the case of 2N + 1,
the following result can be proved valid, too). At first, we consider the case when
all the females of rank higher than 2N — 1 are just non-parasites. We focus the
females of rank 2N — 1 and of rank 2. Following three cases are possible:

(1) Wan_in > Wan—1p,  Wann > Wanp.
(ii) Won—in > Wan—ipe Wann < Wanp.

(iii) Won—1ih < Wan—1py, Wanyn < Wanp.
In case of (i), both females of rank 2N — 1 and of rank 2N behave as non-
parasite. In this case, from Proposition 2, non-parasites occupy the population
so that there is no parasite within the considered population. So, formally
m=2N for the case (i). In case of (ii), the female of rank 2N — 1 behaves as a
non-parasite and that of rank 2N does as a parasite. Therefore, m=2N — 1. In
case of (ii1), both females of rank 2N — 1 and 2N behave as parasite. In this
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case, we turn to focus the females of rank 2N — 2 and of rank 2N — 1. In such
case, the following two cases are to be considered:

Wan—on > Way_op,  Wan—in < Wan—ip.
Won—in < Wan—ipy,  Wonn < Wanp.

In the former case, m = 2N — 2. In the latter case, we turn to consider the
females of rank 2N — 3 and of rank 2N — 2 in the same way. Along this pro-
cedure of arguments, we can obtain the following result (for details, see Ap-
pendix F) given in Proposition 4.

Proposition 4. If the following condition is satisfied, there is the unique m to define
such configuration that all the females of rank higher than m+ 1 are non-
parasites and those of rank lower than m are parasites:

Iy Su<iy (>0,
where

= (ne” + 1 —n)hke ™ — ke,
¢ =e e (ne +1—n)* 'k,
and [y and [,y are defined by

iy =D —Ry) gy TN =1 fy)
=y ’ 1 fgy™

To confirm this analytical result, we carried out some numerical calculations
directly with Egs. (8) and (9) (a numerical result is given as Fig. 1). All nu-
merical calculations are set with such initial configuration that there are only
non-parasitic individuals. The numerical calculations are not aimed to show
the process of inheritance of behaviour, instead, are aimed to search and get
numerically the stationarily stable configuration. For any set of parameters we
applied for the numerical calculations, the configuration numerically converges
to such type that all the females of higher than a rank are non-parasites and
those of lower than it are parasites. We remark that, since the behavioural
choice is determined by the expected fitness, it could occur occasionally in the
numerical calculations that the whole population is occupied by parasites (see
Fig. 1, at a step after 300). From our modelling assumption of one-to-one
relationship between parasite and host, the population ratio of parasitic indi-
viduals cannot be beyond 50%. The numerical result in Fig. 1 that contains
some configurations contradictory to this assumption is due to the behavioural
choice determined by just the expected fitness instead of the rank of actually
selected host, that is given by Egs. (8) and (9) summed up all non-parasitic
individuals including the possible hosts for another parasite.
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Fig. 1. Numerical calculation of the configuration change. At the initial, every individuals are non-
parasites (O) without any parasite (). The rank is higher for the individual located at left. An
individual is randomly selected at each time step, and the behavioral choice is estimated according
to the expected fitnesses given by Egs. (8) and (9). The configuration reaches the stationary state at
time step 585. u = 0.5; 2 = 1.0; § =2.0; 5 = 0.5; y = 0.9; k, = 10; k, = 4; the fixed total population
=80.
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5. Conclusion

Field work by Gibbons [9] implied that only a portion of females in a
population involving the intra-specific brood-parasitism, about 20% in the case
of observed moorhen at the Wildfowl Trust’s Peakirk Waterfowl Gardens in
Cambridgeshire, would behave as the intra-specific brood-parasites (parasitic
females), while another portion of females (non-parasitic females) would not.
In our mathematical modelling consideration, we focused the existence and the
uniqueness of the stationary ratio of parasitic females within a population.
Especially, our modelling analysis showed that the existence of such a sta-
tionary ratio of parasitic females required an appropriate difference among
females in terms of the breeding capacity. That is, within the framework of our
modelling analysis, only when the survival probability of offsprings signifi-
cantly and appropriately depends on which female they are bred by, the intra-
specific parasitism with the coexistence between parasitic and non-parasitic
females would stationarily exist within the population. If the difference among
females is non-significant with respect to the survival probability of offsprings,
the ratio of parasitic females within the population would be changing to a
certain next stage of evolutionary process which could not be involved in our
modelling, or alternatively, if the difference among females is sufficiently
strong, the intra-specific brood-parasitism would be excluded from the popu-
lation due to the natural selection, because the result from our modelling
analysis implies that, in such case, the intra-specific brood-parasitism would
make the fitness of any female reduce.

With a population of females ranked in terms of the breeding capacity re-
lated to the survival probability of offsprings, we found a stable stationary
configuration of parasitic females in the ranked population (Proposition 3): the
stable stationary configuration consists of non-parasitic females with the higher
breeding capacity and parasitic ones with the lower. Provided that the lower
rank would be of the younger female, this result indicates that the younger
female would have the stronger tendency to behave as parasite than the older.

From the result of Proposition 4, the above-mentioned stationary configu-
ration could be realised only for an intermediate range of parameter u that
represents the degree of the difference of breeding capacity among females.
Hence, neither little difference nor extreme one of breeding capacity among
females would sustain the stationary coexistence between parasitic and non-
parasitic individuals with a stationary ratio in the population.

From Proposition 2, the behavioural choice by the highest rank of parasite
is not affected by the number of parasites of the lower rank. Therefore, with the
result by Proposition 3, we could suggest the following transient process for the
invasion of brood-parasitism into the considered population (for a numerical
example, see Fig. 1): Suppose such initial population that consists of only non-
parasitic females, that is, without any parasitic behaviour while those females
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could be ranked in terms of the breeding capacity relative to the fitness. At
first, a female of certain rank takes somehow the strategy to behave as parasite,
and gets the higher fitness. Then the descendants with parasitic behaviour
increase the frequency within the population. On the way of the frequency
variation from generation to generation, the configuration of parasitic females
within the ranking would fluctuate. Configuration of parasitic females within
the ranking at each generation determines the optimality of the parasitic be-
haviour for each parasitic female in it. Hence, such configuration-dependent
optimality of the parasitic behaviour significantly drives the variation of
configuration itself through generations. With such a self-organising dynamic
change of the configuration, it eventually approaches the stationary configu-
ration with a certain frequency of parasitic females (as given by the result of
Proposition 4). Since the optimality of parasitic behaviour must be significantly
affected by the frequency of parasites within the population, the configuration
of parasitic females within the ranking might have a variation from generation
to generation while such variation would be small enough not to change sig-
nificantly the stationary (or quasi-stationary) frequency of parasites within the
population.

In this paper, the individual of each rank is assumed to choose the behaviour
in terms of whether it behaves as non-parasite or parasite, using the expected
fitness in each case. Since the relationship between parasite and host is assumed
at first to be one-to-one, the population ratio of parasitic individuals could not
be beyond 50%. However, as long as the decision on the behavioural choice is
assumed to be done according to the expected fitness, the ratio could become
beyond 50% in our mathematical modelling (see Fig. 1). So it will be interesting
to make an improved mathematical modelling explicitly involved such one-to-
one relationship between parasite and host, and discuss the existence and the
uniqueness of the population ratio of parasitic individuals.
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Appendix A. Fitnesses of parasite and non-parasite with the qualitatively even
females

We assume that the total number of individuals is n in the considered
population. Let Q denote the proportion of parasites in the population. The
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expected number of parasites is given by On and that of non-parasites is by
(1 — Q)n. Each parasite tries to lay &, eggs in the nest of its host.

First, we derive the fitness of parasite. The success probability for the par-
asite to lay one egg in the nest of its host is now given by a constant #. Then,
the case when parasite succeeds in laying j eggs of k&, in the nest of its host
occurs with the probability

(ﬁ?)nf(l—n)kb—f (j=0,1,2,... k), (A1)

taking account of which of &, eggs are succeeded in being laid in the nest of
host.

Lastly, the expected fitness gain for the parasite from those eggs laid in the
nest of host is summed up over the number of parasite’s eggs successfully laid
in the nest of host as follows:

S5 ) - aati. (a2)

On the other hand, the expected fitness gain for the parasite from the eggs laid
in her own nest is kP, (k). Therefore, the whole expected fitness gain W, for the
parasite is now obtained as Eq. (5).

Next, we derive the fitness of non-parasite. The number of cases concerning
to which non-parasitic Qn individuals out of (1 — Q)n become hosts is given

by
("o)

The number of cases when a non-parasitic individual does not become host and
On non-parasitic individuals out of (1 — Q)n — 1 become hosts is

(u—gy—1>

Hence, the probability that a non-parasitic individual does not become host is
given by

(%) 1
) e

The expected fitness gain for such a non-parasitic individual is given by &P (k).
The case when host is laid j eggs by its parasite occurs with the probability

(?)wunﬁf. (A3
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Lastly, the expected fitness gain for the host is given as follows

Zb: (I;b ) (1 =) kP (k)o())- (A.4)

Therefore, taking account of the probability that a non-parasite would become
host for a parasite, the whole expected fitness gain W for the non-parasite is
obtained as Eq. (6).

Appendix B. Non-existence of stable parasite frequency with qualitatively even
females

In this appendix, we prove Proposition 1 for the case when there is not any
qualitative difference among females in the breeding capacity. Now, we in-
troduce the ratio of the parasitised eggs ky, to the clutch size k; of parasitic
individual: p = k,/k,. Then the relation ¥, = W, brings the following equation
from Egs. (5) and (6):

-
(1= e b (e L)}
1 ,
=1l -20+0(ne™ +1-n)™}. (B.1)

Let f(k) denote the left-hand side of Eq. (B.1) and g(k,) the right-hand side.
Depending on the parameters, there are some different relations between f'(k;)
and g(k;) (see Fig. 2). In every case,

k) < glk) <= W, < W

fk) > glk) <= W, > W,.
Now we argue the case of (a — 1) in Fig. 2. In the case,

T st f(k) =gk)).
We suppose a certain & < &, when g(k,) > f(k). Then W, > W,, so that the
parasite frequency Q could be expected to decrease, from the viewpoint of
optimality in terms of the expected fitness gain. f (k) is independent of Q,
whereas g(k,) is monotonically decreasing function of Q. Thus, g(k) in-
creases for any k. as Q decreases. So the relation between f(k) and g(k)
remains such that g(k) > f(k), that is, W, > W,. Therefore, we could expect
that O — 0 eventually. Next we suppose a certain & > k;. Since W, < W, in
this case, Q could be expected to increase eventually. Then, W, decreases and
the relation between f(k) and g(k,) remains such that g(k) < f(k), that is,
Wy < W,. In this case, we can just conclude that Q asymptotically increases.
From this argument for the case of (a — 1) in Fig. 2 from the viewpoint of
optimality in terms of the expected fitness gain, it is shown that the relation
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(a-1) (a- 2)
f(kt) f(kt)
g(kt)
; a(kt)
k‘t kt kt
(b-1) (k) (b-2) f(kt)
k
olke) = a(kt)
kt Kt K kt
(b- 3) f(kt) (b- '4) f(kt)

g(kt)

G KK Kt Kkt

Fig. 2. Possible relations between f'(k,) and g(k).

between ;, and W, could not change. Therefore, the equilibrium frequency
Q= Q" satisfying Eq. (B.1) is unstable even if it exists.

Analogous arguments can be applied for the other cases indicated by the
other figures in Fig. 2. Consequently, it can be shown that there is not any
stable equilibrium frequency Q = Q* satisfying Eq. (B.1).

Appendix C. Fitnesses of parasite and non-parasite with qualitatively different
females

Suppose that there are m non-parasites and n parasites within the popula-
tion. First, we derive the fitness of the parasite. Parasite selects and pairs host
at random. Hence, the probability that a parasite lays eggs in the nest of the
host of rank /(1 <7< m) is obtained by 1/m. The expected fitness gain for the
parasite from the eggs laid in the nest of host is

i{%i(ﬁ?):ﬂ(l g Pz,bwo(kt)}, (ch

=1 =0
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where the average in terms of / is taken over ranks of all hosts according to

which non-parasitic individuals become hosts. In addition to the above ex-

pected fitness gain for the parasite of rank i, the expected fitness gain from the

eggs laid in her own nest is now given by kP;5(ks). Therefore, the whole ex-

pected fitness gain W, for the parasite of rank i is now obtained as follows:
ky

Wiy = kPa(k) + i{%z(’j’)w ) Pz‘bma(kt)}. )

Next, we consider the fitness of host. The probability that a specific non-
parasite becomes host for a parasite is given by n/m. When the non-parasite of
rank i could avoid becoming host, the expected fitness gain for such non-
parasite is kP s(k). On the other hand, when the non-parasite of rank i be-
comes host for a parasite, the expected fitness gain for the host is

ky
k ; o) .
S5 Y - ket (€3)
=0
taking account of how many parasite’s eggs could be successfully parasitised.
Lastly, the whole expected fitness gain for the non-parasite of rank i is obtained

as follows:

= (1= D)) + Pkt 3 (R Y ety )

Jj=0

Appendix D. Proof for Proposition 2

In this appendix for Proposition 2, we consider how the expected fitness gain
for the female of rank / changes when the number of parasites of rank lower
than / increases. Now suppose the total number 2N of females in the popula-
tion. In our modelling argument, we assume the following: N + 1 </ <2N. We
can carry out the following argument in the same way also when the number of
females is 2N + 1.

At first, we consider the fitness gain for the female of rank / which behaves as
a non-parasite. Let ¢ denote the number of parasites in the population except
for the female of rank /. Then, from Egs. (2), (3) and (6), the expected fitness
gain W, for the considered female of rank / is obtained as follows. If ¢ =0,

Win= k! le "k, (D.1)
and otherwise,

1
W = 1_ k 1—1 ,—oky
th ( 2Nq> uee

1 =1 ,—ok S kb i kp—i /-
Y ‘(1 =) a(i). D.2
oy ghee 2 i) (I =n)*"a(i) (D-2)
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Eq. (D.2) can be rewritten as follows:

. 1 - NI L
VVl,h:kt:ul 'e ak‘_zN_qktﬂl 'e kt{l _Z< ;)’71(1 _”)kb 6(’)}-

i=0

(D.3)

Therefore, we find from Eq. (D.3) that W, is monotonically decreasing in
terms of the number ¢ of parasites. That is, the larger the number of parasites,
the less the expected fitness gain for the non-parasite.

Next, we consider the expected fitness gain for the female of rank / which
behaves as a parasite. Let A, denote the set of ranks for the other ¢ parasites,

Ay ={x1,x2, ..., x4},

where x;(i = 1,2,...,q) is the rank of the ith parasite, different from /.
Now, we assume the following:

I+1<x,<2N fori=1,2,...,q.

Since the number of the parasites including the female of rank /is ¢ + 1, W, is
given from some calculation with Egs. (2)-(4) and (8) by

-1 2N
I/Vl?p = kslulfle*xks + ]767,/3ljkbflkbefykt (;utl + Z 'u,,l ) 7

i=l+1
ig¢Ag

2N — (g +1)
(D.4)

where U = e + 1 — 5. If one additional female of rank lower than / would
become parasite and the total number of parasites would increase to g + 2, W,
becomes

_ -1 —oks
VVl’p = ke + i=I+1
#4g11

-1 2N
e U ek [ T W)
N _(g12)"° b¢ t<,-1

(D.5)

Comparing Eq. (D.5) to Eq. (D.4), we find that only the second term of
Eq. (D.4) is different from that of Eq. (D.5). We consider the ratio E(u) of the
second term of the Eq. (D.4) to that of Eq. (D.5)

_2N-(g+2) !
E(“)_zN—(qul) 1+§ 1y ZZN 1 (B-6)
i:l’u ’;z:AH] 'u
#hg+1

With the following argument, we will prove that E(u) < 1.
Now we define /() by
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'ux(ﬁlfl
S =7 T (D.7)
2t !
i=1 (=
i€Ag41
Then,
-1 W
s
d - ";qurl
du =1 w2
(Zu" + 3 u”)
=
I~ oY
- (za DR S G wl)
=2 151;:11
B I~ 2N 2 (D.8)
(Zui‘l + 2 u””)
=
The numerator of Eq. (D.8) is rewritten as follows:
-1 N
Xgr1 — 1+ Z(xqﬂ — i + Z (Xge1 — D) (D.9)
i=2 i=l+1
iZA

q+1

It can be easily shown that, when x,,; =/ + 1, Eq. (D.9) takes its minimum
and

/-1 2N
X =1+ (1= + > (1= i)™
7
/-1 . 2N )
>xp = 1+ Y (1= + ) (1 +1— ™" (D.10)
i=2 i=l+1
The sums of the right-hand side of Eq. (D.10) become
2/-2N+1 )
1=+ (1= D — !
i=3
2]-2N+1
+ Z (2N —i + I)HH—I—ZN—l(l _ #4N—2i+2)> O
=142
for Yu < 1.

Therefore, we find that df/du > 0 for Vu < 1. Hence, f (i) is monotonically
increasing function of u, and

F0) =g

Tt (D.11)
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Thus, we can immediately find that

2N —(g+1)
2N — (¢ +2)

so that E(u) < 1 from Eq. (D.6). Consequently, we find that

1+ f(n) < for Vu < 1, (D.12)

u<l=E(u) <l (D.13)

This implies that, the larger the number of parasites of rank lower than / that is
the highest rank of present parasites, the larger the expected fitness of the
parasite of rank /. These arguments prove Proposition 2.

Appendix E. Proof for Proposition 3

In this appendix for Proposition 3, we consider the stability of such a
configuration of non-parasites and parasites that the higher ranks from 1 to
m of females are of non-parasite, and the lower than m are of parasite. At
first, the following inequality is supposed to be hold for the non-parasite of
rank m

VVm,h > I/Vm,py (El)

which now becomes

(1 _ ﬁ) 'umflktefo(k[ + ﬁlumflktefzkl ka
m m

1 1—p! .
> k" tem s 4 I N _## ne PUR ke (E.2)
where
U=nel+1-mn;

V=n'"41-n.
The expected fitness function for the female of rank m — 1 in the case when it
would remain to be non-parasite is given by

n n
Vmel.,h _ (1 _ _) 'um72ktefazkl + —ﬂ”172kt67“kl ka. (E3)
m m
In contrast, the fitness in the case when it would change to behave as a parasite

1S

m

_ 'umfZ + 'umfl —u
1—wu '

! 1
Wonrp = " 267" e U oo™

(E.4)
We multiply x~! to both sides of Eq. (E.2), and obtain
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Wosin — Wazip
1 gt —p? B S Byrky—17. A7k
> ne "U™ ke ™ — ne "U™ ket ™
m—1 1—u m—1
1 — m—2 m—1 _ ,m
Sl e (E.5)
l—p

From the following inequality

=l = (U= oy + pyg — 1) = (1= (1= ") =0,
we can easily prove the non-negativeness of the right-hand side of Eq. (E.5).
With this argument, we can obtain the following result:

Wmfl.,h > Vmel,p~ (E6)
Consequently, we have got the proof for the following:
I/Vm,h > I/Vm,p = Vmel,h > I/mel‘p- (E7)

This means that the female of rank m — 1 remains to be non-parasite as long as
the female of rank m is non-parasite. With the mathematical induction, pro-
vided that the female of rank m is non-parasite, we can prove that the female of
rank higher than m must remain to be non-parasite in the same way.

Next, we consider the females of rank lower than m. Suppose that the fol-
lowing inequality is hold for the parasite of rank m + 1.

Wosin < Watip, (E.8)
that is,
1— n—1 k'umefockl +(1- n—1 'ukabflk e*}'kt
m+1)" m+1 b
11—u"
< ke 4 = gyl (E.9)

m1—u
The expected fitness function for the female of rank m + 2 in the case when it
would remain to be parasite is given by
Watap = k" e l —1 a
m1—pu
On the other hand, the expected fitness gain in the case when it would change
to a non-parasite is

ne PUR e k. (E.10)

m+1 +1
We multiply u to both sides of Eq. (E.9), and obtain the following from
Eq. (E.11):

1 —1
Wpoay = <1 n )kt'uerleock( +Zl—,um+1kakteﬂk‘- (E.11)

1
—~ (1 — y"ne PUS ke ™ < W0 . (E.12)
Therefore, it is proved that

Wiion < Wagop —



J. Maruyama, H. Seno | Mathematical Biosciences 156 (1999) 315-338 335

Waisin < Wasip = Wogon < Wagop. (E.13)

With the mathematical induction, provided that the female of rank m + 1 is
parasite, we can prove that the female of rank lower than m + 1 must remain to
be parasite in the same way. These arguments prove Proposition 3.

Appendix F. Proof for Proposition 4

In this appendix for Proposition 4, we show the condition for the existence
and the uniqueness of m such that W,,_,, < W,_; and W, , > W, . Provided
that the configuration of non-parasites and parasites is such that the females of
rank higher than m + 1 are all non-parasites and those of rank lower than m
are all parasites, how is the critical rank m determined?

Now we consider the whole population consisting of only non-parasites, and
the number is 2N. The following argument can be carried out in the same way
for the case when the total number of females is 2N + 1.

At first, we consider the expected fitness gain for the female of rank 2N.
When the female is non-parasite, the expected fitness gain Wiy, is given by

VVZNh kt'uZN 1 7oc/q (F‘l)
Next, we consider the expected fitness gain for the female when she would
become parasite. The expected fitness gain from the eggs laid in the nest of host
depends on the rank of randomly selected host individual and is now given as
follows (see Appendix C)

Zzzv_ I {Z(kb>7r (1=m)*jp e Ve ”“} (F.2)

So the totally expected fitness gain for the parasite of rank 2N is now given by
1 1 — 'u2N—1
2N -1 1—u
where U =ne™? +1 — . We consider that the female of rank 2N tends to
behave as parasite if and only if Way, > Woyp.
Now we suppose that the females of rank lower than 2N —i+1 (i =

2,3,...,N + 1) are all parasites. We focus the fitness of the female of rank
2N — i+ 1. From Egs. (8) and (9), the inequality

IN—lg=oks 4 e ipe PUR (F.3)

I/VZN,p = Kl

Wan_ivin < Wan—itip (F4)
is equivalent to the following inequality

Sv-in () = VRN = v (1 — ) + 9} < o, (F.5)
where

i — 1
. = — _ ko 41 —oky __ —oks .
Oon—int {1 1-r )ZN—H— l}kte ke s,
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V=ne'"4+1-—n;

o =e e PUR k.
If one of the following four conditions is satisfied, the inequality (F.5) is true
for Vp (0 < < 1):
Conin1 >0, Loy <o ( (a))
Covoir1 <0, (2N —i)loyis1 > ¢ (Fig. 3(c))
Covi1 <0, 2N =)oy <o ( (d))
Conveiv1 =0, (Fig. 3(d)).
In this case, the female of rank 2N — i + 1 would tend to behave as a parasite.
If {noip1 >0 and oy i1 > @, there is a certain fi,y_;.(< 1) such that
gov-i+1(foy_i+1) = @ (see Fig. 3(b)). Then
0 < pu<fioy_iv1 = Wan—izin < Wan_itips

w= oy i1 = Wan_ivin = Wan—ig1p;

Poy iyt < <1=Wy_isin> Way_ip1p-
Thus, fi,y_;,; gives such a range of p that the female of rank 2N — i + 1 behaves
as parasite.
We can make the same argument for the female of rank 2N —i. The in-
equality

(@) (b)

;M

Fig. 3. Possible relations between ¢ and g(u). For details, see text.
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Won—in < Wan_ip (F.6)
is equivalent to the following:
() = RN —i = Dov_i(1 — p) + ¢} < o, (F.7)
where
i «
Covei = {1 —(1=v*) N — i}kte_ik‘ — ke, (F.8)

We find that Eq. (F.6) is true when {,y_; <0 or when {,y_; > 0 and {oy_; < . If
Oneip1 >0 and {y_j > @, there is a certain [i,y_; (< 1) such that
gon—i(foy_;) = @. Lastly, it is shown that

0< n< /12]\],,‘ = VVZN—i,h < VVZN—I',p;
n= /12}\/,,' = VV2N—i,h = VVZN—Lp;

oy <u<1=>Wy_in> Wy ip.

From these arguments, we can find that the necessary condition for the
existence of m is {y > ¢. The reason why this condition is necessary for
the existence of m is as follows: We can easily find that {,y_; < {y_;r1- Thus,
if the inequality that {, < ¢ is true for a certain rank x, the inequality that
{, < ¢ is always true for any rank y higher than x, that is, from 1 to x — 1. This
means that any female of rank higher than x tends to behave as parasite and
the number of parasites increases. Therefore, for the existence of m, the con-
dition {y > ¢ is necessary.

Now, we consider the relation between fi,y_,,; and fi,y_,. We can find that
foy_; < [oy_i41 If the following inequality is satisfied.

gnv-i(loy_i1) > - (F.9)
On the other hand, we get the following equation from the definition of fi,y_; ;:
Fon i1 (N = i)(1 = fiay_i11)
L A
Therefore, from Egs. (F.7) and (F.10), the inequality (F.9) is lead to the fol-
lowing:

= 0. (F.10)

N1 (2N — i = 1)(1 = Ty 1) Coves

~ON—i ~ :
By i (1= floy_i41) (2N — i) N
> A 1 ~QN:,-r (1- H;%JJJ)CZN—HI

~ Hon—it1
~ON—i ~ :
(1= Ty )(2N — i N
> 'uZN—l+l( 1 #};\/Ni-:—l)( )(1 . H§x7;+})C2N_i, (Fll)
~ Hon—it1
where we used the relation ({oy_; < {oy_iyq fori=1,2,...,N — 1. The obtained

inequality (F.11) is rewritten as follows:
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N i1 oy

2N —i [

(1 — gy _i1)- (F.12)

Now, we define the following function of x:
X i
O(x) :W(l — ), (F.13)

and can easily show that Q(x) is monotonically increasing function of
x (0 <x < 1). Since Q(0)=0 and
Cx(I =V 2N —i— 1
lim — = —,
=l 1 — x2N- 2N —i
we can prove that Eq. (F.12) is true for Vi,y ;. (0 < fioy_;4y < 1), so that
Eq. (F.9) is true. Consequently, we find that [y ; <[y, for
Vioy_is1 (0 < fiay_;p1 < 1). That is, the higher the rank of the female is, the
narrower the range of p which satisfies the condition for the female to behave
as parasite.
From the above arguments, if there exists m such that W,,_;, < W,_1» and
Wop > Wun(N < m<2N), the following condition must be satisfied:

v> 0 My SH< [y (F.15)
Therefore, lastly, since iy < i, < ft,y for N <m < 2N, if the following condi-
tions are satisfied, there exists the unique m such that W,_,, < W,_;, and
Wop > Wun(N <m<2N):

v>p, iy <p<fiy. (F.16)
These arguments prove Proposition 4.

(F.14)
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