Interdisciplinary Information Sciences Vol. 29, No. 2 (2023) 157-168
©Graduate School of Information Sciences, Tohoku University
ISSN 1340-9050 print/1347-6157 online

DOI 10.4036/iis.2023.R.02

A Mathematical Consideration on the Relation of the Social Structure
to the Infection Risk in a Community

Elza Firdiani SOFIA* and Hiromi SENO

Department of Computer and Mathematical Sciences, Graduate School of Information Sciences,
Tohoku University, Sendai 980-8579, Japan

We construct and analyze a mathematical model to consider the relation of the social structure to the infection
risk for a spreading transmissible disease in a community. We take into account different phases of human activity,
whether it takes place solely in the private situation or both private and social spheres, followed by the division of
the community members into two classes: active and less active. The analysis on our mathematical model implies
that there are critical conditions for the class size and human activity with respect to the infection risk for a
community. Further, we try to discuss how the social structure and situation could be related to the infection risk
for a community.
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1. Introduction

In recent times, the global spread of COVID-19 has been a constant fight for many communities [9], especially with
the high human-to-human transmissibility via respiratory droplets and airborne particles containing the virus [4].
Human mobility is one of the relevant factors that could cause the spread of such transmissible diseases. As phones are
usually carried by the users in the recent decades, their cellular activities and locations may be regarded as indices to
represent the level of user’s activities and mobility in such a way that phones may be considered as a platform for
sensing human activity distributed in a large scale [6]. It was demonstrated that such a mobility data derived from
phone can be utilized to draw a correlation between the social distancing and the growth of COVID-19 infection within
USA [2,17,30,31]. In Japanese major metropolitan areas, Nagata et al. [20] found that a decrease of mobility,
especially in nightlife-related districts, preceeded a reduction in COVID-19 incidences. In UK, utilizing a smartphone
data and location geotagging collected by social media, Jeffrey et al. [16] found that British people reduced their social
activity following the order of social distancing. In Taiwan, Chang er al. [5] used a metapopulation models with a social
media location data in order to identify areas with a high risk of disease spread. These previous works imply that a rise
of activity is followed by an increase of new cases, and to some extent, a fall in activity results in a decrease of new
cases. Yabe et al. [33] and Zhang et al. [34] report and summarize the studies regarding the correlation between human
mobility and COVID-19 transmission according to the data usage, modeling, and key findings.

In the pandemic of COVID-19, many researches have been piled up to understand the nature of disease spread from a
variety of scientific viewpoints not only on the influence of human mobility but also on the other demographic factors.
Some of them observe the actual dependence of the spread on the social structure in the community which is
represented by the age distribution, the household composition, the economic disparities, the coresidence pattern etc.
(for example [3,8,10,13,18,19,21]). Such factors must be essentially related to the epidemic dynamics through a
contribution to the contact with the pathogen which causes the spread of a transmissible disease. In a most general
sense, a higher social activity could be regarded as the social situation to induce a larger likeliness to contact with the
pathogen. The activity level must depend on the social factors related to its kinetics and organization, which has been
observed in the researches mentioned before.

In this work, we shall take the viewpoint to consider the relation of social structure on the infection risk in a
community, and construct and analyze a mathematical model to discuss it. In our modeling, the infection risk is indexed
by the expected number of new cases. We take into account the activity level and the sphere where the activity takes
place, according to the type of social interaction held. With the mathematical results obtained by the analysis on our
model, we shall try to discuss the relation of the social activity level and sphere to the infection risk for a community.
Differently from most of theoretical works to concern the prevalence or epidemic size in a community with a given
social situation/structure, we shall focus on the social structure of a community itself according to how easy or fast a

Received October 19, 2022; Accepted February 20, 2023; J-STAGE Advance published April 21, 2023

HS was supported in part by JSPS KAKENHI Grant Number 18K03407 and 22K03430. We thank the editor and two anonymous reviewers for their
valuable comments and suggestions to finalize the manuscript.

*Corresponding author. E-mail: elzsafir@gmail.com


http://dx.doi.org/10.4036/iis.2023.R.02

158 SOFIA and SENO

7000

6000

5000

4000

3000

Kusuep pmoso enelY
Correlation coefficient
/

2000 fff

Number of recorded new cases

-0.2

1000 -0.4 —— Raw data

0 0 -0.6
2020/4/29 2020/8/7 2020111115 202172123 2021/6/3 2021/9/11 0 5 10 15 20 25 30 35 40 45 50

Days delay

Fig. 1. (a) Plots of a data on the relative crowd density in Shibuya crossing by the MSS and recorded new COVID-19 cases in
Tokyo Metropolitan area from May 2020 to September 2021 [14,23]. The upper plots in (a) indicate the relative crowd density
where the weekly average is drawn together. (b) The dependence of the correlation coefficient on the days delay about the
raising crowd density and increasing number of new cases. The lower fluctuating graph in (b) indicates the number of new cases.
The weekly average is drawn together in (a) and (b). The detail about the derivation of (b) from the data of (a) is given in
Appendix A.

transmissible disease spreads, for the purpose to theoretically discuss how the difference in the social structure could
cause a difference in the epidemic result.

2. Correlation of Human Activity and New Cases

Figure 1(a) shows a data of social activity and new cases, which original data is created by the NTT DOCOMO
mobile spatial statistics (MSS) that estimates the population from the operation data of the mobile phone network in
Japan as described by Terada et al. [27]. Hara and Yamaguchi [11] used the MSS to find a trend in travel during and
after the early wave of COVID-19. Their results showed that there were a significant reduction in trips and a decrease in
population density index by 20% nationwide as people avoided traveling to crowded areas. Arimura et al. [1] reported
a reduction in travel as much as 70-80% in the same way. Tsuboi er al. [28] gave the corresponding result by their
statistical analysis on the MSS with respect to the relation of people’s mobility to the number of new cases. Further
similar results are found in [22, 24, 26].

Here we focus on the area of Shibuya crossing, one of the most crowded spots in Tokyo, Japan. We have the
population distribution dataset provided by the Cabinet Secretariat of the Government of Japan [23] and the daily
recorded new cases reported by the Japan Broadcasting Cooperation [14]. The crowd density concluded from the
population distribution dataset could be regarded as reflecting the human activity in the local Tokyo community. By our
calculation described in Appendix A to derive a reasonable correlation coefficient between human activity and the
number of new cases, we found that there must be a positive correlation between them [see Fig. 1(b)], in agreement
with the result obtained by the previous works [28, 30, 33] to imply that increased mobility positively contributes to the
spread of COVID-19. There must be a lag between the temporal change and peaks in the new cases and those in the
crowd density because the reported new cases are accompanied with the latent period and the period for the detection
after the infection. As shown in Fig. 1(b), our calculation on the data results in about 40 days lag that could give the
greatest correlation coefficient between them. Although this lag seems much longer than the averaged latent period
given by the epidemiological research, two weeks for the COVID-19, we could conclude that a certain positive
correlation is exemplified between human activity and the new infection, while we could not give any reasonable
explanation about such a long time lag.

As demonstrated by our data analysis in this section, it is reasonable to assume that the higher human activity induces
the larger number of new cases. Since the human activity level is not determined only by the mobility but also by the
other social factors in each social sphere as mentioned in Introduction, we are going to assume a social structure of a
community with respect to the activity level, and subsequently construct and analyze a mathematical model in the
following sections.

3. Mathematical Modeling of the Infection Risk for a Community

We assume a community which is composed with two classes based on their activity level in daily life: less-active
and active. The less-active class typically includes elderly and infant who do not spend a significant portion of their day
outside their residential area. The active class members partake their activities both in the residential area and public
places out of it (Fig. 2).

Let us assume here only two different phases about the activity sphere as previously done by Seno [25]: private and
social phases. Private phase is defined as the activity sphere mainly in the residential area with limited interactions, for
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Fig. 2. The activity class and sphere in our modeling.

example, with the family members, neighbors, and house staff. Traveling by personal car or bicycle is considered to be
at the private phase. At the social phase, the interactions are with arbitrary members of the community in the public
sphere which may include work, school, shops, public transportation, etc. The less-active class members have activities
only at the private phase, while the active class members have those at both the private and social phases.

At the private phase, infectious contact between members of two classes is possible. In contrast, infectious contact at
the social phase happens only between members of the active class. The likelihood of infection is assumed to be
different according to the interaction that takes place at each phase, contributed by both the active and less-active
classes at the private phase and solely by the active class at the social phase. The member of less-active class has a
likelihood to get infected only at the private phase. The member of active class has a likelihood to get infected at the
private or social phase. Higher risk of infection must result in a higher expected number of new cases.

Expected number of new cases for the less-active class

Let N denote the population size of the community. The sizes of active and less-active classes are given by gN and
(1 — @)N, respectively with the ratio of active class g in the community. Now we define the expected number of new
cases in an appropriate time unit for the less-active class as

Ei(a, q) = By(a, 9)(1 — @)N, (3.1)

where B, = B,(a, g) is the probability of infection for an individual per unit time at the private phase. We introduce
here a constant parameter « (0 < o < 1) that indexes the mean proportion of time at the social phase in a daily life for
the member of active class. Since B, depends on the class size and activity level of both active and less-active members,
E; is denoted here as a function of « and ¢ in general. To proceed with the analytical investigation on our mathematical
model, we will give a specific function for 8, = B,(«, q) later.

Expected number of new cases for the active class

Let a3; be the probability for an individual of active class to get infected at the social phase, and (1 — )8, be the
probability at the private phase. 85 corresponds to the probability of infection for an individual per unit time at the
social phase. Then, the individual of active class can avoid getting infected at the private and social phases and being
uninfected with probability {1 — (1 — «)B,}(1 — «f). Hence, the infection occurs for the individual of active class
with probability 1 — {1 — (1 — a)B,}(1 — af,). The probability B, depends on « and g as well as B,: B, = B,(c, q).
Therefore, we define the expected number of new cases for the active class as

Eq(o,q) = [1 = {1 = (1 — )Bp(er, }{1 — (e, @)} gN. (3.2)

Infection risk for the community

The infection risk for the community is now represented by the expected number of new cases defined by E(«, q) =
Efa,q) + E (o, q) where Ej(«, q) and E,(c, g) are given by (3.1) and (3.2). In this paper, we introduce the following
formulas for probabilities B, and B,:

Bs = Bs(a, @) = o,agN; B, = B,(a,q) = 0,{(1 — ¢)N + (1 — a)gN}, (3.3)

where agN corresponds to the expected population density at the social phase, and (1 — g)N + (1 — a)gN does to that
at the private phase. Positive constants o, and o, are the infection coefficients at the social and private phases,
respectively. This formulation is based on the assumption that the infection probability has a positive correlation to the
population density in accordance with the arguments in Sect. 2. For the well definition of probabilities 8, and B,, our
modeling with (3.3) leads to a confinement of parameters o, and o), such that o,N <1 and o,N < 1.

In the following sections, we will consider the dependence of E to parameters g and «. These parameters characterize
the community structure and situation. Parameter ¢ may correspond to the characteristic hardly changeable (age
structure, for example) in the epidemic dynamics, while @ may be changeable like the behavioral nature of the active
class in the community, which could be influenced by governmental policy, social perception, campaign, education,
and so on. Focusing on these two parameters, we will try to discuss how the infection risk depends on the social
structure.
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4. Dependence of the Infection Risk on the Class Size

We can get the following result about the g-dependence of the expected number of new cases E (Appendix B):

Theorem 4.1. The expected number of new cases E is monotonically decreasing in terms of q € (0, 1) if and only if
o < ., where o, is given by the unique root of the cubic equation

—30® 4 502 4 240 — =0 4.1
Oy
for a € (0, 1) with
L S 4.2)
._ osN  opN ' '
Otherwise when o > o, E has a unique extremal minimum at q = q* € (0, 1) where
m —(A+Ol)+ (A+Ol) + W fOVOl € (O[c,l);

q = ’ (4.3)

1/(osN)
1/(osN) +1/(0pN)

for a = 1.

When the active class has the social phase sufficiently longer than the private phase, there is a certain proportion of
active class for which the expected number of new cases becomes minimum. Otherwise, the expected number of new
cases is smaller as the size of active class gets larger.

5. Dependence of the Infection Risk on the Activity

We can get the following result on the w-dependence of the expected number of new cases E (Appendix C):

Theorem 5.1. The expected number of new cases E is monotonically decreasing in terms of a € (0, 1) if and only if

cq= A 3+A2 2 (5.1)
1=9:=75 2 oN’ '

where A is given by (4.2). Otherwise when q > q., E has a unique extremal minimum at o« = o which is the unique
root of

3 1\ , 24 2
—4o’ + 31+ )"+ —a— 5=0 (5.2)
q q osNq

for a € (0,1).

When the active class is sufficiently larger than the less-active class, there is a certain proportion of the social phase
for which the expected number of new cases becomes minimum. Otherwise, the expected number of new cases
becomes smaller as the proportion of the social phase gets larger.

6. Social Structure to Minimize the Infection Risk

First we find the following result from the theorems obtained in the previous section:
Corollary 6.1. The expected number of new cases E cannot become minimum for o« = 0 or g = 0.

The case of o = 0 is the situation in which the members of active class always stay at the private phase, in other words,
every individual in the community is of the less-active class. Such a situation could be regarded as the community
under the complete lockdown. Hence, this result implies that the complete lockdown could not minimize the infection
risk in the community. Therefore, the expected number of new cases E may become minimum when (e, g) is one of the
following cases: (1, 1); (1, ¢"); («*, 1) with o* € (0, 1) and g* € (0, 1).

The case of («,q) = (1, 1) could be taken into account only when o < &, € (0, 1) and g < g, € (0, 1) because this is
the case when E is monotonically decreasing in terms of o € (0, 1) and g € (0, 1) as shown in the previous theorems.
Thus, the case when o = 1 and ¢ = 1 is contradictory to the condition. Therefore, the case of (¢, g) = (1, 1) cannot
make E minimum. The case of (o, ¢) = (1, 1) is corresponding to the situation such that every individual belongs to the
active class and always has activities at the social phase. This result matches our intuition that the highest active
situation would be worse with respect to the infection risk. We can prove in the same way that the case of (1, g*) cannot
make E minimum, and further that the case of («*, ¢*) cannot exist.

Consequently we have the following result (Appendix D):
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Fig. 3. Numerically obtained («, g)-dependence of E(a,q) with o;N = 0.6, o,N = 0.4, q. = 0.372, and a, = 0.42152. Contour
map (left) and 3-dimensional graph (right).

Theorem 6.1. The expected number of new cases E becomes minimum for («,q) = (o*, 1) such that 0 < o* <
o, < 1.

This result is visualized by the numerical calculation in Fig. 3. It is theoretically implied that the situation with no less-
active class minimizes the infection risk, whereas such a situation in an established community could not be realistic in
general. On the other hand, a specific situation in a temporarily organized village like that in the Olympiad may be
applicable. Then, Theorem 6.1 implies that the infection risk could be minimized by controlling the daily schedule in
the village to an appropriate extent about the activity there.

As for the dependence of E(a*, 1) on parameters o,N and o, N, we find that E(«*, 1)/N becomes larger as o,N or o, N
gets larger. This is an intuitively expected result because the larger o,V or 0, N means the higher risk at the social or
private phase.

7. Restriction for the Management of Infection Risk

From the results about the g-dependence and a-dependence of E obtained in the previous sections, we find that the
management of infection risk is significantly restricted by the social structure, and get the following result:

Corollary 7.1. The expected number of new cases E becomes minimum for o« = 1 when q < q., while it becomes
minimum for q = 1 when o < a,.

The situation of @ = 1 means that the active class is always at the social phase. That is, the members of active class
are never at the private phase. This may be regarded as a complete separation of the active class from the less-active
one, or of the less-active class from the active one. However, it cannot be adapted for the community-level risk
management about the spread of a transmissible disease because such a complete separation of active and less-active
classes can be hardly realized. In general, the proportion of active class g is hardly changed as mentioned in Sect. 3. On
the other hand, it would be possible to control the proportion of the social phase «. For example, limiting the office
work, the school time, or prohibiting from going out for a certain period may be imposed to manage the infection risk.
Hence, the above results imply a perspective for the community-level management of infection risk to control the
activity of active class, even though there must be a restriction for the changeable range of activity (i.e., «).

As every community is characterized by its own « and ¢, we could classify communities according to the restriction
on the management of infection risk, following our results obtained above. Now, we categorize the social structure into
three types as shown in Fig. 4: Type I community for g < g., Type 1l for ¢ > g, and « < «,, Type III for g > g, and
o> .

Let us think of three different communities: one located in an urban metropolis with high mobility and relatively
young population, one located in a semi-urban city with a relatively young population but limited options of activity,
and another one in a rural area with low mobility and an aging population. In a situation without pandemics, we can
imagine that the urban and semi-urban communities have larger size of active class compared to their rural
counterparts. The active class in the urban population may have a significantly more options of public settings to spend
their proportion of activity sphere in daily life, i.e., at the social phase. Meanwhile, the semi-urban community limits
their time spent at the social phase as the activities of its active class are limited only to school/work in different
locations and going home afterwards. The rural community will be content to spend their time at the private phase,
socializing among neighbors and only a handful of chances to have a huge event where all members of the community
come together. It is obvious that the urban community belongs to the Type III, semi-urban one belongs to the Type II,
while the rural community one may fall into Type I community.

For Type I community, the expected number of new cases becomes smaller as the proportion of the social phase gets
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Fig. 4. Classification of the social structure indexed by (¢, q). Numerically drawn with parameter values, same with those for
Fig. 3.

larger. Therefore, the reduction of time at the social phase could not be appropriate to reduce the infection risk in such a
community, which could be regarded as a modern aged community with a large proportion of aged people.

Type II community has a relatively large active class with a sufficiently small proportion of the social phase. Such a
community would be characterized by a specific custom of social activities including working, which provides a daily
life with a sufficiently short time for the social activity. For example, the case is a community with sufficiently effective
telecommunication and teleworking which do not necessarily require the direct contact with the others for a long
duration in the daily life. Then, many people could be regarded as being at the private phase for relatively longer
duration in the daily life. Our analysis implies that, the same as Type I, the longer time spent at the social phase makes
the smaller number of new cases in such a community of Type II. Therefore, for Type II community, in order to reduce
the infection risk, it would be effective to promote the social activity out of the private phase. If such a promotion is
rather successful, the community of Type II may change to Type III with the longer time spent at the social phase.

Differently from those of Type I and II, the community of Type III has a specific proportion of the social phase to
minimize the infection risk as seen in Fig. 4. Hence, for such a community, an appropriate control of the duration at the
social phase would be successful to make the infection risk lower.

In the event of pandemic, we can turn our attention back to the urban community of Type III, where there may be a
need to control the duration at the social phase into a specific one tailored to reduce the infection risk. Applying policies
such as closing shopping center and restaurants early to limit activities, teleworking, online classes and so on, may be
appropriate in this type of community to shorten their length of social phase. Periodic closure of public facilities may
have a special effect in minimizing a disease spread [12]. However, we need to recall that there must be a possibility of
infection at the private phase. With the active class members crowding inside their residential area, the infection may
spread still, even worse, putting elderly or infant members of less-active class. For the semi-urban community of
Type 11, it is much easier to control the spread as they have already a limited duration at the social phase voluntarily
due to lifestyle. However, similar to infection spread within homes in the Type I communities, promoting activities at
the social phase may be necessary to manage the infection risk.

8. Community with a High Consciousness of the Prevention

In a community with a high consciousness of the prevention against the spread of a transmissible disease, we may
assume that the probability of infection could be sufficiently small at both of private and social phases, even when it
must depend on the community structure and situation.

For such a community, our modeling follows sufficiently small values of ogN and o,N in (3.3). Then, for o;,N <1
and o, N < 1, we can easily find that

1/(osN) . N 1/(osN)
T 1/(oN)+ 1/(0,N)' 7 1/(0,N) + 1/(o,N)

from (4.1) in Theorem 4.1 and (C.1) in Appendix C for Theorem 5.1. This result indicates that the classification of
community type discussed in the last section can be adopted independently of how little serious a transmissible disease
spreading in a community.

The result (8.1) indicates that the classification of community significantly depends on the relative likelihood of
infection at each activity sphere. If the probabilities of infection at private and social phases have only a slight

8.1

c
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difference, the result (8.1) leads to a. =~ 0.5 and g. = 0.5. Then our arguments in the last section would be still
acceptable because each of three types of community: Type I, II, and III, are defined for a considerable range of social
structure represented by parameters « and ¢ in our modeling.

Since those parameters o,N and o,N express the infection risk at social and private phases respectively, and they
must be strongly correlated with each other, these arguments imply that the discussion in the last section would be
applicable to consider a daily policy for the public health, even when the infection risk for a transmissible disease is
low.

9. Concluding Remarks

Disease spread is influenced by people’s willingness to adopt preventative public health behaviors, which are often
associated with public risk perception. Risk perception is correlated significantly with the adoption of preventative
health behaviors in ten countries as previously studied [7]. Even for the same disease, the response of communities in a
country is dependent on the distinctive institutional arrangements and cultural orientation, affecting the community
behavior as a whole [32]. For example, facing COVID-19, governments of the world employ different policies such
as “nudge” in Sweden, “mandate” in China, “decree” in France, and “boost” in Japan, with different levels of
enforcement and types of strategy [32]. Further, as mentioned in Introduction, the result of such governmental
policy and community response about the epidemics must depend on the social structure in the community
[3,8,10,13,18,19,21].

We made a suggestive calculation to give the values in Table 1 from the real data on the population size and working
statistics for 2020 about some countries. As a value corresponding to our g, we calculated ¢ as the ratio of the working
age population over 15-64 years old to the total population. For those countries shown in the table, it results in around
0.6-0.7. The calculated value ¢ is a reference which might correspond to our o, whereas & is calculated from the data of
average annual hours actually worked per person in employment, and it would be shorter than our «, because « reflects
the time at the social phase which contains some non-working time too. If we apply the values (&, ) in Table 1 for our
result, those countries in the table are all Type II defined in Sect. 7. However, the unit of country would be too large to
be considered in the framework of our mathematical model. The community structure with respect to the activity
related to the infection risk must be heterogeneous in such a large scale of population. In this sense, our work presented
here could be regarded as concerning an appropriately small scale of population which could be characterized by the
structure with respect to such an activity.

It must be remarked that our modeling follows an assumption that the members of active and less-active classes have
interaction between them, so that the assumed community must be defined as a regional community for a daily life.
Further we need a statistical or theoretical way to estimate the values of o,N and o,N in order to get the values
corresponding to g. and «,.. These values are regarded as the supremum for the infection probability at the social and
private phases respectively, and hence they could be regarded as important indices in epidemiological sense. Thus it
would be valuable to consider such a statistical or theoretical way to estimate the supremum for the infection
probability at a specified sphere of human activity. It is beyond the scope of our research in this paper, and we expect
that such related researches could serve the further development of the theoretical and perspective consideration of the
socio-epidemiological dynamics on the epidemics of a transmissible disease.

In this work, we considered a mathematical model about the infection risk for a community which consists of two
classes based on its activity: active and less-active. The active class has activities in the public and private spheres
while the less-active class has the activities only in the private sphere. Every community has its own proportion of

Table 1. Demographic data and tentatively calculated values § and @. Total population (thousands) N from World Population
Prospects 2022 by United Nations [29], working age population over 15-64 years old (ten thousands) W, and average annual
hours actually worked per person in employment H from Databook of International Labour Statistics 2022 by Japan Institute for
Labour Policy and Training [15]. § denotes W/N, and & is calculated as H/(365 x 5/7)/24. Values N, W, and H are all for 2020.

country N w H q a
Japan 125,543 7,482 1,598 0.596 0.26
USA 335,388 21,514 1,767 0.641 0.28
Canada 37,758 2,496 1,644 0.661 0.26
UK 66,951 4,322 1,367 0.646 0.22
Germany 83,268 5,392 1,332 0.648 0.21
France 64,458 4,020 1,402 0.624 0.22
Ttaly 59,640 3,852 1,559 0.646 0.25
Sweden 10,321 627 1,424 0.607 0.23
Rep. Korea 51,858 3,674 1,908 0.708 0.30

Australia 25,544 1,645 1,683 0.644 0.27
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active and less-active classes, and its active class can be characterized by its behavior at the activity phase. It is clear
that there is a dependence of the infection risk for the community upon the community structure and activity.
Sufficiently large active class requires a certain duration at the social phase to minimize the infection risk. Longer
duration at the social phase reduces the infection risk for a community with sufficiently small active class. When the
active class has a sufficiently long social phase, there is a certain size of active class to minimize the infection risk. The
active class size and the duration at the social phase can be used to classify the community into different types with
particular characteristics that could be utilized to build a better strategy to reduce the infection risk.

As a whole, from those results by the analysis on the model, the complete lockdown such that everyone is forced to
be at the private phase would not be an optimal strategy in managing the infection risk. This conclusion may be
different from our intuitive thought, because the mobility of active people could be regarded as a relevant factor to
increase the contacts between individuals so as to increase the likelihood of secondary infection. However, since there
must exist a certain infection risk at the private phase, the complete lockdown results in the higher density at the private
phase, that is, the closer contact between individuals at the private phase. Therefore, there is a certain trade-off relation
between the risks at two phases, that should be taken into account for making a better policy to manage the infection
risk for a community.

Although our work is theoretical and based on a simple mathematical model, the model gave us an insight into the
characterization of community and how, in light of disease spread, an efficient control measure that suits the
community character could be formulated to manage the infection risk. Further exploration of the infection coefficients
and inclusion of more factors into the model, such as visitors from outside the community, control measure by
vaccination, and so on may be meaningful to characterize the communities and steps that can be taken to manage the
spread of infectious diseases.
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Appendix A: Steps of Data Analysis

We utilize a population estimation dataset created by the NTT DOCOMO mobile spatial statistics (MSS) which
estimates population density using the operation data from mobile phone network. The data estimated hourly
population in grids on the basis of phone signal [23]. The recorded densities at 15:00 are used as a reference. We use the
relative density at the Shibuya crossing, one of the most crowded spot in Tokyo, Japan as a representative. The daily
recorded new case in Tokyo Metropolitan area is taken from the reported cases by the Japan Broadcasting Cooperation
[14]. In our calculation on the data, we focus on the datasets from May 2020-October 2021. We adopt the following
steps to estimate an appropriate correlation coefficient:

ey

(@)

Transformation of the daily data of phone signal into the relative crowd density by normalizing the daily density
with the most crowded day between May 2020 to October 2021. It provides the original relative density data. The
data of new infection cases is not modified for the original dataset.

For the original relative crowd density and the new infection cases, we obtain the weekly average and seven-days
average datasets as well. The weekly average is counted by averaging Monday to Sunday data, while seven-days
average is counted as an average from the past seven days including the calculated day (for example, a
Wednesday data was obtained by averaging the data from Thursday of its previous week until the Wednesday in
question). By now we have the original (raw), weekly average, and seven-days average data for both phone signal
and daily case record for crowd density and new cases.
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(3) From the datasets, we sample periods between December 2020-January 2021, March—April 2021, and June—July
2021.

(4) The periods with increasing new cases are matched with the crowd density data of the corresponding periods,
shifted from zero (recorded cases on the same day) to sixty days.

(5) The correlation coefficients between the reported new cases and crowd density for shifted days are calculated,
using the Pearson’s correlation coefficient

o =D —))
VI = D Y - 9
(6) We estimate the number of shifted days to make the correlation coefficient highest as the optimal day(s) delay.

The analysis for optimal delay resulted in 40 days for original data (r = 0.43), 6 weeks (= 42 days) for weekly average
(r = 0.85), and 38 days for seven-days average (r = 0.84), as indicated in Fig. 1(b).

Appendix B: Proof of Theorem 4.1

From (3.1), (3.2), and (3.3), we have
Ef(a,q) = 0,N(1 — aq)(1 — )N = N - 0,N{1 — (1 + a)q + g’}

3 9 1 1, ) 1 (B.1)
E a,q) =N -o0,No,N| (1 —a)a’q” + —USN(l—a)a+gp—Na — (1 - o) q+JSN(l—ot) q
Let us consider
E(a,q)/N 3 3 2 2 2 1
,q) = ———=(1— + A+ ——ag+ s B.2
V(o q) oy NN (I —w)a'qg + A+ a)ag oNY TN (B.2)

where A is defined by (4.2), and satisfies that
1 1
A>max|—,— | > 1,
osN o,N

since o,N < 1 and 0,N < 1 from the confinement for our modeling. In order to investigate the g-dependence of E, we
differentiate (B.2) in terms of g:

Vo, q) = LD _ a{B(l — @)elq? + 2A + ayg — — };
dq o,N
B (B.3)
Vaaletsq) == % — o{6(1 — W)aq + 2(A + @)a).

Since V44 > 0 for any « € (0,1), v, is monotonically increasing in terms of g € (0,1). Since Y, (a,0) =
—2a/(osN) < 0, there are two distinct cases depending on the sign of ¥ (a, 1). If ¥ (e, 1) <0, then ¥ (cr,q) <0
for g € (0, 1) so that v is monotonically decreasing for any ¢ € (0, 1), while, if ¥,(, 1) > 0, then v¥,(e, g) changes its
sign from negative to positive as g gets larger in (0, 1) so that ¢ has a unique extremal minimum at a value of
q =q* € (0,1). In such a case, the value g* is the root of the equation y,(, q)/a = 0 in terms of g as given by (4.3),
where ¢* depends on «.

Further, we can find that

8 1//11(“’ 1)
wl o =32 -3a)a+2A+20) =% (1 —a)+a+24A >0
o o
for o € (0, 1), and
, 1 2 1 2 2
Yol DI <0: Vol 1) —2A+1)— =" 50
o =0 osN o a1 osN  o,N

Thus, there is a unique value o, € (0, 1) such that ¥,(ct, 1) < 0 for & < . and ¥4(ct, 1) > 0 for o > .. We can easily
find that the critical value o, is given by the unique root of the cubic equation (4.1) in terms of @ € (0, 1). These results
conclude Theorem 4.1.

Appendix C: Proof of Theorem 5.1

We have the following partial derivatives of y(«, g) defined by (B.2) in terms of «:
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Since Y, (0,q) = 2q2A >0 and Yuu(l,q) = 2q3{—3 + 3+ A)/q} > 0, we can easily find that ¥y,(c,q) > 0 for
o € (0,1). Hence, v, is monotonically increasing for « € (0, 1).
From (C.1), we have ¥,(0,q) = —2¢q/(osN) < 0 and

(1, 2
Vol @) _ —q* + (3 +24)g — N’ (C2)
and then,
o 15 2 o 1, 1 2
Vol _ 2 o Vull@) =2<1+A— )=_>o. (C.3)
q 4=0 osN q g=1 oN op,N

From (C.2) and (C.3), we can easily find that ¥, (1, ¢) is negative for ¢ < g. € (0, 1) and positive for g > g., where ¢, is
given by (5.1) as the smaller root of the equation v¥,(1,g)/q = O.

Consequently, since ¥, is monotonically increasing for « € (0, 1), we have ¥, (o, q) < 0 for any « € (0, 1) if and
only if g < ¢q., while ¥,(e,q) changes the sign from negative to positive as « gets larger if and only if g > ¢..
Therefore, ¥/(c, g) is monotonically decreasing in terms of « € (0, 1) if and only if ¢ > g..

Appendix D: Proof of Theorem 6.1

First, we prove the following lemma:
Lemma D.1. The expected number of new cases E cannot be minimum for («, q) = (1, g*) for any g* € (0, g.].

The case of («, q) = (1, g*) could be valid only when @ > «, € (0,1) and g < g, € (0, 1) from Theorems 4.1 and 5.1.
Thus, it is necessary that ¢* < g, otherwise this case is invalid for minimizing E. From the proof of Theorem 5.1 in
Appendix C, the condition that ¢g* < g, is equivalent to that v¥,(1,g*) < O, that is, from (C.2),

2
—¢*+ 3+ 24)¢ — — <0.
o,N

A

Since g* is given by (4.3) for o = 1, this condition becomes

{ 1/(0,N) }2 ( 2 2 ) 1/(0,N) 2
- +—+1 — <0
1/(osN) + 1/(o,N) osN = o,N 1/(osN)+1/(o,N)  osN
With some calculations about this inequality, we can find the equivalent inequality such that 1/(c,N) < 0. This is
impossible. Hence the condition ¢* < ¢, cannot be satisfied when o = 1. Therefore, it has been shown that ¢*|,—; > ¢..
Therefore, the case of (o, g) = (1, ¢*) cannot be valid for minimizing E. As a result, we can get Lemma D.1.

Next, the case of («, g) = («*, 1) could be valid for minimizing E only when @ < o, € (0,1) and g > g, € (0, 1) from
Theorems 4.1 and 5.1. Thus, it is necessary that o < &, for ¢ = 1, otherwise this case is invalid for minimizing E.
From Theorem 4.1, the condition that «* < «, is equivalent to that

2
—3a* + 50*% + 240" — p 0. (D.1)

Oy

Then, from (5.2) in Theorem 5.1, we have o* for ¢ = 1 which satisfies the following equation:

—4a* + 60 + 2A o —

O

2 _ —3a* 450 + 240" — 2\ @ —a*) =0. (D.2)
N N

S
Hence, from (D.1), we can get the condition that o*? — o*? = a**(a* — 1) < 0. This condition is necessarily satisfied if
there exists o* € (0, 1) when g = 1. Indeed, from (D.2), it can be easily seen that there exists uniquely o* € (0, 1) even
when ¢ = 1. From these arguments, we have proved that it is necessarily satisfied that «* < o, when ¢ = 1. As a result,
we can get the following lemma:

Lemma D.2. The expected number of new cases E becomes minimum for (o, q) = (a*, 1) in the region {(a,q) €
O,DH)x @O, ]|a<a.€(0,1)and g > q. € (0, 1)}.

Lastly, the case of («, q) = (@*, ¢*) could be valid for minimizing E only when o > «. € (0,1) and ¢ > ¢g. € (0, 1).
Now suppose that it could be valid. We have ¢* for @ = o* satisfying the following from v,(«*, g*) = 0 by (B.3) in the
proof of Theorem 4.1:
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*3 2 *2 2A * 2
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while o* for g = ¢* satisfies the following from (5.2) in Theorem 5.1:
—4a0 e 124 — o — =Y,
q* q* osNg**
that is,
*3 2 *2 2A * 2 *3 a*z
=B+ |3+ )T+ —a S =" — . (D.4)
q* q* osNg* q

From these Eqs. (D.3) and (D.4), we can immediately get the equation that o*> — *?/¢* = 0, which results in
o*q* = 1. This is inconsistent for o* € (0,1) and g* € (0,1). This means that there does not exist mathematically
reasonable (a*, ¢*) such that o* € (0, 1) and ¢* € (0, 1) about E. Finally we can conclude the following lemma:

Lemma D.3. There is no definite point (o,q) to minimize E in the region {(«,q) € (0,1) x (0,1) | @ > . €
0,1) and g > g € (0, D)}

This lemma indicates that the expected number of new cases E cannot be minimum when o = o* € (0,1) and
q = q* € (0,1), and further implies that it becomes minimum only when o = 1 or ¢ = 1. Consequently, we can derive
Theorem 6.1.



