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Abstract. We consider the number of trophic levels in a food chain given by the equilibrium state
for a simple mathematical model with ordinary differential equations which govern the temporal
variation of the energy reserve in each trophic level. When a new trophic level invades over the top
of the chain, the chain could lengthen by one trophic level. We can derive the condition that such
lengthening could occur, and prove that the possibly longest chain is globally stable. In some spe-
cific cases, we find that the possibly longest chain is such that the lower trophic level has a greater
energy reserve than the higher has, so that the distribution of energy reserves can be regarded to
have a pyramid shape, whereas, if any of its trophic levels is removed, the pyramid shape can-
not be maintained. Further, we find the condition that arbitrary long chain can be established. In
such unbounded case, we prove that any chain could not have the pyramid shape of energy reserve
distribution.
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1. Introduction
It is one of the important issues in ecology to identify the general properties about the structure
of food web, as theoretically studied by many researchers (for instance, [3, 4, 10, 13, 19, 21, 28,
29, 30, 31, 33, 34]). The length of food chain is one of the important features interesting for such
theoretical studies [23, 25, 31]. There are some different ways to measure the length of food chain
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and some hypotheses about what determines the length of food chain [17, 19, 23, 24, 25, 31]. One
method to estimate the length of food chain is to deal with the energy flow, which is sometimes
called the realized trophic position [23]. It represents how many times the energy (or a certain
material) is transferred from a primary producer to a consumer. Then the average number of links
from each producer to each top predator is regarded as defining the length of food chain. In this
case, we need to calculate/estimate the number of trophic links about all trophic pathways that lead
from primary producers to top predators.

The network of energy flows in a food web could be theoretically simplified to a linear chain of
energy flows. Such a theoretical framework was mathematically discussed by Higashi et al. [10].
Along their theory, we could resolve and reconstruct the network of energy flows in a food web
into some linear chains. Teramoto [32] analyzed the following model of an energy food chain with
m energy trophic levels:

dNm,m

dt
= ναNm−1,mNm,m − (δ + θNm,m)Nm,m;

dNi,m

dt
= ναNi−1,mNi,m − (δ + θNi,m)Ni,m − αNi,mNi+1,m

(3 ≤ i ≤ m − 1);

dN2,m

dt
= µβN1,mN2,m − (δ + θN2,m)N2,m − αN2,mN3,m;

dN1,m

dt
= ε(1 − N1,m)N1,m − βN1,mN2,m,

(1.1)

where Ni,m = Ni,m(t) (i = 1, 2, . . . ,m) is the energy reserve of the i th trophic level at time t.
Parameters α, β, δ, θ, µ and ν are all positive constants. µ and ν are the successful energy fixation
rate for the second trophic level (herbivore) and that for the higher trophic levels (carnivores)
respectively. α is the energy transfer rate from the i−1 th trophic level to the i th (i = 3, 4, . . . ,m).
The primary energy production is given by the logistic growth term with the intrinsic growth rate
ε and the unity of carrying capacity. δ is the intrinsic energy dissipation rate at each trophic level.
θ introduces the intra-trophic density effect to increase the energy dissipation at each trophic level.
Harrison [9] considered the global stability of the equilibrium state for the more general system
including (1.1). He proved that the equilibrium state with the positive energy reserve at every
trophic level is globally stable. In contrast, some theoretical researches indicate that the long food
chain of a wide family of mathematical models would have a chaotic parameter region [6].

Teramoto [32] considered a specific case if the model (1.1) when µβ = να for the second to
the third trophic levels, and obtained the following results:

• A finite upper bound for the number of trophic levels exists.

• The number of trophic levels of the longest chain has a positive correlation with να/δ and ε.

• In the longest chain, the distribution of energy reserves among trophic levels is always such
that the lower trophic level has a greater energy reserve than the higher has, in other words,
it has a pyramid shape.
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• For sufficiently large θ, the pyramid shape can be maintained even if the top trophic level is
removed from the equilibrium state with a pyramid shape of the energy reserve distribution.

A similar and different food chain model was discussed from the similar viewpoint in Chapter 5
of Svirezhev and Logofet [31]. Differently from (1.1), no density effect in the energy input or the
energy dissipation are included, that is, the primary trophic level is given by

dN1,m

dt
= φ − βN1,mN2,m,

where the primary energy production rate is given by a constant φ, and θ = 0.
In this paper, we consider a mathematical model of an energy food chain simpler than (1.1),

and similar to that in [31]. Our model does not incorporate any density effect within each trophic
level. We focus the number of trophic levels in the possibly longest chain and try to discuss the
lengthening of the chain by the invasion of a trophic level over the present top level.

2. Model
We consider the following system which is similar to and different from those in Chapter 5 of
Svirezhev and Logofet [31] and Gurney and Nisbet [7]. It governs the temporal variation of energy
reserves in the food chain with m energy trophic levels, which we call hereafter the m level system
(Fig. 1):

dNm,m

dt
= αmNm−1,mNm,m − δmNm,m;

dNi,m

dt
= αiNi−1,mNi,m − δiNi,m − αi+1Ni,mNi+1,m

(2 ≤ i ≤ m − 1);

dN1,m

dt
= φ − δ1N1,m − α2N1,mN2,m,

(2.1)

where Ni,m = Ni,m(t) is the energy reserve of the i th trophic level at time t. Parameters αi, δi,
and φ are all positive constants. αi is the energy transfer rate from the i − 1 th trophic level to the
i th, δi the energy dissipation rate at the i th trophic level. The primary energy production rate is
given by a constant φ. We do not consider the density effect within each trophic level.

In case of the food chain, the energy transfer is realized by the predation, that is, by the inter-
trophic reaction with the interspecific reaction. In this sense, the model should have a reaction
term between subsequent trophic levels. In our model, it is given by the mass-action term which
is a simplest form to introduce such an reaction. Besides the interaction term must be zero if
one of subsequent trophic levels is zero, because the interaction never occurs between them. The
mass-action term is the simplest form satisfying this nature.

Some knowledges about the natures of the simplest system could serve to understand some
characteristics of the more complicated system, and furthermore would sometimes give some per-
spectives for the ecological problem to be discussed.
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Figure 1: Illustration of the m level system given by (2.1).

3. Existence of equilibrium states
For the m level system, we define the k level established state (k < m) as the equilibrium state at
which those levels from the first to the k th are positive and the others zero:

(N∗
1,m, N∗

2,m, . . . , N ∗
m,m) = (+, +, . . . , +︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
m−k

),

where N∗
i,m is the equilibrium value of the i th level in the m level system. The completely es-

tablished state is specifically defined as the equilibrium state at which every trophic level has a
positive equilibrium value for the m level system.

From (2.1), we can explicitly obtain every equilibrium value of the k level established state
(Appendix A): For even k,

N∗
2i,m =

1

α2iRi−1Qk

(φ − P2iQk) (2 ≤ i ≤ k/2);

N∗
2i+1,m =

δ2(i+1)

α2(i+1)

+

k/2−1∑
l=i+1

δ2(l+1)

α2(l+1)

Ri

Rl

(1 ≤ i ≤ k/2 − 2);

N∗
2,m =

φ/α2

Qk

− δ1

α2

;

N∗
1,m = Qk,

(3.1)

134



T. Matsuoka and H. Seno Possibly longest food chain

Figure 2: A numerical calculation for the seven level system with α2 = 0.4; α3 = 0.5; α4 = 0.6;
α5 = 0.5; α6 = 0.3; α7 = 0.4; δ1 = 0.2; δ2 = 0.5; δ3 = 0.4; δ4 = 0.3; δ5 = 0.4; δ6 = 0.6;
δ7 = 0.3; φ = 4.0; Ni,7(0) = 3.0 (i = 1, 2, . . . , 7). P6Q6 = 3.58 < φ < P7Q7 = 4.43. The six
level established state is globally stable, the seventh trophic level going extinct.

and for odd k,

N∗
2i+1,m =

Ri

Pk

(φ − PkQ2i) (2 ≤ i ≤ (k − 1)/2);

N∗
2i,m =

δ2i+1

α2i+1

+

(k−1)/2∑
l=i+1

δ2l+1Rl

α2i+1Ri

(1 ≤ i ≤ (k − 3)/2);

N∗
3,m =

α2

α3

φ

Pk

− δ2

α3

;

N∗
1,m =

φ

Pk

,

(3.2)

where

Rl =
l∏

j=1

α2j

α2j+1

;

Pk = δ1 +

[[(k−1)/2]]∑
l=1

δ2l+1Rl (k ≥ 3); P1 = P2 = δ1;

Qk =
δ2

α2

+

[[k/2−1]]∑
l=1

δ2(l+1)

α2(l+1)

1

Rl

(k ≥ 4); Q2 = Q3 =
δ2

α2

; Q1 = 0.

Bracket [[·]] denotes the Gauss’s symbol such that [[a]] gives the maximal integer not beyond a.
Now, with regard to the existence of the k level established state, we can obtain the following

theorem (Appendix B):
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Theorem 1. For the m level system, the k level established state uniquely exists if and only if
φ > PkQk. If φ < PkQk, it does not exist.

We note that the single level established state always exists with N∗
1,m = φ/δ1. The two level

established state exists if and only if φ > δ1δ2/α2. At any equilibrium state, the trophic levels
lower than a certain level are positive and the others zero (Lemma 12 in Appendix B). Theorem 1
indicates that the existence of the k level established state requires the primary production rate φ
greater than the critical value PkQk (see a numerical example in Fig. 2). Since PkQk is monoton-
ically increasing in terms of k, the greater primary production rate could afford the longer chain.
Similar results and discussions are given also for the similar model in Chapter 5 of Svirezhev and
Logofet [31].

From Theorem 1, we can obtain the following corollaries (Appendix C):

Corollary 2. If the k level established state exists, then the j level established state exists for any
j < k.

Corollary 3. The k level established state exists if and only if the k − 1 level established state
exists with N∗

k−1,m > δk/αk.

Corollary 2 means that the existence of a chain assures the existence of any chain shorter than it.
Corollary 3 indicates that the existence of a longer chain requires a sufficiently large energy reserve
at the top trophic level in the shorter chain.

4. Stability of equilibrium states
We can obtain the following theorem and corollaries about the stability of k level established state
(Appendix D):

Theorem 4. If the k level established state exists and the k + 1 level established does not, then the
k level established state is globally stable.

Corollary 5. If the completely established state exists, it is globally stable.

Corollary 6. If the k level established state exists unstable, the k + 1 level established state exists.

Theorem 4 and Corollary 5 mean that the possibly longest chain for a given m level system
is globally stable. From Corollary 6, if the m − 1 level established state exists unstable, the
completely established state exists globally stable. These corollaries give some suggestions about
the lengthening of the energy food chain, which we discuss in the other section.
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5. Length of the longest chain
From Theorem 1, only if PkQk converges to a finite value as k → ∞, arbitrary long chain for a
given finite value of φ could be established. A long chain could be regarded to have grown by a
large sequence of introductions of additional level over the top of chain. From definitions of Pk

and Qk, both of {Pk} and {Qk} are rigorously increasing sequences of positive numbers in terms
of k. Thus, the convergence of PkQk is equivalent to that of both Pk and Qk as k → ∞. Therefore,
we can obtain the following theorem:

Theorem 7. Only if both Pk and Qk converge to finite values, P and Q respectively, as k → ∞,
then arbitrary long chain could be established with φ > PQ. If φ < PQ, the chain length has a
finite upper bound.

Let us consider a specific case with αi = α2ζ
i−2 and δi = δ1ξ

i−1 (2 ≤ i ≤ m), where α2, δ1,
ζ , and ξ are positive constants. From the definitions of Pk and Qk, in this case, PkQk converges to
a finite value as k → ∞ if and only if

q =
ξ2

ζ
< 1, (5.1)

and we have
PkQk → PQ =

δ1δ2

α2

1

(1 − q)2
as k → ∞. (5.2)

Hence, when q < 1 and φ > PQ, arbitrary long chain can be established.
In case of q < 1, the condition φ > PQ corresponds to

ζ >
ξ2
√

φα2√
φα2 − δ1

√
ξ
. (5.3)

Inequality (5.3) gives the region UNBOUNDED in Fig. 3(a). From (5.3), we find that such specific
case occurs only if ξ < φα2/δ

2
1 . If ξ > φα2δ

2
1 , it never occurs. If ξ < φα2/δ

2
1 , there is some ζ such

that such specific case occurs. Therefore, the parameter ξ is essential to determine if such specific
case occurs or not.

Even when q < 1, there is a finite upper bound for the number of trophic levels if φ < PQ,
which corresponds to the region FINITE1 in Fig. 3(a) (see also Fig. 4). In this case, we can
explicitly derive the following finite number mmax of the trophic levels in the possibly longest
chain (Appendix F):

mmax =

{
[[Λ]] if [[Θ]] is even;

[[Θ]] if [[Θ]] is odd,
(5.4)

where

Θ =
ln{1 − (1 − q)ρ/2}

ln
√

q
; (5.5)

Λ =
ln{1 + q − (1 − q)

√
1 + qρ2} − ln 2

ln
√

q
− 1, (5.6)
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Figure 3: (ξ, ζ)-dependence of the length of food chain when αi and δi have geometric variations:
αi = α2ζ

i−2 and δi = δ1ξ
i−1. (a) In the region UNBOUNDED, PkQk converges to a finite value

PQ as k → ∞, satisfying that φ > PQ. In the region FINITE1, the chain length has a finite upper
bound although PkQk converges to a finite value PQ as k → ∞, satisfying φ < PQ. In the region
FINITE2, PkQk diverges as k → ∞. (b) The finite upper bound mmax for the number of trophic
levels: For the darker region, the upper bound mmax is larger. Numerically drawn with φ = 2.4,
α2 = 0.5 and δ1 = 0.3. For ξ ≥ φα2/δ

2
1 = 13.3, only the single level established state exists.
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Figure 4: Parameter dependence of the number mmax of trophic levels in the possibly longest chain
in case of αi = α2ζ

i−2 and δi = δ1ξ
i−1, making use of (5.4–5.7). ρ =

√
4α2φ/(δ1δ2); q = ξ2/ζ.

(a–c) ρ-dependence; (d) q-dependence. (a) q = 1.2; (b) q = 1; (c) q = 0.8; (d) ρ = 5.0. In (c),
PkQk converges to PQ as k → ∞ and φ > PQ when ρ > 2/(1 − q) = 10.0. In (d), φ > PQ
when q < 1 − 2/ρ = 0.6.

139



T. Matsuoka and H. Seno Possibly longest food chain

with ρ =
√

4α2φ/(δ1δ2). Bracket [[·]] is the Gauss’s symbol as before. It is easily shown that Λ is
positive whenever φ < PQ.

For any q > 1, as indicated by the region FINITE2 of (ξ, ζ)-space in Fig. 3(a), we can find
again the finite upper bound mmax given by (5.4). In case of q = 1, we can find the following finite
upper bound mmax (Appendix F):

mmax =


[[√

ρ2 + 1
]]

if [[ρ]] is even;

[[ρ]] if [[ρ]] is odd,
(5.7)

where ρ is the same as before. Consequently, if q ≥ 1, the chain length necessarily has a finite
upper bound (Fig. 4). The following condition is that the two level established state is the longest
chain (see Fig. 3(b)):

δ1δ2

α2

< φ <
δ1δ2

α2

(1 + q).

The similar discussion was carried out for the similar model in Chapter 5 of Svirezhev and Lo-
gofet [31], too. They analyzed the case of ξ = ζ = 1 and showed that the arbitrary long chain
cannot be established. The result is approved also for our model because q = 1 in case of ξ = ζ = 1
in our model. In our model, we remark that, even when q < 1, if φ < PQ, the chain length has a
finite upper bound (see Figs. 3 and 4).

6. Invasion of an additional top trophic level
In this section, we discuss the possibility to add a trophic level over the top of existing energy food
chain. Such introduction of a new trophic level could be regarded as the invasion of an alien top
predator into a food web. At first, we obtain the following lemma (Appendix E):

Lemma 8. If the m+1 th trophic level with δm+1/αm+1 < N∗
m,m is introduced into the completely

established state of the m level system, then the completely established state becomes unstable.

Now suppose that the completely established state exists for the m level system. From Corol-
lary 6 and Lemma 8, if the m + 1 th level with δm+1/αm+1 < N∗

m,m is introduced, then the system
changes to the m + 1 level system, and the completely established state of the m + 1 level system
subsequently becomes globally stable (a numerical example is given in Fig. 5(a)). Lastly, we can
get the following theorem:

Theorem 9. If the m+1 th trophic level with δm+1/αm+1 < N∗
m,m is introduced into the completely

established state of the m level system, then the completely established state of the m + 1 level
system appears globally stable.

Therefore, the invasion of an alien top predator with sufficiently small ratio δ/α can lengthen
the food chain. It is implied that the establishment of a long food chain would require a sequence of
invasions of alien top predator which has a sufficiently small ratio δ/α, that is, has a high efficiency
of the energy fixation.
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Figure 5: A numerical calculation about the effect of the seventh level introduction into the six level
system. The seventh level is introduced at t = 60. (a) α7 = 0.4; δ7 = 0.3; δ7/α7 = 0.75 < N∗

6,6 =
1.25; N7,7(60) = 0.1. (b) α7 = 0.3; δ7 = 0.5; δ7/α7 = 1.67 > N∗

6,6 = 1.25; N7,7(60) = 3.0.
In (a), the completely established state for the seven level system appears after the seventh level
introduction. In (b), the introduction of the seventh level fails, and the completely established state
for the six level system recovers. α2 = 0.4; α3 = 0.5; α4 = 0.6; α5 = 0.5; α6 = 0.3; δ1 = 0.2;
δ2 = 0.5; δ3 = 0.4; δ4 = 0.3; δ5 = 0.4; δ6 = 0.6; φ = 5.0; Ni,6(0) = 3.0 (i = 1, 2, . . . , 6).

7. Distribution of energy reserves
In this section, we consider the distribution of energy reserves at the equilibrium state of the m
level system. We obtain the following theorem (Appendix G):

Theorem 10. In the possibly longest chain which has mmax trophic levels for sufficiently narrow
range of αi and δi, it is satisfied that N∗

i−1,mmax
> N∗

i,mmax
for any i ≤ mmax.

Theorem 10 indicates that, for the possibly longest chain when parameters α and δ are different
little among trophic levels, the distribution of energy reserves has a pyramid shape.

From Theorem 10, we can obtain the following corollary about the distribution of energy re-
serves at the equilibrium state which appears after the removal of a trophic level at the completely
established state of the mmax level system with a pyramid shape of the energy reserve distribution
(Appendix H):

Corollary 11. In the possibly longest chain which has mmax trophic levels for a sufficiently narrow
range of αi and δi, if the k th level (3 ≤ k ≤ mmax) is removed, the system transits to the k−1 level
established state with an energy reserve distribution which satisfies the following characteristics:
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Figure 6: A numerical calculation of the seven level system. At t = 100, N5 is forced to change to
zero, then all levels lower than the fifth go to the new equilibrium states. (a) the temporal variation
of energy reserves; (b) the distribution of energy reserves at t = 95; (c) that at t = 150. φ = 2.4;
αi = 0.5; δi = 0.3; Ni,7(0) = 3.0 (i = 1, 2, . . . , 7). P7Q7 = 2.16 < φ < 2.88 = P8Q8.

For even k,
N∗

2(i−1),k−1 < N∗
2i−1,k−1 (2 ≤ i ≤ k/2);

N∗
2(i−1),k−1 > N∗

2i,k−1 (2 ≤ i ≤ k/2 − 1);

N∗
2i−1,k−1 > N∗

2i+1,k−1 (1 ≤ i ≤ k/2 − 1),

and for odd k,
N∗

2i−1,k−1 < N∗
2i,k−1 (1 ≤ i ≤ (k − 1)/2);

N∗
2(i−1),k−1 > N∗

2i,k−1 (2 ≤ i ≤ (k − 1)/2);

N∗
2i−1,k−1 > N∗

2i+1,k−1 (1 ≤ i ≤ (k − 3)/2).

This corollary indicates the destruction of a pyramid shape of the energy reserve distribution
in the possibly longest chain by the removal of a trophic level. In the same time, it is indicated
that any established state shorter than mmax cannot have a pyramid shape of the energy reserve
distribution in this case. We give a numerical example in Fig. 6.

Let us consider again the specific case of αi = α2ζ
i−2 and δi = δ1ξ

i−1 (i ≥ 2). We numerically
investigate the (ξ, ζ)-dependence of the energy reserve distribution in the possibly longest chain,
and get the result as shown in Fig. 7. For convenience, we used the following monotonicity index
I4 which reflects the degree of the monotonicity of the energy reserve distribution for the possibly
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Figure 7: (ξ, ζ)-dependence of the monotonicity of the energy reserve distribution. Numerically
obtained for the case of αi = α2ζ

i−2 and δi = δ1ξ
i−1 (i ≥ 2). (a) (ξ, ζ) ∈ [0, 4.0] × [0, 4.0]; (b)

[0.8, 1.4] × [0.8, 1.4]. White region is for the monotonicity index I4 = 1 with a pyramid shape of
the energy reserve distribution. Light dark region is for I4 = 1 with an inverted pyramid shape of
the energy reserve distribution. The black region is for I4 = −1, and the medium dark region for
|I4| < 1. φ = 2.4; α2 = 0.5; δ1 = 0.3. For ξ ≥ φα2/δ

2
1 = 13.3, only the single level established

state exists.

Figure 8: Energy reserve distribution of the possibly longest chain. Numerically obtained for the
case of αi = α2ζ

i−2 and δi = δ1ξ
i−1 (i ≥ 2). (a) ξ = 1.08 and I4 = 1; (b) ξ = 1.12 and I4 = 1/3;

(c) ξ = 1.15 and I4 = −1; (d) ξ = 1.17 and I4 = 0; (e) ξ = 1.25 and I4 = 1; (f) ξ = 0.6 and
I4 = 1. (a-e) ζ = 0.9 (f) ζ = 0.14. Commonly, φ = 2.4; α2 = 0.5; δ1 = 0.3.
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longest chain with mmax trophic levels (mmax > 2):

I4 =
1

mmax − 2

mmax−1∑
i=2

sgn[(N∗
i+1,mmax

− N∗
i,mmax

)(N∗
i,mmax

− N∗
i−1,mmax

)],

where sgn[x] is 1 for x ≥ 0 and −1 for x < 0. If and only if the energy reserve distribution has a
pyramid shape or an inverted pyramid shape, the monotonicity index I4 is 1. If I4 is less than 1,
the distribution has some non-monotonical parts.

As indicated by Figs. 7 and 8, the appearance of a pyramid shape of the energy reserve dis-
tribution in the possibly longest chain has a non-simple relation to (ξ, ζ). It is indicated that the
possibly longest chain would not necessarily has a pyramid shape of the energy reserve distribu-
tion, and the change of the chain length would easily disrupt the pyramid shape if it exists before
the change. Exceptionally, in the case when the longest chain consists of only two trophic levels,
the energy reserve of the first level is greater than that of the second if and only if the parameter ξ
is large enough to satisfy that φ < ξ(1 + ξ)δ2

1/α2 (see also Fig. 3(b)).
We can analytically show that a pyramid shape of the energy reserve distribution appears for

the possibly longest chain if ξ/ζ ≤ 1 (Appendix I; also see Fig. 7). It could appear when the
possibly longest (finite) chain has a ratio of the dissipation rates between subsequent levels smaller
than that of the energy transfer rates. We numerically find that the pyramid shape could not appear
when q < 1 and φ > PQ, even if ξ/ζ ≤ 1, as shown by the black region in Fig. 7. We can prove
that, when arbitrary long chain could exist, the pyramid shape of the energy reserve distribution
cannot appear for any sufficiently long chain with m trophic levels (m À 1) (Appendix J).

As for the scaling property appeared in Fig. 7, although it would be interesting from a mathe-
matical viewpoint, we can just give a possible conjecture that the condition for the monotonicity of
the energy reserve distribution may depend on the parameters ξ and ζ, for instance, as a power ratio
ξa/ζb only which magnitude plays a role to determine the monotonicity, because they contribute
as a scaling relation numerically shown in Fig. 7. We do not discuss the scaling property in depth
any more since it must depend on the concrete i-dependence of αi and βi, and may not be essential
for the framework of our discussion in this paper.

8. Discussion
Our results indicate that the greater primary production rate could establish the longer food chain.
Some previous researches show that there would be some food chains in which the primary produc-
tion rate would determine the length [12, 36]. This is formalized and discussed as the productive
space hypothesis [23, 25, 26].

Although the possibly longest chain is globally stable, it could be lengthened by the invasion
of an alien top predator which has a sufficiently small ratio of the energy dissipation rate and
its transfer rate. Hence, in a sufficiently long chain, the higher trophic levels might be expected
to have a small ratio δ/α: In such a long chain, the higher trophic level would be composed of
species which have a high efficiency of the energy fixation with a low dissipation rate and a high
energy gain rate.
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If each of the energy transfer rate and the dissipation rate has a value similar among all trophic
levels, then there is a finite upper bound for the number of trophic levels, and the food chain could
not be lengthened beyond it by the invasion of an alien top predator which has similar dissipation
and energy transfer rates. The analogous result is shown in Chapter 5 of Svirezhev and Logofet [31]
and in Teramoto [32].

In this paper, we considered the specific case when each of the energy transfer rate and the
dissipation rate has a geometric variation in the food chain. In this case, we explicitly demonstrate
that the energy reserve efficiency of each trophic level determines the food chain length as dis-
cussed in [5, 31, 35]. However, some researches say that the resource availability does not directly
determine the food chain length in most natural systems [11, 23, 25, 27]. As for our model, when
the square of energy dissipation rate becomes sufficiently smaller than the energy transfer rate at
the higher trophic levels, the arbitrary long chain could be established. In such case, we may sug-
gest that other factors which are not involved in our model would determine the food chain length.
Similar discussion about whether the resource availability essentially limits the food chain length
or not have been on the table [18, 20, 23, 25].

Lindeman [15] considered the progressive efficiency λi/λi−1 about the food chain dynamics,
where λi is the energy in-flow rate into the i th trophic level:

dNi,m

dt
= λi − λ′

i,

where λ′
i is the out-flow rate. Lindeman [15] suggests that the progressive efficiency gets larger

for the higher trophic level because animals in the higher trophic level could more efficiently
search their food. In our model, the progressive efficiency corresponds to αiN

∗
i−1,m/αi−1N

∗
i−2,m at

the equilibrium state. On the other hand, the pyramid shape of the energy reserve distribution is
often observed in nature [16]. Some of recent researches say that the biomass abundance would
be constant among species, while the number of species would be decreasing in terms of trophic
levels (for instance, see [2]). From this viewpoint, the pyramid shape of energy reserve distribution
would be generally observed. In case of the pyramid shape of energy reserve distribution, we have
N∗

i−1,m/N∗
i−2,m < 1. So, if the progressive efficiency is large for the higher trophic level, it is

necessary that the ratio αi/αi−1 is sufficiently larger than 1. In our case of geometrically variable
αi, this is the case of ζ > 1. Moreover, in our result, a sufficiently small ξ is necessary for the
appearance of a pyramid shape of the energy reserve distribution. Therefore, we could suggest that
a pyramid shape of the energy reserve distribution would appear when the energy transfer rate gets
larger at the higher trophic level while the energy dissipation rate is not so large as the transfer rate.

Although the longest chain always has a pyramid shape of the energy reserve distribution for
the model in Teramoto [32], it does not for our model. According to our model, a pyramid shape
of the energy reserve distribution appears for the possibly longest chain if the dissipation and the
energy transfer rates of every trophic level are similar values throughout the chain. However, in
case of geometric variations of the dissipation and the energy transfer rates, it appears particularly
when the dissipation rate is sufficiently smaller than the energy transfer rate at any trophic level. It
does not appear even for the possibly longest chain in some cases. These results suggest that the
pyramid shape of the energy reserve distribution would not be generally observable. In Teramoto
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[32], a pyramid shape could appear even for the shorter chain if the density effect within each
trophic level is strong enough. Therefore, we could suggest that the density effect may play an
essential role to cause a pyramid shape of the energy reserve distribution.

The food chain in nature has been exposed to the invasions of alien top predators and the
exchanges of the member species. The length of food chain must have been temporally changing
in a sufficiently large time scale. Nevertheless, if a pyramid shape of the energy reserve distribution
could be observed in nature, those results of Teramoto [32] and ours suggest that the density effect
would play an important role to regulate the distribution. Moreover, if some exchanges of member
species in a trophic level occur, the parameter values characterizing each trophic level may change,
and consequently the length of food chain and the nature of energy reserve distribution may change
due to the instability of the chain structure.

Some other models predict that an alien top predator with sufficiently large growth rate could
easily invade a food chain (for instance, see [14]). Then it is implied that a food chain with a
moderate growth rate of the top predator would be easily invaded by an alien top predator which
grows sufficiently fast. On the other hand, it is suggested that the length of the possibly longest
chain would be at most 12 (with the mean around 7) [8, 22]. Hutchinson [11] mentioned that
predators in the higher trophic level would get bigger. Larger organisms commonly grow more
slowly so that their populations have the smaller growth rate. Thus, the invasion of an alien top
predator into the existing food chain would be hardly successful in nature, so that the much long
chain might be rare in nature. In our model, the long chain cannot be established with the great
energy dissipation rate. If the predators in the higher trophic level would need to compensate the
large energy dissipation rate by some strategy, it requires a cost for the persistence with the other
species including their preys. Such a cost might be the reason why the food chain length in nature
could not be so long.

In our model, we used the mass-action term to introduce the inter-trophic reaction. It is not
only because of the mathematically simplest form to be considered as the first step of research but
also because of its possible role to get the fundamental nature of the system under consideration,
and moreover because of its potentiality to catch the essential features which could appear in the
more sophisticated model with the other type of inter-trophic reaction term belonging to a family
of functional forms. For instance, some other food chain model with the different type of inter-
trophic reaction may have a non-static stable state (e.g. a temporally periodic or chaotic solution),
as indicated by some theoretical researches (for instance, [6]). However, as for the model (1.1) by
Teramoto [32] with a linearly density-dependent rate of energy dissipation in each trophic level,
we do not think that there would be any significant difference in the theoretical results, that is,
we think that our model could bring the essentially same results with those in [32], as already
mentioned in the above.

We did not consider the temporally varying environments (for example, seasonal variation)
whereas it would be an important factor to determine the length of food chain [1]. The primary
production rate would be particularly sensitive to the environmental variation. Since our result in-
dicates that the primary production rate is one of the important factors to determine the food chain
length, such an environmental variation would cause a temporal change of the length, accompany-
ing the immigration or the emigration/extinction of some top predators.
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Appendix

A Relations among equilibrium values
From (2.1), we can obtain the following relations among equilibrium values of the k level estab-
lished state for the m level system:

Nj,m = 0 (j > k);

N∗
k,m =

φ −
∑k−1

i=1 δiN
∗
i,m

δk

;

N∗
k−1,m =

δk

αk

;

N∗
2,m =

δ3 + α4N
∗
4,m

α3

=
φ − δ1N

∗
1,m

α2N∗
1,m

;

N∗
1,m =

φ

δ1 + α2N∗
2,m

=
δ2 + α3N

∗
3,m

α2

,

(A1)

and for even k,

N∗
2i−1,m =

δ2i + α2i+1N
∗
2i+1,m

α2i

(2 ≤ i ≤ k/2 − 1);

N∗
2i,m =

α2i−1N
∗
2(i−1),m − δ2i−1

α2i

(2 ≤ i ≤ k/2),

(A2)

for odd k,

N∗
2i,m =

δ2i+1 + α2(i+1)N
∗
2(i+1),m

α2i+1

(2 ≤ i ≤ (k − 3)/2);

N∗
2i−1,m =

α2(i−1)N
∗
2i−3,m − δ2(i−1)

α2i−1

(2 ≤ i ≤ (k + 1)/2).

(A3)

As for the completely established state, we can get the corresponding relations by substituting m
for k in the above. Making use of these relations (A1–A3), we can get the explicit formulas (3.1)
and (3.2) of equilibrium values.

B Proof of Theorem 1
At first, we prove the following lemma:

Lemma 12. For any equilibrium state of the m level system, if N∗
k,m > 0 with some k ≤ m, then

N∗
i,m > 0 for any i < k.
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Proof of Lemma 12
For even k, if N∗

k,m > 0, then from (A2),

N∗
k,m =

αk−1N
∗
k−2,m − δk−1

αk

> 0.

This means that
N∗

k−2,m >
δk−1

αk−1

> 0.

Then, again from (A2),
αk−3N

∗
k−4,m − δk−3

αk−1

>
δk−1

αk−1

,

so that
N∗

k−4,m >
αk−2δk−1

αk−3αk−1

+
δk−3

αk−3

> 0.

By mathematical induction, we can prove that the equilibrium value of the 2i th level is positive
for any i ≤ k/2. Hence, from (A1) and (A2), as for the equilibrium value of the 2i− 1 th level, we
can easily find that it is positive for any i.

For odd k, from (A1) and (A3), we can easily find that the equilibrium value of the 2i th level
is positive. As for the 2i − 1 th level, we can apply the analogous arguments as in case of even k.
These arguments prove the lemma.

Proof of Theorem 1
When the k level established state exists for an even k, making use of the similar arguments as
those in the proof of Lemma 12, we can find that

N∗
2,m >

δ3

α3

+

k/2−2∑
l=1

δ2l+3

α2l+3

l∏
j=1

α2j+2

α2j+1

for even k if N∗
k,m > 0. Then, from (A1), we have

φ

α2N∗
1,m

− δ1

α2

>
δ3

α3

+

k/2−2∑
l=1

δ2l+3

α2l+3

l∏
j=1

α2j+2

α2j+1

.

148



T. Matsuoka and H. Seno Possibly longest food chain

From (3.1), this inequality leads to the following:

φ > α2Qk

 δ3

α3

+

k/2−2∑
l=1

δ2l+3

α2l+3

l∏
j=1

α2j+2

α2j+1

+
δ1

α2



= Qk

δ3
α2

α3

+

k/2−2∑
l=1

δ2l+3
α2l+2

α2l+3

l∏
j=1

α2j

α2j+1

+ δ1



= Qk

δ1 +

k/2−1∑
l=1

δ2l+1

l∏
j=1

α2j

α2j+1

 .

As k is even, k/2 − 1 = [[(k − 1)/2]]. Consequently, from the definition of Pk, we can obtain the
inequality that φ > PkQk. For odd k, we can carry out the similar arguments, and lastly prove the
theorem.

C Proof of Corollaries 2 and 3

Proof of Corollary 2
From the increasing monotonicity of PkQk in terms of k, we have PjQj < PkQk for any j < k.
From Theorem 1, if the k level established state exists, we have PkQk < φ. Therefore, we have
PjQj < φ for any j < k. From Theorem 1, this means that any j level established state with j < k
exists.

Proof of Corollary 3
For an even k, suppose that the k − 1 level established state exists with N∗

k−1,m > δk/αk. Then,
from (A3),

αk−2N
∗
k−3,m − δk−2

αk−1

>
δk

αk

,

that is,

N∗
k−3,m >

δkαk−1

αkαk−2

+
δk−2

αk−2

.

Hence, by mathematical induction, we can obtain the following:

N∗
1,m >

δ2

α2

+

k/2−1∑
l=1

δ2(l+1)

α2(l+1)

l∏
j=1

α2j+1

α2j

= Qk.

As k − 1 is odd, from (3.2) and the above inequality, we have Qk < φ/Pk−1. Now, we note that
[[k/2 − 1]] = [[(k − 1)/2]] for even k. Thus, from the definition of Pk, we find that Pk−1 = Pk
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for even k. Consequently, we can find that φ > PkQk. Therefore, from Theorem 1, the k level
established state exists for even k.

Inversely, for an even k, suppose that the k level established state exists with φ > PkQk. Then,
making use of the above arguments, we can derive the following inequality: N∗

1,m > Qk. Then,
from (A1) and the definition of Qk, we can obtain the following:

N∗
3,m >

δ4

α4

+

k/2−1∑
l=2

δ2(l+1)

α2(l+1)

l∏
j=2

α2j+1

α2j

.

From (A2), by iterating the similar calculations, we can lastly find that N∗
k−1,m > δk/αk. From

Corollary 2, the k−1 level established state exists. Thus, we have proved Corollary 3 for any even
k. We can carry out the similar arguments to prove Corollary 3 for any odd k.

D Proof of Theorem 4, Corollaries 5 and 6

Proof of Theorem 4
For the m level system, suppose that the k (< m) level established state exists. Now, we define the
following function Hk:

Hk(N1,m, N2,m, . . . , Nm,m)

=
k∑

i=1

[
Ni,m − N∗

i,m

(
1 + log

Ni,m

N∗
i,m

)]
+

m∑
i=k+1

Ni,m, (D1)

where N∗
i,m for i = 1, 2, . . . , k is the positive equilibrium value at the k level established state. It

can be easily seen that Hk is greater than zero for any (N1,m, . . . , Nm,m) with positive Ni,m for
any i. Hk equals to zero only for the k level established state: Ni,m = N∗

i,m for i = 1, 2, . . . , k and
Ni,m = 0 for i = k + 1, . . . ,m.

Making use of (2.1) and (A1–A3),

dHk

dt
= −φ

(N1,m − N∗
1,m)2

N1,mN∗
1,m

− (δk+1 − αk+1N
∗
k,m)Nk+1,m −

m∑
i=k+2

δiNi,m. (D2)

We can easily find that the first and the third terms of right side in (D2) are not positive for any
Ni,m ≥ 0. From the assumption of Theorem 4, the k+1 level established state does not exist. Thus,
from Corollary 3, we have N∗

k,m ≤ δk+1/αk+1, that is, δk+1 − αk+1N
∗
k,m ≥ 0. This means that

the second term of right side in (D2) is not positive, either. Therefore, we can obtain dHk/dt ≤ 0
for any Ni,m ≥ 0. When (N1,m, . . . , Nm,m) is at the state with N1,m = N∗

1,m and Ni,m = 0
(k + 1 ≤ i ≤ m), then dHk/dt = 0. However, as long as Ni,m 6= N∗

i,m for some i such that
2 ≤ i ≤ k, the dynamics (2.1) temporally changes the state so that dHk/dt eventually becomes
negative unless the system reaches the k level established state. These arguments show that Hk is
a Lyapunov function about the k level established state, and eventually becomes zero as t → ∞.
Consequently, the k level established state is globally stable.
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Proof of Corollary 5
As for the completely established state of the m level system, we define the following function
Hm:

Hm(N1,m, N2,m, . . . , Nm,m) =
m∑

i=1

[
Ni,m − N∗

i,m

(
1 + log

Ni,m

N∗
i,m

)]
, (D3)

where N∗
i,m (i = 1, 2, . . . ,m) is the positive equilibrium value at the completely established state.

As in the proof of Theorem 4, we can prove that Hm is non-negative for any (N1, . . . , Nm) with
positive value of Ni,m for any i, and equals to zero only at the completely established state, and
eventually becomes zero as t → 0. This argument means that Hm given by (D3) is a Lyapunov
function about the completely established state. These arguments prove Corollary 5.

Proof of Corollary 6
We can obtain the characteristic equation for the k level established state of the m level system:

(−δm − λ)(−δm−1 − λ) · · · (−δk+2 − λ)(αk+1N
∗
k,m − δk+1 − λ)Jk = 0

with
A1 − λ −C1 0 . . . 0

B2 A2 − λ
. . . . . . ...

Jk = 0
. . . . . . −Ck−2 0

... . . . Bk−1 Ak−1 − λ −Ck−1

0 . . . 0 Bk Ak − λ

,

where
A1 = −δ1 − α2N

∗
2,m;

Ai = 0 (i = 2, 3, . . . , k);

Bi = αiN
∗
i,m (i = 1, 2, . . . , k);

Ci = αi+1N
∗
i,m (i = 1, 2, . . . , k).

Eigenvalues −δk+2, −δk+3, . . . , and −δm are all negative. If the eigenvalue αk+1N
∗
k,m − δk+1 ≤ 0,

that is, if N∗
k,m ≤ δk+1/αk+1, from Corollary 3, the k + 1 level established state does not exist.

Hence, from Theorem 4, the k level established state becomes globally stable. This is contradictory
for the assumption. Therefore, N∗

k,m > δk+1/αk+1, that is, the eigenvalue αk+1N
∗
k,m − δk+1 is

positive. From Corollary 3, we lastly prove Corollary 6.

E Proof of Lemma 8
We can obtain the following characteristic equation for the m level established state of the m + 1
level system:

(αm+1N
∗
m,m+1 − δm+1 − λ)Jm = 0, (E1)
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where Jm is defined similarly to Jk in Appendix D, substituting m for k with

Ai = αiN
∗
i−1,m+1 − δi − αi+1N

∗
i+1,m+1 (i = 2, 3, . . . ,m);

Am+1 = αm+1N
∗
m,m+1 − δm+1.

Bi and Ci (i = 1, 2, . . . , k) are defined the same as in Appendix D.
When the completely established state of the m level system exists, suppose that the m + 1 th

trophic level with
δm+1

αm+1

< N∗
m,m (E2)

is introduced into the system. For the m level established state of the m + 1 level system, the
value N∗

m,m+1 equals to the value N∗
m,m at the completely established state of the m level system.

Hence, from (E2), δm+1/αm+1 < N∗
m,m+1. Therefore, αm+1N

∗
m,m+1 − δm+1 > 0. From (E1), this

means that the eigenvalue αm+1N
∗
m,m+1 − δm+1 is positive. Lastly, the m level established state is

unstable.

F Number of trophic levels in the longest chain
In case of q < 1 and φ < PQ for even m, if

φ > PmQm =
δ1δ2

α2

(
1 − qm/2

1 − q

)2

,

then, from Theorem 1, the m level established state exists. From this inequality, we have m < Θ,
where Θ is given by (5.5). From φ < PQ = δ1δ2/α2/(1 − q)2, we have (ρ − 2)/ρ < q with
ρ =

√
4α2φ/(δ1δ2).

For odd m, if

φ > PmQm =
δ1δ2

α2(1 − q)2

(
1 − q(m+1)/2

) (
1 − q(m−1)/2

)
,

then the m level established state exists. From this inequality, we have m < Λ where Λ is given
by (5.6).

Now, we define m∗
even as the maximal even number which satisfies that m∗

even < Θ and m∗
odd

as the maximal odd number which satisfies that m∗
odd < Λ. We can obtain the upper limit mmax of

the number of trophic levels by mmax = max{m∗
even, m∗

odd}.
First we prove that 0 ≤ Λ − Θ < 1. From (5.5) and (5.6), we can find that Λ − Θ ≥ 0 is

equivalent to (ρq − ρ + 2)2 ≥ 0. On the other hand, we can find that Λ − Θ < 1 is equivalent to
φ < PQ when q < 1. Therefore, we finally obtain 0 ≤ Λ − Θ < 1. This means [[Λ]] − [[Θ]] = 0 or
1.

For even [[Θ]], if [[Λ]] = [[Θ]], then m∗
even = [[Θ]] = [[Λ]] and m∗

odd = [[Λ]] − 1. Hence, mmax =
m∗

even = [[Λ]]. If [[Λ]] = [[Θ]] + 1, then m∗
even = [[Θ]] = [[Λ]] − 1 and m∗

odd = [[Λ]]. Hence,
mmax = m∗

odd = [[Λ]]. Lastly, for even [[Θ]], we can obtain mmax = [[Λ]]. For odd [[Θ]], if [[Λ]] = [[Θ]],
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then m∗
even = [[Θ]] − 1 and m∗

odd = [[Λ]] = [[Θ]]. Hence, mmax = m∗
odd = [[Θ]]. If [[Λ]] = [[Θ]] + 1,

then m∗
even = [[Θ]] − 1 and m∗

odd = [[Λ]] − 1 = [[Θ]]. Hence, mmax = m∗
odd = [[Θ]]. Lastly, for odd

[[Θ]], we can obtain mmax = [[Θ]]. Similar arguments are applicable for the case when q > 1.
In case of q = 1 for even m, from Theorem 1, if the following inequality is satisfied, then the

m level established state exists:

φ >

δ1 +

m/2−1∑
l=1

δ1ξ
2l

l∏
j=1

1

ζ

 δ2

α2

+

m/2−1∑
l=1

δ2ξ
2l

α2ζ2l

l∏
j=1

ζ



=
δ1δ2

α2

1 +

m/2−1∑
l=1

ql

2

=
(m

2

)2 δ1δ2

α2

,

that is, m < ρ. For odd m, if

φ >
δ1δ2

α2

1 +

(m−1)/2∑
l=1

ql

1 +

(m−3)/2∑
l=1

ql

 = (m2 − 1)
δ1δ2

4α2

,

then the m level established state exists. This condition is equivalent to m <
√

ρ2 + 1. Lastly, we
can obtain (5.7) with the similar arguments as in case of q < 1.

G Proof of Theorem 10
Before the proof of Theorem 10, we prove the following lemma:

Lemma 13. If αi = α and δi = δ (i = 1, 2, . . . ,m), it is always satisfied that N∗
i−1,m > N∗

i,m for
any i ≤ m at the completely established state of the m level system.

Proof of Lemma 13
In case of even m, from (3.1) and (A1), we can derive

N∗
2i+1,m =

(m

2
− i

) δ

α
(0 ≤ i ≤ m/2 − 1), (G1)

and similarly from (A2),

N∗
2(i−1),m = N∗

2i,m +
δ

α
(0 ≤ i ≤ m/2).
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From these relationships, we obtain

N∗
2i,m =

(m

2
− i

) δ

α
+ N∗

m,m (0 ≤ i ≤ m/2). (G2)

In addition, from (3.1) and the definition of Pk and Qk, we have

N∗
m−1,m − N∗

m,m =
δ

α
− N∗

m,m > 0. (G3)

So, from (G1-G3), we have

N∗
2i,m − N∗

2i+1,m = N∗
m,m > 0 (1 ≤ i ≤ m/2 − 1);

N∗
2i−1,m − N∗

2i,m =
δ

α
− N∗

m,m > 0 (1 ≤ i ≤ m/2).

Consequently, we obtain that N∗
i−1,m > N∗

i,m for any i ≤ m at the completely established state
of the m level system. We can obtain the same result in case of odd m, applying the similar
arguments. Finally, these arguments prove the lemma.

Proof of Theorem 10
From the assumption of Theorem 10, for a sufficiently narrow range of αi and δi, we can define a
sufficiently small positive value ε = max{εα, εδ}, where

sup
i,j

|αi − αj| = εα; sup
i,j

|δi − δj| = εδ.

Then let us denote αi = α + O(ε) and δi = δ + O(ε), where α and δ are the mean values of αi and
δi respectively over all trophic levels in the mmax level established state.

For even mmax, in the same way as in the proof of Lemma 13, we can derive the followings
from (3.1), (A1) and (A2):

N∗
2i+1,mmax

=
(mmax

2
− i

) δ

α
+ O(ε) (0 ≤ i ≤ mmax/2 − 1); (G4)

N∗
2i,mmax

=
(mmax

2
− i

) δ

α
+ N

∗
mmax,mmax

+ O(ε)

(0 ≤ i ≤ mmax/2), (G5)

where N
∗
i,mmax

(i = 1, 2, . . . ,mmax) is the equilibrium value at the mmax level established state
with αi = α and δi = δ for any i. Then, from (G4) and (G5), we have

N∗
2i,mmax

− N∗
2i+1,mmax

= N
∗
mmax,mmax

+ O(ε) > 0

(1 ≤ i ≤ mmax/2 − 1); (G6)

N∗
2i−1,mmax

− N∗
2i,mmax

=
δ

α
− N

∗
mmax,mmax

+ O(ε)

(1 ≤ i ≤ mmax/2). (G7)
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From Lemma 13, we find that

N
∗
mmax−1,mmax

=
δ

α
> N

∗
mmax,mmax

.

Thus, from (G7), for sufficiently small ε, we have

N∗
2i−1,mmax

− N∗
2i,mmax

> 0 (1 ≤ i ≤ mmax/2). (G8)

From (G6) and (G8), we finally obtain N∗
i−1,mmax

> N∗
i,mmax

for any i ≤ mmax at the mmax level
established state in case of sufficiently narrow ranges of αi and δi. We can carry out the same
arguments for odd mmax. These arguments prove Theorem 10.

H Proof of Corollary 11
For the proof of Corollary 11, we prove the following lemma at first:

Lemma 14. At the completely established state of the m level system with αi = α and δi = δ for
any i, after the k th level (4 ≤ k ≤ m) is removed, the system transits to the k−1 level established
state with an energy reserve distribution which satisfies the following characteristics: For even k,

N∗
2(i−1),k−1 < N∗

2i−1,k−1 (2 ≤ i ≤ k/2);

N∗
2(i−1),k−1 > N∗

2i,k−1 (2 ≤ i ≤ k/2 − 1);

N∗
2i−1,k−1 > N∗

2i+1,k−1 (1 ≤ i ≤ k/2 − 1),

and for odd k,
N∗

2i−1,k−1 < N∗
2i,k−1 (1 ≤ i ≤ (k − 1)/2);

N∗
2(i−1),k−1 > N∗

2i,k−1 (2 ≤ i ≤ (k − 1)/2);

N∗
2i−1,k−1 > N∗

2i+1,k−1 (1 ≤ i ≤ (k − 3)/2),

Proof of Lemma 14
Since the completely established state of mmax level system exists, PmQm < φ. Now, suppose that
the value of Nk,m for a k th trophic level (3 ≤ k ≤ m) is changed to zero. This corresponds to the
removal of the k th trophic level. From Lemma 12 in Appendix B, Corollaries 2 and 5, the system
transits to the k − 1 level established state.

At the k − 1 level established state for even k, from (A1) and (A3), we have

N∗
2i−3,k−1 = N∗

2i−1,k−1 +
δ

α
(2 ≤ i ≤ k/2); (H1)

N∗
2i,k−1 = N∗

2(i+1),k−1 +
δ

α
(1 ≤ i ≤ k/2 − 2), (H2)
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where N∗
i,k−1 is the equilibrium value of the i th trophic level at the k − 1 level established state

with αi = α and δi = δ. Hence, in terms of the even (resp. odd) levels, the equilibrium value of
each level is greater than that of any higher level.

From (H1), we have

N∗
2i−1,k−1 =

(
k

2
− i

)
δ

α
+ N∗

k−1,k−1 (1 ≤ i ≤ k/2). (H3)

On the other hand, from (A1) and (H2),

N∗
2i,k−1 =

(
k

2
− i

)
δ

α
(1 ≤ i ≤ k/2 − 1). (H4)

Thus, from (H3) and (H4),

N∗
2i−1,k−1 − N∗

2(i−1),k−1 = N∗
k−1,k−1 −

δ

α
> 0 (2 ≤ i ≤ k/2); (H5)

N∗
2i−1,k−1 − N∗

2i,k−1 = N∗
k−1,k−1 > 0 (1 ≤ i ≤ k/2 − 1), (H6)

where the right side of (H5) is positive from Corollary 3.
For odd k, from (A1) and (A2), we can obtain the similar results that the equilibrium value of

each level is greater than that of any higher level in terms of the even (resp. odd) levels, and the
following relations for k ≥ 5:

N∗
2i,k−1 − N∗

2i−1,k−1 = N∗
k−1,k−1 −

δ

α
> 0 (1 ≤ i ≤ (k − 1)/2);

N∗
2i,k−1 − N∗

2i+1,k−1 = N∗
k−1,k−1 > 0 (1 ≤ i ≤ (k − 3)/2).

When k = 3, we have N∗
1,2 = δ/α and N∗

2,2 = φ/δ − δ/α from (A1). Then, we can derive

N∗
2,2 − N∗

1,2 =
φ

delta
− 2δ

α
> 0

from the existence of the three level established state, that is, φ > P 3Q3 = 2δ2/α. These argu-
ments prove the lemma.

Proof of Corollary 11
Now, we consider the case of αi = α+O(ε) and δi = δ+O(ε), where α and δ are the mean values
of αi and δi respectively. The definition of ε is same as in the proof of Theorem 10 (Appendix G).
Applying the similar arguments as in the proof of Lemma 14, for even k, we can derive

N∗
2i−1,k−1 =

(
k

2
− i

)
δ

α
+ N

∗
k−1,k−1 + O(ε) (1 ≤ i ≤ k/2); (H7)

N∗
2i,k−1 =

(
k

2
− i

)
δ

α
+ O(ε) (1 ≤ i ≤ k/2 − 1). (H8)
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Then, we have

N∗
2i−1,k−1 − N∗

2(i−1),k−1 = N
∗
k−1,k−1 −

δ

α
+ O(ε) (2 ≤ i ≤ k/2); (H9)

N∗
2i−1,k−1 − N∗

2i,k−1 = N
∗
k−1,k−1 + O(ε) (1 ≤ i ≤ k/2 − 1). (H10)

From Corollary 3, we have N
∗
k−1,k−1 > δ/α. Therefore, for a sufficiently narrow range of αi and

δi, the right hands of (H9) and (H10) are positive. These arguments can be applied for odd k,
either. These arguments prove Corollary 11.

I Pyramid shape in case of a geometric variation of αi and δi

Let us consider the possibly longest chain with Pmmax+1Qmmax+1 > φ > PmmaxQmmax . For even
mmax with q 6= 1, from (3.1), we have

N∗
2i,mmax

− N∗
2i+1,mmax

=
1

α2ζ i−1Qmmax

{
φ − 1 − qi + (qi − qmmax/2)ξ/ζ

1 − q
δ1Qmmax

}
.

(I1)

Assuming ξ/ζ ≤ 1, we can find

Pmmax −
1 − qi + (qi − qmmax/2)ξ/ζ

1 − q
δ1 =

(
1 − ξ

ζ

)
qiPmmax−2i ≥ 0.

Thus, from (I1),

N∗
2i,mmax

− N∗
2i+1,mmax

≥ 1

α2ζ i−1Qmmax

(φ − PmmaxQmmax) > 0.

Next, from (3.1), we have

N∗
2i−1,mmax

− N∗
2i,mmax

=

1

α2ζ i−1Qmmax

{
1 − qi + (qi−1 − qmmax/2)ξ

1 − q
δ1Qmmax+1 − φ

}
,

(I2)

where we used the relation that Qmmax = Qmmax+1 for even mmax. Then, we have

1 − qi + (qi−1 − qmmax/2)ξ

1 − q
δ1 − Pmmax+1 = ξqi−1

(
1 − ξ

ζ

)
Pmmax−2(i−1) ≥ 0.

Hence, from (I2), we obtain

N∗
2i−1,mmax

− N∗
2i,mmax

≥ 1

α2ζ i−1Qmmax

{Pmmax+1Qmmax+1 − φ} > 0.

Therefore, we prove that N∗
i−1,mmax

> N∗
i,mmax

for 2 ≤ i ≤ mmax/2. We can carry out the same
arguments for odd mmax. Also for any mmax with q = 1, we can apply the similar arguments.
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J Sufficiently long chain in case of a geometric variation of αi

and δi

From (3.1), for even m À 1 when q < 1 and φ > PQ, we have the following energy reserves at
the m level established state:

N∗
2i,m ≈ 1

ζ i−1

[
φ(1 − q)

δ1ξ
− δ1(1 − qi)

α2(1 − q)

]
(2 ≤ i ≤ m/2);

N∗
2i+1,m ≈ δ2

α2(1 − q)

(
ξ

ζ

)2i

(1 ≤ i ≤ m/2 − 1);

N∗
2,m ≈ φ(1 − q)

δ1ξ
− δ1

α2

;

N∗
1,m ≈ δ1ξ

α2(1 − q)
.

Thus, we can obtain the following approximate ratio between N∗
2i,m and N∗

2i+1,m:

N∗
2i+1,m

N∗
2i,m

≈ δ2
1q

i+1

φα2(1 − q)2 − δ2
1ξ(1 − qi)

=
PQqiξ/ζ

φ − PQ(1 − qi)
.

From q < 1 and φ > PQ, we can find that this value is positive for any i. For sufficiently large i,
this ratio is smaller than 1. In contrast, we have

N∗
2i,m

N∗
2i−1,m

≈ φα2(1 − q)2 − δ2
1ξ(1 − qi)

δ2
1ζqi

=
φ − PQ(1 − qi)

PQqiζ/ξ
.

This value is also positive and larger than 1 for sufficiently large i. We can apply the same argu-
ments for odd m. Therefore, any pyramid shape of the energy reserve distribution could not appear
in any sufficiently long chain when q < 1 and φ > PQ.
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[6] T. Gross, W. Ebenhöh, U. Feudel. Long food chains are in general chaotic. Oikos, 109 (2005),
135–144.

[7] W.S.C. Gurney, R.M. Nisbet.Ecological Dynamics. Oxford University Press, Oxford, 1998.

[8] S.J. Hall, D.G. Raffaelli. Food webs — theory and reality. Adv. Ecol. Res., 24 (1993), 187–
239.

[9] G.W. Harrison. Global stability of food chains. Am. Nat., 114 (1979), 455–457.

[10] M. Higashi, T.P. Burns, B.C. Patten. Food network unfolding: an extension of trophic dynam-
ics for application to natural ecosystems. J. theor. Biol., 140 (1989), 243–261.

[11] G.E. Hutchinson.An Introduction to Population Ecology. Yale University, New Haven, CT,
1978.

[12] B. Jenkins, R.L. Kitching, S.L. Pimm. Productivity, disturbance, and food web structure at a
local spatial scale in experimental container habitats. Oikos, 65 (1992), 249–255.

[13] F. Jordán, I. Scheuring, I. Molnár. Persistence and flow reliability in simple food webs. Ecol.
Mod., 161 (2003), 117–124.

[14] B.W. Kooi, M.P. Boer, S.A.L.M. Kooijman. Resistance of a food chain to invasion by a top
predator. Math. Biosci., 157 (1999), 217–236.

[15] R.L. Lindeman. The trophic-dynamic aspect of ecology. Ecology, 23 (1942), 399–418.

[16] E.P. Odum. Fundamentals of Ecology, 3rd ed. W.B. Saunders Co., Philadelphia, 1971.

[17] L. Oksanen, T. Oksanen, P. Ekerholm, J. Moen, P.A. Lundberg, M. Schneider, M. Aunapuu.
Structure and dynamics of arctic-subarctic grazing webs in relation to primary production.
in: G.A. Polis, K.O. Winemiller, K.O. (eds.). Food Webs: Integration of Pattern and Process.
Chapman and Hall, New York, 1996.

[18] S.L. Pimm. Food Webs. Chapman and Hall, New York, 1982.

[19] S.L. Pimm, J.H. Lawton. Number of trophic levels in ecological communities. Nature, 268
(1977), 329–331.

[20] S.L. Pimm, R.L. Kitching. The determinants of food chain length. Oikos, 50 (1987), 302–307.

159



T. Matsuoka and H. Seno Possibly longest food chain

[21] S.L. Pimm, J.H. Lawton, J.E. Cohen. Food web patterns and their consequences. Nature, 350
(1991), 669–674.

[22] G.A. Polis. Complex Trophic Interactions in Deserts: An empirical crituque of food-web
theory. Am. Nat., 138 (1991), 123–155.

[23] D.M. Post. The long and short of food-chain length. Trends Ecol. Evol., 17 (2002), 269–277.

[24] D.M. Post. Using stable isotopes to estimate trophic position: Models, methods, and assump-
tions. Ecology, 83 (2002), 703–718.

[25] D.M. Post, M.L. Pace, N.G.Jr Hairston. Ecosystem size determines food-chain length in lakes.
Nature, 405 (2000), 1047–1049.

[26] T.W. Schoener. Food webs from the small to the large. Ecology, 70 (1989), 1559–1589.

[27] M. Spencer, P.H. Warren. The effect of habitat size and productivity on food web structure in
small aquatic microcosms. Oikos, 75 (1996), 419–430.

[28] G. Sugihara. Holes in niche space: a derived assembly rule and its relation to intervality. in:
D.L. DeAngelis, W.N. Post, G. Sugihara (eds.). Current Trends in Food Web Theory. Oak
Ridge National Laboratory, Oak Ridge, 1983.

[29] G. Sugihara. Graph theory, homology and food webs. Proc. Symp. App. Math., 30 (1984),
83–101.

[30] G. Sugihara, L.-F. Bersier, K. Schoenly. Effects of taxonomic and trophic aggregation on food
web properties. Oecologia, 112 (1997), 272–284.

[31] Yu.M. Svirezhev, D.O. Logofet. Stability of Biological Communities. Mir Publishers,
Moscow, 1983.

[32] E. Teramoto. Dynamical structure of food chains and energy trophic levels. Jpn. J. Ecol., 43
(1993), 21–29. (Japanese with English abstract)

[33] R.E. Ulanowicz. Identifying the structure of cycling in ecosystems. Math. Biosci., 65 (1983),
219–237.

[34] R.J. Williams, N.D. Martinez. Simple rules yield complex food webs. Nature, 404 (2000),
180–183.

[35] P. Yodzis. Energy flow and the vertical structure of real ecosystems. Oecologia, 65 (1984),
86–88.

[36] M.J.V. Zanden, B.J. Shuter, N. Lester, J.B. Rasmussen. Patterns of food chain length in lakes:
A stable isotope study. Am. Nat., 154 (1999), 406–416.

160


