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Abstract
An SIS model is analyzed to consider the contribution of community structure to the
risk of the spread of a transmissible disease.We focus on the human day-to-day activity
introduced by commuting to a central place for the social activity. We assume that the
community is classified into two subpopulations: commuter and non-commuter, of
which the commuter has two phases of the day-to-day activity: private and social.
Further we take account of the combination of contact patterns in two phases, making
use of mass-action and ratio-dependent types for the infection force. We investigate
the dependence of the basic reproduction number on the commuter ratio and the daily
expected duration at the social phase as essential factors characterizing the community
structure, and show that the dependence is significantly affected by the combination
of contact patterns, and that the difference in the commuter ratio could make the risk
of the spread of a transmissible disease significantly different.

Keywords Epidemic dynamics · SIS model · Community structure · Basic
reproduction number · Commuter

Mathematics Subject Classification 92B99 · 92D30 · 92D25 · 91D10 · 00A71

1 Introduction

Since mid-December 2019, the outbreak of a febrile respiratory illness due to a novel
coronavirus COVID-2019 in China is now spreading out internationally (WHO 2020).
Its human-to-human transmissibility has been confirmed though the detail has been
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under investigation (ECDC 2020). Its exponentially increasing number of cases and
large-scale spread of the emerging virus are being regarded as resulted from human-
to-human transmission, initiated and promoted by the human mobility in global and
local scales (Du Toit 2020; Liu and Saif 2020; Munster et al. 2020; Phan et al. 2020).

One of past well-recognized examples of such transportation-related global
infection of a transmissible disease, SARS by severe acute respiratory syndrome coro-
navirus broke out in 2003, beginning with some infection on an airplane (Wang and
Wu 2018). There have been many investigations concerning the effect of transporta-
tion (or population dispersal) on the spread of a transmissible disease, and especially
conducted been many theoretical/mathematical studies taken account of such a possi-
bility for some individuals to become infective during transportation in order to such
an significant contribution of transport-related infection [as a recent review, see Wal-
ters et al. (2018) and references therein; especially for the SARS virus transmission,
seeWang (2014)]. Not only the particular transportation with a long travel, but also the
human quotidian mobility as a common phase of the human activity can be considered
as one of relevant factors that could cause the spread of a transmissible disease such
as influenza (WHO 2018). So is the case of today’s spread of COVID-2019 in each
local region of every country (ECDC 2020; WHO 2020).

One choice to model such a transport-related infection is to use a disease trans-
mission model based on the well-known patch models, which may be of so-called
metapopulation model, described by ordinary differential equations or numerical net-
work dynamics with a geographically divided population (Hethcote 1976; Rvachev
and Longini 1985; Sattenspiel and Diez 1995; Sattenspiel and Herring 1998, 2003;
Brauer and van den Driessche 2001; Arino and van den Driessche 2003; Wang and
Mulone 2003; Wang and Zhao 2004, 2005; Cui et al. 2006; Keeling et al. 2010; Bal-
can and Vespignani 2011; Ball et al. 2015; Nakata and Röst 2015, and the references
therein). In contrast to many of previous mathematical works focusing on the contri-
bution of long-term migration (to cause the change in population size) or the infection
during a short-term or mid-term temporal transportation between communities (e.g.,
the case of SARS) to a certain global scale of transmissible disease spread, we shall
focus in this paper on the contribution of human quotidian activity (including only
transportations as quotidian commuting) to the spread of transmissible disease within
a community.

In this paper, we propose a specific model of so-called SIS type in a simplified
geographical structure of a city with a central place (downtown) and some residential
districts (outskirts) in the commuter belt, between which the quotidian commuting
occurs (Fig. 1). At the central place, the commuters make their social activities.
Falcón-Lezama et al. (2016) considered a very similar situation and analyzed a math-
ematical model of SEIR type with respect to the dengue epidemic dynamics and its
control. Differently from theirs, the principal subject of our analysis about our model
is the dependence of the spread of a transmissible disease on the community structure
represented by the commuting subpopulation size, and we will try to discuss the com-
munity structure to have the smaller risk of the disease spread, that is, to have its higher
resistance to the disease spread over the community. However, we shall not intend to
make any discussion about the control to realize the smaller risk of the disease spread.
This is because we will consider only daily activity characterizing the community
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Fig. 1 Schematic illustration of a
typical structure of the city with
residential districts (outskirts)
and a central place (downtown)
at which the commuters from
different residential districts
interact to each other in their
social activities

structure and its contribution to the risk, so that we regard it as very hard to control
any factors in such activity closely related to the daily life. Since the nature of such
daily activity is gradually changing as the lifestyle becomes modified, we will try to
give some arguments about the prospective change in the risk of the spread of a trans-
missible disease in future, and about the difference in the risk between communities
different from each other in their structures.

2 Model

2.1 Private phase and social phase

Let us consider a community of which the population can be classified into two sub-
populations: the subpopulation of individuals interacting to others mainly of the same
residential district, for example, elders and infants (say, non-commuters); the subpop-
ulation of individuals usually commuting the central place for their day-to-day living
activities, for example, working, studying or shopping, etc. with interactions to others
also from different residential districts.

Furthermore let us divide the commuter’s day-to-day activity into two phases: the
activity in which the individual interacts to others mainly of the same residential
district; the activity in which the individual interacts to others also from different
residential districts. Let us call the former private phase, and the latter social phase.
The non-commuters are regarded as staying at the private phase all day. The community
consists of individuals at one of these two phases.

The commuter is not necessarily at the social phase. If the most of commuters
use their private transportation method, for example, own cars or bicycles as in a
local city with a relatively small size, then the commuter can be considered to be at the
private phase, because each commuter during commuting is independent of those from
the other residential districts (Fig. 2a). In constrast, if the main commuting method
between the residential districts and the central place is a public transportation in
which the commuters from different residential districts are mixed, the commuter can
be considered to be at the social phase of our modeling (Fig. 2b, c). In reality, some
commuters could be considered to be at the private phase, while the other as being at
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(a) (b) (c)

Fig. 2 Schematic examples of the structure of commuting route between residential districts and a central
place. In a, the commuter can be considered to be at the private phase during commuting, because each
commuter is independent of those from the other residential districts. In b or c, the commuters from different
residential districts are mixed in their commuting routes, so that the commuter can be considered to be at
the social phase during commuting with respect to our epidemic dynamics

the social phase. In further detail, commuting of each commuter could be considered
to be at the private phase in the earlier period and at the social phase in the rest period.
We remark that these two phases of our modeling are not to distinguish the commuters
from the non-commuters, but to tell the situation in terms of the disease transmission
dynamics, according to the detail of our modeling described in the following section.

Our modeling belongs to what is called themultitype model or the two-level mixing
epidemic model in the terminology of Diekmann et al. (2013) (also see Ball et al.
(1997) or the outlining review by Ball et al. (2015) and references therein), although
our model is different from what is called the house hold epidemic model as described
in the following sections. On the other hand, our model may be one of so-called meta-
population models or two-patch spatial models, as so was in Britton and Giardina
(2016), whereas our modeling does not consider the spatial patches but introduces the
phases as described above.

2.2 Mobility dynamics of commuter subpopulation

In this section, we describe the modeling of the mobility dynamics for the commuter
subpopulation in our model without any effect of epidemic dynamics. The commuter
subpopulation is divided into two classes depending of the phase, that is, the private
and the social phases, as introduced in the previous section. Let n indicate the size
of commuter subpopulation at the private phase, and ñ at the social phase. Then we
introduce the following mobility dynamics for the commuter subpopulation:

dn

dt
= −mrcn + mcrñ

dñ

dt
= mrcn − mcrñ,

(1)

where the rates of commuter’s phase-transition between the private and the social
phases are given respectively by mrc and mcr.
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As easily seen from (1), the sum n+ñ is constant independently of time. Thismeans
that the size of commuter subpopulation is now assumed to be constant independently
of time. Further, let us define the size of non-commuter subpopulation nwhich consists
of the individuals who remain at the private phase all day.

As re-mentioned in the next section, as long as considering the epidemic dynamics
for a certain time scale in this paper, we do not assume any transition between the
commuter and the non-commuter. Besides, we assume that the change of population
size with birth, death, and migration is negligible in the time scale for the epidemic
dynamics of this paper. Hence the total population size of the community is assumed
to be constant given by N , that of the commuter subpopulation is by pN , and that of
the non-commuter subpopulation is by (1 − p)N , where p is the commuter ratio, a
positive constant such as 0 < p < 1. Therefore, for the mobility model given by (1),
n + ñ = pN and n = (1 − p)N .

For the mobility model (1), the expected duration at the social phase is given by
1/mcr, and the expected duration at the private phase by 1/mrc respectively. In the
time unit of day, we can assume the following constraint about the expected durations
at each phase since we focus on the day-to-day routine activity:

1

mrc
+ 1

mcr
= 1 (2)

which constrains the values of these parameters in this mobility model for the reason-
ability of modeling. Since the individual at the social phase necessarily comes back
every day to the own residential district after a duration of stay at the central place,
this constraint gives the dependence between the rates of phase-transition mrc and
mcr.

The mobility model (1) is the simplest one very popular in the modern theory of
metapopulation and epidemic dynamics in a multi-patchy environment with migration
process, while it may be regarded as one of so-called mover-stayer model in demo-
graphic research, in which the population consists of “mover” who changes states over
time, and “stayer” who does not change states after the initial time. The mover-stayer
model is essentially based on a discrete-time stochastic process with two independent
Markov chains (Blumen et al. 1955; Spilerman 1972; Vermunt 2004), in contrast to our
time-continuous deterministic model (1) with the system of ordinary differential equa-
tions. Note that our mobility model (1) is to govern the transition of two phases (i.e.,
states), not necessarily following the geographic (spatial) movement of commuters.

In the subsequent section to introduce the epidemic dynamics, we will divide each
of the commuter and the non-commuter subpopulations further into susceptible and
infective classes. Moreover we assume that the mobility is different between the sus-
ceptible and the infective commuters. The above-mentionedmodelingwill be extended
to the population dynamics with an epidemic disease.
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2.3 Epidemic dynamics with commuter and non-commuter subpopulations

For our modeling of an epidemic population dynamics with the day-to-day activity,
we have set up the following assumptions including some already mentioned in the
previous section:

– The disease is non-fatal;
– The birth, the death, and the migration are negligible in the time scale of epidemic
dynamics under consideration;

– The transition between the non-commuter and the commuter is negligible in the
time scale of epidemic dynamics under consideration;

– On the epidemic dynamics, the traffic of people between different residential dis-
tricts has a contribution in an averaged way, with the mean-field approximation.

The first assumptionmeans that the disease is not serious to cause the increase of death
rate for the infected individual. The second and the third assumptionsmean that the total
population size, the sizes of non-commuter and commuter subpopulations are assumed
constant independently of the time in the epidemic dynamics, as already mentioned in
the previous section, given by N , (1− p)N , and pN . With the fourth assumption, we
introduce a certain effect of the traffic of population between residential districts on
the epidemic dynamics, so that individuals at the private phase are assumed to have
an interaction to cause the disease transmission which is now given in a manner of
the mean-field approximation.

With these assumptions, we shall consider the following mathematical model with
the extension of the mobility model (1) described in the previous section, taking
account of the dynamics of a disease transmission :

dS

dt
= −ΛS + ρ I

d I

dt
= ΛS − ρ I

dS

dt
= −ΛS + ρ I − mS

rcS + mS
cr
˜S

d I

dt
= ΛS − ρ I − mI

rc I + mI
cr

˜I

d˜S

dt
= − ˜Λ˜S + mS

rcS − mS
cr
˜S

d˜I

dt
= ˜Λ˜S + mI

rc I − mI
cr

˜I ,

(3)

where symbols S and I represent respectively susceptible and infective subpopulations
(see Fig. 3). The non-commuter subpopulation is given by (S, I ): n = S + I , while
the commuter subpopulation is given by (S, I ) and (˜S, ˜I ). The former (S, I ) indicates
the commuter at the private phase, and the latter (˜S, ˜I ) at the social phase: n =
S + I and ñ = ˜S + ˜I . From the assumptions with respect to the population sizes,
the total population size of the community, the sizes of non-commuter and commuter
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Fig. 3 Modelling for the system (3). See the detail in the main text

subpopulations are respectively given by N = S + I + S + I + ˜S + ˜I , (1 − p)N =
n = S + I , and pN = n + ñ = S + I + ˜S + ˜I .

Λ and ˜Λ represent the infection forces respectively at the private phase and at the
social phase. As introduced later in this section, Λ is a function of (S, I , S, I ), and
˜Λ is a function of (˜S, ˜I ). Positive parameter ρ is the recovery rate for the infective
individual only at the private phase. We do not assume the recovery at the social phase
(i.e., in the central place) because it is little likely that the individual might recover
from the disease during commuting and acting in the day-to-day routine out of the
residential district. Moreover, we do not consider the recovery within one day after the
infection, that is, the recovery is assumed to take more than one day. This means that
1/ρ > 1 in the time unit of day, since the value of 1/ρ means the expected duration of
the infectivity after the infection. So we shall take the constraint for ρ such that ρ < 1
in the time unit of day. After the recovery, the individual becomes susceptible so as
to be possible to get infected again. This means that the epidemic dynamics of our
model is of SIS type. The social condition of the medical treatment for a transmissible
disease would affect the expected duration taken for the recovery, that is, the value of
ρ.

Following the modeling described in the previous section, the rates of commuter’s
phase-transition between the private and the social phases are given respectively by
mS

rc and mS
cr for the susceptible commuter, mI

rc and mI
cr for the infective commuter

(Fig. 3). Hence the expected duration at the social phase is given by 1/mS
cr and 1/m

I
cr

respectively. In the same way, the expected duration at the private phase is given by
1/mS

rc and 1/mI
rc respectively. In the time unit of day, we can assume the following

constraints about the expected durations at each phase, since we focus on the day-to-
day routine activity, as already mentioned by (2) in the previous section:

1

mS
rc

+ 1

mS
cr

= 1; 1

mI
rc

+ 1

mI
cr

= 1 (4)

which will constrain the values of these parameters in our analysis on the model for
the reasonability of modeling.
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From the constraints of (4), we can replace at need these parameters to the following
τS and τI:

1

mS
cr

= τS; 1

mS
rc

= 1 − τS; 1

mI
cr

= τI; 1

mI
rc

= 1 − τI, (5)

where 0 < τS < 1 and 0 < τI < 1. Parameters τS and τI respectively represent the
expected duration at the social phase in the time unit of day about the susceptible
commuter and the infective one respectively.

2.4 Forces of infection

Infection forces Λ and ˜Λ are now assumed to satisfy the following conditions:

Λ|(I , I )=(0,0) = 0; ˜Λ
∣

∣

˜I=0 = 0;
∂Λ

∂S

∣

∣

∣

∣

(I , I )=(0,0)
= ∂Λ

∂S

∣

∣

∣

∣

(I , I )=(0,0)
= 0; ∂ ˜Λ

∂˜S

∣

∣

∣

∣

˜I=0
= 0;

∂Λ

∂ I

∣

∣

∣

∣

(I , I )=(0,0)
= ∂Λ

∂ I

∣

∣

∣

∣

(I , I )=(0,0)
= λ(S, S) > 0; ∂ ˜Λ

∂˜I

∣

∣

∣

∣

˜I=0
=˜λ(˜S) > 0.

(6)

The former four assumptions for Λ and ˜Λ mean that the infection never occurs with
no infective individual (i.e., at the disease-free state), and the latter two do that the
secondary infection necessarily occurs once some infective individuals appear in the
community. Note that commuters from different residential districts at the social phase
are assumed to be mixed in the central place, and the infection in the central place
follows the assumption of completemixing as the application of themean-field approx-
imation for the epidemic dynamics. Similarly, the infection at the private phase is
assumed to follow the complete mixing, so that there is no difference in the contri-
bution to the disease infection between non-commuter and commuter at the private
phase.

In this paper, as for Λ and ˜Λ, we will consider the mass-action and the ratio-
dependent (frequency-dependent) types. The former can be regarded as a modeling
for the case that the contact rate could be assumed to be proportional to the population
density, while the latter can be for the case that the contact rate could be assumed
constant independently of the population density. Therefore,with the above-mentioned
assumption of complete mixing, we can give the following functions as each type of
the infection force:

MASS-ACTION TYPE:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Λ(S, I , S, I ) = β
I + I

S + I + S + I
κ(S + I + S + I ) = βκ(I + I );

˜Λ(˜S, ˜I ) = β
˜I

˜S + ˜I
K (˜S + ˜I ) = βK˜I .

(7)
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RATIO-DEPENDENT TYPE:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Λ(S, I , S, I ) = β
I + I

S + I + S + I
ω ;

˜Λ(˜S, ˜I ) = β
˜I

˜S + ˜I
Ω.

(8)

Hereβ is the probability of infection per contact between a susceptible and an infective,
which significantly depends on the nature of the disease transmissibility. For the mass-
action type, the contact rate is given by κ(S + I + S + I ) at the private phase and
by K (˜S + ˜I ) at the social phase with positive constant coefficients κ and K , while
for the ratio-dependent type, it is given by a constant ω at the private phase and by a
constant Ω at the social phase. These positive parameters κ , K , ω, and Ω depend not
only on the nature of disease transmission (e.g., route) but also on the characteristics
of community (e.g., the condition of public health, the social custom/manner, and the
kind of principal job if it can be identified). Then, for each type of the infection force,
we can get the following formulas of λ(S, S) and˜λ(˜S) defined in (6):

MASS-ACTION TYPE: λ(S, S) = βκ; ˜λ(˜S) = βK , (9)

RATIO-DEPENDENT TYPE: λ(S, S) = βω

S + S
; ˜λ(˜S) = βΩ

˜S
. (10)

3 Equilibrium population distribution

3.1 Disease-free equilibrium

From (3), we have the following ordinary differential equation in terms of the com-
muter population size at the private phase when no infective exists, that is, at the
disease-free state:

dS

dt
= −mS

rcS + mS
cr
˜S = −mS

rcS + mS
cr(pN − S) = (mS

rc + mS
cr)

( pN

1 + mS
rc/m

S
cr

− S
)

.

(11)

Hence we can immediately find that the commuter population distribution necessarily
approaches its equilibrium state with (S, ˜S) = (S∗

0 ,
˜S∗
0 ) given by

S∗
0 = pN

1 + mS
rc/m

S
cr

= (

1 − τS
)

pN ; ˜S∗
0 = τS pN , (12)

where we used (5). It is clearly seen that the equilibrium size of subpopulation at each
phase is proportional to the expected duration at the phase. As for the non-commuter
subpopulation at the disease-free equilibrium, we have S = S

∗
0 = (1 − p)N , since

every individual is susceptible.

123



2118 H. Seno

3.2 Endemic equilibrium

The existence of the endemic equilibrium (S, I , S, I ,˜S, ˜I )=(S
∗
+, I

∗
+, S∗+, I ∗+,˜S∗+, ˜I ∗+)

with positive values of the infectives I
∗
+, I ∗+, and˜I ∗+ depends on the detail of functions

Λ and ˜Λ. Even for those given by (7) or (8), the equations of these equilibrium values
appear messy. Following to the aim of this paper, we shall not look into the mathe-
matical problem of the existence of the endemic equilibrium. As demonstrated by the
figures given in the following sections, numerical calculations of (3) with (7) or (8)
show its existence and stability. Although it can be conjectured that, for (3) with (7)
or (8), the endemic equilibrium is globally stable whenever it exists, we shall not look
into the stability of the endemic equilibrium either in this paper, and shall leave these
issues a mathematically open problem about the model.

4 Basic reproduction numberR0

In the biological context, the basic reproduction number is defined as the expected
number of new cases of an infection caused by an infected individual, in a popula-
tion consisting of susceptible contacts only (for the recent review about the definition,
the translation, and the practical application, see Delamater et al. (2019)). Following
the biological definition, a mathematical theory is used to derive the basic reproduc-
tion number as the spectrum radius of a specific matrix which is called the “next
generation matrix” for a system of the ordinary differential equations governing an
epidemic dynamics (see Diekmann et al. (2013) for a complete reference, or see van
den Driessche (2017); Lewis et al. (2019) for the recent review).

As shown in “Appendix A”, making use of the next generation matrix with the
theory given by van den Driessche and Watmough (2002, 2008), we can derive the
following basic reproduction number R0 for the model (3):

R0 = 1

2

{

λ∗
0S

∗
0

ρ
+ λ∗

0S
∗
0

ρ
+ ρ + mI

rc

ρ

˜λ∗
0
˜S∗
0

mI
cr

+
√

(λ∗
0S

∗
0

ρ
+ λ∗

0S
∗
0

ρ
− ρ + mI

rc

ρ

˜λ∗
0
˜S∗
0

mI
cr

)2 + 4
mI

rc

ρ

λ∗
0S

∗
0

ρ

˜λ∗
0
˜S∗
0

mI
cr

}

, (13)

with λ∗
0 := λ(S

∗
0, S∗

0 ) ,˜λ
∗
0 := ˜λ(˜S∗

0 , 0), S
∗
0 = (1 − p)N , S∗

0 = (

1 − τS
)

pN , and
˜S∗
0 = τS pN . Then we can get the following result about the condition that R0 < 1:

Theorem 1 The following condition is necessary and sufficient for R0 < 1:

λ∗
0S

∗
0

ρ
+ λ∗

0S
∗
0

ρ
< 1,

ρ + mI
rc

ρ

˜λ∗
0
˜S∗
0

mI
cr

< 1,

and
{

1 −
(λ∗

0S
∗
0

ρ
+ λ∗

0S
∗
0

ρ

)}(

1 − ρ + mI
rc

ρ

˜λ∗
0
˜S∗
0

mI
cr

)

>
mI

rc

ρ

λ∗
0S

∗
0

ρ

˜λ∗
0
˜S∗
0

mI
cr

. (14)
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Fig. 4 p-dependence of the basic reproduction number R0 given by (13) for each combination of (9) and
(10). Numerical examples for each combination of formulas aboutΛ of the private phase and ˜Λ of the social
phase, defined by (7) and (8), the mass-action and the ratio-dependent types with the following parameter
values at the disease-free equilibrium: N = 100, 000; τS = 0.4; τI = 0.3; ρ = 0.2; βκ = 3.0 × 10−6;
βK = 6.0 × 10−6; βω = 0.3; βΩ = 0.6. CommonlyR00 = 1.5, defined by (15)

The outline of proof is given in the last part of “Appendix A”.
For a convenience of the subsequent analysis, let us define the following extremal

values of R0:

R00 := lim
p→0+R0; R01 := lim

p→1−0
R0.

Especially R00 is the basic reproduction number when everyone always remains at
the private phase, and we can get the following simple formula from (13) with (9) and
(10):

R00 = λ∗
0N

ρ
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

βκN

ρ
for the mass-action type of infection force;

βω

ρ
for the ratio-dependent type of infection force.

(15)

5 Dependence ofR0 on the commuter ratio p

Especially in this paper, we shall focus on the dependence of the basic reproduction
numberR0 on the commuter ratio p, and investigate how the commuter ratio p affects
the value ofR0 in ourmodel. Indeed, as shownbynumerical calculations of the value of
R0 in Fig. 4, it is clear that the basic reproduction numberR0 significantly depends on
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(a) (b) (c)

Fig. 5 p-dependence of the basic reproduction number R0 given by (16) for the mass-action type of
infection forces Λ and ˜Λ defined by (7). Numerical examples of R0 for different values of ˜λ∗ = βK :
a βK = 9.0 × 10−6; b βK = 6.0 × 10−6; c βK = 2.4 × 10−6. Commonly, N = 100, 000; τS = 0.4;
τI = 0.3; ρ = 0.2; λ∗ = βκ = 3.0 × 10−6; βω = 0.3; βΩ = 0.6;R00 = 1.5

the commuter ratio p, and the p-dependence has different characteristics for different
types of the infection force.

5.1 Case of only mass-action type of infection force

In this section, let us consider the case that the infection forces for two phases are
only mass-action type. That is, the functions of infection force Λ and ˜Λ are given by
(7). From (13) with λ∗

0 and˜λ∗
0 given by (9) at the disease-free equilibrium obtained in

Sect. 3.1, we now have the following R0:

R0 = 1

2
R00

[

(1 − τS p) + ( 1

1 − τI
+ ρ

)

τS pτI
K

κ

+
√

{

(1 − τS p) −
(

1

1 − τI
+ ρ

)

τS pτI
K

κ

}2 + 4
1 − τS

1 − τI
τS p2τI

K

κ

]

, (16)

where R00 is given by (15) for the case of the mass-action type of infection force.
In Fig. 4, it is clearly shown that there is a case that the basic reproduction number

R0 takes the smallest value at an intermediate commuter ratio. This is the case under a
certain condition. In fact, numerical calculations of the value ofR0 in Fig. 5 show that
there is the case that the relation of R0 to the commuter ratio p appears monotonic,
as in Fig. 5c. We can get the following results with respect to the existence of the
extremal minimum value of R0 for an intermediate value of p (“Appendix B.1”):

Theorem 2 For R0 with λ∗
0 and ˜λ∗

0 of the mass-action type, it takes the extremal
minimum for a unique value of p = p∗ such that 0 < p∗ < 1, if and only if the
following condition is satisfied:

{

(

1

1 − τI
+ ρ

)

τI
K

κ
− 1

}

√

{

(1 − τS) − τS

(

1

1 − τI
+ ρ

)

τI
K

κ

}2 + 4τS
1 − τS

1 − τI
τI
K

κ

>
{

(

1

1 − τI
+ ρ

)

τI
K

κ
+ 1

}{

(1 − τS) − τS

(

1

1 − τI
+ ρ

)

τI
K

κ

}

− 4
1 − τS

1 − τI
τI
K

κ
.

(17)
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Otherwise, it is monotonically decreasing in terms of p.

Corollary 1 Under the condition (17),R0 with λ∗
0 and˜λ∗

0 of the mass-action type takes
the extremal minimum at p = p∗ which is given by

p∗ =

{

(

1

1 − τI
+ ρ

)

τI
K

κ
+ 1

}

−
{

(

1

1 − τI
+ ρ

)

τI
K

κ
− 1

}

√

1 − τS

τS(1 − τI)ρ + 1

τS

{

(

1

1 − τI
+ ρ

)

τI
K

κ
+ 1

}2 + 4
1 − τS

1 − τI
τI
K

κ

.

(18)

The condition (17) is equivalent to the condition that 0 < p∗ < 1.

When such a p∗ exists, the basic reproduction number for p = p∗, that is, R∗
0 =

R0
∣

∣

p=p∗ is expressed as the following formula (“Appendix B.1”):

R∗
0 = R00

⎡

⎢

⎢

⎣

1 −

(

1

1 − τI
+ 1 + τSρ

)

τI
K

κ
+ τS

τS

{

(

1

1 − τI
+ ρ

)

τI
K

κ
+ 1

}2 + 4
1 − τS

1 − τI
τI
K

κ

⎤

⎥

⎥

⎦

. (19)

We note that the results given by Theorem 2 and Corollary 1 are independent of
the disease-specific parameter β and the total population size of the community N ,
whereas the value of R0 depends on them.

As shown by Fig. 6, the value of K/κ is crucial for the existence of an intermediate
commuter ratio p∗ to minimize the basic reproduction numberR0. Only for relatively
large value of K/κ , such p∗ exists:

Corollary 2 There exists the following specific values ξ∗ and ξ∗ for K/κ such that
if K/κ ≥ ξ∗, R0 takes the minimum for p = p∗ less than 1 independently of the
recovery rate ρ while if K/κ ≤ ξ∗, R0 is monotonically decreasing in terms of p
independently of the recovery rate ρ:

ξ∗ := 1 − τI

τI
·

√
1 − τS

1 + √
1 − τS

; (20)

ξ∗ := 1

τI
·

(1 − τS)

(

1

1 − τI
+ τS

τI

)

1 − τS

1 − τI

(

1

1 − τI
+ τS

)

+
(

1

1 − τI
+ 2

τS

τI

)

+
√

1 − τS

1 − τI

( 1

1 − τI
+ τS

)

.

(21)

It can be easily found that

0 < ξ∗ < ξ∗ <
1 − τI

2τI
(22)
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Fig. 6 Parameter dependence about the p-dependence of the basic reproduction number R0 given by
(16) for the mass-action type of infection forces. The left numerical result shows the parameter region of
(ρ, K/κ), identified by the condition (17) with τS = 0.4 and τI = 0.3. For the upper region with the larger
value of K/κ , R0 takes its extremal minimum for p = p∗ which is given by (18), while for the lower
region with the smaller value of K/κ , it is monotonically decreasing in terms of p with the minimum at
p = 1. ξ∗ and ξ∗ are defined by (20) and (21): ξ∗ = 0.712 and ξ∗ = 0.590 in this numerical calculation.
The right numerical result is the contour map for the value of R0 in the (p, K/κ)-parameter space, with
N = 100, 000; τS = 0.4; τI = 0.3; βκ = 2.3× 10−6; ρ = 0.2;R00 = 1.15. The filled region of the right
figure indicates that forR0 < 1

Fig. 7 τI-dependence of ξ∗, ξ∗, and ξ∗ − ξ∗, defined by (20) and (21), numerically drawn with τS = 0.4

for any positive τS and τI less than 1. We note that ξ∗ = ξ∗ = (1 − τI)/(2τI) for
τS = 0, and ξ∗ = ξ∗ = 0 for τS = 1.

The reasonable value of τI must be in general less than that of τS from theirmeanings
in our modeling. Further, ξ∗ and ξ∗ are monotonically decreasing in terms of τS and τI
as seen in Fig. 7. Supposing the value of τS from 0.3 to 0.4 day (around 7 to 10 hours)
as its reasonable value, we have ξ∗∣

∣

τI=τS
from 0.65 to 1.06, and ξ∗

∣

∣

τI=τS
from 0.55

to 0.91. When τI is near τS, that is, when the disease weakly disturbs the day-to-day
activity, the width of band [ξ∗, ξ∗] is rather narrow as indicated by Fig. 7, so that
the existence of p∗ weakly depends on the recovery rate ρ, that is, on the period for
recovery 1/ρ.
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In contrast, when the disease seriously disturbs the day-to-day activity and limits
the infective individual’s day-to-day activity, that is, when τI is sufficiently smaller
than τS, the width of band [ξ∗, ξ∗] becomes significantly wider as indicated by Fig. 7.
Then for a relatively wide range of the value of K/κ , the existence of p∗ significantly
depends on the period for recovery 1/ρ. It should be now remarked that this is the case
that both values of ξ∗ and ξ∗ are relatively large as seen from Fig. 7. For this reason,
when τI is sufficiently smaller than τS, a sufficiently large value of K/κ is necessary
for the existence of such a value p∗.

The ratio K/κ can be regarded as an index to indicate the relative likelihood of
contacts between the susceptible and the pathogen (or the infective individuals, espe-
cially if the disease transmission requires the direct contact between individuals) at
the social phase, compared to those at the private phase. Since the reasonable values
for ξ∗ and ξ∗ estimated above are around one when τI is near to τS, such a value p∗ is
expected to exist if the likelihood of contacts between the susceptible and the pathogen
is larger at the social phase than at the private phase. This would be a frequent situation
for a variety of non-serious transmissible diseases in the reality.

As a general result from the above arguments, when the disease weakly disturbs the
day-to-day activity, there could be very likely to exist a specific intermediate commuter
ratio such as tominimize the basic reproduction numberR0. In contrast, for the disease
seriously disturbing the day-to-day activity, such a value p∗ could exist only under
the situation that the contacts between the susceptible and the pathogen is several times
more likely at the social phase than at the private phase.We shall detail the dependence
of R0 on the commuter ratio p and the other parameters in the rest of this section.

From the above results, we have found that the basic reproduction numberR0 takes
its maximal value for p = 0 or p = 1. More clearly we can get the following result
(“Appendix B.1”):

Theorem 3 R0 given by (16) takes the maximal value
⎧

⎪

⎪

⎨

⎪

⎪

⎩

R00 when p = 0, if
( 1

1 − τI
+ τSρ

)

τI
K

κ
< 1;

R01 when p = 1, if
( 1

1 − τI
+ τSρ

)

τI
K

κ
> 1.

(23)

Figure 8 numerically demonstrates the dependence of the maximal and the minimal
values of R0 on the parameter value of K/κ , following the appearance of a specific
value p∗. For sufficiently small K/κ , the range ([+], ∗ ,−) in Fig. 8,R0 is monoton-
ically decreasing in terms of p, where R00 > 1 > R01. For the range ([+], − ,−)

in Fig. 8, the extremal minimum of R0 exists, and R00 > 1 > R01 > R∗
0 . Further,

R00 > R01 > 1 > R∗
0 for the range ([+], − ,+), R00 > R01 > R∗

0 > 1 for the
range ([+], + ,+), and R01 > R00 > R∗

0 > 1 for the range (+, + , [+]).1

1 The notation for each range/region is given to represent the p-dependence pattern ofR0 in the following
way: the first digit corresponds to the value of R00, the second to that of R∗

0 for a value of p such that
0 < p < 1, and the third to that of R01. The digit is ‘+’ when the value is greater than 1, and it is ‘−’
when the value is less than 1. When R∗

0 does not exist, the second digit is ‘∗’. Besides the largest of these
three/two values is indicated by [].
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Fig. 8 K/κ-dependence ofR00,R
∗
0 , andR01, given by (15) and (19) for the mass-action type of infection

force, numerically calculated with N = 100, 000; τS = 0.4; τI = 0.3; βκ = 2.3 × 10−6; ρ = 0.2. In this
numerical calculation, R00 = 1.15, and the ranges from the left to the right are [0, 0.973], (0.973, 1.51],
(1.51, 1.92], (1.92, 2.21], and (2.21,∞). The attached graphs show the representative p-dependence of
R0 for each parameter range. For the detail explanation, see the main text

For the ranges ([+], + ,+) and (+, + , [+]) in Fig. 8, R0 is beyond 1 for any
commuter ratio p, so that the spread of such a transmissible disease could occur in the
community independently of the commuter ratio. In contrast, as for a transmissible dis-
ease corresponding to the other ranges, ([+], ∗ ,−), ([+], − ,−), and ([+], − ,+),
its spread depends on the commuter ratio. It is noted that, for those ranges ([+], ∗ ,−),
([+], − ,−), and ([+], − ,+), sufficiently small commuter ratio makes R0 beyond
1, so that a transmissible disease could be regarded as likely to spread in the commu-
nity with sufficiently small commuter ratio. Interestingly for the range ([+], − ,+),
the community with only an intermediate specific range of the commuter ratio can
make R0 below 1 so as to escape from the spread of a transmissible disease. While
Fig. 8 shows numerical results in the case ofR00 > 1 when the community only with
the private phase has the basic reproduction number larger than 1, there are some other
comparable cases as numerically shown in Fig. 9.

From those results given in Figs. 8 and 9 , R0 is less than 1 independently of p
for the parameter regions indicated by (−, − , [−]), ([−], − ,−), and ([−], ∗ ,−),
where ρ is relatively large. So these regions correspond to a disease from which
the recovery is relatively fast (e.g., ρ = 0.5 corresponds to the recovery expectedly
two days after the infection).On the other hand,R0 is larger than 1 independent of p for
the regions (+, + , [+]), ([+], + ,+), and ([+], ∗ ,+), where ρ is relatively small,
corresponding to a disease from which the recovery takes a relatively long period.
Although the regions (−, − , [−]), ([−], − ,−), and ([−], ∗ ,−) are located for ρ >

0.23 in Fig. 9, they are expanded toward the smaller ρ as the value ofβκN gets smaller,
while the regions (+, + , [+]), ([+], + ,+), and ([+], ∗ ,+) shrink at the same time.
This means that, for the disease which requires the longer period for the recovery from
it (that is, the smaller value of ρ), if some operation of the public health could succeed
in decreasing enough the likelihood of the contact between the susceptible and the
pathogen at the private phase, the disease spread in the community could be avoided,
since such an operation could work to reduce the value of κ . Washing hands and using
the mask would be examples of such operation.

The region (−, − , [+]) indicates the case that R0 is larger than 1 only for the
larger commuter ratio, while it is smaller than 1 for the smaller commuter ratio. As
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Fig. 9 Categorization of the parameter region of (ρ, K/κ) with respect to the p-dependence of R00, R
∗
0 ,

and R01, given by (15) and (19) for the mass-action type of infection forces. Numerical calculation with
N = 100, 000; τS = 0.4; τI = 0.3; βκ = 2.3 × 10−6. The attached graphs show the representative p-
dependence ofR0 for the parameter regions, additionally to those given in Fig. 8. For the detail explanation,
see the main text

seen in Fig. 9, this is only when the value of K/κ is large and that of ρ is intermediate.
A large value of K/κ can be considered as the case when there is a sufficiently
higher chance of the disease transmission at the social phase than at the private phase.
It might seem that, for a community in such a case of (−, − , [+]), the limitation
of the commuting between the residential districts and the central place in order to
reduce the commuter ratio could be reasonable as an intervention policy to suppress
the spread of a transmissible disease. However, we remark that such an operation to
limit the commuting would be in general impractical, as long as the commuting is for
the day-to-day activity which provides the base of daily life of the residents in the
community.

Contrarily, for the regions ([+], ∗ ,−) and ([+], − ,−), R0 is larger than 1 only
for the smaller commuter ratio. This case could occur only when the value of K/κ is
small and that of ρ is intermediate. The small value of K/κ can be considered here to
mean that the chance of the disease transmission at the social phase is not much larger
than that at the private phase. It is implied for such a case of ([+], ∗,−) or ([+],−,−)

that, when the structure of a community (e.g., the age structure, the kind of principal
industry, or the working pattern) shifts to that with such a small commuter ratio, a
specific disease which is rare before would emerge and spread within the community.

In the most interesting case of the regions ([+], − ,+) and (+, − , [+]), R0 is
below 1 only for a certain intermediate range of the commuter ratio, so that it becomes
beyond 1 for the ranges of sufficiently small or large commuter ratio, although such
a parameter region of (ρ, K/κ) appears rather small as indicated by Fig. 9. For a
community corresponding to the regions ([+], − ,+) and (+, − , [+]), a change in
the community ratio would increase the risk of the disease spread, as illustrated by
some numerical calculations in Figs. 10 and 11. Such a community could be regarded
as fragile against the spread of such a transmissible disease.
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(a) (b) (c)

Fig. 10 Temporal variation of infective populations for the mass-action type of infection force. Numerical
calculation of (3) with (7) about the region ([+], − , +) in Fig. 9 for different commuter ratios: a p = 0.4
(R0 = 1.011);b p = 0.6 (R0 = 0.9880); c p = 0.8 (R0 = 1.003). The initial condition for each numerical
calculation is given by (S(0), I (0), S(0), I (0),˜S(0), ˜I (0)) = (S

∗
0 − 1, 1, S∗

0 , 0,˜S∗
0 , 0) with an infective

individual at the private phase, which corresponds to a perturbation from the disease-free equilibrium
shown in Sect. 3.1. Commonly, N = 100, 000; τS = 0.4; τI = 0.3; ρ = 0.2; βκ = 2.3 × 10−6;
βK = 4.025 × 10−6; R00 = 1.15

Fig. 11 A numerical result about the p-dependence of R0 and the equilibrium size of total infective
population I

∗ + I∗ + ˜I∗ for the mass-action type of infection force, according to (3) with (7) for the
region ([+], − , +) in Fig. 9. The initial condition for the numerical calculation of the equilibrium size
is given by (S(0), I (0), S(0), I (0),˜S(0), ˜I (0)) = (S

∗
0 − 1, 1, S∗

0 , 0,˜S∗
0 , 0) with an infective individual at

the private phase, which corresponds to a perturbation from the disease-free equilibrium shown in Sect.
3.1. Commonly, N = 100, 000; τS = 0.4; τI = 0.3; ρ = 0.2; βκ = 2.3 × 10−6; βK = 4.025 × 10−6;
R00 = 1.15

On the whole, it is very interesting that we find a wide region of (ρ, K/κ) such that
R0 has the extremal minimum for an intermediate value of p, that is the region except
for ([+], ∗ ,+), ([+], ∗ ,−), and ([−], ∗ ,−) in Fig. 9. This implies that the social
difference or change reflected to the commuter ratio could increase the risk of the
spread of a transmissible disease, independently of whether such a change makes the
commuter ratio larger or smaller.

5.2 Case of themass-action and the ratio-dependent types respectively for
private and social phases

In this section, we consider the case that the infection force is the mass-action type
for the private phase and the ratio-dependent type for the social phase. The function
of infection force Λ is given by (7), and ˜Λ by (8). In this case, by the arguments given
in “Appendix B.2”, we can get the following result about the dependence ofR0 on p:
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Fig. 12 (p, βΩ)-dependence ofR0 for the ratio-dependent type of infection force at the private phase and
the mass-action type at the social phase. . Numerical calculation with N = 100, 000; τS = 0.4; τI = 0.3;
ρ = 0.2; λ∗ = βκ = 3.0 × 10−6; R00 = 1.5

Theorem 4 ForR0 with λ∗
0 and˜λ∗

0 of respectively the mass-action type and the ratio-
dependent one at the disease-free equilibrium, R0 is monotonic in terms of p as
follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

decreasing if

(

1

1 − τI
+ τSρ

)

τI

τS

Ω

κN
< 1;

increasing if

(

1

1 − τI
+ τSρ

)

τI

τS

Ω

κN
> 1.

(24)

Therefore, R0 takes its maximum for p = 0 when the former condition of (24) is
satisfied, while it does for p = 1 when the latter condition of (24) is satisfied. The
numerical result given in Fig. 4 corresponds to the former about this case. Indeed as
numerically shown by Fig. 12,R0 is monotonically decreasing or increasing in terms
of p.

Since the condition (24) in Theorem 4 depends on the total population size of the
community N , it is implies in this case that the community with a sufficiently large
population size would have the smaller risk of the disease spread as the commuter
ratio gets larger, while the community with a sufficiently small population size would
have the larger risk as the commuter ratio gets larger.

5.3 Case of the ratio-dependent and themass-action types respectively for
private and social phases

Let us consider here the case that the infection force is the ratio-dependent type for
the private phase and the mass-action type for the social phase. That is, the func-
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tion of infection force Λ is given by (8), and ˜Λ by (7). In this case, as proved in
“Appendix B.3”, we can get the following result about the dependence ofR0 on p:

Theorem 5 For R0 with λ∗
0 and˜λ∗

0 of respectively the ratio-dependent type and the
mass-action one at the disease-free equilibrium, R0 is monotonically increasing in
terms of p.

See the numerical result in Fig. 4. Therefore, the risk of the spread of a transmissible
disease is higher for the community with the larger commuter ratio.

5.4 Case of only ratio-dependent type of infection force

At the end, we consider the case that the infection forces are only ratio-dependent type
for both phases. The functions of infection force Λ and ˜Λ are here given by (8). From
(13) with λ∗

0 and˜λ∗
0 given by (10) at the disease-free equilibrium, we now have the

following R0:

R0 = 1

2
R00

[

1 +
(

1

1 − τI
+ ρ

)

τI
Ω

ω

+
√

{

1 −
(

1

1 − τI
+ ρ

)

τI
Ω

ω

}2 + 4
1 − τS

1 − τI

1

τS

(

1

1 − τS p
− 1

)

τI
Ω

ω

]

,

(25)

whereR00 is given by (15) for the case of the ratio-dependent type of infection force.
From this formula of R0, we can immediately get the following result about the
dependence of R0 on p:

Theorem 6 For R0 with λ∗
0 and˜λ∗

0 of the ratio-dependent type, R0 is monotonically
increasing in terms of p.

See the numerical result in Fig. 4. Therefore, in this case, a transmissible disease is
more likely to spread in the community with the larger commuter ratio.

6 Nontrivial contribution of the duration at the social phase

In this section, as a supplementary result to those in the previous sections about the
p-dependence ofR0, we consider the contribution of the duration at the social phase,
that is, of τS and τI to the risk of the spread of a transmissible disease.

A change of the life style could affect the working hours averaged over the commu-
nity. Actually some statistical data show that the working hours have a general trend
to become shorter, as the life style gets modernized while the modern society respects
a work–life balance more and more [for a cross-country data, see OECD (2018a)].
Besides, the average value of working hours can be observed significantly depending
on the society-specific factors to determine the working pattern and structure, as dis-
cussed in Dolton (2017) with respect to the working hours for different countries [for
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(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 13 Contour map in the (p, τS) space for the value of R0 given by (13) for each combination of the
infection forces given by (9) and (10), the mass-action and the ratio-dependent types: a only mass-action; b
mass-action and ratio-dependent; c ratio-dependent andmass-action;d only ratio-dependent infection forces
at the private and the social phases respectively. Numerical calculation with N = 100, 000; τI = 0.75τS;
βκ = 2.3× 10−6; βω = 0.23; βK = 3.45× 10−6; βΩ = 0.345; ρ = 0.2;R00 = 1.15. The filled region
in (a) indicates that forR0 < 1. In each contour map, the value ofR0 tends to increase toward the right-up
corner. For the detail, see the main text

some other detailed arguments about such factors, see Lee et al. (2007), Messenger
(2018), OECD (2018b)]. Since our main purpose of this paper is to try to discuss
the relation of the community structure to the risk of the spread of a transmissible dis-
ease, and since such a change in the working hours would modify it, it would be worth
while showing some suggestive results about the dependence of R0 on the duration
at the social phase.

In our model, the change or the difference of the working hours is reflected to the
values of τS and τI. Figure 13 shows a numerical result about the dependence of R0
on the duration at the social phase. In the numerical calculation of R0, we assumed
τI = 0.75τS. The numerical calculations imply that the basic reproduction numberR0
would have non-trivial dependence on the duration at the social phase. Only when the
infection forces are the mass-action type at the private phase and the ratio-dependent
type at the social phase, that is of Fig. 13b, the dependence appears simple such that
the longer duration at the social phase would makeR0 larger so as to increase the risk
of the spread of a transmissible disease.

As outstandingly indicated by the numerical result of Fig. 13a in the case that the
infection forces are only of themass-action type, the dependence ofR0 on the duration
at the social phase is monotonic only for sufficiently small value of the commuter ratio
p. For the larger value of the commuter ratio p, there could be a certain intermediate
range of the duration at the social phase only in which the basic reproduction number
R0 becomes less than 1. In such a case, the longer or shorter duration at the social
phase out of the intermediate range makes R0 greater than 1. Therefore, it is likely
that the decrease of the averaged working hours would make the risk of the spread of
a transmissible disease larger in such a community. In contrast, as shown in Fig. 13c,
d, when the infection force at the private phase is the ratio-dependent type, there is a
case that R0 becomes larger in a certain range of the duration at the social phase. In
the case of Fig. 13c, the range exists only for a relatively small value of p, while in
the case of Fig. 13d, it exists only for the value of p near to 1. Except for these cases,
the basic reproduction number R0 becomes larger as the duration at the social phase
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gets longer even when the infection force at the private phase is the ratio-dependent
type.

Even only from these supplementary results with some numerical calculations, it is
clear that the contribution of the duration at the social phase to the risk of the spread
of a transmissible disease is nontrivial, and it is implied that its contribution to the
risk of the spread of a transmissible disease is significantly related to the commuter
ratio, and more generally to the community structure. It is an important suggestion
that the shorter duration at the social phase would not necessarily result in the smaller
risk of the spread of a transmissible disease.

7 Concluding remarks

The contact pattern is one of the most important factors to determine the risk of the
spread of a transmissible disease. It depends on the transmission route, the social
and the cultural customs related to it, and the demographic nature of the community
(see Mossong et al. 2008; Ball et al. 2015; Britton and Giardina 2016; Yin et al.
2017; Cui et al. 2018). In this paper, we considered two types of the formula for
the infection force: the mass-action and the ratio-dependent (frequency-dependent).
These are frequently used for the population dynamics modeling about the disease
spread in a variety of contexts, especially with the system of differential equations.
As discussed in Diekmann et al. (2013), the formula for the infection force should
be introduced appropriately for the reasonable modeling about the contact pattern
characterized by the transmissible disease considered in each research project. Our
analysis of themodel in this paper was not for a specific transmissible disease, whereas
it gave some theoretical results clearly showing the significant difference depending
on the formula for the infection force. This means that the nature of the spread of
a transmissible disease in a community significantly depends on the contact pattern
characterizing a relation between the community and the disease.

In most of previous mathematical models for the epidemic dynamics, the infection
force was introduced by a common formula/rule specifically chosen about the model
even in the case of the dynamics with a multi-group or multi-patch setup (Del Valle
et al. 2013), and in the case of the dynamics with a multi-level mixing (Ball et al. 1997;
Ball and Neal 2002; Aplloni et al. 2014; Falcón-Lezama et al. 2016). However, as we
did for our model in this paper, some different formulas for the infection force could
be appropriate to be introduced in the model as the reasonable modeling, because the
contact pattern itself could be regarded as heterogeneous in the community (Britton
and Giardina 2016; Yin et al. 2017; Cui et al. 2018; Goeyvaerts et al. 2018). For this
reason, the results about our model with different combinations of the formulas for
the infection force demonstrated that such a heterogeneity in the contact pattern could
cause a significant difference in the conclusion of an epidemic dynamics, depending
on communities different with respect to the characteristics about the contact pattern,
for example, as discussed in Keeling et al. (2010) and Balcan and Vespignani (2011)
by the network-based numerical models.

In this paper, we did focus on the commuter ratio as a factor characterizing the
community. Our analysis on the model showed that the basic reproduction number
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significantly depends on the commuter ratio. Especially it is a meaningful result
that there could be the threshold value for the commuter ratio such that the basic
reproduction number becomes less than or greater than 1. The commuter ratio could
significantly affect the risk of the spread of a transmissible disease within a commu-
nity.

One of modern world problems is the aging of society (UNDESA 2017). It has
been discussed also for Japanese society (Muramatsu and Akiyama 2011; Yamashige
2014). Social aging could be a factor to modify or change the structural characteris-
tics of the community especially with respect to the day-to-day activity. Generally
saying, since it is expected that the commuter ratio would be relatively small in
the aged community, the social aging could cause a significant change for the risk
of the spread of a transmissible disease, not only because of the residents’ aging but
also because of the change in the community structure in terms of the day-to-day
activity.

There are some other factors which would change the structural characteristics of
the community with respect to the day-to-day activity. A definite example of such
factors in the modern era is the teleworking or the telecommuting. Teleworking could
be defined in general as a form of labor that consists of at least partial working
at non-conventional workspace with a certain practical use of the information and
telecommunication equipment (Sato 2013), whereas its meaning would appear still
vague (Garad and Ismail 2018). It has been investigated as one of the trends and
the policies about the modern working style, following the developments in informa-
tion and communication technologies (ICT) (Eurofound and the International Labour
Office 2017; Messenger 2018; Morikawa 2018). Although the effect of teleworking
on the working pattern is open to debate (de Abreu e Silva and Melo 2018a, b), we
could expect that it would contribute to the increase of the duration at the private
phase defined in this paper. Therefore, such a prospective shift in the working pattern
would cause the change in the risk of the spread of a transmissible disease for the
community.

Since the results of this paper imply that the risk of the spread of a transmissi-
ble disease in a community significantly depends on the day-to-day working pattern
of the community, such risk differs between communities with different characteris-
tics about the day-to-day working pattern, for example, due to the difference about
the major industry. Further, since the day-to-day working pattern will be forced to
vary due to the social aging or the shift of working style, the risk of the spread
of a transmissible disease will be changed from now to the future for the commu-
nity. The practical research of public health to prevent the spread of a transmissible
disease would become need a collaborative action with the researches in social
sciences more and more, for example, to discuss the policy of public health for
the community, as suggested by Soriano-Paños et al. (2018) with an agent-based
model.
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Appendix

A The basic reproduction numberR0

At first, we pick up only the infective subpopulations from the 6-dimensional system
with a unique residential district given by (3) as follows:

d I

dt
= ΛS − ρ I

d I

dt
= ΛS − ρ I − mI

rc I + mI
cr

˜I ; (26)

d˜I

dt
= ˜Λ˜S + mI

rc I − mI
cr

˜I .

Next we decompose the dynamical terms into two classes in which one shows the
new infection process, and the other does show the other processes of the population
dynamics:

dϕ

dt
= F (ϕ) − V (ϕ), (27)

where ϕ := T
[

I I ˜I
]

;

Fc(ϕ) :=
⎡

⎢

⎣

ΛS

ΛS
˜Λ˜S

⎤

⎥

⎦
; −V (ϕ) :=

⎡

⎢

⎢

⎣

−ρ I

−ρ I − mI
rc I + mI

cr
˜I

mI
rc I − mI

cr
˜I

⎤

⎥

⎥

⎦

.

The 3-dimensional vectorF is for the terms of new infection process, while−V is for
the other. The Jacobian 3×3 matrices ofF and V about the disease-free equilibrium
0 := T

[

0 0 0
]

are given by

F:=DF (0)=

⎡

⎢

⎢

⎣

λ∗
0S

∗
0 λ∗

0S
∗
0 0

λ∗
0S

∗
0 λ∗

0S
∗
0 0

0 0 ˜λ∗
0
˜S∗
0

⎤

⎥

⎥

⎦

; V:=DV (0)=
⎡

⎣

ρ 0 0
0 ρ + mI

rc −mI
cr

0 −mI
rc mI

cr

⎤

⎦ ,

where we used (6). Then, the next generation matrix K is given by FV−1, that is,

K = FV−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

λ∗
0S

∗
0

ρ

λ∗
0S

∗
0

ρ

λ∗
0S

∗
0

ρ

λ∗
0S

∗
0

ρ

λ∗
0S

∗
0

ρ

λ∗
0S

∗
0

ρ

0
mI

rc

ρ

˜λ∗
0
˜S∗
0

mI
cr

ρ + mI
rc

ρ

˜λ∗
0
˜S∗
0

mI
cr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (28)
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The theory by van den Driessche and Watmough (2002, 2008) says that the spectrum
radius, that is, the maximum absolute value of the eigenvalue of K gives the basic
reproduction number R0. The eigenvalue μ of K is the root of the following cubic
equation:

−μ
(

μ2 − a1μ + a0
) = 0, (29)

with

a1 := λ∗
0S

∗
0

ρ
+ λ∗

0S
∗
0

ρ
+ ρ + mI

rc

ρ

˜λ∗
0
˜S∗
0

mI
cr

; a0 :=
˜λ∗
0
˜S∗
0

mI
cr

(ρ + mI
rc

ρ

λ∗
0S

∗
0

ρ
+ λ∗

0S
∗
0

ρ

)

.

(30)

Then, it is easily found that three roots of (29) are zero and two positive values, and
that the largest one is given by

max
∣

∣μ
∣

∣ =
a1 +

√

a21 − 4a0

2
.

Consequently, from (28), we can derive the residential basic reproduction numberR0
given by (13). Further, since a1 > 0 and a0 > 0, the necessary and sufficient condition
forR0 < 1 is the following:

a1
2

< 1 and 1 − a1 + a0 > 0.

From this condition, we can easily find the result of Theorem 1.

B p-dependence of the basic reproduction numberR0

From the derivation of R0 in “Appendix A”, the basic reproduction number R0 of
(13) satisfies the following quadratic equation:

f (R0) := R2
0 − a1R0 + a0 = 0 (31)

with positive constants a1 and a0 given by (30). From this equation, we can get the
following equation for the partial derivative of R0 in terms of p:

∂R0

∂ p
= R0(∂a1/∂ p) − (∂a0/∂ p)

2R0 − a1
. (32)

As shown in “Appendix A”, the Eq. (31) necessarily has two positive roots, of which
the larger one is R0. Thus a1/2 < R0 in (31), so that the denominator of the right
side of (32) is necessarily positive. Hence the sign of the partial derivative ∂R0/∂ p
is determined by that of the nominator of the right side of (32).
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B.1 Case of only mass-action type of infection forces

We can easily get the following result about the sign of the partial derivative ∂R0/∂ p:

Lemma 1 For any parameter values,

lim
p→0+

∂R0

∂ p
< 0

This lemma can be easily proven by the direct calculation of the partial derivative
∂R0/∂ p. Indeed, making use of λ∗ and˜λ∗ given by (9) at the disease-free equilibrium
in case of the mass-action type of infection forces, we can get

∂a1
∂ p

∣

∣

∣

∣

p=0
= R2

00

mS
cr

(ρ + mI
rc

mI
cr

K

κ
− 1

)

; ∂a0
∂ p

∣

∣

∣

∣

p=0
= R2

00

mS
cr

ρ + mI
rc

mI
cr

K

κ
,

whereR00 is defined by (15) for the mass-action type of infection force. Then we find
that

lim
p→0+

(

R0
∂a1
∂ p

− ∂a0
∂ p

)

= −R2
00

mS
cr

< 0, (33)

and result in the above lemma.
From Lemma 1, if there exists a value of p, say p∗, such that ∂R0/∂ p = 0 for

positive p = p∗ less than 1, R0 could takes its extremal minimum, and furthermore
such value p∗ is unique if exists. Now a0 is a second order polynomial of p while
a1 is a first order one. Hence the Eq. (31) defines a quadratic curve (curve of second
order) in (p,R0)-space. Thus it is impossible that there exist such extremal points
more than one for a smooth curveR0 in terms of p. From this argument, we can find
it necessary and sufficient for the existence of such a unique p∗ that the p-derivative
of R0 is positive for p = 1:

(

R0
∂a1
∂ p

− ∂a0
∂ p

)

p=1
> 0. (34)

Making use of (16), the direct calculation of the above condition (34) results in the
first part of Theorem 2. If there is no extremum, R0 is monotonically decreasing in
terms of p because of (33). This indicates the last part of Theorem 2.

Under the condition (34), R0 takes the extremal minimum at p = p∗ with

(

R0
∂a1
∂ p

− ∂a0
∂ p

)

p=p∗ = 0. (35)

Making use of (16), the Eq. (35) is expressed as follows:

{

(

1

1 − τI
+ ρ

)

τI
K

κ
− 1

}
√

τSc2(p∗)2 − τSc1 p∗ + 1 = c1
2

− c2 p
∗, (36)
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where c1 and c2 are defined by

c1 := 2
{

(

1

1 − τI
+ ρ

)

τI
K

κ
+ 1

}

;

c2 := τS

{

(

1

1 − τI
+ ρ

)

τI
K

κ
+ 1

}2 + 4
1 − τS

1 − τI
τI
K

κ
. (37)

It should be now noted that the condition (34) is equivalent to the inequality such that
the left side of (36) with p∗ = 1 is greater than the right side with p∗ = 1. Then it
is easily found that, under the condition (34), the Eq. (36) has a unique root p∗ such
that 0 < p∗ < 1, for example, making use of the graphs of both sides of (36). This
argument shows that the condition (34) is equivalent to the condition that 0 < p∗ < 1,
as indicated in Corollary 1.

Squaring both sides of (36), we can get the quadratic equationG(p∗) := c2(p∗)2−
c1 p∗ + c0 = 0 with

c0 :=
1

1−τI
+ ρ

1
1−τI

+ τSρ
. (38)

It is easily found that the quadratic equation G(ζ ) = 0 has always two positive roots:

ζ± := (c1±
√

c21 − 4c0c2)/(2c2). It should be remarked that only one of them satisfies
the Eq. (36) because squaring the Eq. (36) ignores the equality of the signs for both
sides of it. In fact, from the graphs of both sides of (36), we can find that two roots ζ±
respectively correspond to the root of following equation:

∓
{(

1

1 − τI
+ ρ

)

τI
K

κ
− 1

}
√

τSc2(p∗)2 − τSc1 p∗ + 1 = c1
2

− c2 p
∗

if

(

1

1 − τI
+ ρ

)

τI
K

κ
− 1 ≥ 0;

±
{(

1

1 − τI
+ ρ

)

τI
K

κ
− 1

}
√

τSc2(p∗)2 − τSc1 p∗ + 1 = c1
2

− c2 p
∗

if

(

1

1 − τI
+ ρ

)

τI
K

κ
− 1 < 0. (39)

where the double sign corresponds. As a result, we can get the following expression
of p∗:

p∗ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ζ− when

(

1

1 − τI
+ ρ

)

τI
K

κ
− 1 ≥ 0;

ζ+ when

(

1

1 − τI
+ ρ

)

τI
K

κ
− 1 < 0.

(40)
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Then, making use of the following equality, the expression (40) leads to (18) of Corol-
lary 1:

√

c21 − 4c0c2 = 2
∣

∣

∣

(

1

1 − τI
+ ρ

)

τI
K

κ
− 1

∣

∣

∣

√

1 − τS

τS(1 − τI)ρ + 1
.

The formula of the basic reproduction number for p = p∗, that is, R∗
0 = R0

∣

∣

p=p∗
can be obtained by substituting (18) for (35):

R∗
0 = ∂a0/∂ p

∂a1/∂ p

∣

∣

∣

∣

p=p∗
,

which results in (19).
Next let us consider themaximum ofR0, which can be taken when p = 0 or p = 1.

Now R01 := lim
p→1−0

R0 is given by the larger positive root of the quadratic equation

(31) with p = 1. So let us consider the following rescaled values:

̂R00 := R00

βκN/ρ
; ̂R01 := R01

βκN/ρ
,

where eventually ̂R00 = 1 because of (15) for the mass-action type of infection force.
Then the value ̂R01 is given by the larger positive root of the quadratic equation
h(ζ ) := ζ 2 − â11ζ + â01 = 0 with

â11 = 1 − τS +
(

1

1 − τI

)

τSτI
K

κ
; â01 = (1 − τS)ρτSτI

K

κ
.

So ̂R01 < ̂R00 = 1 if and only if h(1) > 0 and â11/2 < 1. This condition results in
(23). Since the condition that ̂R01 < ̂R00 = 1 is equivalent to that R00 < R01, we
get the result in Theorem 3.

B.2 Case of themass-action and the ratio-dependent types respectively for
private and social phases

In this case, since the expression for a1 and a0 given by (30) with (9) and (10) becomes
as follows:

a1 = R00(1 − τS p) +
(

1

1 − τI
+ ρ

)

τIβΩ

ρ
;

a0 = R00

[(

1

1 − τI
+ ρ

)

−
(

1

1 − τI
+ τSρ

)

p

]

τIβΩ

ρ
, (41)
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where R00 is defined by (15) for the mass-action type of infection force, and

η := ∂a0/∂ p

∂a1/∂ p
=

(

1

1 − τI
+ τSρ

)

τIβΩ

τSρ
. (42)

Now it is easily seen that ∂a0/∂ p < 0 and ∂a1/∂ p < 0 for any p. Thus, from (32),
the sign of ∂R0/∂ p is equivalent to that of η −R0. From the arguments in “Appendix
A”, since the quadratic equation f (x) = 0 has two positive roots, of which the larger
gives R0, the necessary and sufficient condition for η > R0 is such that f (η) > 0
and η > a1/2. Calculating with (42), we have

f (η) = (η − R00)
1 − τS

1 − τI

τIβΩ

τSρ
,

and find that f (η) > 0 if and only if η > R00. Besides, we can easily find that
η > a1/2 if η > R00. As a result, ∂R0/∂ p is positive if and only if η > R00. This
result implies Theorem 4.

B.3 Case of the ratio-dependent and themass-action types respectively for
private and social phases

At first, in this case, we can get the following result:

Lemma 2 For any p > 0, R0 > R00.

HereR00 is defined by (15) for the ratio-dependent type of infection force. This lemma
can be proved in the following way: Now the expression for a1 and a0 given by (30)
with (9) and (10) becomes as follows:

a1 = R00+
(

1

1 − τI
+ρ

)

τIβK N

ρ
τS p; a0=R00

( 1

1 − τI

1 − p

1 − τS p
+ρ

)τIβK N

ρ
τS p.

(43)

Then we have

f (R00) = −R00
1 − τS

1 − τI

p

1 − τS p

τIβK N

ρ
τS p < 0

for any p > 0. From the arguments in “Appendix A”, since the quadratic equation
f (x) = 0 has two positive roots, of which the larger givesR0, the above result means
that R00 < R0 for any p > 0.

Next, from (43), we have

∂a1
∂ p

=
(

1

1 − τI
+ ρ

)

τIβK N

ρ
τS;

∂a0
∂ p

= R00

[

1

1 − τI
+ ρ − 1

τS

1 − τS

1 − τI

{ 1

(1 − τS p)2
− 1

}

]

τIβK N

ρ
τS. (44)
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Then,

η := ∂a0/∂ p

∂a1/∂ p
= R00

[

1 −
( 1

1 − τI
+ ρ

)−1 1

τS

1 − τS

1 − τI

{ 1

(1 − τS p)2
− 1

}

]

. (45)

Since ∂a1/∂ p > 0, from (32), the sign of ∂R0/∂ p is equivalent to that ofR0 −η. It is
clear from (45) that η < R00 for any p > 0. From Lemma 2, this result immediately
leads to the subsequent result that η < R0 for any p > 0. Therefore, ∂R0/∂ p > 0
for any p > 0. This result implies Theorem 5.
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