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A stochastic dynamic programming model for parent—offspring conflict is analysed and discussed. We
discuss how the conflict is resolved and how the ultimate offspring’s independence age is determined
between parent and offspring. The results of the mathematical mode! indicate the possibility that the
observed behaviour of parental care may change depending on the parent’s age. This is because the
compromise conclusion of the parent-offspring conflict depends on the parent’s age: that is, essentially,
on the parent’s expected future reproductive value. Moreover, it is shown that the observed

parent—offspring conflict possibly depends also on the parent’s age.

1. Introduction

Many researchers in behavioural ecology have been
interested in and have discussed the parent—offspring
confiict phenomenon: the offspring wants to become
independent of the parent and to feed by itself after
an age t*, while parent of age a wants to stop feeding
after an offspring’s age ¢} (a). The critical day ¢ X*(a)
from the parent’s viewpoint is assumed to depend on
the parent’s age ¢. When ¢ and ¢} () do not coincide
with each other, a conflict takes place between parent
and offspring. There are possibly two different types
of such conflict: t¥ < 1} (a)and ¢} > t}(a). Under the
conflict in the case when ¢} < t¥(a), offspring wants
to become independent of parent, while parent wants
to feed offspring. On the other hand, in the case when
t¥ > t}¥(a), offspring wants to be fed, while parent
wants to stop feeding. Only when 1} =1}(a) does
no conflict take place. However, since ¥ does not
depend on the parent’s age a, whereas t*(a) does,
conflict between parent and offspring is very much
observable.

Clark & Ydenberg (1990) treat this phenomenon
and consider the optimal ¢} and ¢}{a) by using
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stochastic dynamic programming models (for
example, see Mangel & Clark, 1988). They use the
Jitess concept for constructing the model. In general,
fitness for an individual is defined as the probability
that the individual can live until its breeding season
and can reproduce (for instance, see Maynard Smith,
1986). In Clark & Ydenberg (1990), the parent’s
fitness is determined by its survival probability in the
breeding season, its future reproductive value, and its
offspring’s fitness, while that for the offspring is
determined by its survival probability that it reaches
the weight sufficient to reproduce after it becomes
independent of the parent. Moreover, the terminal
fitness function is defined to give the probability that
the offspring survives and reaches the reproducible
age to reproduce the next generation. In Clark &
Ydenberg (1990), it is assumed that the lifespan and
reproducible age-span for each individual are infinite,
so that the future reproductive value for the parent
can be regarded as a constant, independent of the
parent’s age. Therefore, 3 (a) is also independent of
the parent’s age &, that is, 1*{a) = }. In such case,
with analytical and numerical calculations, they esti-
mate the optimal 1} and ¥ and discuss the conflict of
the type that ¢} >1}.
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In this paper we analyse a stochastic dynamic
programming model which corresponds to the model
constructed by Clark & Ydenberg (1990). In our
model, in contrast to their model, the parent is
assumed to have a finite reproducible age-span, so
that its future reproductive value is explicitly variable
depending on the parent’s age. A specific growth
function and a specific terminal fitness function are
introduced. Analysing the model, we discuss the
characteristics of the optimal critical ages ¢ and
tx(a), and it is shown that only conflict of the type
that t¥*>t¥(a) is possible, independent of the
parent’s age and the other parameters characterizing
the relation between parent and offspring. Further,
we discuss how the conflict is resolved and how the
ultimate independence age is determined between
parent and offspring.

2. Model

2.1. AGES OF PARENT AND OFFSPRING

Let a denote the parent’s age, for instance, in
years, where a,< a < a,. a, and q, are, respectively,
the first ‘and the last ages for the parent’s reproduc-
tion. Hence, the reproducible age-span for every
parent is given by a,— a,+ 1. The offspring’s age in
days during a breeding season is denoted by r, where
1<t <7T Tis the length in days of each breeding
season {see Fig. 1).

+

2.2. OFFSPRING’S GROWTH

We use the. following specific growth function for
offspring:

Y(£)+k, for 1=1,2,...,4—1
Y(t)+k, for t=1¢t,t,+1,....,T—1

(D

Y(:+I)={

|

r(n=r, 2)
that is,

E(r—-1D4+ 7Y,

Y= {kz(t ~t)+kt-D+ 1

for t=1,2,...,1

for t=¢+1,6+2,...,T, (3)

where Y(t) is the offspring’s weight at the beginning
of day ¢, and Y, is its weight at birth. 7, is the
offspring’s age when the parent stops feeding and
offspring becomes independent. k| is a positive con-
stant which denotes the offspring’s daily growth rate
with the parent’s feeding, while &, is a positive
constant denoting the independent offspring’s daily
growth rate (see Fig. 2).

Now, consider the offspring’s weight Y(T; ¢,) at the
beginning of the last day T of the breeding season,
under the condition that it becomes independent at
day .. From (3), Y(T;1) is expressed as follows:

Y(T; 1) = k(T —~ 1) + ki (6, — 1) + 1. G

2.3. OFFSPRING’S FITNESS

We define the daily survival probability ¢, for
offspring fed by parent, the daily survival probability
g, for offspring independent of parent, the daily
survival probability o, for parent feeding offspring,
and the daily survival probability o, for parent not
feeding offspring (see Fig. 1). As Ydenberg (1989)
showed in general for alcids, it is naturally assumed
that ¢, < g, and 0, < g,. The following events signifi-
cant to determine the offspring’s fitness are assumed
on each day: (i) if parent survives and feeds offspring
with probability o, the offspring grows according to
(3) with survival probability o,; (i1) if parent dies with
probability 1 — g, the offspring becomes independent
to grow according to (3) with survival probability o,;
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FiG. t. Modelling the parent-offspring relation. Sce text for detailed explanation,
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(iii) if parent stops feeding the offspring with survival
probability ¢,, the offspring becomes independent to
grow according to (3) with survival probability o,.
Consider the probability ¢ (¥(T; 1,)) that offspring
with weight Y(T; ¢,) at the end of the breeding season
will survive after the breeding season and reach the
reproducible age to reproduce the next generation.
The probability ¢(Y(T;t,)) is called the terminal
fitness function for the offspring, and is given as
follows:
oy YT =y} YT L) >,
¢X(T; 1) = {0 otherwise,

(3)

where 7 is a positive constant translating the advan-
tage of weight gain Y(T;t)— y, to the probability
&(Y(T;1,)). y. is the offspring’s minimum body
weight at the end of the breeding season, sufficient
to survive after the breeding season and reach its
reproducible age to reproduce the next generation (see
Fig. 3).

Conventionally, we define the critical day ¢, such
that ¥(7t,)=y., which is given by

_y—=Yi+k—kT
= k=, - (6)

¢

Using the notation ¢, the probability ¢(¥(T; ¢,)) can
be expressed in the following way:
When &, > k,,

] _ ylk, — k)1, — 1) ift,>1,
¢ (Y(T;1,)) = {0 : : otherwise, 0
When &, <k,,
. _ '}’(k —kl)(tc‘—t.y) if <t
$(Y(T; 1)) = {0 i otherwise. ()

Eventually it is assumed that 1 < < T. In the case
when k, > k;, if the offspring’s independence day 1, is
earlier than the critical day [¢,]+ 1 given by (6), the
offspring’s weight Y(7'; 1) at the end of the breeding
season is below y, so that the terminal fitness function
¢(Y(T; 1)) is zero (Fig. 3). In contrast, in the case
when k, < k,, if the offspring’s independence day ¢,
is later than [z}, the terminal fitness function
& (Y(T; 1)) is zero.

Now consider the offspring’s fitness F,(r,) defined
as the probability that it can survive through and after
the breeding season and reach its reproducible age to
reproduce the next generation, under the condition
that it becomes independent on day ¢, of the breeding

(a) ky >k, (b) ky <hy
— YTt - YT ¢
N -
Y, Y, :
1 t, T 1 i, T
¢ t

Fic. 2. Offspring’s growth function Y(¢) for two cases: (a) when
k, > k; and the growth rate is larger under the parent’s feeding than
after the offspring’s independence; (b} when k| < k, and the growth
rale is the reverse of (a). The offspring has the weight ¥, at birth.
If offspring becomes independent of parent on day ¢, it reaches
weight ¥(T;t,) at the end of the breeding season.

season. If the offspring becomes independent on the
first day, that is, ¢, = L, it survives through the breed-
ing season with probability ¢7. Growing according to
(3), its weight reaches ¥(T; 1) at the last day T of the
breeding season, which means that afrer the breeding
season it has the probability ¢(¥(T; 1)) to survive
and reach its reproducible age. Hence, its fitness F,(1)
is given by

F,()=0]¢(¥Y(T; 1) 9

In the case when ¢, = 2, two cases arise, The first is
that, if the parent dies on the first day with probability
1 — o;, the offspring is not fed by the parent on any
day rhrough the breeding season. Thus, the offspring
is always independent and survives through the breed-
ing season with probability ¢. Therefore, the fitness
in this case is given by F,(1) with probability 1 — o,.
The second case is that, if the parent survives and
feeds the offspring on the first day with probability &/,
the offspring is fed and survives for one day with

Ry > hy ky < ky
ARTeY) A Ta1,
. A e N e
g I AR T4 Y,
Yl Yl. e
1 t, T 1
¢ t
- &
— S
2
> P(Y (T; 7))
T / (Y (T: 1) \
]
o 7 1 . T
¢ t

Fig. 3. Terminal fitness function ¢{¥Y (7)) given by egn (5).
There exists a critical day for the offspring’s independence such that
the terminal fitness function ¢(¥(T; 1)} is zero for any indepen-
dence day ¢ before or after the critical day.
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probability «,. For t,=2, the offspring becomes
independent on the second day. Then, the indepen-
dent offspring survives through the rest of the breed-
ing season with probability a7, Its weight reaches
¥(T; 2) on day T, which means that, afrer the breed-
ing season, it has the probability ¢(¥(T;2)) to sur-
vive and reach its reproducible age. Lastly, its fitness
FE,(2) is given by

F,(Q)=(1-0)a ¢(Y(T; ) +0r0,0] " $(¥(T;2)).
: (10)

In the case when ¢, = 3, three cases arise. The first
case is that parent dies on the first day with prob-
ability 1 — o, The second case is that the parent
survives on the first day with probability o, and dies
on the second day with probability 1 — o, In this
case, from the second day, the offspring becomes
independent and survives through the rest of the
breeding season with probability a7~ '. The third case
is that the parent survives and feeds the offspring on
both of the first and second days with probability 4 7.
In this case the offspring survives for two days with
probability ¢2. For ¢, = 3, it becomes independent on
the -third day. The independent offspring  survives
through the rest of the breeding season with prob-
ability ¢]~2. Lastly, its fitness F,(3) is given by

F,(3)=(1—0peT¢(Y(T; 1)
+o{l —apo,6] ' P(Y(T;2)

+ofei0] 2G(T;3). (D

For the case when ¢,=4,5,..., T, F,(¢,) is given in
the same way.

Consequently, except for the case when 1, =1,
F,(1,) is expressed in general as follows:

4-1

E(t)=Y o4 (1 =)ol 'aI~ 1+ ¢(Y(T; /)
j=1

i

+oploy o G(Y(T5 1)) (12)

2.4. PARENT’S SURVIVAL PROBABILITY

In this section, we consider the parent’s survival
probability F,(r,), which is defined as the probability
that the parent survives through the breeding season
under the condition that it stops feeding on day ¢, in
the breeding season. o, is defined as the probability
that the parent survives through the interval period
between two sequent breeding seasons and reaches
the next breeding season.

If the parent never feeds the offspring on any day
throughout the breeding season, that is, if £, =1, the

parent survives through the breeding season with
probability 7. Then it can reach the next breeding
season with probability «,.. Hence, its survival prob-
ability F,(1) is given by

 F()=0Ta,.

'

1'(13)

If the parent feeds the offspring on the first day and
stops feeding on the second day, that is, if 7, = 2, the
parent survives on the first day with probability o,and
through the rest of the breeding season with prob-
ability ¢7~'. Hence, its survival probability F,(2} is
given by '

F,(2)=0,0]""0,. (14)

In the case when ¢, = 3, two cases arise. The first is
that the parent feeds the offspring on the first day with
survival probability a,, while the offspring dies on the
first day with probability 1 —o,. Then, the parent
survives through the rest of the breeding season:with
probability ¢]'. The second case is that the parent
feeds the offspring on the first day with survival
probability ¢,, while the offspring survives on the
second day with survival probability ¢,. Parent feeds
offspring also on the second day with survival prob-
ability g,. For 1, =3, the parent stops feeding on the
third day. Then, it survives through the rest of the
breeding season with - probability ¢7~2. Lastly, its
survival probability F,(3) is given by

F,(3)={(~0)0,67"' +0,0}67 *}a,. (I5)

The cases when 1, =4, 5, ..., T, F,(£,) is given in the
same way, _
Consequently, except for the case when 1, =1 or
t,=2, F,(t.) is expressed in general as follows:
-2

F,(1)= { Y o (1 —6,)0hal
Jj=1

+G,’}*'20';r"o';_'-'+'}a,r. {16}

i

2.5. PARENT’S FITNESS

Consider the parent’s fitness at age a, under the
condition that it stops feeding on day ¢ of the
breeding season. The parent’s fitness. J(1,; R(a)) is
defined by its survival probability F,(s,), its -offs-
pring’s fitness F,(4,), and the parent’s expected future
reproductive value R{a) at the last day of the breed-
ing season at age a, which satisfies the following:

‘R(@)=0,J(t; Ra+1) (@a=a,a/+1,...,6-1).

!‘ )

J(t,;; R(a + 1)) denotes the parent’s fitness at: its age
a + 1. Since o, denotes the probability that the parent
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survives between the end of the breeding season at age
a and the beginning of the next breeding season at age
a + 1, the right-hand side of (17) denotes the expected
future reproductive value. Note that R(a) should be
monotonically decreasing. in terms of the age a, and
R(a) =0 because g, is the last age for the parent’s
reproduction. -

Asin Clark & Ydenberg (1990), J(1,; R(a))is given
in this paper as follows: .

J(,; R(@)) = F, (1) + R(0)F,(1,). (18)

From (17) and (18), we can obtain the backward
recurrence equation to determine the expected future
reproductive value R(a) for every age a. It is assumed
that, since the expected future reproductive value
R{a) is considered only for parent to determine its
behaviour ¢¥ (a) from its viewpoint, it has no relation
with ¥ from the offspring’s viewpeoint. Thus, since
R(a)=0, the expected future reproductive value
R{a; - 1) for the age a,— 1 is determined by

R(ag— ) =0,J() (a); R(a,)) =0,F, (1} (@), (19)

and, further, in gencral, the value R{a,—1)
(i=12,...,a— a) for the age a,— i is given by the
following backward recurrence equation:

Rig—iy=0,J0f(a—i+ 1), Rig—i+ 1) (20

3. Analysis

3.1. THE OPTIMAL OFFSPRING’S INDEPENDENCE AGE
FROM THE OFFSPRING’S VIEWPOINT

The optimal offspring’s independence age +* from
the offspring’s viewpoint is defined as the day in which
the offspring’s fitness F,(r,) in the breeding season is
maximized. Therefore, by analysing F,(r,} given by (9)
and (12) (for the method of analysis, see Appendix A),
t¥ can be obtained as follows (Fig. 4):

When k, > k,,
t*=T. ' (21
When &, < k,,
oyl i<y
T ln ifv+n<t<via+l
(n=23,...,T-1), (22)
where
= ! 23
! _0',,/0',,— 1 ) ( )

Since g, > o, from the assumption, 0 <v < . For

convenience, we will hereafter use the notation v.
As shown in Fig. 4, those conditions for ¢¥ in the

case when k|, < k;, given by (22), are complementary

Tr-1

¥

FiG. 4. In the case when k| < &, the optimal offspring’s indepen-
dence age ¢ ¥ from the offspring’s viewpoint on the parameter space
(v,t.)is shown. For 1 <1, < T, *<T

to each other, and the possibly maximal F,{¢) is
T —1 in this case.

3.2. THE OPTIMAL OFFSPRING’S INDEPENDENCE AGE
FROM THE PARENT'S VIEWPOINT

The optimal offspring’s independence age ¢} (a)
from the parent’s viewpoint is defined as the off-
spring’s age ¢, at which the parent’s fitness J(t,; R{a))
is maximized. By analysing J(¢,; R(a)) given by (18),
t¥(a) can be obtained for the parent’s age a, when
R(a)>0, that is, when a,<a<a,—1, as follows:

When &k, > k,,

(1 if 1, > gy(v; a);

n ifn—1<t<n
£t <g,v;a),

and 4, (v;a)

1¥(a)= < orift, <n—1 and A, (v;a)<t,
<h(v;a) (n=2,3,...,T—1)
T fT—-1<t.<T and ¢ <g;(v;a),
orife, <T~1 and t <hi(v;a)
(24)
When &, < k,,
1 ift, <h(v;a)
% _ i ]
’f'(“)‘{n if b, (via) <1, < hy, (v:a)
(n=273,...,T—-1, (25)
where
T—-u+2 v
g.(via)=n+ K@) v+l (26)
pT—n+2
h(vi,a)=n +(l — XK@ )v (27)
=%
p== (28)
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K{a)=pT

K(a}=pT

Kia)

K(a)=p2

T-1 ap r2__ L
Kia}=pT S = Lol Gl

K@) =27 {p-}) K@ =T~ 10 (p- T-2
. T

1
. P
FiG. 5. In the case when &, > k,, the parameter. space {(p, K(a))

is categorized into [,—/;, depending on the type of the division of
the parameter space (v, ) in terms of the value of ¢2{a}.

_yki—ky) a,/o,
K@= R(@) a,jo,—1"

Note that the above conditions for ¢}(a) are
not complementary to each other. For example, in

(29)

T
T-1k
I |
2
1§
0

lorT—- 1lor’N

T-1 432
v

the case when k, > k,, there exist parameters such
that g(v;a)<i <hy{via})<T—1. This means
that, with such parameters, ¢} {(a) should be | or T.
In this case, #f(a) can be ultimately determined
by comparing J(1; R(a)) with J(T; R(2)). In
this paper, to avoid messy calculations, we no
longer discuss the ultimately determined ¢}(a) in
such a case, because our presented analyses give
sufficiently significant qualitative results valuable
for the discussion on the parent—offspring conflict
phenomenon.

As indicated by those conditions for ¢} (a), given
by (24) and (25), the ultimately determined ¢ (a)
strongly depends on parameters (Figs 6, 7 and 9). The
parameter space (v, f.) can be divided into subregions
depending on which value is possible for 3 (a). The
way of the division depends on the other parameters
p and K{a) (Figs 5 and 8).

In the case when k, > k,, depending on the type of
the division of the parameter space (v, t,), we categor-
ize the parameter region of (p, K{a)) into regions I,—1I,
as shown in Fig. 5 (for the method of analysis, see
Appendix B). According to those parameter subre-
gions of {(p, K(a)), the ultimately determined ¢} (a) is
shown in the parameter space (v, ¢,), as in Figs 6 and
7. In the cases of I, I,, and I, the possible value of
t7(a) is T or less than an N, while, in the case of I,

T-1
Iy« 5
2 ji
1 BE
0
v
Tt
-1
Ig R .
ElorTA—l o
: ?’t; Tor Wel 3
3 L g or N
2%‘:' ?%?:553
1 E & 3
0 3
‘N+1 'N

. + N
F1G. 6. In the case when k| > k,, the optimal offspring’s independence age 1} (a) from the parent’s viewpoint on the parameter space
(v, 1.} for the parameter sets f—I, of the parameter space (p, K(a)) is shown.
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F1G. 7. In the case when k, > k,, the optimal offspring’s indepen-
dence age ¢ (2) from the parent’s viewpoint on the parameter space
(v, i) for the parameter sets I.—f, of the parameter space (g, K{a))
is shown.

it is any value from 1 to N. In the cases of I—1;, only
1 or T is possible for 5 (a).

In contrast, in the case when &, < k,, we categorize
the parameter region of (p,|K(2)|) into regions C,
C,(n=273,...,T—2), and C,, as shown in Fig. §
(Appendix B). For those regions, the ultimately
determined ¢¥(a) is shown in the parameter space
(v,z.) as in Fig. 9. Independently of which case is

considered, any value from 1 to T — 1 is possible for
ty(a).

When g = g,, since R{g,) =0 from the defintion, it
follows that J(r,; R(a,)) = J(t,; 0) = F,(£,). Therefore,
ty(a) =t} given by (21) and (22), and no conflict
occurs between parent and offspring.

The offspring’s independence age 7, to maximize the
parent’s survival probability F,(¢,) is always 1 inde-
pendently of the values of parameters, because F,(¢,)
is monotonically decreasing. Indeed, since g, > o, for
any f,,

F(t+1)-F(t)=0:""07"'a; "(6,—0,)0,<0.
(30)

From the definition (18), when parent is sufficiently
young and R(a) is so large, it is expected that ¢ (a)
is near 7,, because J(z,; R(a)) = R(a)F,(t,). Indeed, as
seen in Figs 6, 7 and 9, the parameter region for
t¥(a)=17,=1 is relatively larger for smaller |K(a)|
than for the larger.

3.3. EXISTENCE OF PARENT—OFFSPRING CONFLICT

Comparison of Fig. 4 with Figs 6, 7 and 9, the
parent—offspring conflict presents a wide range of
parameters.

In the case when k, > k,, as shown in Figs 6 and 7,
especially for relatively large value of 1, the
parent-offspring conflict can exist, because t* =T.
The type of conflict is eventually for ¢¥ > ¥ (a), that
is, during conflict, parent tends to stop feeding its
offspring, while offspring wants to be fed. Only for
sufficiently small values of ¢, and v, 17 =t}(a)=T,
and, throughout the breeding season, the parent
continues feeding its offspring, which wants to be fed.

Also, in the case when k, < k,, as shown in Fig. 9,
only one type of conflict, t¥>¢¥(a), is possible.
This result can be easily proved: any slope of
boundary lines parameter regions in (v, ¢.), given by
(27), is greater than 1.

3.4. PARENT'S AGE DEPENDENCE OF CONFLICT

The optimal offspring’s independence age ¢} (a)
from the parent’s viewpoint for a breeding season is
determined depending on the value of K(a), that is,
of R{a) as shown by the above analysis. Following
the definition, |K(a)| is monotonically increasing to
infinite as the parent’s age a increases, since R(a)
monotonically decreases as g increases, and reaches
zero at the age a,. Therefore, as the parent’s age
increases, the parameter point moves up in the par-
ameter space (p, |K{(a)|}.

In the case when k, >k, and 0 < K(a), if p =1,
as the parent’s age increases, the parameter point
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Ao d i

seer ICr2Cr g

| K (a)]

/i

0 1\

el
T-2 2
T-3 p

FiG. 8. In the case when &, < k,, the parameter space (p, |K(a)[)
is categorized into C,; Cyy, and C~Cy_,, depending on the type
of the division of the parameter space (v, ¢,) in terms of the value
of t*(a).

P

{p, K(a)) moves as I,»I—1I, in Fig. 5. Therefore,
since t¥ = T in this case, whenever the conflict occurs,
t*(a) =1, and parent tends to stop feeding its off-
spring on every day of the breeding season, while

offspring wants to be fed throughout. the breeding -
season. Otherwise, when conflict does not occur,

the parent keeps feeding its offspring through the
breeding season. Moreover, for some parameters of
(v, t.), as seen in'Fig. 7, conflict does not occur for a
parent older than a critical age determined by the

parameter (v, f.), while conflict does occur for a.

younger parent.

If p < 1 when k, > k,, as the parent § age increases,
the parameter point {p, K(z)) moves up in Fig. -5
through the following order of parameter regions in
itt IL—»I-sL—oL-I,—»I,, The parameter point
(¢, K(a)) does not pass any region with any order
inverse to this order. The argument similar to that for
g 2 1 is applicable for this case. As the parent’s age
increases, 1 (a) tends to be the same or to increase,
therefore, it is likely that after a critical parent’s age,
conflict does not occur and the parent kecps feedmg
through the breeding season. '

As previously mentioned, at the parent s last age g,
in the reproducible age-span, in the case when k, > k.,
conflict does not occur and ¢}(a)=1t¥=T, so that
the parent feeds through the breeding season.

It is concluded that, for the case when &k, > k,, the
optimal offspring’s independence age ¢¥(a) from the
parent’s viewpoint stays the same or tends to become
larger toward T as the parent’s age a increases, and
conflict of the type for ¢} > 1*(a) comes not to occur
after a parent’s age; thus the parent keeps feeding
through the breeding season.

v

FiG. 9. In the case when k, < k,, the optimal offspring’s indepen-
dence age 1 ¥ (a) from the parent’s viewpoint on the parameter space
(v, t.) for the parameter sets, C, Cyy,and C, (n =2,3,...,T-2)
of the parameter space (p, |K(a)|) is shown.

Moreover, in the case when k, <k, and K(a) <0,
as the parent’s age a increases, the parameter point
(p, IK(a)) moves up, as shown in Fig. 8, through
the following order of parameter regions in it:
Cy—=Cr_3=Cr_3—+ == C,=C,. The parameter
point (p, [K(a)|) does not pass any region with any
order inverse to this order. Therefore, as seen in Fig.
9, since the conflict is only of the type such that
ty > t}(a), the conflict can come not to occur after a
critical age of parent for some parameters of (v, ¢,).
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For the other parameters of (v, #.), the conflict of the
type such that ¥ > ¥ (a) occurs through the parent’s
reproducible age-span except for the last age 4,. In
both cases, the optimal offspring’s independence age
t¥(a) from the parent’s viewpoint stays the same or
tends to become the larger as the parent’s age a
increases, as well as in the case when &, > k.

3.5, RESOLUTION OF PARENT—OFFSPRING CONFLICT

By the above analysis, it is shown that the parent—
offspring conflict possibly occurs depending on those
parameters including the parent’s age. The conflict is
resolved once the parent or the offspring yields to the
other. In this section we discuss how the conflict is
resolved and how the compromised day t*(a) when
the offspring becomes independent is determined.

For the resolution of the parent—offspring conflict,
the cost of the conflict is taken into account. The cost
is assumed to be introduced as the decrease of fitness
(M. Higashi and N. Yamamura, personal communi-
cation). That is, during the conflict, it is assumed that
the offspring must pay a cost ¢ to counter the parent,
while the parent must pay a cost «c to counter the
offspring, where ¢ is monotonically increasing as the
duration of the behaviour to counter the other side
per conflict, and « is a positive constant. At the
beginning of any day during the conflict situation,
¢ =0 because the behaviour to counter the other side
has not yet started. These costs are subtracted from
the fitnesses of parent and offspring.

In the following, we consider the resolution of the
parent—offspring conflict, making use of the cost
mentioned above, for two distinct cases: 1Y > 1 ¥(a)
and 1} <t¥(a).

Case A: t} >t} (a)

The compromised day (*(a) naturally satisfies
tx(a)<t*(@)<t}. The fitness gain D,(t; a) for the
parent on day ¢ during the conflict (expected for the
case in which parent wins the conflict and succeeds in
making the offspring independent), relative to the
fitness that the parent yielded to the offspring initially
and let the offspring depend on its feeding, is now
given by

D.(t;a)=J(t; R(a)) = J(t + 1; R(a}) —ac. (31)

On the other hand, the fitness gain D,(¢; a) for
offspring on day 7 during the conflict (expected for the
case in which it wins the conflict and succeeds in
making the parent feed it), relative to the fitness and
the offspring initially yielded to the parent and be-
came independent, is now given by

Dr,(f,a)=E,([+I,a)‘_F:,(f,a)*C (32)

When 1}¥(a) <t < 1*(a), the fitness gains D,(1;a)
and D, (r;a) must cventually decline from positive
toward zero on day ¢, because the cost ¢ is temporally
increasing as the behaviour of the conflict continues.
Therefore, when D,(¢; a) becomes zero while D, (z; a)
is still positive, the parent yields to the offspring and
feeds it. Thus, when t¥(a) <t < t*(a), there exists a
value of ¢ such that D,(t;a2)=0 and D,(t;a)>0.
On the other hand, on the day when ¢ = 1¥(a), the
parent does not yield to the offspring before the
offspring yields to the parent from the definition of
t*(@). This means that there exists a value of ¢
such that D (¢;4)=0 and D,(t;4)20. It is clear
that t*(a) <t¥, because D,(t*;a) < ~c¢ from the
definition of t* so that the compromised indepen-
dence day does not be beyond day ¢*. This argument
can be simplified with the following function
O(t;a,a)

0(t;0,a) =afF,(t + 1;0)— F,(t;a)}
+ {J(t+1; R(a)) — J(1; R(@))}
= (2 + D{F,0 + L;a)—F,(1; a)}
+ R{a){F,(t + Lia)— F,(t;a)}

_ _R(a) _R(a)
e nfi{ie 1 K)o 2

(33)

Note that 8(7; «, @) >0 when ¢ (a) < ¢ <t*{a), while
d(t;a,a) <0 when t = t*(a). Therefore, the compro-
mised day *(a) is given by

1*(@)=min {1{0(1; 2, a) <0, 1} (@) <t <13} (34)

Case B:1f < 1¥(a)

As before, the compromised day t*(a) naturally
satisfies that 1* < 1*(g) < 1¥{q). Contrarily to Case
A, the fitness gain D,(¢; a) for parent on day 7 during
the conflict (expected for the case in which the parent
wins the conflict and succeeds in keeping offspring
under the parent’s feeding), relative to the fitness that
the parent initially vielded to the offspring and let it
become independent, is now given by

D (t;a)=J(t + 1; R(a)) — J(t; R(a)) —ac. (35)

The fitness gain D,(r; a) for the offspring on day ¢
during the conflict (expected for the case in which it
wins the conflict and succeeds in becoming indepen-
dent), relative to the fitness that is initially yielded to
the parent and accepted the parent’s feeding, is now
given by

D (t;a)=F,(t;a)-F,(1 + L;a}—c. (36)
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By the same argument as in Case A, when
1* <t <t¥a), there exists a value of ¢ such that
D,(t;ay>0 and D,(t;a)=0. On the day when
t=t*(a), there exists a value of ¢ such that
D,(t;a)20 and D,(t;a)=0. Also in this case,
it is assumed that %)< t}¥(g), because
D,(t3(a); a) < —ac from the definition of ¢} (a). This
argument can be simplified with the same function
(33), 6(z; «, a). Moreover, the compromised day ¢ *(a)
is given by the following equation which is similar to
(34):

t*@)=min {1{f(t; 0, a) <0, X<t <1 (a)). (37)

We note that, since the considered signature of
8(r;2,a) 1s determined by the difference of
J(t; R{a)/{{(a + 1)), t*{(a) is regarded as the smallest
value that gives the maximal of J(¢; R{a)/(x + 1))
when min {r¥,¥(a)} <t <max {+*, t}(a)}. Exist-
ence of such r*(a} is assured by the above argument.

From the results of our model, it can be seen that
the conflict is only of the type ¢} > 1 *{a), that is, Case
A, and as the parent’s age a4 increases and the
expected future reproductive value R(a) decreases,
ty{(a) stays the same or becomes the larger and
approaches t* from below. Therefare, the abaove
result indicates that the compromise between parent
with expected future reproductive value R{a) and its
offspring shifts the offspring’s independence day to
that corresponding to the favourable (not necessarily
optimal!} independence ége from the viewpoint of
parent with the expected future reproductive value
R(a)/(x + 1). Eventually, the compromised indepen-
dence day t*(a) is nearer to ¥ the larger the value
of a.

In the case when k >k, and g =1, t*=T and
tx(a)is 1 or T, as shown the previous section (Fig. 7).
Thus, the compromise can cause only two alternative
conclusion of the parent—offspring conflict: the offs-
pring becomes independent on the first day of breed-
ing season, or the parent keeps feeding the offspring
throughout the breeding season. Since ¥ (a)islor T
by our analysis, if the parent yields to the offspring on
the first day of the breeding season, the offspring’s
independence does not occur until the last day of the
breeding season.

On the other hand, in the case when k, > k, and
p < 1, the compromise can cause the offspring’s inde-
pendence on the day ¢*(a) such that | <r*a)< T
(see Fig. 6). Depending on the parameters, the com-
promise conclusion is the same as in the case when
k, >k,, ahd p =1 still possibly occurs.

In the case when k, < k,, both t* and 1¥(a) can
take any value less than 7, depending on the par-

ameters, whereas +* > 1} (a) is always satisfied in the
previous section (Fig. 9). Therefore, the compromise
can cause the offspring’s independence on the day
t*(a) as defined by t¥(a) < r*(a)<t}.

3.6, ATLANTIC PUFFINS

Clark & Ydenberg (1990) made numerical calcu-
lations for their model with parameters estimated
from the data for Atlantic puffins (Ydenberg, 1989).
Following their parameters, those for our model
can be given as follows: g,=09955; o, = 09993;
g,=09962; ¥, =5875g; T =40, y.=300g; y =0-3.
Since the growth function for an offspring fed by its
parent in Clark and Ydenberg (1990) was given by a
two-stage function with a different growth rate, we
should take another estimation for the parameter k,
of our model in which the corresponding growth
function is a single stage. Since, following their par-
ameters, offspring fed through the whole breeding
season could grow to about 350 g by the last day, we |
take k, = 7-3, with which an offspring fed throughout
the breeding season reaches 350-75 g in our model.
Clark & Ydenberg (1990) numerically analysed how
the offspring’s independence days from the respective
viewpoints of parent and offspring depend on the
offspring’s growth rate &, after its independence, the
daily survival probability o, for parent feeding offs-
pring, and the probability ¢, for the parent to survive
through the period between two sequential breeding
seasons. In their analysis, in contrast to ours, it is
assumed that the lifespan and reproducible age-span
for each individual are infinite, so that the future
reproductive value for parent can be regarded as a
constant, independent of its age, and thus ¢} (a) is
also independent of the parent’s age: that is,
tp{a)y=1tr.

When o, = 096, we obtain v = 2315, p = 09993,
and

43-45
= 40 -

=40 -73T 0
Ak, 03125

k< 3=k

R{a} 1/o,—1-0045°

Calculated for some values of &, and o/, these par-
ameter values are given in Table 1, Note that, since
it is required that 1<r <7, we assume that
k, < 61858 < k,. On the other hand, from this as-
sumption, g, < 6, = 0-9955. Note that v is rather large
and p is very close to and less than 1. Therefore, if g,
is sufficiently large or R{a) is sufficiently small, then
K{(a) is rather large and is bounded by the parameter
region /; of Fig. 5. However, if g, is sufficiently small
or R(a) is sufficiently large, then K(a) is bounded by
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TaBLE |
Parameter values of t. and K(a)R(a)
ko oy t, K{a)R(a)
4 0-990 26'83 184-1
0-995 1963-9
5 0-990 21-11 128-3
0995 1368-8
& 0990 6-58 72:5
0-995 7737

Parameter values of ¢, and K(a)R(a) for k, =73, k,=4, 5, &
o,= 0990, 0-995; ¢, = 0:9955; o, = 0-9998; o, = 0-9962; o, =0-96;
¥, =5875 T=40; y.=300, y=03. From the definition,
v =231-5 and p ==0-9993 in this case.

the parameter region I —I; of Fig. 5. As k; increases
to k,, since K(a) monotonically decreases, ) (a)
decreases (refer to our result about the parent’s age
dependence of conflict). This result corresponds
to that of Clark & Ydenberg (1990). However, t*
is also monotonically decreasing in their analysis,
while ¢* in our model is constant, that is, ¢* =
T' =40 when k,>Kk,. Further, as o, gets larger,
since K(a) monotonically increases, 1} (a) increases.
This result also corresponds to that of Clark and
Ydenberg.

When k, = § and o,=0-995, the value of K(a)R(a)
lies in the range 1314-1878 for o,=0-7-1-0. This
value of K(a)R(a) is rather large. Therefore, it is very
likely that K{a) is large enough to li¢ in the parameter
region I,. Since . =21-11 and v =231-5 in this case,
it is likely that ¢} (a) = 1. This result is different from
the numerical result of Clark & Ydenberg (1990).
Only when the parent is so young that R(a) is large
enough to make the value of K(a) sufficiently small,
then K(a) is in the parameter region I -I;, and it is
likety that ¢ (a)} > 1. This is similar to the result of
Clark & Ydenberg (1990), since ¢} takes the value less
than but near to ¢* in their result. This result can be
explained by the fact that the parent in their model is
assumed to be eternally young.

For p =0-9993 independently of the parent’s age,
the parameter regions I,—I, occupy relatively so small
an interval of K(a) that the behaviour corresponding
to such parameter regions seem rarely observable.
Hence, relatively, the behaviour for the region I or I,
seems expected to be so observable. Thus, it is very
likely that t¥ =1 or 1} =T =40, and it is expected
that, as in the parent-offspring relation of Atlantic
puffins, the parent feeds the offspring through the
breeding season, or the parent—offspring conflict
starts to occur in an early period of the breeding
season that offspring becomes independent early in
the breeding season.

4. Conclusion

The results of our mathematical model indicates the
possibility that the observed behaviour of parental
care may change depending on the parent’s age.
This is because the compromise conclusion of the
parent—offspring conflict depends on the parent’s
age, i.e. essentially on the parent’s expected future
reproductive value. Moreover, the observed parent-
offspring conflict possibly depends also on the
parent’s age.

In the framework of our mathematical model the
observed parent—offspring conflict is of the type such
that ¥ > t¥(a), that is, the parent intends to stop
feeding its offspring, while the offspring wants to be
fed. However, if another type of conflict is observed,
such that ¢¥ <t} (a), that is, the parent intends to
feed, while the offspring wants to become indepen-
dent, some improved mathematical model will be
required for the mathematical theoretical explanation
of it.

We thank Shigeo Yachi and Fugo Takasu for their
valuable comments on this work.
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APPENDIX A

In this appendix, we show how to determine ¢* and
t¥(a) analytically. The optimal offspring’s indepen-
dence age ¢* from its own viewpoint is defined as the
day on which the offspring’s fitness F,(t,) in the
breeding season is maximized. Thus, ¢ ¥ should be one
of maximals of F,(¢,) fort,=1,2,..., T. The necess-
ary condition for t*=1is

F,(2)—F,(I)<0.

In the same way, the necessary condition for t* =T
is

F(T)-F(T ~1)>0,



156 H. TOKUDA AND H, SENO

where it is assumed that, if F,(T)= F,(T — 1), then,
t* < T — 1. In contrast, the necessary condition for
t*=n{m=273,...,T—1)is as follows:

Fmy—-F,n—1>0
Fn+1)—F,(n)<0.

Some cumbersome analyses of these necessary con-
ditions can lead to possible values of 1% given as eqns
{21) and (22) in the text.

Also as for t"(a), the same argument is adaptable
for J(t,; R(a)) given by eqn (I8) in the text. In this
case, as long as parent—offspring relation within a
breeding season is considered, the expected future
reproductive value can be regarded as a non-negative
constant independent of ¢. Therefore, the same

(a) ,
by via)

_gn+ 1{v;a}

method of analysis can be carried out for J(i,; R(a))
and those possible values of t*(a) are given as (24)
and (25) in the text. - -

APPENDIX B

In this appendix, some outlines of the way of
analysing the parameter dependence of the optimal
offspring’s independence age {rom parent’s viewpoint
{given by Figs 5 and 8 in the text} are given.

In the case when k, > &, t} is given by (24) in the

text. Function g,(v; a) has the following asymptote:
F—n+12
t=n———.
K(a)

(b}

By o1 (v; @)

hy (v;a)

L B
(c)
n+l
n
n-1
) .
n+ LE----- PR EEREE R L LT CE PP PR
'\grn-l(v;a) .
P U SR i
g, v;a)
R Y LA Ao
hyoilv;al

FiG. Al. Schematic description of the configuration pattern for g,(v; a) and A,(v; a). See text for detailed explanation. -
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I;

K(a)

.....................................................

LK@ a2 (2-3)

K@) =(T-np® (p— )

K@=’

K@ =2 (p-3) K@
p

- 1
3o (7))

Fic. A2. In the case when k, > k, and p £ 1, the parameter space (p, K{(a)) consists of a detailed structure depending on the type of
the division of the parameter space (v, 1,) in terms of the value of 1}(a). Compare with Fig. 5 in the main text.

Therefore, depending on the position of the
above asymptote, the valid condition of eqn (24)
switches, because the positional relation among
the functions g,(v; @) and A,{(v; a) changes (sec Fig.
- Al). Further, the positional relation depends also on
n. Thus, as seen in the cases of 1,, [, and I, of Fig. 6
in the text, there is a case such that ¢} cannot be less
than 3N > 1. For n <3N in such a case, the positional
relation corresponds to (a) or (b) in Fig. Al. As
indicated in this figure, the positional relation can
be analytically categorized by analysing the posi-
tional relation among these points P, and P, ,, given
by

P ( —1 L
ne | P ’pT—n+2/K(a)_l

2
P"‘”'(n_l’pr"'*'/K(a)—l)'

If P,,,is located to the left of P,, there exists some
region for ¢} = n, seen in case (d) of Fig. Al. Even
if P, is located to the right of P,, when p < 1, there
can exist a region for 1} = n, seen as case (e) of Fig.
Al, under the following condition:

n < n—1
PTR@) — 1 pT K@)~ 1

This condition means that the cross section of
h,.(v;a) on the v axis is located to the left of that
of h,(v;a). In Fig. 5 in the text, no distinction is
indicated between the two cases (d) and (¢) of Fig. Al.
In these cases, the parameter region of (p, K(a))
further shows a detailed structure, when k, > %,, as
shown in Fig. A2: these regions [; and I, are respect-
ively divided into two distinct regions. For parameters
of I, with increasing # for ¢} = n, both cases (d) and
{(e) from Fig. Al occur, while, for those of I;;, only
case {d) occurs. Similarly, for parameters of I, with
increasing n, if n <?N, case (a) occurs, and when
n =3N, (c) occurs. Then, for rn > 3N, both cases (d)
and (e) occur. However, for those of I, , case (¢) does
not occur; it is replaced by (d). As another case, if the
foltowing condition is satisfied for ¥ when p < 1,

pT-N+2 pT-N+!
K(a) K(a) ~

there exist some region for ¢} = N, given by (c) in Fig.
Al. This case is included in the region 1, of Fig. 5, as
seen in Fig. 6 in the text.

In the case when &, <k, the analogous analysis
can be carried out for A,(v;a) and A, ,(v;a). For
parameters of C,, the region of (v, ¢,)-space for ¢} = j
less than # + | and more than | appears as a triangle
because A,(v; a) and A, ,(v; a) intersect, as shown in
Fig. 9 in the text.
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