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1 Modeling

1.1 Lotka-Volterra Two-species Competition System

We consider two populations which inhabit in the common habitat region. With-
out any inter-specific interaction between them, we now assume that the intra-
specific competition regulates each population independent of each other. We
introduce such density-dependent regulation of population by the following lo-
gistic type of growth:

dN;(t)

o =eNi(t) = M{Ni()} (i=1,2), (1)

where N;(t) is the population density of species i at time ¢. ¢; is the intrinsic
growth rate for the population growth of species i. \; is the coefficient of intra-
specific competition for the population growth of species 7.

Now, let us consider the inter-specific interaction between these two species in
terms of a common niche. We assume such competitive interaction that the net
growth rate of population size of one species becomes lower when another species
coexists in the same niche than when it does not. We consider the following
Lotka-Volterra competition system, which can be regarded as a fundamental
extension of the logistic growth (1) with such inter-specific interaction:

d]\c[ilt(t) = eVi(t) — M{N1(t)}? — pa2Na () N1 (t)
(2)

d]\st(t) = e2Na(t) — A2 {Na(t)}* — p2n N1(t) N2 (1),

where p1;; is the coefficient of competitive interaction, which reflects the strength
of inter-specific effect from species j to .

For mathematical convention, we consider the following non-dimensionalized
variable system of (2) without any loss of generality:

dnq(T
;7(_ ) = ni(7) — {n1(7)}? — Omyana(t)ni (1)
3
dno(1) 0 P 2 ?
— = na(7) — 0{n2(7)}* — mar1ni (17)na(7),
where the following transformations of variables are applied for (2):

g1t = T;

Ni(t) _
61/)\z X nz(T)

(i = 1’2);

%Emlk (Lk=1,2; 14 k);
l
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Figure 1: Parameter dependence of the equilibrium state for (3). For the parameter
region (a), when mi2 < 1 and mo1 > 1, species 2 is eventually eliminated and species
1 persists. For (b), when mi2 > 1 and m21 < 1, species 1 is eventually eliminated and
species 2 persists. In contrast, for (¢), when mi2 > 1 and ma;1 > 1, one of two species
is eliminated and another persists, depending on the initial condition. For (d), when
mi2 < 1 and ma1 < 1, both species ultimately coexist.



As well-known for the Lotka-Volterra competition system (2) (for instance,
see [8]), the solution of (3) has the following natures depending on the parameter
0, mio and moy (Fig. 1):

(a) if mg < 1/9 and mo; > 9,
species 2 is eventually eliminated and only species 1 persists;

(b) if mqo > 1/9 and mo; < 0,
species 1 is eventually eliminated and only species 2 persists;

(c) if mia > 1/60 and mgy > 0,
one of two species is eliminated and another persists, depending on the
initial condition;

(d) if mig < 1/9 and mo; < 9,
both species ultimately coexist.

For each of these cases, some trajectories in the phase plane of (n, ng) are for
example shown in Fig. 2.

1.2 Temporally Intermittent Competition

We now assume that there is a season in which two species lose their inter-
specific interaction. For example, in such a season, they would inhabit inde-
pendently with niches different from each other. In another season, they have
a competitive inter-specific interaction, for instance, due to their overlapping
niches. We assume that these seasons with and without the competitive inter-
action repetitevely occur one after another (see Fig. 3). In this paper, we call
this type of inter-specific relationship the temporally intermittent competition.
We denote by Ty the duration of season with the competitive interaction, by 7
that without it. In our modelling, we assume that both 7.y and T_ are constant
as indicated in Fig. 3.

For the competitive two-species dynamical system (2) or (3), in the com-
petitive season mentioned above, two species have the competitive interaction
between them with the constant coefficients of competitive interaction, p12 and
W21, that is, mqs and mop. In contrast, in the non-competitive season with the
intermittency of competition, since two species have no inter-specific relation-
ship, we consider the system (2) or (3) with g2 = po1 = 0 or with miy = mo;
= 0, which is the case corresponding to (1).
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Figure 2: Phase planes of (n1, na) for Lotka-Volterra competition system (3). Some
trajectories are schematically given. For the parameter region (a), when mis < 1
and mo1 > 1, species 2 is eventually eliminated and species 1 persists. For (b), when
mi2 > 1 and mo1 < 1, species 1 is eventually eliminated and species 2 persists. In
contrast, for (c), when mi2 > 1 and m21 > 1, one of two species is eliminated and
another persists, depending on the initial condition. For (d), when mi2 < 1 and
ma1 < 1, both species ultimately coexist.
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Figure 3: Temporally intermittent competition. In a season, mi2 and m21 are positive
constant, and in another season, mi12 = mo1 = 0. In our mathematical modelling, these
two seasons repetitively occur one after another in an exactly periodical manner. The
competitive season with positive mi2 and me; has the duration T, while the non-
competitive one with zero mi2 and ma1 does T—. Each of competition coefficients mi2
and ma; is assumed to be the same value in any competitive season.

2 Analysis

As the first step of our mathematical study, we analyze the case when 8 = 1, so
that the population dynamics of two species are governed by the identical logistic
equation in the non-competitive season. As indicated by Fig. land Fig. 2, in
the case when my2 < 1 and my; < 1 without any intermittency of competition,
two species eventually coexist. Since each population grows toward a positive
equilibrium during the non-competitive season, it is trivial that two species can
coexist with or without the intermittency of competition when mis < 1 and
mg1 < 1. In this reason, in our analysis, we do not consider any more the case
when mis < 1 and mg; < 1. We consider only the case when 1 < miq or
1 < mgy. Since 6 = 1, the population has the nature symmetric with respect
to two species. Thus, without any loss of generality, we hereafter focus the case
when ms; > 1. Hence, in any of our numerical calculations, we use the value
mo1 = 1.4.

2.1 Inversion of Persistence

To consider the effect of temporal intermittency of inter-specific competitive
interaction, we analyze at first the case of Fig. 1(c) or Fig. 2(c), when the
extinction of one species occurs depending on the initial condition, that is, the
bistable case if the inter-specific competitive interaction would stationarily exist
with no intermittency.

Now, with the intermittency of competition, we can find the inversion of
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Figure 4: Numerical examples of trajectory in the phase plane of (ni1, n2). (a) a
trajectory converging to the state (1, 0) with the periodical with intermittency of
competition. Without the intermittency, the trajectory would converge to the state
(0,1), because the initial point (n1(0), n2(0)) = (0.43, 0.5) is above the separatrix
in the case when the competition is kept without the intermittency; (b) a trajectory
converging to a coexistent state. The initial point is (n1(0), n2(0)) = (0.2, 0.6). In
both cases, mi2 = 1.36, mo1 = 1.4, Ty = 7.0, T_ = 3.0. The gray curve indicates the
separatrix in the case without the intermittency of competition.

persistence only in the case of Fig. 1(c) or Fig. 2(c): Species i is eventually
eliminated and species j persists with the intermittency of competition, whereas
species j is eventually eliminated and species i persists without it. A trajectory
for the inversion of persistence is shown in Fig. 4(a).

2.2 Coexistence by Intermittency of Competition

As in the previous section, to consider the effect of the temporal intermittency
of inter-specific competitive interaction, we analyze the case of the Fig. 1(c) or
Fig. 2(c), and can find the appearance of coexistence by the intermittency of
competition, even though the coexistence could not be realized without it. In
Fig. 4(b), we show an example of coexistent state realized by the intermittency
of competition.

Also for the case of Fig. 1(a) or Fig. 2(a) and that of Fig. 1(b) or Fig. 2(b), we
can find the appearance of coexistence. The corresponding coexistent trajectory
is similar to that shown in Fig. 4(b).

2.3 Dependence on The Strength of Intermittency

We analyze the dependence of equilibrium states mentioned in the previous
sections on the strength of intermittency of competition. Now we measure the
strength of intermittency by the duration 7_ for fixed T.. When T_ = 0, no
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Figure 5: Dependence of equilibrium state on the initial condition. Numerically ob-
tained result. The solid curve indicates the separatrix in the case when the competition
stationarily exists without the intermittency. For the region (0, 1) of initial condition
(n1(0), n2(0)), species 1 goes extinct while species 2 persists, and inverse for the region
(1, 0). Dotted region indicates the initial condition with which species 1 going extinct
without the intermittency of competition can persist with the intermittency, whereas
species 2 changes from persistent to extinct. (a) 7- = 1.0; (b) 7- = 1.5. In both
cases, miz2 = 1.2, mo1 = 1.4, Ty = T7.0.

intermittency occurs. This can be formally regarded as the case of the weakest
intermittency. For fixed T, we regard the intermittency as stronger if the
duration of non-competitive season T_ gets longer.

2.3.1 Inversion of Persistence

At first, we consider the inversion of persistence. Since we can identify the area
S of the region of initial condition (n1(0), n2(0)) in (0, 1)x(0, 1) as shown in
Fig. 5in terms of the inversion of persistence, we regard the area S as the degree
of occurrence of the inversion of persistence. Hence, we numerically analyze the
dependence of the area S on the parameter T_ with the other fixed parameters
including T’y . Indeed, comparing Fig. 5(a) to (b), we can see that the difference
of the value of T_ could be significantly reflected to the area for the inversion
of persistence, which is indicated by the dotted region in Figs. 5(a) and (b).
Fig. 6shows the numerical results about the T'_-dependence of the occurrence
of the inversion of persistence. Fig. 6(a) shows the result for the smaller mqs
than Fig. 6(b) does. The region of initial condition for the inversion of per-
sistence appears for the relatively weaker intermittency. The area S for the
inversion of persistence increases as the intermittency gets stronger till a criti-
cal value. From the numerical results, if the strength of intermittency is beyond
the critical value, the inversion of persistence suddenly shrinks to disappear,
and instead the coexistence occurs. Inversely, if the strength of intermittency is
below it, there exist some initial conditions for the inversion of persistence.
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Figure 6: Dependence of the occurrence of the inversion of persistent species on the
intermittency of competition. Numerically obtained results. The strength of intermit-
tency is measured by the duration 7_, and the occurrence of the inversion of extinct
species is done by the area S of the region of initial condition (n1(0), n2(0)) in (0,
1)%(0, 1), indicated for instance by the dotted region (1, 0) in Fig. 5. (a) mi2 = 1.2;
(b) mi2 = 1.36. In both cases, mo1 = 1.4, T = 7.0.

2.3.2 Coexistence by Intermittency of Competition

Next, we consider the coexistence. Since we can again identify the area W of
the region of initial condition (n1(0), n2(0)) in (0, 1)x (0, 1) as shown in Fig. 7in
terms of the coexistence, similarly we regard the area W as the occurrence of
the coexistence. We numerically analyze the dependence of the area W on the
parameter 7_ with the other fixed parameters including 77. Indeed, comparing
Fig. 7(a) to (b), we can see that the difference of the parameter value T_ could
be significantly reflected to the area for the coexistence, which is indicated by
the light dotted region in Figs. 7(a) and (b).

Fig. 8shows the numerical results about the T_-dependence of the occurrence
of the coexistence. Figs. 8(a-1, 2) show the results for the smaller mjs than
Figs. 8(b-1, 2) do. The region of initial condition for the coexistence appears
for the relatively stronger intermittency. The area W for the coexistence in-
creases suddenly as the intermittency gets stronger beyond a critical value. If
the strength of intermittency is above a critical value, there exist some initial
conditions for the coexistence. As shown in Figs. 8(a-2) and (b-2), the regions
for the inversion of persistence and for the coexistence could simultaneously
exist just for a relatively narrow range of T_.

2.3.3 Dependence on The Coefficient of Competition

Fig. 9shows the numerical results about the (m2, T—)-dependence of the inver-
sion of persistent species and the coexistence. As shown in Fig. 9, we can see
that the occurrence of the inversion of persistence and the coexistence are signif-
icantly depending not only on the strength of intermittency of competition, 7",

11



(a)

Figure 7: Dependence of equilibrium state on the initial condition.
obtained results. The solid curve indicates the separatrix in the case when the com-
petition stationarily exists without the intermittency. For the region (0, 1) of initial
condition (n1(0), n2(0)), species 1 goes extinct while species 2 persists, and inverse
for the region (1, 0). Light dotted region (+, +) indicates the initial condition with
which two species can coexist in the case with the intermittency of competition. Dark
dotted region (1, 0) indicates the initial condition with which one species going extinct
without the intermittency of competition can persist with the intermittency, whereas
another changes from persistent to extinct. (a) T- = 2.26; (b) T- = 2.27. In both

(++)
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0.2 0.4 0.6 0.8 1
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cases, mi2 = 1.36, ma1 = 1.4, T} = 7.0.
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Figure 8: Dependence of the occurrence of coexistence on the intermittency of com-
petition. Numerically obtained results. The strength of intermittency is measured by
the duration 7", and the occurrence of coexistence is done by the area W of the region
of initial condition (n1(0), n2(0)) in (0, 1)x(0, 1), indicated by the dotted region (+,
+) in Fig. 7. (a-1, 2) mi2 = 1.2; (b-1, 2) mo1 = 1.36. In both cases, mo1 = 1.4, T} =
7.0. The black curve shows W, and the gray one does S. In both cases of (a) and (b),
there exists a narrow range of 7_ in which these two simultaneously exist.
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Figure 9: (ma2, T')-dependence of the occurrence of the inversion of persistence species
and the coexistence. Numerically obtained result. (a) only the inversion of persistence
occurs; (b) the coexistence occurs; (c) Neither of the inversion of persistence nor the
coexistence occur, that is, the intermittency of competition causes no difference in
terms of the equilibrium state.

but also on the difference between two coefficients of competitive interaction,
that is, between mq9 and mo;.

Fig. 10 shows the dependence of the location and the area of S and W on the
coefficient mjs of competitive interaction. Fig. 10(a) shows the result for the
larger T_ (= 2.66) than Fig. 10(b) does (= 1.33). Indeed, comparing Fig. 10(a)
to (b), we can see that the value of T_ could be significantly reflected to the
location and the area of S and W, which is indicated by thegrayed region in
Figs. 10(a) and (b).

14
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(1.1) (1.1)

(1,0) - 1 a0 - m;
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Figure 10: Dependence of the occurrences of the inversion of persistence and the
coexistence on the coefficient mi2 of competitive interaction. Numerically obtained
results. (a) 7- = 2.66; (b) 7- = 1.33. In both cases, T4 = 7.0. Vertical axis
corresponds to the location and the area of the region of S or W in (0, 1)x (0, 1) of the
phase plane of (n1, n2). The solid curve indicates the location of separatrix in the case
without intermittency of competition. The upper side of the solid curve corresponds
to the region below the separatrix in (0, 1)x (0, 1), and the lower side of the solid
curve does to the region beyond it.
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