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We consider the two-species Lotka—Volterra competition system with a temporally peri-
odic interruption of competition coefficient. We assume that the competition coefficient
is constant in a time interval of fixed length 7., while it is zero in the other time interval
of length 7—. The temporal variation of the competition coefficient is rigorously peri-
odic with period 74 + 7_, in which the competition coefficient becomes a given positive
constant and zero by turns, the other parameters being constant in time. We analyze
the system analytically and numerically, and derive the condition for the permanence
of the whole system, the coexistence of two competing species, and the change of the
species-dominance in terms of the competition. We discuss some interesting natures of
our system, distinguished from the original two-species Lotka—Volterra competition sys-
tem with constant competition coefficients. The temporal interruption of competition
could cause the change of the destiny of competing species.

Keywords: Lotka—Volterra System; Competition; Temporal Heterogeneity; Permanence;
Mathematical Model.

1. Introduction

The Gause’s competitive exclusion hypothesis says that two species depending on a
common niche for their persistence cannot coexist, so that one of them eventually
goes extinct.! However, not a few empirical and theoretical researches in ecology
have indicated that, if some environmental factor has heterogeneity to regulate their
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competitive relationship, two competing species can coexist, even depending on a
common niche for their persistence. In short, some environmental heterogeneity
could allow the coexistence of two species competing about a common niche (for
a review, see Begon et al.?). In such a case, the environmental “heterogeneity” is
spatial and/or temporal. Indeed, in nature, any inter-specific relationship is neither
temporally nor spatially homogeneous. Especially as for the temporal heterogeneity,
a seasonal niche change could cause a temporal variation of some natures about the
inter-specific relationship.2™* What is the effect of such a temporal heterogeneity
of the inter-specific relationship on the nature of population dynamics?

Hutchinson®'4 discussed the effect of a temporal heterogeneity of niche on the
competitive relationship, and argued that the temporal heterogeneity allows the
coexistence of competing species. As for theoretical and mathematical researches
about the effect of a temporally environmental heterogeneity on the competition
system, the Lotka—Volterra competition system with temporally periodic coeffi-
cients has been studied by some mathematical researchers in the last century.5™8 In
those researches, the temporally periodic coefficients are assumed to always have
positive values, and the model involved a seasonal change of the strength of compe-
tition. They have shown that a temporally periodic variation of coefficients in the
Lotka—Volterra competition system causes a variety of dynamical natures which do
not appear with constant coefficients.

In this paper, we consider the two-species Lotka—Volterra system with tempo-
rally periodic interruption of the inter-specific competitive relationship. We assume
that the competition coefficient is constant in a time interval of fixed length 7,
while it is zero in the other time interval of length 7—. The temporal variation of
the competition coefficient is rigorously periodic with period T = 7 + 7—, in which
the competition coefficient becomes a given positive constant and zero by turns, the
other parameters being constant in time. We analyze the system analytically and
numerically, and consider how the coexistence of two competing species occurs with
the interruption of competition, especially in the bistable case for the population
dynamics without such interruption of competition.

Not only for the competitive relationship but also for any other type of inter-
specific relationships, such a temporal interruption of inter-specific relationship
would occur in nature, for example, due to a seasonal separation of niches (habitat,
homerange, food, etc.) of two species. From a mathematical viewpoint, this type of
inter-specific relationship can be modeled by introducing a temporally interruptive
vanishment of terms which represent the inter-specific relationship.

In a sense, such a system with temporally discontinuous change of terms govern-
ing the dynamics may be regarded as an impulsive system.%"!! However, as in most
papers dealing with such impulsive systems about the Lotka—Volterra competition
model (for example, Struk and Tkachenko!? and Liu and Chen!?), the impulsive
system generally involves the temporally discontinuous change of the state variables
(i.e. the population sizes) themselves. In contrast, our model involves the temporally
discontinuous change of parameters, and does not that of population size. So in the
more conventional sense our system is not of the impulsive system.
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We discuss some interesting natures of our system, distinguished from the origi-
nal two-species Lotka—Volterra competition system with constant competition coef-
ficients, and show that the temporal interruption of competition could cause the
change of the destiny of competing species, although some of them provide some
open mathematical problems.

2. Modeling
2.1. Two-species Lotka—Volterra competition system

We consider the following Lotka—Volterra competition system of two species:

dn(;t(t) = {r1 — Bin1(t) — pa2(t)n2(t) }na (t);

dn;t(t) = {rz — p21 () (8) — Bama(t)}na(2),

where n;(t) (i = 1,2) is the population size of species i at time t. Parameters
r; and B; (¢ = 1,2) are all positive, respectively the intrinsic growth rate to give
the maximal reproductive capacity, and the intra-specific competition coefficient to
indicate the strength of density effect from the other individuals of same species.

Functions p;5(t) (4,5 = 1,2; i # j) of time introduce the inter-specific compet-
itive interaction between populations of species 1 and 2. These functions are now
defined as rigorously periodic in time: p;;(t + T) = p;;(t) for any ¢(> 0) with a
given positive constant 7', which gives the species-independent period of temporal
variation in the strength of inter-specific competition. We assume that the compet-
itive relationship temporally changes in a rigorously periodic manner, for instance,
because of a seasonal environmental change to cause a seasonal niche change of
each species.

(2.1)

2.2. Temporally interruptive competition coefficient

In this paper, we consider the two competing-species system with temporal inter-
ruption of inter-specific competitive relationships. We assume that the competi-
tion coefficient p;; (4,5 = 1,2;4 # j) is a positive constant in a time interval of
fixed length 7, while it is zero in the other time interval of length 7_, and that
the temporal variation of competition coefficient is rigorously periodic with period
T = 74+ 7-, in which the competition coefficient becomes a given positive constant
and zero by turns. Mathematically in short, we assume

{ﬁij (kT <t < kT +14)
Hij =

ij=1,2%i % j), 2.2
0 (T+m <t<@E+nr #9) @2)

fork=0,1,2,.... Parameter fi;; (¢,7 = 1,2;¢ # j) is a given positive constant inde-
pendent of competitive season. The temporal average of the competition coefficient
(piz) is defined by (uy;) = fuij74 /T
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2.3. Non-dimensionalized system

Making use of the following non-dimensionalized transformation of variables and
parameters, we can reduce the number of parameters to be considered in our math-
ematical analysis (i,j = 1,2;i # j):
-t Bi 7' lij

b= N; = T_:ni; pi=1iT; my= 7?1'[;13'
With these transformations, we get the following system that is mathematically
equivalent to (2.1):

dl\;lf( 2 - pi{l = Ni(8) — mi2(B) N2 () } N1 (B);
3 (2.3)
djffz(t) = p2{1 = man ()N (E) — Na(£)} N2 ().

Temporally interruptive competition coefficient m; (4,7 = 1,2;¢ # j) is now
given by

ma () = iy (R <T<k+7);
Y 0 (k+7 <f<k+1),

where £ = 0,1,2,..., and 7hy; = (rj/ri)fi/B; (6,5 = 1,2;i # 7). The interval
with competition 74 = 74 /T satisfies now that 0 < 74 < 1, because the period of
temporally repetitive change of competitive relationship is now normalized into 1
(see Fig. 1).

O\ﬁ'/f—\iff-\i/’f—\ﬁ/ >

Fig. 1. Temporally interruptive competition coefficients. Illustratively drawn with non-
dimensionalized parameters, mi; = r;ii;/(riB;) (1,7 = 1,21 # j), F = 74+ /T 0 < 74 < 1)
and ¥— = 1 — 74. In the other season, 712 and 7irg; are positive constant, and in another season,
1ir12 = 721 = 0. In our mathematical modeling, these two seasons repetitively occur one after
another in an exactly periodic manner.
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3. Analysis

In the case when 712 < 1 and 7i12; < 1 without any interruption of competition,
two species coexist. In this case, it is trivial that two species can coexist with or
without the interruption of competition. In this reason, we do not consider any
more the case when 1M;2 < 1 and 72 < 1, and we analyze only case when ;2 > 1
or Mg > 1.

3.1. Local stability of the competitive exclusion equilibrium state

As for the local stability of the competitive exclusion equilibrium state (N;, N;) =
(0, 1), we can carry out the local stability analysis about the time-discrete dynamical
system of {(Ny(k), Na(k))|k = 0,1,2,...} for the linearized system derived from
(2.3), and get the following result:

If the temporal average of m;:

s _Tidui T ry ()
Mii) = Mis - T. e e e — P
( tJ) ij + T ﬁj T 7 ,BJ‘
is less than 1, the equilibrium state (N;,N;) = (0,1) is unstable. If
(my5) > 1, it is asymptotically stable.

This result shows that the survival of the competitively inferior species can be
realized by the interruption of competition. The first half of this result indicates
that, even when 7i;; > 1 and the species i eventually goes extinct due to the
inter-specific competition in the case without the interruption of competition, it is
possible that the species ¢ does not go extinct with an interruption of competition
such that (m;;) < 1. Moreover, if (m2) < 1 and (m2;) < 1, neither of species 1 and
2 tends to zero as ¢ — 00, so that both species persist. The second half of the above
result indicates that, if (m;;) > 1 even with an interruption of competition, there
is a set of initial states with which the species ¢ goes extinct. Such a set of initial
states eventually includes a neighborhood of the equilibrium state (N;, N;) = (0,1).

Finally, this result indicates that the local stability of the competitive exclusion
equilibrium state coincides with that for the corresponding system which has the
constant inter-specific competition coefficient equivalent to the temporally averaged
competition coefficient (fe;;):

dn;t(t) = {r; — Bim1(t) — (r12)n2(t) }na (t);
dn;t(t) = {ra2 — {u21)n1(t) — Bana(t) }na(t).

3.2. Permanent coezxistence with the interruption of competition

In the bistable case when 72 > 1 and 712; > 1, we can numerically find the
appearance of coexistence with the interruption of competition, even though the
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Fig. 2. Numerical examples of trajectory in the phase plane of (N1, N2) in a bistable case. Dashed
curve is the numerically drawn separatrix in the case without the interruption of competition.
With the periodic interruption of competition, (a) a trajectory converges to a coexistent state
with 121 = 1.4; (b) a trajectory converges to the state (1,0) with 221 = 1.5. In both cases,
(N1(0), N2(0)) = (0.2,0.6); p1 = 10.0; p2 = 15.0; 732 = 1.36; ¥— = 0.3. Without the interruption,
the trajectory would converge to the state (0,1), because the initial point is above the separatrix
in the case when the competition is kept without the interruption.

coexistence would be impossible without it. In Fig. 2a, we show a numerical example
of the coexistent state realized by an interruption of competition. Also for the case
when one species forces another go extinct independently of the initial condition,
that is, when 72,2 > 1 and 7719, < 1 or when 7212 < 1 and 79; > 1, we can find the
appearance of coexistence with an interruption of competition. In such case, the
corresponding coexistent periodic orbit is similar to that shown in Fig. 2a.

If the system is mathematically permanent, then two species coexist indepen-
dently of the initial state. Now we can obtain the following result about the perma-
nence of the system (2.3), which can be realized by the interruption of competition
(the outline of proof is given in Appendix):

The system (2.3) is permanent if and only if (m12) < 1 and (mg) < 1.

Therefore, if max[{(m2), (m21)] > 1, the system (2.3) is not permanent. In such
case, there exists a set of initial states to cause the extinction of one species. If the
interruption of competition makes the temporal average of competition coefficients
less than 1, that is, if the interruption of competition is sufficiently long, the coexis-
tence of two competing species is established independently of the initial state.

3.3. Inversion of the competitive dominance

With the interruption of competition, we can find the inversion of the competi-
tive dominance: Species i is eventually eliminated and species j persists with the
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interruption of competition, whereas species j is eventually eliminated and species
i persists without it. The trajectory is shown in Fig. 2b is a numerical example for
the inversion of the competitive dominance.

Let us consider the case when 72 > o, > 1, which is a bistable case. In
this case, we can choose the value of 7_ such that (mj2) > 1 > (mo;). Then,
the result about the local stability of the competitive exclusion equilibrium state
given in Sec. 3.1 indicates that the extinction of species 2 never occurs, whereas
species 2 could go extinct depending on the initial state without the interruption
of competition. This is a case of the inversion of the competitive dominance.

From the viewpoint of the invasion of a species, as far as (mj2) > {(ma) > 1,
the invasion of the other species fails at the equilibrium state (1,0) or (0,1). How-
ever, if (mj2) > 1 > (m2) with an intermediately long length of the competition
interruption, species 2 can invade at the equilibrium state (1,0), while species 1
cannot at (0,1). This argument implies that the interruption of competition could
control the invasion success of a species.

Moreover, when 112 > 1 > 102, that is, when species 1 goes extinct indepen-
dently of the initial state without the interruption of competition, we can choose
the value of 7_ such that (m;2) > 1 > {m2), again. In such case, the result about
the local stability of the competitive exclusion equilibrium state given in Sec. 3.1
indicates that the interruption of competition cannot change the destiny of species
in terms of their extinction or survival.

3.4. Dependence on the interruption length

We analyze the dependence of equilibrium states mentioned in the previous sections
on the length of the interruption of competition, that is, 7_, making use of numerical
calculations.

For convenience, we define the following two critical lengths of the interruption
of competition:

min[(m2), (m21)] =1 with 7— =
max[(m2), (m21)] =1 with 7~ =

-

Always 7* < 7**. The results in the previous sections show that, for 7_ < 7*,
the local stability of equilibrium states (1,0) and (0, 1) is unchanged even with the
interruption of competition. For 7 > 7*, one of two species never goes extinct
independently of the initial state. For 7— > 7#**, both of two species never goes
extinct independently of the initial state, and their coexistence occurs. In the fol-
lowing analysis, we can see the further detail about the effect of the interruption of
competition on the equilibrium state, making use of numerical calculations.

3.4.1. Inversion of the competitive dominance

According to the inversion of the competitive dominance, we numerically investi-
gated the area of the initial state (/V;(0), N2(0)) in (0,1) x (0,1) as shown by the
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N(O) N(0) '
" (1,0) (1,0)
N,0) N,(0)

(a) (b)

Fig. 3. Dependence of the equilibrium state on the initial state. Numerically obtained result. The
solid curve indicates the separatrix in the case when the competition always exists without the
interruption. For the initial condition (Ny(0), N2(0)) in the region (0,1), species 1 goes extinct
while species 2 persists. For that in the region (1,0}, species 2 goes extinct while species 1 persists.
Dotted region indicates the initial state with which the extinction of species 1 occurs without the
interruption of competition, whereas that of species 2 occurs with the interruption. (a) 7— = 0.125;
(b) ¥— = 0.176. In both cases, p; = 10.0; p2 = 15.0; r2 = 1.2; o1 = L4; 72 = 0.167;
F** = 0.286. In (a), a numerical trajectory from the initial state (N1(0), N2(0)) = (0.123931, 0.50)
is shown, which appears converging to an unstable periodic orbit.

dotted region in Fig. 3. For the initial state in the region indicated by the dotted
region in Fig. 3, the extinction of species 1 occurs without the interruption of com-
petition, whereas that of species 2 occurs with the interruption. Comparing Fig. 3a
with Fig. 3b, we can see that the difference of 7_ is significantly reflected to the
area of the initial state for the inversion of the competitive dominance.

The boundary between the regions of (0, 1) and (1,0) in Fig. 3 may be regarded
as the separatrix essential for our system with the interruption of competition,
depending on which species goes extinct. As shown in Fig. 3a, our numerical calcu-
lation implies that the trajectory from the initial state on the boundary converges
to an unstable periodic orbit. Our numerical calculations imply that the unstable
periodic orbit which can be reached from the initial state on the boundary would
uniquely exist. Moreover, the trajectory from any initial state on the boundary
keeps every point (Ny(k), No(k)) at £ = k on the boundary for any integer k& > 0.

3.4.2. Coexistence

According to the coexistence, we numerically checked the area of the initial states
(N1(0), N2(0)) in (0, 1) x (0, 1) as shown by the dark dotted region in Fig. 4. For the
initial state in the region indicated by the dark dotted region in Fig. 4, two species
coexist converging to a periodic orbit (see Fig. 1la). As already shown in Sec. 3.2,
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N,0)

Fig. 4. Dependence of the equilibrium state on the initial state. A numerically obtained result.
p1 = 10.0; p2 = 15.0; M2 = 1.38; gy = 1.4; 7~ = 0.263; 7* = 0.275; 7** = 0.286. With
the initial state in the dark dotted region (+,+), two species can coexist with the interruption
of competition, converging to a stable periodic orbit. A numerical trajectory from the initial
state (N1(0), N2(0)) = (0.20,0.02050361) is shown, which converges to an unstable periodic orbit.
Without the interruption of competition, the system is in a bistable situation, so that one of two
species goes extinct depending on the initial state. The solid curve form the origin shows the
numerically obtained separatrix in the case without the interruption of competition.

the dark dotted region covers everywhere in (0,1) x (0,1) for #— > 7**, since then
(m2) <1 and {m2) < 1.

As shown in Fig. 4, for the trajectory from the initial state on the boundary
between the region of (+,+) and that of (1,0), our numerical calculations imply
again that it converges to a unique unstable periodic orbit.

Fig. 5a-2 demonstrates the 7_-dependence of the occurrence of the inversion of
the competitive dominance which we can numerically observe for the equilibrium
state approached from the initial state (0.01,0.99) with 12,2 = 1.2 and 7, = 1.4.
We cannot observe it from the same initial point with M9 = 1.38 and mg; = 1.4.
The convergence to the coexisting state depends on the initial point as seen from
Figs. 5a-1 and a-2. Moreover, the largest amplitude of the periodic variation in case
of the coexistence would be realized for a unique value of 7_.

Figure 6 shows the numerical result about the 7_-dependence of the inversion
of the competitive dominance and the occurrence of the coexistence, measuring the
area of the initial state (N(0), N2(0)) causing the extinction of one species in (0, 1) x
(0,1), and the area causing the coexistence. The area of the initial state causing the
coexistence appears for 7— beyond a critical value less than 7** beyond which any
initial point is attracted to a periodic orbit, that is, a stationary coexistent state.
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Fig. 5. Dependence of the equilibrium state on the length of the competition interruption. Numer-
ically obtained results. (a-1, 2) /2 = 1.2; 7% = 0.167; (b-1, 2) /12 = 1.38; 7* = 0.275. Commonly
ma2; = 1.4 and 7** = 0.286. (a-1) and (b-1) are for the initial state (0.99,0.01); (a-2) and (b-2)
are for the initial state (0.01,0.99).

: 08 | g (+’+) : 08 | 4 <+,+>

3 S
g - f . @0 ¢
;, (L,0) ;— INVERSION OF
= = sl DOMINANCE
g o b R=

g 5
< ol INVERSION OF | | | 0.

0,1) DOMINANCE ;
Dn ’ nft ; T* olz [ :i _'_ °u # ;E_
= =
(a)

Fig. 6. 7_-dependence of the inversion of the competitive dominance and the occurrence of the
coexistence. Areas of (0,1), (1,0) and {+,+) in (0,1) x (0,1) are numerically calculated for each
value of 7_. (a) 2 = 1.2; 7% = 0.167; (b) /2 = 1.38; ¥* = 0.275. Commonly m2; = 1.4 and
7** = 0.286.
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As numerically indicated, a set of initial states going to a stationary coexistent state
appears even when the extinction state (0,1) or (1,0) is locally stable. Especially
as shown in Figs. 4 and 6b, for a range of 7_, we can find that there could exist
a tristable situation with locally stable extinction states (0,1), (1,0), and locally
stable coexistent state.

3.5. Dependence on the competition coefficient

Figure 7 shows a numerical result about the (7_,7112)-dependence of the extinction
and the coexistence. We can see that the inversion of the competitive dominance
and the occurrence of the coexistence significantly depend not only on the length
of competition interruption, 7_, but also on the difference between two coefficients
M2 and Moy . Especially when 1o < 1, that is, when species 1 never extinct, there
exists a critical value for 7_ such that, if 7_ is below the critical value, species 2
goes extinet from any initial state in (0, 1) x (0, 1), and if beyond it, the coexistence
occurs from any initial state in (0,1) x (0,1). The critical value is given by 7**
(= 0.286 in case of Fig. 7 with vi22; = 1.4). Furthermore, from Fig. 7, even when
M2 > 1, we can see some other cases with such a critical dependence of the destiny
for competing species on the length of competition interruption.

With the numerical result shown in Fig. 7 and theoretical ones obtained in the
previous sections, we can finally obtain the result about the (7_,2)-dependence
of the extinction and the coexistence of species as shown in Fig. 8. We can see
that the interruption of competition could make the coexistence occur even when

an extinetion equilibrium state is locally stable. This could hold in the bistable
situation with two extinction equilibrium states (0,1) and (1,0) both of which
are locally stable. The interruption of competition could change the destiny of
competing species.

(a) (b)
Fig. 7. (7—,m2)-dependence of the extinction and the coexistence of species with mo; = 1.4,
when (ma1) = 1 with 7— = 0.286. Solid curves give some isopleths numerically obtained for the

area of (a) (1,0); (b) (0, 1); (¢) (+,+). The white (blank) region in each figure indicates when the
area covers everywhere in (0,1) x (0, 1), and the heavy dark region does when the area does not
exist. The light dark region does when the area covers only a part of (0,1) x (0,1). In (b), the
boundary curve of the heavy dark region is given by (mj2) = Fyine = 1.
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0.286 f

Fig. 8. (7—,7112)-dependence of the extinction and the coexistence of species for 7ty = 1.4,
when (mo1) = 1 with 7— = 0.286. For the region EXCLUSIVE, only one species goes extinct,
depending on the initial state; For the regions (+,+), (0,1), and (1,0}, the coexistence, the
extinction of species 1, and the extinction of species 2, respectively, occur from any initial state;
For the regions I, 11, and III, two species coexist from some initial states, while the extinction of
species 2, species 1, and one of two, respectively, occurs from the other initial state. Boundary
curve between regions II and (+,+), III and I, EXCLUSIVE and (1,0) is commonly given by
{my2) = 1712 = 1. Boundaries between regions (0, 1) and II, EXCLUSIVE and III, (1,0) and I
are numerically drawn.

In a bistable case indicated by the region I or IT in Fig. 8, the coexistence or the
inversion of the competitive dominance occurs, depending on the initial state (see
also Figs. 3 and 4). Moreover, we found the tristable case indicated by Figs. 4 and
6b, and by the region III in Fig. 8. In such a case, depending on the initial state, one
of two species goes extinct or the coexistence occurs. Further, as indicated by the
region (1,0) or (0,1}, the interruption of competition could inverse the destiny of
the extinct species to its survival, or the survival species to its extinction, depending
on the initial state.

The existence of regions I, II, and III indicates that, even when (mj2) > 1
or {ma1) > 1, the coexistence could occur from some initial states. So we cannot
determine the occurrence of the coexistence only from the temporally averaged
competition coefficients. This is the nature of the system (2.1) with the temporally
periodic interruption of competition, different from the system without it.

4. Concluding Remarks

Our results indicates that, with a temporally interruptive competition, it could
change which species goes extinct, or whether the coexistence occurs even if two
competing species cannot coexist without the interruption of competition. The
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interruption of competition could change the destiny of competing species, and then
the Gause’s competitive exclusion principle cannot necessarily hold. Furthermore
the possibility of the coexistence between competing species cannot be estimated
only from the temporally averaged competition coefficients.

A temporal interruption of the competition could happen, for instance, because
of the existence of a period without the niche overlapping which causes the inter-
specific competition. A season-dependent change of food or habitat may cause such
a non-competitive period. Our results imply that the consequence of a competition
may be changed by such an interruption of the competition: the inverse of compet-
itive dominance or the coexistence (also see Seno'*). In a certain long time scale,
such an effect of the interruption of competition would drive the exchange of species
in a habitat or work to maintain the species diversity.
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Appendix

The permanence means that there exists a compact set K in the positive cone of
phase space for (N1, N2) such that all trajectories in the interior do not exit K.
This can be mathematically expressed by the following equivalent condition (for
instance, see Hofbauer and Sigmund!®):

There exists a § > 0 such that
§ < liminf N;(§) fori=1,2,

t—o0

whenever N;(0) >0 (¢ =1,2).

For the proof of the result about the permanence shown in the main text we use
the invariance of (0,1) x (0, 1) in the phase plane of (N1, N2) without its proof: For
the initial state belonging to (0,1) x (0,1), (N1(£), N2(£)) belongs to (0,1) x (0,1)
for any time > 0. Since the carrying capacity for each population is now given by
1 for the system (2.3), we consider only the initial state within (0,1) x (0, 1), from
the viewpoint of mathematical modeling. In this appendix, we show the outline of
the proof of the permanence of the system (2.3).

At first, we can prove that the condition max[(m2), (m21)] < 1 is necessary for
the permanence. That is, we prove that, if max[{m12), (m21)] > 1, the system (2.3)
is not permanent. To prove this, it is necessary and sufficient to show that, if
(m12) > 1, then there exists a solution of N (£) with N1(0) > 0 which converges to
0ast— oo.

Next, we can prove the following two features of the system (2.3):

Feature 1. If max[(mi2), (m21)] < 1, then the solution with the initial state in
R. = {(N1, N2) € (0,1) x (0,1)|®(Ny, No) = N{2N§* < ¢?#2}

goes out of R, in a finite time, where c is ¢ positive number independent of the
initial state.

Feature 2. If max[{m12), {ma21)] < 1,then for the solution which passes through a

point on ®(Ny, No) = NP2NE* = cP1P2 of R, at t = by > 0, there exzists a positive
number 7y such that the solution cannot enter a region

Ry = {(N1, N2) € R|®(N1, N2) <y < 17}
for any t > to.
The positive number ¢ in these features can be chosen commonly. Feature 1
shows that the solution goes away from the neighborhood of axes, and Feature 2

does that the solution never goes near the neighborhood of axes once it goes away
from it. Therefore, these two features prove the permanence of the system (2.3).



