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1 Model

1.1 Lotka-Volterra prey-predator system with constant
harvestion

We begin with prey and predator population dynamics with Lotka-
Volterra type of relationship:

dx(t)

= ax(t) = br(t)y(t) (33)
WO eyfe) + ubatyu(e). (34)

where z(t) is the prey population density, y(¢) the predator population den-
sity at time ¢. Constants a, b, ¢ and p are all positive. a is the intrinsic
growth rate of prey, ¢ the natural death rate of predator, b the predation
rate, p the conversion coefficient of predation to reproduction. Each tra-
jectory of the solution is periodic orbit, which is determined by the initial
condition and is neutrally stable (Fig.1). If the initial condition is in intR?
neither of prey nor predator goes extinct.

Under temporally constant and continuous harvestion which we con-
sider, x(t) and y(t) of Lotka-Volterra prey-predator system are governed by

the following equations:

d”;"l(:) — aa(t) — be(t)y(t) — by (35)
d?;_(:) — —ey(t) + pbz(t)y(t) — 7, (36)

where 0y and v are respectively the harvestion rate for prey and that for
predator. 6 means the ratio of harvestion strength for prey to that for
predator. As a dynamical system of ordinary differential equations, (35)
and (36) can make the value of z(t) or y(t) negative at some finite ¢, even
if the initial condition is in intR% (see Figs.3,4 and 5).

Now, for the consistency with the mathematical modelling for popula-
tion dynamics, the negative value of z(t) or y(t) in (35) and (36) is not
appropriate as population density. If z(¢) (or y(t)) becomes negative at
some ¢ for the initial condition in intR%, its value of z(t) (or y(t)) must
have become zero before it does negative, because of the continuity of tra-
jectory. So we assume hereafter an additional dynamical constraint for the
system of (35) and (36) as mathematical model for population dynamics:
If 2(t) becomes zero at some ¢, it must remain zero at any time ¢ after the

first moment at which it becomes zero. So does y(t). Hence, we introduce

13



now the following chop function H:

fi 0;
Hla] = x for x > U; (37)
0 for z <0,

and describe again our system as follows:

dﬁt) —  Hlaz(t) — ba(t)y(t) — 6] (38)
dil—it) = Hl—cy(t) + pbx(t)y(t) — ] (39)

Once z(t) becomes zero, y(t) must converge to zero as t — 400, because
predator cannot survive without prey. In contrast, if y(¢) becomes zero at
some ¢, z(t) comes to converge to zero as t — ~+oo if x(t) is less than 6v/a at
the first moment when y(¢) becomes zero, and otherwise x(t) exponentially
diverges to positive infinite as ¢ — —+o00, because prey grows only under
temporally constant harvestion without predator as seen in (38).

Next, we consider equilibrium points in Ri. If v = 0 and 8y = 0, the
system coincides with that given by (33) and (34). The unique nontrivial

equilibrium point (Z,§) is given by

¢ a
50) = (=, 2). 40
@0 =(55) (10)
This has neutral stability with purely imaginary eigenvalue, as well-known
for Lotka-Volterra prey-predator system given by (33) and (34) (for instance,
see [6,16]).
If § = 0 and ~ # 0, the unique nontrivial equilibrium point (z, ) in R%

is

(7.9) = (Vba:bac, %) . (41)

This is unstable node. Some trajectories in this case are numerically shown
in Fig.3.
If v = 0 whereas 6 # 0 (mathematically, § = +00), feasible equilibrium

(%ﬁ) ; (42)

c ac—Oyub
—_ . 4
(5 52 (43)

points are

The former (42) is unstable node. The latter (43) is in R3 only when
ac > pfvyb. When it exists in R2, it is unstable node if ufyb > 2c%(—1 +
/14 a/c), otherwise unstable focus. Some trajectories in this case are

14



numerically shown in Figs.4(a,b). If § # 0 and v # 0, nontrivial equilibrium

. . . . . . . . 2 .
point is given by the unique intersection of following two curves in R<:

0v/b

y+alb’ (49)
y = % (45)

It exists always in Ri, and unstable node if B2 —4C > 0, otherwise unstable

focus, where

B = —a+by"+c— ubx* (46)
C = —ac+apbz™ + bey”* (47)
o oo 9 b + by + +/(ac — pb + by)? + 4abey (48)
2bc
al
= . 49
y a — bxr* (49)

Some trajectories in this case are numerically shown in Fig.5.

1.2 Lotka-Volterra prey-predator system with tempo-
rally intermittent harvestion

In this paper, as a specific feature of our model, we consider a temporally
intermittent harvestion: Harvestion occurs periodically and intermittently
in time. We assume that the length of period without harvestion is T_ while
that with harvestion is 7. These periods without and with harvestion
are repeated in time by turns (Fig.6). For convenience of mathematical
description, let T=T_ +T +. With this type of temporally periodical and

intermittent harvestion, we consider the following dynamical system:

dx(t)

— = Hlax(t) —be(t)y(t) — 071 (1)] (50)
d@;_f) = Hl-cy(t) + uba(t)y(t) — vI(1)], (51)

where the meanings of parameters are same as before, and we define the

following step function I(t):

I(t) =

{ 0 for jT<t<jT+T- (j=0,1,2,...); (52)

1 for jT+T_<t<(G+1T (j=0,1,2,...).

2 Analysis

As the first step, we analyze the case when T_ = 0, that is, when the

harvestion occurs continuously in time. In the analysis of this section, the
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initial value is the rest point for the case when harvestion does not exist,
given by (40).

2.1 Case of constant harvestion: 7 =0

As for the effect of parameter # on the characteristics of system break-
down with the extinction of prey or predator, our numerical calculations
show that the region of parameter § with which predator goes extinct at
some finite time is distributed patchily in the domain of definition, 0 < 6 < 1
(see Fig.7). In other words, the region is composed with a countable num-
ber of disconnected finite intervals in the domain 0 < § < 1. This result is
unexpected because the larger value of # was intuitively expected to lead to
the larger possibility of prey’s extinction rather than predator’s one.

Now, let us consider the mean prey population size (x) temporally av-
eraged over the period from the initial, ¢ = 0, to the moment of extinction

of prey or predator, t = Tk:

In case of prey’s extinction, (z) is monotonically increasing in terms of 6
in each connected region. In case of predator’s extinction at some finite
time, roughly saying, (x) has a monotonically decreasing trend in terms
of 0, although, regorously speaking, (z) does not necessarily depend on 6
monotonically decreasing, and has the local minimum in some connected
regions of 6 especially for its relatively small value (see Fig.7).

System breakdown time T, has such principal trend that the larger value
of 0 leads to the shorter T.. However, in detail about each connected region
especially for predator’s extinction at some finite time, T, is not mono-
tonically decreasing in terms of € (Fig.9). This result is unexpected, too,
because the larger value of # was intuitively expected to lead to the shorter
Te.

As for the effect of parameter v on the characteristics of system break-
down with the extinction of prey or predator, our numerical calculations
show that the region of parameter v with which predator goes extinct at
some finite time is distributed patchily (Figs.10(a-c)). Further, let us con-
sider the y-dependance of the mean prey population size (z). As seen in
Figs.10(a-~c), in case of prey’s extinction, () is monotonically increasing in
terms of ~ in each connected region. In case of predator’s extinction at
some finite time, roughly saying, () has a monotonically decreasing trend

in terms of v in each connected region, although, regorously speaking, (z)

16



does not necessarily depend on  monotonically decreasing, and has the
local minimum within the connected region of « especially for its relatively
small value. In contrast, the system breakdown time T, is monotonically
decreasing in terms of v. Moreover, log~y and log T, appear to have a linear

relationship as indicated in Fig.11.

2.2 Case of temporally intermittent harvestion: 7_ > 0

Let us consider the case when T_ > 0, that is, when harvestion occurs
periodically and intermittently in time. In this paper, we analyse only the
case when T is a given constant, T = 1. In this case, the larger T_ is, the
smaller T\, is. Case of T_ = 0 is when harvestion occurs continuously in
time, whereas that of T = 1 is when harvestion never occurs.

We focus the effect of parameter 7 on the characteristics of system
breakdown with the extinction of prey or predator. The mean prey pop-
ulation size (z) has a trend such that the larger value of T_ leads to the
smaller (x) although (z) with prey’s extinction is different from that with
predator’s extinction (Fig.12). Clearly, when T_ = 1, (z) is equal to the
initial value Z given by (40), because this is the case without harvestion,
given by (33) and (34). Our numerical calculations show that the region
of parameter T_ with which predator goes extinct at some finite time is
distributed patchily in Ry (Fig.12). System breakdown time T, is mono-
tonically increasing in terms of T_ (fig.13(a)). Since T, includes also the
period without harvestion, we can separately define the time 7, which is
given by the sum of only period with harvestion until the system breakdown
occurs. T, is monotonically increasing in terms of 7, too (Fig.13(b)).

Next, we focus the effect of parameters 6 and -y on the characteristics of
T, and (z) (Figs.14~19). Our numerical calculations show that the region
of parameter with which predator goes extinct at some finite time has the
characteristics similar to that when 7_ = 0. However it is clear that the
region depends on the value of T_. Consequently, period without harvestion
T_ significantly affects the nature of system breakdown. For instance, even
if predator goes extinct in case of 7 = 0, prey may do in case of T_ > 0
(or vice versa).

Even in case of 7 > 0, from our numerical calculations, log~y and
log T, appear to have a linear relationship. The slope of linear aggression
for (log~,log T.) has a trend that the larger value of T_ leads to the larger
slope (Table.1). Fig.19 shows the variation rate 5 for T, with T_ = 0.5,
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compared to T, with T_ = 0:
T.T- =0.5] - T.[T_ = 0]
n= ~ .

T. [T— = (e)]

This result shows that the larger T_ requires the larger 7.

3 Conclusion

In system given by (38) and (39), prey or predator goes extinct at some
finite time. It depends on the initial condition, parameters 6, v and T_
which goes extinct prey or predator. Parameter dependence appears not
simple. If we want to control the predator population size with harvestion,
some subtle difference of tactics may cause an undesired result. It is also
interesting that the mean prey population size (z) with harvestion is larger
than the value Z given by (40) which is the mean size without harvestion.

For example, let us suppose that prey is a crop and predator a pest for it.
We consider the harvestion tactic with which the mean crop per cost paid for
harvestion is maximum. Especially we focus the break time 7 of harvestion
to control its effect on the prey-predator system. If the cost is proportional
to T, the mean crop per cost in case of predator’s extinction is as shown by
Fig.20. The best tactic is given by T = 0. In contrast, if we must pay an
additional initial cost at the beginning of each harvestion period, as resulted
in Fig.21, there exists such a tactic as to give the largest (or the smallest)
mean crop per cost in case of predator’s extinction, according to the control
of the length of T_. Similarly, even if such additional initial cost is not
necessary, there may such a tactic as to realize the largest mean crop per
cost, that is, the most desirable result, depending on the relation between
the amount of cost and T,. Numerical result given in Fig.22 shows such an
example with a cost function monotonically increasing in terms of T, with
a finite upper bound. These numerical results illustrate the possibility of
control for prey-predator system with temporally periodic and intermittent

harvestion.

Appendix
Linearized system around rest point

We consider the linearized system around the rest point (z, ) = (¢/ub, a/b)
for Lotka-Volterra prey-predator system under consideration. By the fol-
lowing ordinal linearizing approximation , (z(t),y(t)) = (Z+e1(t), g+ €2(t))
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with |e1] < 1 and |ea| < 1, we can obtain

dx(t)  dei(t)

= a{Z+ea@®)}-—d{Z+ea®)H{y+e(t)}

dt dt
~ T +e(t)} —b{zy + Tea(t) + yer(t)}
c
= ——eat), 54
. 2(t) (54)
and, in the same way,
des(t
dealt) ~ aper(t). (55)

dt

These linear ordinary differential equations (54) and (55) can be easily
solved, and we obtain the following general solution with unknown con-

stants p, ¢, r and s:

€1(t) = psinwt+ qcoswt; (56)
ea(t) = rsinwt+ scoswt, (57)

where w = +/ac.

Impulsive harvestion for linearized system

In this section, we consider a periodically impulsive harvestion for the
linear dynamical system given by (56) and (57). We assume that the har-
vestion occurs at moment and that its occurrence is temporally periodical
with period 7. This assumption for harvestion is corresponding to Ty — 0
with T = 7 for (50) and (51), instead of (52):

I(t) =46t —47) (1=0,1,2,...), (58)

where J is the Dirac’s delta function.
Let (€](7),€,(7)) be the point just before the j th harvestion, and
(e271(0), €,T1(0)) the point just after the j th harvestion. Our assump-

tion of the j th harvestion leads to the following relation:
- ,

qr(0) = €

o .
& (0) = e(r) - (60)
where we assume that the prey 6{(7’) is reduced by a constant amount 6~
at its moment of harvestion, while the predator e% (1) is done by v. Both 6

and «y are positive constants with the same meanings as for (35) and (36).
Since the trajectory of (e1(t),e2(t)) is governed by (56) and (??) in the
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period between subsequent moments of impulsive harvestion, we obtain the

following recurrence relation from (56), (57), (59) and (60):

470 = ) —bsinwr +{dl(r) ~ 0} eoswr  (6)
&) = EHe(r) —ov}sinwr +{(r) —y}eoswr.  (62)

We can rewrite (61) and (62) with matrix M, vectors E; and @ as follows:

E; = M(Ej-1 —1Q), (63)

B - ( ); (o4

COS WT — < sinwT
M = pw ; (65)

B2 sinwr COSWT

(1) o

We assume the followings initial condition Fj:

0
E, = <0>, (67)

which is the equilibrium point for (54) and (55) without harvestion. Then,

where

Q

< sinwT — 0 CcoswT

B 7< )Z—VMQ- (68)

- Sin wT — coswT

Now, we easily obtain

E; = M(ME;—2—yMQ)—yMQ
M?E;_5 — (M?*+ M)yQ
MPE; s — (MP + M? + M)yQ

Jj—2
= MIT?E, =) M"™Q
k=1

j—1
k=1

Making use of fundamental theories of linear algebra, we can obtain the

following explicit form of k times multiplied matrix M* for any k:

k= < cos kwt —ﬁ} sin kwt ) . (70)

% sin kwt cos kwT
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Consequently,

. O
J _
“alr) = 2(1 — coswr)
X {{cosjwr —cos(j — 1)wr — coswT + 1}
felu%{sinij —sin(j — 1wt — sian}} (71)
j i
A =

2(1 — coswr)

X {{cosjwr —cos(j — 1)wr — coswT + 1}
Oua . . . . .
+{—{sinjwr —sin(j — 1)wr — sinwr} (72)
w

From (71) and (72), we can estimate the upper and the lower bounds

for the values of € () and €)(7):

C 2 1 .
O~y (p,wO) + csin “F ;
—{ - 13 <é
2 | sin <~ + pwb cos 4 4 salr)
< 0y (ﬁ)QJrl N csin “F (73)
Ea’ | sin - pwb cos -
9
~ (%)2+1+au9sin%+l < ]()
2 | sin <% wecos £ = alr
0
2 ~ (%)2"'1 au@sin%
=2 | sin <X w cos & 1 (74)

2 2

Fig.A(a) shows the upper and the lower bounds for €/ (1), and Fig.A(b) does

those for € (7).
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Captions
Fig.1

Some numerical trajectories for Lotka-Volterra prey-predator system of (3)

and (4). Each trajectory is periodic orbit depending on the initial condition.

Fig.2

Some numerical trajectories for a prey-predator system given by (30) and
(31). Any trajectory asymptotically converges to a stable limit cycle. a =
0.5;6=0.5;¢=0.2; p=0.4; h=1.0 K = 10.0.

Fig.3
A numerical trajectory for Lotka-Volterra prey-predator system with con-
stant harvestion, (38) and (39). In case of # = 0 and > 0. Thick arrow

indicates the point where predator population reaches zero.

Fig.4

Some numerical trajectories for Lotka-Volterra prey-predator system with
constant harvestion, (38) and (39). In case of v = 0, with 8y > 0. (a)
ac < pfvyb; (b) ac > ubyb. Thick arrow indicates the point where prey

population reaches zero.

Fig.b
Some numerical trajectories for Lotka-Volterra prey-predator system with
constant harvestion, (38) and (39). In case of # > 0 and v > 0. Thick arrow

indicates the point where prey or predator population reaches zero.

Fig.6

Schematic explanation of temporally periodical and intermittent harvestion.

Fig.7

f-dependence of the mean prey population size (x) with temporally constant
harvestion, given by (38) and (39). a =1.0; 6 =0.5; c=0.4; p =04; v =
0.005; (x(0),y(0)) = (2.0,2.0). Grey points show the mean prey population
size (z) in case of prey’s extinction. Black points show that in case of

predator’s extinction.

Fig.8
0-dependence of the length of interval with which predator goes extinct at

some finite time. Plots are of the interval length against the munimum



value of each interval. a = 1.0; b = 0.5; ¢ = 0.4; u = 0.4; v = 0.005;
(2(0), 9(0)) = (2.0,2.0).

Fig.9

0-dependence of the system breakdown time T, with temporally constant
harvestion, given by (38) and (39). a = 1.0; b = 0.5; ¢ = 0.4; p = 0.4;
~ = 0.005; (2(0),y(0)) = (2.0,2.0). Grey points show the system breakdown
time T, in case of prey’s extinction. Black points show that in case of

predator’s extinction.

Fig.10

~-dependence of the mean prey population size (x) with temporally constant
harvestion, given by (38) and (39). a =1.0; b =0.5; ¢ = 0.4; p = 0.4; 6 =
0.003; (x(0),4(0)) = (2.0,2.0). (a) 0 < v < 0.001; (b) 0.0005 < v < 0.0008;
(c) 0.00075 < v < 0.0008. Grey points show the mean prey population size
(x) in case of prey’s extinction. Black points show that in case of predator’s

extinction.

Fig.11

~v-dependence of the system breakdown time 7T, with temporally constant
harvestion, given by (38) and (39). a = 1.0; b = 0.5; ¢ = 0.4; p = 0.4;
6 = 0.003; (z(0),y(0)) = (2.0,2.0). In logarithmic scale. Grey points show
the system breakdown time T, in case of prey’s extinction. Black points

show that in case of predator’s extinction.

Fig.12

T_-dependence of the mean prey population size (z) with temporally in-
termittent harvestion, given by (50) and (51). a = 1.0; b = 0.5; ¢ = 0.4;
w=04; 6 =0.003; v = 0.005; (z(0),y(0)) = (2.0,2.0). Grey points show
the mean prey population size (x) in case of prey’s extinction. Black points

show that in case of predator’s extinction.

Fig.13

T_-dependence of the system breakdown time with temporally intermittent
harvestion, given by (50) and (51). (a) T; (b) Tp. a = 1.0; b= 0.5; ¢ = 0.4;
p = 0.4; 8 = 0.003; v = 0.005; (2(0),y(0)) = (2.0,2.0). Grey points show
the system breakdown time in case of prey’s extinction. Black points show

that in case of predator’s extinction.



Fig.14

f-dependence of the mean prey population size (z) with temporally inter-
mittent harvestion, given by (50) and (51). a = 1.0; b = 0.5; ¢ = 0.4;
w = 04; v =0.005 T_ = 0.5; (z(0),y(0)) = (2.0,2.0). Grey points show
the mean prey population size (x) in case of prey’s extinction. Black points

show that in case of predator’s extinction.

Fig.15

f-dependence of the system breakdown time with temporally intermittent
harvestion, given by (50) and (51). (a) T; (b) Tp. a =1.0; b= 0.5; ¢ = 0.4;
w = 04; v =0.005 T_ = 0.5; (z(0),y(0)) = (2.0,2.0). Grey points show
the system breakdown time in case of prey’s extinction. Black points show

that in case of predator’s extinction.

Fig.16

f-dependence of the mean prey population size (x) with temporally inter-
mittent harvestion, given by (50) and (51). a = 1.0; b = 0.5; ¢ = 0.4;
w = 0.4; v =0.005; T_ = 0.01; (2(0),y(0)) = (2.0,2.0). Grey points show
the mean prey population size (x) in case of prey’s extinction. Black points

show that in case of predator’s extinction.

Fig.17

0-dependence of the system breakdown time with temporally intermittent
harvestion, given by (50) and (51). (a) T.; (b) Tp. a = 1.0; b= 0.5; ¢ = 0.4;
w=0.4; v =0.005; T_ = 0.01; (2(0),y(0)) = (2.0,2.0). Grey points show
the mean prey population size (x) in case of prey’s extinction. Black points

show that in case of predator’s extinction.

Fig.18

~-dependence of the mean prey population size (x) with temporally inter-
mittent harvestion, given by (50) and (51). (a) T— = 0.5; (b) T_ = 0.01.
a=1.0;b=0.5; ¢c=0.4; p=04; 6§ =0.003; (2(0),y(0)) = (2.0,2.0). Grey
points show the mean prey population size (x) in case of prey’s extinction.

Black points show that in case of predator’s extinction.

Fig.19
~y-dependence of the variation rate n of T,, given by (53). a =1.0; b= 10.5;
¢=0.4; p=0.4; 0 =0.003; (z(0),y(0)) = (2.0,2.0).



Fig.20
T_-dependence of (x)/fe in case of predator’s extinction. a = 1.0; b = 0.5;
¢ =0.4; p=0.4; § =0.005; v = 0.01; (2(0),y(0)) = (2.0,2.0).

Fig.21

T_-dependence of the mean crop per cost in case of predator’s extinction
when we must pay an additional initial cost at each begining of harvestion
period: cost = 1004 1.15T,. a = 1.0; b = 0.5; ¢ = 0.4; p = 0.4; 6 = 0.005;
v = 0.01; (z(0),y(0)) = (2.0,2.0).

Fig.22
T_-dependence of the mean crop per cost in case of predator’s extinction
when the cost function is monotonically increasing in terms of T, with a

finite upper bound:

st = L..e
20007, +1

a=10;b=0.5 ¢c=04; p=04; 6§ =0.005 v = 0.01; (x(0),y(0)) =
2.0,2.0).
Fig.A
Upper and lower bounds (a) for €/ (7), given by (73); (b) for €}(7), given
by (74). Dark region satisfies the inquality (73) for (a), and (74) for (b).
a=1.0;b=05;¢c=04; p=0.4; 0 =0.003; v = 0.005; w = v0.4.

Table.1
Slope of linear aggression for (log+y,log Te). a = 1.0; b = 0.5; ¢ = 0.4
w=10.4; 6 =0.003; v =0.005.
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