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Abstract. We set up a mathematical modelling of dichotomous vascular system and
derive a relation required for the structural optimality based on the minimum work
principle. It is discussed how the exponent n in the relation Q o 1 between the flow rate
Q and the vessel radius r reflects physiologic and structural characteristics of the
vascular system. It is shown that the introduction of the fractal nature of the vascular
system provides a principle to explain and study the observed variety of the exponent
n.

1. Introduction

MURRAY (1926) presented a mathematical model on the blood flow through the
vessel, based on the minimum work principle. He considered the structural characteristics
of the vascular system to minimize the energy consumption of the flow in the vessel. He
assumed the Hagen-Poiseuille flow with the flow rate,

__mop
0= 8n ox’ )

where # is the mean radius of the vessel, n the viscosity of the fluid and Jp/dx indicates
the pressure gradient (Fig. 1). The Hagen-Poiseuille relation (1) is applicable only for
laminar flows (REYNOLDS, 1883).

From the Hagen-Poiseuille relation (1), the pressure difference Ap between two edges
of the vessel of length / can be obtained as follows:
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Accordingly, the kinetic energy consumption £ inthe Hagen-Poiseuille flow in the vessel
of length / is given by

Ei=0-tp= 200, ©)

In addition, the flow consumes a portion of its energy due to the physiologic function. In
MURRAY (1926), this physiologic energy consumption E; is assumed proportional to the
volume occupied by the vessel itself:

E,=b-V=bml, (4)

where the volume is assumed to be that of a smooth circular tube with the radius r and the
length /. We suppose that the structure which minimizes the total energy consumption £
= E) + E; would be optimal for the tissue, and that the structural factors are represented
only by the radius r and the length /. Then, we obtain a relation between Q and r in the
following way:

7))

£- —?;ZT?QZH 2bmrl =0, (5)

hence

0-25.r. ©)
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This “Q o 3 relation can be derived by another mathematical modelling with an
assumption that the vascular system has such a structure that the share stress on the
internal wall of the vessel is constant, i.e., the vessel wall is assumed sensitive to the flow
rate O, and controls the radius » to keep 7 constant. For Hagen-Poiseuille flow, the share
tension tis given by 7=4nQ/nr3 o« Q/r3, hence Q o 3. It is to be noted that these models
are based on the local optimality of the vascular system and do not take the global structure
of the system, specifically the branching structure, into account.

WOLINSKY and GLAGOV (1967) examined the relation between the body weight and
the radius of aorta for some samples from a variety of animals, and found that the body
weight was approximately proportional to the cube of the radius of aorta. If the volume
occupied by the aorta is proportional to the cube of the radius of aorta, their result suggests
that the blood flow rate, which must balance with the need proportional to the weight, is
proportional to the cube of the radius of aortal vessel. Their work has been frequently
refereed as the “Q oc 3" relation.

Physiologic researches have shown that the data concerning the flow rate and the
radius of the vessel present a relation Q « ” with n < 3. For several vessels of a variety
of organtissues, SUWA et al. (1963) estimated nas 2.4~2.8 (see also SUWA and TAKAHASHI,
1971). GROAT (1948) reported that n ~ 2.6. MANDELBROT (1982) called the exponent n
the diameter exponent or the para dimension. THOMA (1901, 1920) tried to derive n
theoretically, and gave its value less than 2.4. However, the THOMA’s estimation is too
small compared with the observed values of ».

After all, we do not have a sufficient model to elucidate the Q o r relation, and there
is a growing need for an improvement of mathematical modelling.

In this paper, based on the minimum work principle, a mathematical modelling on
the optimal construction of the dichotomous branching vascular system is analyzed. It will
be shown that the introduction of the fractal nature of the vascular system into the model
provides a new insight into the exponent » in the O o " relation.

2. Energy Consumption Proportional to Vessel Surface

In MURRAY’s modelling, the physiologic energy consumption E; is assumed pro-
portional to the volume occupied by the vessel itself. Whereas, it is possible to consider
that the consumption £, would be proportional to the surface area S of the vessel. This
hypothesis is based on the idea that the physiologic energy consumption might be due to
the interaction between the internal and the external of the vessel wall, for instance, due
to exchanging materials at the surface.

Both of the internal and the external vessel walls are not smooth and have a fine and
complex structure. The vessel radius » in MURRAY’s modelling can be regarded as a mean
value to conserve the vessel volume. In the case where the surface area is essential, we
should take the morphology of the wall into account. Even though the volume of the vessel
can be given well by 7r2/ with the mean radius r and the longitudinal distance / between
two edges of the vessel, the surface area of the vessel, the surface area of the vessel may
be more than 277/ due to the complex structure (Fig. 2). Applying the concept of fractal
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Fig. 2. Periphery of the cross-section of vessel with a fine structure of the fractal dimension 4.

by MANDELBROT (1982), we can consider the effective surface area proportional to r</
instead of r/, where d denotes the fractal dimension of the periphery of the cross-section
of the vessel. The case with d =1 is for the completely smooth vessel wall corresponding
to a circular tube, while the complex surface structure of the vessel wall may have d with
1 <d < 2. It is evident that the case d = 2 gives mathematically the same modelling as
MURRAY’s one.

Now, the physiologic energy consumption E; proportional to the surface area S is
given by:

E,=f-S=2xpr, (7)
where S is a positive constant. Therefore, by the minimum work principle JE/dr = JE)

+ E>)/ér = 0 with E; and E; given by (3) and (7), respectively, we can easily obtain the
expression:

sz d-ﬁ-r“‘”z. (8)
4y g

Therefore, we can obtain the “Q o " relation with

d
:2-{—-—-—-, 9

where 2.5 < n < 3.0, since 1 £ d < 2. Note that the case with » < 2.5 cannot be predicted
by our model. The values n = 2.5~2.8 estimated by SUWA et al. (1963) correspond to d =
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1.0~1.6. Thus, the variety of the values of exponent » might be due to the variety of the
fractal dimensions of the vessel wall.

3. Symmetric Geometrical Dichotomous Branching System
Now, we consider a symmetric dichotomous branching vascular system with a

geometrical structure as shown in Fig. 3. Two daughter branches have common radius and
length. The radius is assumed to reduce with a constant ratio at each branching:

D1 = Plys (10)

where 7y is the radius of the &-th branch, and p is a positive constant less than 1. On the
other hand, the flow is assumed to be divided equally to the two daughter branches, i.e.,

Y3
Q1 = 7 (11)

Fig. 3. Symmetric geometrical dichotomous (SGD) branching vascular system. ry.) = pry and [y, = ul; where
r, and [ are respectively the radius and the length of the k-th branch, and p and u are constant less
than 1.
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where Qg is the flow rate in the &-th branch. The 0-th branch is arbitrarily and appropriately
selected, for instance, depending on which tissues its physiological function contributes
to.

As for the length of the branch, from a sampling study of a variety of organ vessels,
Suwa etal.(1963) reported a proportional relation between the branch length /and a power
of the radius 7, i.e., [ oc ¥, The exponent i was estimated as i =0.8~1.2 from the data. From
this relation and (10), we can easily derive a reduction of the branch length

les1 = P'lys (12)

where /i is the length of the 4-th branch. This relation means that the branch length also
reduces geometrically with a constant ratio u = pf < 1.

In this paper, we consider this symmetric geometrical dichotomous (SGD) branching
vascular system with the reduction ratios p for the radius and u = pf for the length. Note
that, for our SGD vascular system, no assumption is made for the branching angle, and that
the SGD vascular system does not necessarily have the self-similarity nature.

It should be remarked that the Q o 7" relation is always established for our SGD
branching vascular system, because of the relations (10) and (11):

4
&) &

where y=-log2/logp > 0. This relation (13) means that y= n for SGD branching vascular
system, and

p=27"" (14)

For n=3.0, p=0.79, while, for n=2.4~2.8, p=0.75~0.78. In addition, with the relation
u=p, uis estimated as y=0.73~0.81 for n =2.4~2.8 and i = 0.8~1.2.

So far we have introduced no principle for the optimal construction of the branching
vascular system. If we assume that the optimal construction follows the /ocal minimum
work principle, the relation (8) for the optimal construction could be applied. Then, from
n=2+d/2 and (14), we have p=2-1(2+4/2) This is the optimal ratio of the radius reduction
for the optimal construction of SGD branching vascular system.

However, it would be more convincing to consider the energy consumption in the
whole system. In the following section, we turn to the total cumulative energy consumption
over SGD branching vascular system, and show how the optimal construction is deter-
mined by minimizing it.
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4. Total Cumulative Energy Consumption

The kinetic energy consumption e;{!) for the flow rate Q; in the j-th branch with the
length /; and the radius r; is given in analogy to (3) by

2 2 i-4\/
o _ _8n1 9L _8nGly (p
%_QAmﬂ;ﬁy_:%m — (15)

where we used the relations (10), (11), and (12). Since the total number of the k-th
branches of SGD vascular system is 2, the cumulative kinetic energy consumption Ex(V
over the O-th ~ the k-th branches is given as follows:

k 2,k (i-4Y
E) =32/ &) = 81y Z[P ] _ (16)

4
Jj=0 mry  joo\ 2

On the other hand, the surface area for one of the 4-th branches is now assumed to be given
by 2zri@lk. Provided that the physiologic energy consumption is proportional to the vessel
surface area, the cumulative physiologic energy consumption Ex? over the 0-th ~ the
k-th branches is

E(Z)_izi.(/}.zfy“[ )—Znﬁr"’l i(2 i*“)j (17)
E= 75 SRR 2P )
J: =

Now, by differentiating E;(") + E;» with respect to p and using relation among
parameters, we can obtain the following results (see Appendix):

d
=2+-, 18
n=24 %)
n|d+i B asan
= .. k=0, 1, 2,..), 19
N ) 09)
i<4. (20)

The condition (20) is necessary for the existence of the optimal p. Equation (18) coincides
with the result by the local minimum work principle. The result (19) is different from (8)
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by the constant factor. Only when i = 0, that is, only when every length of branches is
equal, they are coincides with each other. Since i = 0.8~1.2 by SUWA et al. (1963),
condition (20) seems satisfied in general for real vascular systems.

With these results, the total consumption ED) + Ex?) becomes

k
EM + ED = 22Brfl, - ‘:*‘f' -y 29, (21)

where

e 4-(2+d/2+i) 4—(n+i)
2+d/2 n

(22)

According to SUWA et al. (1963), the estimated values of n + i were always less than 4.0,
hence v> 0, for several vessels of organ tissues. Applying this result to (22), we can say
that the total cumulative energy consumption for SGD vascular system tends to diverge
infinitely as the branch generation gets larger.

5. Conclusion

From our result n=2 + d/2, with n=2.4~2.8 by SUWA et al. (1963), we can conclude
that d=1.0~1.6. Therefore, the inner wall of the vessel is expected to have a fine structure
with the fractal dimension between 1.0 and 1.6.

SuwaA et al. (1963) reported that » is larger in the structure with r < 100 u than that
with 2 100 1. SUWA et al. (1963) observed also that the ratio of the thickness of vessel
wall to its peripheral length significantly changed, so that the wall is significantly thick
relative to the peripheral length for the narrower vessel. This result may imply the
difference of the fine structure of the vessel walls. If the wall structure has the higher
fractal dimension d in the vessel with » < 100 g than that with » > 100 y, the value of n is
expected to be larger for the narrower structure. Thus, the variation of d is a possible
explanation for the variation of » in the framework of our modelling.

Another possible explanation for the increasing value of 7 as the radius » gets smaller
isthe difference of the fractal dimensions Dyofthe branching structure. MATSUO ez al. (1990)
examined cat brain vessels and human retinal ones, and observed that Dy=1.7~1.8 for the
large scale and Dy~ 1.3 for the small scale. They estimated the cross over scale at around
140 p. In the present modelling, such fractal nature of branching structure for the vascular
system is not introduced. With an improved mathematical modelling, it will be possible
to show the relations among the exponents » and i, and the fractal natures of the branching
vascular system.

Lastly, it is conjectured that the larger value of » for the structure of » < 100 y may
be explained by the difference of both of the branching structure and the fine structure of
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vessel surface.

In this paper, we demonstrate that the fractal structure of the inner wall surface of the
vascular system combined with the optimal principle leads to predictions of the real
construction of the organ system and its morphology. We hope that this work will give
some stimuli to the researches for understanding the real physiologic function.

The author thanks Prof. Nobuhiro Uyesaka of Nippon Medical School for his valuable
comments and helpful suggestions in the earlier steps of this work, and anonymous referee for his
comments to complete this paper.

APPENDIX

In this appendix, it is shown how the derivative of E4(!) + E4?) with respect to p leads
to the relation among parameters.

From (16) and (17), the total cumulative energy consumption over the 0-th ~ the
k-th branches is given by

k k .
E;(‘I)+EI(() 877Q0 Z[pz ) +2n.ﬂr04102(2pi+d)/

Jj=0

SUQ(%I i{(Pz J 7T4€’Q4:d .(2pi+d)j}_ (Al)

]=

Hence,

6[5( +E? )] 8n leﬂzk: {.p ( :-4]1' 2t i+d (2 ‘*")}(Az)

op 2 4nQ; »p

The right-hand side of (A2) vanishes only when the following condition is satisfied for
any j:

- i-4\/ 7 4+d . G
P 2 4nQo p

For the existence of the value of p for any j, it is necessary from (A3) that

i<4, (A4)
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and

i~4

P i+d
Ay
> P

that is,

p= 2—1/(2+d/2)' (A5)

This means that n = 2 + d/2. With (A4) and (AS5), the relation (A3) gives

T |d+i ﬁ 2+d/2
=z ’_-—- . A6
) 2V4—i 7 To (A6)

By means of the relations (10) and (11), the result (A6) gives (19).
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