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1 MODELLING

1.1 Metapopulation Dynamics

In our mathematical modelling, we use the idea of the following model by
Levins [2], well-known as a mathematical model for metapopulation dynam-
ics:

dfdit) - m {1 — x]\(;)} x(t) — ex(t), (1)

where z(t) is the number of patches utilized by the considered population, m
the colonization rate of empty patches, e the de-occupation rate of occupied
patches, and M the carrying capacity for the considered patches, that is, the
maximal number of patches in the habitat region.

1.2 Population Dynamics

For pupolation dynamics in our mathematical modelling, in order to develop the
mathematical linkage with the metapopulation dynamics, we at first consider
the following population dynamics in a multi-patchy environment. The total
number of patches is n. We assume that the migration of population among
patches is rapid enough to make the population distribution in the multi-patchy
environment uniform, so that the population size in any patch is identical at
any moment. In contrast, the dispersion of resource is assumed to be sufficiently
slow relatively to the population migration process. With these assumptions,
we consider the following basic mathematical model of population-resource dy-
namics within a multi-patchy environment:

T aswa) 2)
LU —bei(t)z(t)—psi(t)+;ps_f)€j(t)—ps_f)si(t), (3)

where z(t) is the population size in any patch at time ¢, €;(¢) the amount of
resource in pacth i at time ¢, p the dispersion rate of resource out of patch,
1 — s the leakage rate of resource out of the considered environment. Parameter
a is the coefficient of population growth, which is the growth rate per unit
amount of resource, b the coefficient of consumption of resource, which is the
consumption rate per unit population size. We ignore the spatial structure of
the patch location, and assume that the resource dispersed out of a patch goes
into all the other patches evenly with the ratio 1/(n — 1).

Now we turn to consider the dynamics of total population and resource.
Since the population size z in each patch is assumed to be common among all
patches, the total population size Z is given by Z(t) = n - z(t). As for the total



amount E(t) of resource at time ¢ over n patches, it can be given by the sum of
the amounts of resource over all patches in the habitat region:

B = Y el

With the sum in terms of ¢ from 1 to n for both sides of (2) and (3), we can
derive the following dynamics about Z(t) and E(t):

%ﬁt) = %E(t)Z(t) @

From (4) and (5), we can derive the following autonomous ordinary differential
equation of Z(t) (see Appendix A):

%}Et) = % {ZEO + Zo — Z(t)} Z(t) — psZ(t) log (ZZ(S)) . (6)
where Fj is the initial value of the total amount of resource, Ey = E(0), Z; the
initial value of the total population, Zy = Z(0).

For the total population dynamics by (6), the resource consumption (5)
implicitly works. Especially if no resource leakage out of the considered envi-
ronment occurs, that is, if s = 0, the total population dynamics (6) corresponds
to a kind of logistic growth.

1.3 Population - Metapopulation Dynamics

To develop some mathematical linkage between the metapopulation dynamics
given by (1) and the population dynamics given by (6), we consider the following
assumptions about the population and metapopulation dynamics: The total
number of patches is M in the considered habitat region. The carriyng capacity
K for the considered population is proportional to the ratio of the number x(t)
of utilized patches to the total number M of patches in the habitat region:
K = ~x(t)/M, where v is a positive constant. We assume in addition that, as
the total population size u(t) increases, the migration rate m of the considered
population into non-utilized patches is given by m = (- u, where ( is a positive
constant. We assume that, as the number z(t) of utilized patches increases, the
intrinsic growth rate for the total population gets larger.

With these assumptions, we consider the following 2-dimensional dynamical
system composed with the metapopulation and the population dynamics:

da;sjt) = Bu(t) {1 _ ﬁz&t)} x(t) — ex(t) (7)
) ot {1 40 ato) - sute ®)



where e is the de-occupation rate of occupied patches, and

rlete) = { 2 )

is the intrinsic growth rate depending on the number z(t) of utilized patches, §
the natural death rate for the considered population.

With some appropriate non-dimensionized parameters and variables, the
system given by (7) and (8) can be rewritten as follows:

X

= - IU(1-X)X-X (10)
dr
al [ Ro+ AX U
e <l—s—BX) <1X)UEU’ (11)
where
By =TI,
e
b 4 N Ro;
e
aM
e = 3
bM = B;
0

2 ANALYSIS

2.1 Invariant Range for Population Size and Patch Num-
ber

In this paper, we consider only the following range of (X, U):

0<X<l1
U>0 (12)
U > X.

This is because, as indicated for instance in Fig. 1, with the isocline method
in the phase space, we can easily see that the range (12) is invariant for the
dynamics given by (10) and (11). In other words, if the initial condition is
given in the range (12), the trajectory of (X,U) remains in it at any finit time.
Moreover, with the isocline method in the phase space, we can see also that the
trajectory from any initial point out of the range (12) eventually enters it.



Figure 1: Phase plane (X,U) for the dynamics of (10) and (11). Vector flows are
schematically shown. Three equilibrium states coexist. Two of them are locally stable,
and one is unstable. For sufficiently small initial population size or for sufficiently small
initial number of utilized patches, the population becomes extinct. Dark region is an
invariant set for the considered dynamics.



Figure 2: Phase plane (X,U) for the dynamics of (10) and (11). Vector flows are
schematically shown. There is only one equilibrium point, and any initial condition
leads to the extinction of population.

2.2 Local Stability of Extinct Equilibrium

From the local stability analysis for the extinction equilibrium state (X,U) =
(0,0), we can find that the extinct equilibrium state is always locally stable, as
proved in Appendix B.

2.3 Possibility of Population Persistence

With the isocline method for the dynamics of (10) and (11), we can find coex-
isting two distinct equilibrium states, at which the considered population can
persist: One is stable and another unstable. As shown in Fig. 1, when such
persistent equilibria exist, the extinct equilibrium (X,U) = (0,0) also exists.
As we mentioned in the previous section, the extinct equilibrium is locally sta-
ble. Hence, this is the bistable case, when the eventually realized equilibrium
state depends on the initial state (X (0),U(0)). In the case shown in Fig. 1,
the population becomes extinct for sufficiently small initial population size or
for sufficiently small initial number of utilized patches, while it can persist for
sufficiently large initial population or number of utilized patches.

2.4 A Sufficient Condition for Global Population Extinc-
tion

From the isocline method, we can find some situations, in which the considered
population goes extinct independently of the initial condition (see Fig. 2). From



1000

800

600

400

200

0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

Figure 3: Parameter region for the population persistence. Numerically obtained
results. (a) E > Ry. A=80, E=8, Ro=5. (b) E < Ro. A=800, E =8, Ry = 200.

the configration of nullclines, we can find the following sufficient condition for
the population extinction (see Appendix C):

r<4 (13)
> 4
4(1— BE/A)
{(1—=BE/A) — E/A(1 — RoB/A)}? (14)
RoB
1 < .
F A

2.5 A Necessary Condition for Population Persistence

As shown in Fig. 1, with the isocline method, we can find the bistable situation,
in which the considered population can persist for some initial conditions. From
the arguments about the sufficient condition for population extinction in the
previous section and Appendix C, we can find the following necessary condition
for the population persistence:

I' > 4
r 4(1 — BE/A)
{(1-BE/A) — E/A(1 — RyB/A)}? (15)
1 FoB.
= A

2.6 Parameter Region for Population Persistence

As shown in Fig. 3, we can numerically obtain the parameter region for the
possible population persistence. The possible population persistence means that
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Figure 4: B-dependence of the intrinsic growth rate r(z) given by (9). (a) E > Ro;
(b) E < Ry.

the population can persist for some initial conditions. As already mentioned by
(13), if 1/T" > 1/4, the population cannot persist. Thus, the parameter region
for the population persistence could exsist only when 1/T" < 1/4.

As indicated by Fig. 3(a), if E > Ry, the parameter region for the population
persistence exists only for B < A/E and for sufficiently small 1/T" (see Appendix
D). On the other hand, if F < Ry, the parameter region exists for sufficienly
small 1/I" with any given value of parameter B, as shown in Fig. 3(b) and proved
in Appendix D.

The feature of intrinsic growth rate r(x) depends on the parameter B as
shown in Fig. 4. For the population persistence, the intrinsic growth rate r(x)
is convex in terms of z in Fig. 4(a). Also in case of Fig. 4(b), the convex r(x)
is more persistent than the concave one, although the concave r(z) could lead
to the population persistence with sufficiently small 1/T.

Appendix A

From (4) and (5), we can derive the following differential equation:

dE —bZ —np+np(l —s)
iz - oz | (16)
This differntial equation can be easily solved as follows:
b
E = —2z-"Pigz4c, (17)
a a

where C'is an undetermined constant. Let us denote the initial value by Z(0) =
Zy and E(0) = Ey. Then, from (17), we can determine the constant C' with the
initial condition:

b

c = E0+*Z0+%10g20.
a a
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Therefore,

b snp Z
E = E —(Zop—2)— —1 — . 1
o+ 2 (20-2) - Liog () (18)

From (4) and (18), we derive (6).

Appendix B

To consider the local stability of extinct equilibrium (X,U) = (0,0), we con-
sider the perturbation around (0,0). Now, let us consider (zo(7),uo(7)) the
perturbation such that 0 < z(7) < 1 and 0 < up(7) < 1.

We can derive the dynamics of perturbation (xo(7),u(7)), linearized from
(10) and (11) as follows:

Lo Tug(r) (1 = () 0(r) = 0(7)
~  —xo(T), (19)
duc(ji)7(-7—) ~ {RO + (A — RQB) .’E()(T)} <]. — Zzg:g) Uo(’]’) = EUO(’T)
~ Roug(7) {1 - ZZE:;} — Eug(7)
_ _w\ gl
~ |rodi =55} - | 20
Immediately from (19), we can get the following:
xo(T) = xo(0)e™ 7 (21)
Hence, as 7 — +00,
xo(T) — 0. (22)
From (20) and (21),
duc(l)f—T) ~ {Ro — %(%)QTU,O(T) — E} UQ(T), (23)

where the following linearizing approximation about xq is used:

Ro + ASCO

A 1-B
1+ By (Ro + Axo) ( )

Ro + (A - R()B){L‘o. (24)

Q

11



Now, let us consider the following function ¢ = ¢(7):

p(7) = euo(7), (25)
thus ¢(0) = u(0) > 0. Then, from (24) and (25), we can get the following:
dfli(:) = e up(r)+e’ du;(_T)
= lr)+e’ dugy)
~ (1) + e up(T) {RO - %GTUO(T) — E}
Ry
— v {14 Ro- B e} (26)
This is the well-known logistic equation. If 1 + Ry — E > 0, then, as 7 — +00,
o) = . (21)
Therefore, as 7 — +o0,
w(r) = e, (28)
so that, as 7 — +oo,
ug(t) — 0. (29)
In contrast, if 1 + Ry — F < 0, since dy/dr < 0 for Yo > 0,
p(r) = 0 as 7 — 4oo0. (30)
This means that the following is necessary:
up(T) — 0 as T — +o0. (31)

These arguments prove the local stability of extinct equilibrium (X,U) =
(0,0), because the arguments hold for any perturbation (xo(7),uo(7)) such that
0 < zo(r) < 1and 0 < up(r) < 1.

Appendix C

From (10) and (11), we derive the nullclines for dX/dt = 0 and dU/dt = 0
respectively as follows:

(X —1)’

12



Figure 5: Phase plane (X,U) for the dynamics of (10) and (11). Vector flows are
schematically shown. (a) When the nullcline of Xhas no intersection with U = X; (b)
When Ry/BA > 1 and the asymptote for the nullcline of U has no intersection with
the nullcline of X.

U =0

o - {0-5) x50 MO AR

The second nullcline of (33) for dU/dt = 0 has the following asymptote:

U = <1—ZE>X—§(1—RZB). (34)

If the configration of nullclines is as shown in Fig. 5(a), that is, if the second
nullcline of (32) has no intersection with U = X, we can easily see from the
vector flows that the population always goes extinct. This case is realized if
and only if the following equation of X does not have ywo distinct real roots in
(0,1):

rX?-TX+1=0. (35)

This condition corresponds to (13).

Moreover, when RyB/A > 1, if the configuration of nullclines is as shown
in Fig. 5(b), the considered population always goes extinct. Especially in this
case, if the asymptote (34) has no intersection with the second nullclines of (32),
so does the second nullcline of (33). In such case, the configuration of nullcline
as shown in Fig. 5(b) is sufficiently realized, and the population always goes
extinct. The case when the asymptote (34) has no more than one intersection
with the second nullcline of (32) is realized if and only if the following equation
of X has no real root in (0,1):

13



BE\ , BE E RoB E RoB\ 1
(-20) {07 A () ek () e

(36)
This condition corresponds to (14) with RyB/A > 1.
Appendix D
From (10) and (11), we can easily find that, if the following equation of X has

two distinct real root in (0,1), then the bistable case shown in Fig. 1 can be
realized:

X(X-1){(A-BE)X — (E - Ry)} = —%AX— %Ro. (37)

For mathematical convenience, let us use the notations

3
s
I

X(X - 1) {(A= BE)X — (E - Ro)} (38)

Q
s
Il

1 1
~5AX — SR, (39)

Let us remark that F(X) is independent of T

If and only if
E > Ry
A (40)

B < ok

the cubic function F(X) is as shown in Fig. 6(a). The linear function G(X) al-
ways takes negative value for any positive X, and its location shown in Fig. 6(a)
can be realized for sufficiently small 1/T', so that the equation (37) has two dis-
tinct real roots in (0,1) for sufficiently small 1/I". This means that, if the
condition (40) is satisfied, the equation (37) can have two distinct real roots in
(0,1). On the other hand, if E > Ry and B > A/E, the function F(X) is as
shown in Fig. 6(b), so that the equation (37) cannot have any real root in (0, 1)
for any I". This argument indicates the case of Fig. 3(a).

In contrast, if £ < Ry, the function F(X) is as shown in Fig. 7(a) or 6(b).
Therefore, with the same argument as for the above case, we can see that the
equation (37) has two distinct real roots in (0,1) for sufficiently small 1/T.
This case does not depend on the value of parameter B, and indicates the case
Fig. 3(b).

14
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/

Figure 6: Configrations of (38) and (39) corresponding to Fig. 3(a) when E > Ry. (a)
B < E/A and 1/T is sufficiently small, the equation (38) has two distinct real roots
in (0,1); (b) When B > E//A, the equation (38) has no real roots in (0, 1) for any I.

Y
(a) (b) Y
ﬂ 3 A- BF/ \1 X
/ : \ G
\/ ,

Figure 7: Configrations of (38) and (39) corresponding to Fig. 3(b) when E < Rp.
(a) B< A/E; (b) B> A/E. In both cases, for sufficiently small 1/T", the equation
(38) has two distinct real roots in (0,1).
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