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Based on my recent complex analysis paper joint with W. Yang and C. Yuan, I will present such a full char-

acterization of the Schatten p-class for a holomorphic composition operator on the smoothly bounded strongly

pseudoconvex domain that if τ = 0 as p ∈
(
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)
;
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thereby improving Theorem 1.1 in S.-Y. Li’s 1995 Amer. J. Math. paper ”Trace ideal criteria for composition

operators on Bergman spaces” from p > 2n
n+1 (known case) to p ≤ 2n

n+1 (open case).
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For a domainD in the Euclidean space we denote by pD(t, x, y), t > 0, x, y ∈ D, the Dirichlet heat kernel

forD, i.e., the fundamental solution to the heat equation subject to the Dirichlet boundary condition u(t, x) = 0
for x ∈ ∂D and t > 0 and u(0, x) = f(x) for x ∈ D. Davies and Simon [3] introduced the notion of IU

(intrinsic ultracontractivity), i.e., the Dirichlet Laplacian has no essential spectrum and the heat kernel enjoys

ctϕ(x)ϕ(y) ≤ pD(t, x, y) ≤ Ctϕ(x)ϕ(y) for all x, y ∈ D
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with the ground state ϕ(x). IU may be regarded as a parabolic boundary Harnack principle; it implies various

interesting properties such as the Cranston-McConnell inequality. IU holds for very complicated domains (e.g.

Davis [2]). Bañuelos and Davis[1] gave a simple geometric characterization of IU for a planar domain above the

graph of a function, It is challenging to find a geometric characterization for IU for more general domains. In

this talk we deal with simply connected planar domains with wide access property and unveil properties toward

geometric characterization for IU.
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A surface with a dianalytic structure is called a Klein surface. A (non-orientable) closed Klein surface of

genus g ≥ 3 is called extremal surface if a disk of radius rg in the hyperbolic plane is isometrically embedded in

the surface, where rg is the largest radius determined by g. We know that the largest genus for which an extremal

Klein surface can contain more than one such disk is 6. In this talk we consider the group of automorphisms of

Klein surfaces, in particular those of g = 6.
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In 1990 Shapiro and Sundberg raised two problems concerning composition operators acting on the Hardy

space. One (the path component problem) is to characterize path connection between two composition operators

and the other (the compact difference problem) is to characterize compact difference of composition operators.

Those Shapiro-Sundberg Problems have been studied by many experts for the past three decades. Quite re-

cently, we have solved the compact difference problem in three different ways: the joint Carleson condition,

the reproducing kernel thesis and the modified Carleson condition. However, the path component problem is

still open. In this talk I will present background, motivation, progress, our contributions and further problems

related to the Shapiro-Sundberg problems. This presentation is based on recent joint works with Koeun Choi,

Hyungwoon Koo, Inyoung Park and Jongho Yang.
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The groups of circle diffeomorphisms of certain regularity have been studied in the framework of the theory

of the universal Teichmüller space. In previous papers [1] and [4], we considered the class of orientation-

preserving circle diffeomorphisms whose derivatives are γ-Hölder continuous for 0 < γ < 1, and laid the

foundation for this Teichmüller space. In the limiting case of this γ-Hölder continuity as γ → 1, one can adopt
the Zygmund continuous condition. The corresponding Teichmüller space TZ of those circle diffeomorphisms

has been defined by Tang and Wu [3]. They proved that the Schwarzian derivative map µ 7→ Sfµ and the

pre-Schwarzian derivative map µ 7→ log (fµ)
′
from the space MZ of Beltrami coefficients µ of linear decay

order towards the boundary to the corresponding complex Banach spaces AZ and BZ of holomorphic func-

tions are holomorphic. Here, fµ stands for a conformal homeomorphism of the unit disk quasiconformally

extendable to its exterior with complex dilatation µ and normalization fµ(∞) = ∞. In [2], we proved that

the Schwarzian derivative map S : MZ → AZ is a holomorphic split submersion. It follows from this fact

that the Bers embedding α : TZ → AZ defined by factorizing S by the Teichmüller projection MZ → TZ is

a homeomorphism onto its image, and hence TZ is equipped with the complex Banach manifold structure of
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A2. In this talk, we consider the fiber space T̃ Z over α
(
TZ
) ∼= TZ that is the image of the pre-Schwarzian

derivative map L : µ 7→ log (fµ)
′
in BZ . For φ ∈ BZ ,Λ(φ) = φ′′ − (φ′)2 /2 belongs to AZ . Then, Λ satisfies

S = Λ ◦ L on MZ , and Λ maps T̃ Z onto α
(
TZ
)
. Concerning this map Λ, we obtain the following result.

Theorem. Λ : T̃ Z → α
(
TZ
)
is a holomorphic split submersion, and in fact, T̃ Z is a disk bundle over the

Teichmuller space TZ with the projection Λ. The proof has been announced in arXiv:2311.15521.
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In our talk, we investigate the boundary correspondence problems for mappings with weaken regularity

assumptions, i.e., from Sobolev classW 1,n−1. The main results rely on the multidimensional Teichmüller the-

orem on separating rings recently established in [GSV]. A Lipschitz and weak Hölder type continuity on the

boundary under appropriate integral conditions involving directional dilatations will be discussed. Some needed

background will be presented as well. This is joint work with Toshiyuki Sugawa and Matti Vuorinen.
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A holomorphic map from the complex line to the n-dimensional complex projective space is called a Brody

curve if its spherical derivative is bounded. In 2010, Eremenko applied potential theory to study Brody curves

omitting n hyperplanes in general position and showed that these curves have growth order at most one, normal

type. In this talk, we will characterize Brody curves on the degree six Fermat surface in the three dimensional

complex projective space based on Eremenko’s potential theoretical method.

This is a joint work with Sai Kee Yeung.
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The main subject of interest of this talk is the problem of estimating |A9|, which is the modulus of the ninth

coefficient of the inverse of a convex function belonging to the class K. It was shown almost 50 years ago that

|An|, where n ≥ 10, can exceed 1. On the other hand, it is known that |An| ≤ 1 for n ranging from 2 to 8. Until

now, the problem of finding a sharp bound of |A9| has been unsolved. We present a new approach to solving

it. Some related problems are also formulated.

References

[bt] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai, Math.,

31(1986), 70–77.

[cam] J.T.P. Campschroer, Inverse Coefficients and Symmetrization of Univalent Functions, Ph.D. Thesis, Uni-

versity of Nijmegen, Nijmegen, The Netherlands, 1984.

[car] F. Carlson, Sur les coefficients d’une fonction bornée dans le cercle unité, Ark.Mat. Astr. Fys. 27A(1940),

1–8.

[efr] I. Efraimidis, A generalization of Livingston’s coefficient inequalities for functions with positive real part,

J. Math. Anal. Appl. 435(2016), 369–379.

[ks] W.E. Kirwan and G. Schober, Inverse coefficients for functions of bounded boundary rotation, J. Anal.

Math. 36(1979), 167–178.

[lz] R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer.

Math. Soc. 85(1982), 225–230.

[mm] S.S. Miller and P.T. Mocanu,Differential Subordinations, Theory and Applications, MarcelDekker, New

York, 2000.

[str] E. Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37(1933), 356–380.

[sug] T. Sugawa, On the ninth coefficient of the inverse of a convex function, Mathematics 9(2021), art.706.

[zap] P. Zaprawa, On a coefficient inequality for Caratheodory functions, Results Math. 79(2024), art.30.

Extended generalized complete elliptic integrals and related bounding

inequalities

5



Rakesh Kumar Parmar

Department of Mathematics, Pondicherry University,

Email: rakeshparmar27@gmail.com

Keywords: Complete elliptic integrals; extended beta function; extended Gauss’s hypergeometric

function; Mellin transform; Laguerre polynomials; Log-convexity; Turan-type inequality.

2020 MSC: Primary 33C65, 33C75, 33E05; Secondary 26A33, 78A40,78A45.

We introduce extended generalized complete elliptic integrals of the first and the second kind by making use

of extended Gauss’s hypergeometric function, for which the usual properties and representations are extended in

a simple manner. Log-convexity property and Turan-type inequalities are proved for these generalized elliptic

integrals. In addition, we deduce several special values and provide connections with certain higher transcen-

dental functions as new representations for special parameters. Functional bounds, Mellin transforms, certain

infinite series representations containing Laguerre polynomials, and numerous differentiation formulas are also

deduced.
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Given in this talk are a summary of results on characterizations of circle homeomorphisms of different

regularities (quasisymmetric, symmetric, or C1+α) in terms of Beurling-Ahlfors extension, Douady-Earle ex-

tension, and Thurston’s earthquake representation of an orientation-preserving circle homeomorphism, and a

brief account of corresponding characterizations of the elements of the tangent spaces of these sub Teichmüller

spaces at the base point in the universal Teichmüller space.
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By establishing a Bochner-type integral inequality for compact Kähler manifolds with HSC (nonnegative

holomorphic sectional curvature), we prove that a compact Kähler manifold with quasi-positive HSC is ratio-

nally connected, thereby affirming a question posed by Yang and Matsumura and extending Yau’s conjecture.

We also demonstrate that a compact simply connected Kähler manifold with nonnegative HSC is rationally con-

nected. Additionally, we show that a non-projective compact Kähler 3-dimensional manifold with nonnegative

HSC is either a torus T3 or a P1-bundle over a torus T2. This talk is based on the joint work with Xi Zhang.
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Let B be the unit ball of a complex Banach space. First, we give the Fekete-Szegö inequality for all nor-

malized starlike mappings on B. Next, we will generalize the Fekete-Szegö inequality for normalized univalent

functions on the unit disc to that for the first elements of g-Loewner chains onB. This is joint work with Gabriela
Kohr and Mirela Kohr.
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A simply connected covering surface Σ =
(
f,∆

)
over the unit Riemann sphere S is an orientation-

preserving, continuous, open and finite-to-one mapping f from the closed unit disk ∆ into the sphere S. Here
open means that f can be extended continuous and open to a neighborhood of ∆. We denote by F all simply

connected surfaces. Let Eq = {a1, a2, . . . , aq} be a set on the unit Riemann sphere consisting of q distinct

points with q > 2. Ahlfors second fundamental theorem (SFT) states that there exists a positive number h
depending only on Eq, such that for any surface Σ =

(
f,∆

)
∈ F,

(q − 2)A (Σ) < 4πn (Σ) + hL (∂Σ) ,

where∆ is the unit disk, A (Σ) is the spherical area of Σ, L (∂Σ) is the spherical length of the boundary curve
∂Σ = (f, ∂∆) , and n (Σ) = #f−1(Eq) ∩∆. If we define R (Σ) = R (Σ, Eq) to be the error term in Ahlfors’

SFT, say,

R (Σ) = (q − 2)A (Σ)− 4πn (Σ) ,

then Ahlfors’ SFT reads

H0 = sup
Σ∈F

{
R(Σ)

L(∂∆)
: Σ =

(
f,∆

)}
< +∞.

We callH0 = H0(Eq) Ahlfors’ constant for simply connected surfaces. In this talk, I will introduce my recent

work which identify the precise bound H0 = H0(Eq).
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Given a complex manifold X and a reduced snc divisor D on it, there are residue functions, each of which

holomorphically “deforms” an L2 norm onX to an L2 norm on specific strata ofD. The analytic adjoint ideal

sheaves are the algebraic manifestation of such residue functions, which is the key ingredient in our solution to

the conjecture of Fujino on the injectivity property on compact Kähler lc pairs. In this talk, the residue functions

and analytic adjoint ideal sheaves are introduced. Their use in facilitating the induction on the dimension of

the strata of D rather than on the number of components of D will be explained. Furthermore, when X is

compact Kähler, there is an intimate relation between a certain residue of harmonic forms (with values in some

semi-positive line bundle) and the exact sequence of cohomology groups of the adjoint ideal sheaves. This will

be illustrated with examples. This is joint work with Young-Jun Choi and Shin-ichi Matsumura.
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In this talk, I would like to introduce some recent results related to the Riesz conjugate functions theorem.

Namely, we generalize Riesz conjugate functions theorem for planar harmonicK-quasiregular mappings (when

1 < p ≤ 2) and harmonic K-quasiconformal mappings (when 2 < p < ∞) in the unit disk. Moreover, if

K = 1, then our constant coincides with the classical analytic case. For n dimensional case (n > 2), we also
obtain the Riesz conjugate functions theorem for invariant harmonicK-quasiregular mappings when 1 < p ≤ 2.
This is joint work with Professor Liu Jinsong.
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I will talk some results on the semigroup of composition operators on analytic function spaces. In particular,

we show that no non-trivial semigroup consisting of analytic self-maps of the unit disk generates a strongly

continuous semigroup of composition operators onQp spaces for p > 0. For a semigroup, consisting of analytic

self-maps of the unit disk, with inside Denjoy-Wolff point, we give some characterizations of the strongly

continuous semigroup of composition operators on Qp and Morrey spaces. This is joint work with Fanglei Wu

and Fangmei Sun.
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The Teichmüller space Tg of closed Riemann surfaces of genus g is the deformation space of marked Rie-

mann surfaces of genus g. The Teichmüller space Tg admits a canonical complex structure inherited from

holomorphic families of quasiconformal mappings. The (holomorphic) tangent and cotangent spaces on Tg are
described by infinitesimal deformations of quasiconformal mappings and the space of holomorphic quadratic

differentials via the natural pairing (the Serre duality) between measurable L∞ (−1, 1)-forms and holomorphic

L1-quadratic differentials. The natural complex Finsler metric κ on the holomorphic tangent bundle TTg on Tg
defined from the pairing (duality) is called the Teichmüller metric. From this situation, we call the geometry

of the Teichmüller space with the Teichmüller metric and the L1-norm (cometric) of holomorphic quadratic

differentials the L1-L∞-geometry on the Teichmüller space. In the L1-L∞-geometry, the Teichmüller-Beltrami

map

tb : Qg 3 q 7→
[
‖q‖ q

|q|

]
∈ TTg
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plays important and fundamental roles, where Qg → Tg is the holomorphic vector bundle of holomorphic

quadratic differentials and ‖ · ‖ is the L1-norm. Though the Teichmüller-Beltrami map is a fiber-bundle iso-

morphism but not a vector-bundle isomorphism, the Teichmüller-Beltrami map gives a natural duality between

the Teichmüller metric and the L1-norm functions on Qg:

κ(tb(q)) = ‖q‖ (q ∈ Qg).

In this talk, we will deal with the following two folklore:

• the Teichmüller-Beltrami map is a real analytic diffeomorphism on each stratum of Qg;

• the Teichmüller metric is real analytic on the image of each stratum,

where the space Qg is stratified in terms of the structures of zeros of holomorphic quadratic differentials. We

also discuss a new duality between the Teichmüller metric and the L1-norm functions on Qg.
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We consider the propagation of waves on a general non-homogeneous string. In terms of dynamics of waves

we describe the Krein-Wiener logarithmic condition for the spectral density of a string:∫ ∞

0

log vac(λ)√
λ(1 + λ)

dλ > −∞.

This condition plays a prominent role in the theory of stationary processes. We prove that it is equivalent to the

existence of “asymptotically travelling” waves on the string with the given spectral measure. We also charac-

terize Krein-Wiener strings in terms of their physical parameters (more precisely, in terms of mass distribution

function). In particular, we show that strings made from two materials belong to the Krein-Wiener class if

and only if the total mass of one of materials is finite. The talk is based on joint works with Sergei Denissov

(University of Wisconsin–Madyson).

Approximation of branch points of an algebraic function from its holomorphic

germ
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Let f be an algebraic function. How to construct a sequence of approximants to branch points of f if we

know only the sequence of Taylor coefficients of some holomorphic germ of f? In particular, this problem has

applications in molecular spectrocopy. The goal of the talk is to present the way to construct quickly (that is,

exponentially fast) converging approximants to branch points with the help of Hermite–Padé polynomials of

the first type constructed from the tuple of powers of the given germ of the function f .

Estimates Logarithmic Coefficient Inequalities for Certain Families of

Analytic Functions
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In the process of proving the Bieberbach conjecture, Louis de Branges provedMilin’s conjecture. TheMilin

conjecture states that for any analytic univalent function, the following inequality holds:

n∑
m=1

m∑
k=1

(
k|γk|k −

1

k

)
≤ 0, n = 1, 2, . . . ,

where γk’s are the coefficients in the series expansion of

log
f(z)

z
= 2

∞∑
n=1

γnz
n.

These coefficients γn are called the logarithmic coefficients. Since then, works have been done on determining

the bound for the logarithmic coefficients of functions in several subclasses. In this study, the the bound of

logarithmic coefficients and other inequalities for a general family of starlike functions which are described

by a subordination relation are established. Then, several special cases are deduced, which include one that

corrects an earlier published result. This is joint work with Navneet Lal Sharma and Rosihan M. Ali.
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Possible orders of meromorphic solutions of linear difference equations with
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We consider possible orders of transcendental meromorphic solutions of linear difference equations

Pm(z)∆mf(z) + · · ·+ P1(z)∆f(z) + P0(z)f(z) = 0, (+)

where Pj(z) are polynomials for j = 0, . . . ,m. Firstly, we give the condition on existence of transcendental

entire solutions of order less than 1 of difference equations (+). Secondly, we give a list of all possible orders
which are less than 1 of transcendental entire solutions of difference equations (+). Moreover, the maximum

number of distinct orders which are less than 1 of transcendental entire solutions of difference equations (+)
are shown. Further, in both two cases, for a given difference equation (+) with polynomial coefficients, we

can construct a meromorphic solution of (+) of order ρ(f) = ρ for any ρ ∈ [1,+∞). Thirdly, for any given

rational number 0 < ρ < 1, we can construct a linear difference equation with polynomial coefficients which

has a transcendental entire solution of order ρ. At least, some examples are illustrated for our main theorems.

This is joint work with Katsuya Ishizaki, see [1] and [2].
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In this talk I plan to discuss known and new results on holomorphically accretive mappings and their resol-

vents defined on the open unit ball of a complex Banach space. Namely, wewill present a criterion for amapping

to be holomorphically accretive with given squeezing ratio of the generated semigroup as well estimates on its

non-linear resolvents. Following an idea of Harris–Reich–Shoikhet, we establish an inverse function theorem

for mappings that admit so-called one-sided estimates. This allows to obtain distortion and covering results for

non-linear resolvents. In their turn, the distortion and covering theorems imply accretivity of resolvents with

estimates on squeezing ratio. Furthermore, we prove that a nonlinear resolvent is a starlike mapping of given

order subject some mild conditions.

Chord-arc domains, HQC mappings and beyond
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Wewill present generalizations of classical results of Astala, Zinsmeister and others to the case of harmonic

quasiconformal mappings (HQC) obtained by Kalaj and pose some open problems. We will consider several

ways to characterize geometry of domains in terms of BMO, Teichmuller spaces and welding maps.
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Wewill establish a continuum J whose boundarymay arise as a limiting set of iterations of an entire function

on an oscillating wandering domain and the interior may arise as an escaping wandering domain. If J has no

interior, then J can be realized as a buried component of Julia sets. This discovery addresses a question posed

by Osborne and Sixsmith. This is joint work with Jian-Hua Zheng.
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In this talk, we consider two problems of recent interest.Firstly, modified Bohr radius for the class of analytic

functions f such that Re f(z) > α in the unit disk |z| < 1 and limz→1 f(z) = ∞ is investigated.Secondly,

we determine the classical Bohr radius for the family of analytic α-Bloch functions f for which the Taylor

expansion of f ′ has the form f ′(z) =
∑∞

k=0 bkz
k. This is joint work with S.Ponnusamy and K-J.Wirths.
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This talk is based on Bohr-Rogosinski’s inequalities and Bohr-Rogosinski property for the subfamilies of

univalent functions defined on unit disk D := {z ∈ C : |z| < 1} which maps to the concave domain, i.e.,

the domain whose complement is a convex set. All the results are proved to be sharp. This is joint work with

Vasudevarao Allu.
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Bohr’s classical theorem and its generalizations are now active areas of research and have been the source

of investigations in numerous function spaces. In this talk, I present a generalized Bohr’s inequality for the class

of bounded analytic functions defined on the simply connected domain

Ωγ :=

{
z ∈ C :

∣∣∣∣z + γ

1− γ

∣∣∣∣ < 1

1− γ

}
, for 0 ≤ γ < 1.

Part of its applications, we obtain the Bohr-type radii for some known integral operators.
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Let WN be the Weyl algebra with N variables. An algebraic D-module (i.e. a system of linear PDEs with

polynomial coefficients) on the complex affine spaceCN is naturally identified with a (left)WN -module. Hence

the Fourier transform for Weyl algebras induces Fourier transforms of holonomic D-modules on the complex

affine spaces. In the case of N = 1, we introduce irregular characteristic cycles and apply them to describe

the exponential factors (i.e. the growth orders of the holomorphic solutions) of the Fourier transforms. We

thus recover and moreover strengthen the classical stationary phase formula. This is a joint work with Kiyoshi

Takeuchi.
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Signal recovery is a critical issue in the field of signal processing. This research presents a new strategy

for signal recovery that uses prolate spherical wave functions (PSWFs), a type of function known for its ef-

fectiveness in this field. Historically, traditional signal recovery methods that use PSWFs have been based on

the mean square error (MSE) metric, which assumes the presence of Gaussian noise. However, this reliance

on MSE can be an issue when dealing with non-Gaussian noise, such as impulsive noise or outliers, because

it is sensitive to these anomalies, which can lead to considerable errors in reconstruction. Our new approach

differs from the norm by employing the maximum correntropy criterion (MCC), which is not affected by the

nature of the noise distribution. This change enables our method to counteract the negative impacts of large,

non-Gaussian noise components. Tests conducted on artificially generated signals with various types of noise

have shown that our MCC-based signal recovery technique is more robust against a wider range of noise condi-

tions compared to other current methods. The presentation also touches on further research into PSWFs in the

context of Quaternions. This is joint work with Cuiming Zou.
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X. Huang [1] proved that ; Let f : Bm → Bn be a proper holomorphic mapping which extends as a

C2 mapping across the boundary. Assume that m ≤ n ≤ 2m − 2. Under these assumptions, f is of the

form f(z) = (z, 0, . . . , 0) up to the automorphisms of balls, where 0 is added n − m components. This

theorem means that if the mapping is C2 up to the boundary and the difference of dimensions is not so big,

it is holomorphic extendable across the boundary. Under this line, the problem is whether the mapping is C2

extendable or not. One answer to this problem is the following theorem, which is proved by F. Forstneric [4];

For each integer n ≥ 1, there is a proper holomorphic embedding F : Bn → BN , N = n + 1 + 2s, where
s = s(n) is determined by n, such that F does not extend continuously to Bn. In this talk, we will show that

the same phenomenon occurs for generalized pseudoellipsoids.
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Shear construction initiated by Clunie and Sheil-Small in 1984, is used to construct univalent harmonic

mappings in unit disk by shearing a conformal mapping. However, on exterior unit disk, the shear technique

does not guarantee the global univalence of constructed mappings, due to the limits at infinity could be different.

In this talk, by using modified shear construction, we construct a class of bounded sense preserving univalent

harmonic mappings, which maps the exterior unit disk onto finite bounded univalent components distributed in

the complex plane, some accompanied graphics is given to illustrate these examples, and the boundary behavior

are discussed.
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In this talk, we study mapping properties of the shifted hypergeometric function f(z) = z2F1(a, b; c; z) for
real parameters with 0 < a ≤ b ≤ c and its variant g(z) = z2F1(a, b; c; z

2). The orders of convexity of f(z)
are first given under certain conditions on the positive real parameters a, b and c. Then we show that the image

domains of the unit disc under some shifted hypergeometric functions are convex and bounded by two lines.

These results solve the range problems for f and g posed by Ponnusamy and Vuorinen in their 2001 paper. This

is joint work with Toshiyuki Sugawa and Chengfa Wu.
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We wish to give some univalence and quasiconformal extension criteria, which involving pre-Schwarzian

derivative and Schwarzian derivative. On one side, we use the method of Loewner chain to obtain Epstein type

univalence conditions for locally univalent analytic functions. On the other hand, by using the pre-Schwarzian

derivative of harmonic mappings, we obtain Ahlfors’s type univalence and quasiconformal extension criteria

for harmonic function. These results obtained extend the related results of earlier authors.
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Let U be the unit disc in C, and let f(z) =
∑∞

n=0 anz
n be an analytic function from U to U. Then, we have

classical Bohr’s inequality
∑∞

n=0 |anzn| ≤ 1, for |z| ≤ 1/3. It is called Bohr’s phenomenon when an inequality

of the above type holds in the disc {z : |z| < ρ0} with 0 < ρ0 ≤ 1 for a class of analytic or harmonic functions.

In this talk, we discuss about generalizations of several results related to Bohr’s phenomena for locally univalent

harmonic functions on U in C to pluriharmonic mappings on the unit ball of a complex Banach space. This is

a joint work with Hidetaka Hamada.
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Schwarz’s lemma plays a significant role in geometric function theory and related areas. In this short survey

talk, we explicate on various applications of Schwarz’s lemma. We will discuss both versions of Schwarz- Pick

lemmas. In particular, we expound on an inequality due to Lindelof. As a spin-off, we will discuss a δ− ε form
of Schwarz’s lemma, which has applications in Teichmuller spaces.
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Let H be the class of all analytic self-maps of the open unit disk D. Denote by Hnf(z) the n-th order

hyperbolic derivative of f ∈ H at z ∈ D. For z0 ∈ D and γ = (γ0, γ1, . . . , γn−1) ∈ Dn, let H(γ) =
{f ∈ H : f(z0) = γ0,H

1f(z0) = γ1, . . . , H
n−1f(z0) = γn−1}. In this talk, we determine the variability

region V (z0, γ) = {f (n)(z0) : f ∈ H(γ)}, which can be called “the generalized Schwarz-Pick Lemma of

n-th derivative”. We then apply the generalized Schwarz-Pick Lemma to establish a n-th order Dieudonné’s

Lemma, which provides an explicit description of the variability region {h(n)(z0) : h ∈ H, h(0) = 0, h(z0) =
w0, h

′(z0) = w1, . . . , h
(n−1)(z0) = wn−1} for given z0, w0, w1, . . . , wn−1. Moreover, we determine the form

of all extremal functions.
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Let ∆B be the Laplace–Beltrami operator associated with the Bergman metric on the unit ball B of CN

(N ≥ 2), let A be a measurable subset of B with positive Lebesgue measure, let p ∈ (0, 1) and let c2 ≥ c1 >
0. We estimate the anisotropic Hausdorff dimension of a set in ∂B where a positive superharmonic function

satisfying

c1χAu
p ≤ −∆Bu ≤ c2u

p in B
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grows faster than a prescribed order.
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We discuss an interpolation polynomial for a weight w on R. Let {pn} be the orthonormal polynomials

with respect to w and let {xj,n} be the zeros of pn. For an interger ν ≥ 2 and a continuous function f on R,
Hn(ν; f, ·) is defined by

Hn(ν; f, xj,n) = f(xj,n) and H
(k)
n (ν; f, xj,n) = 0

for j = 1, 2, · · · , n and k = 1, 2, · · · , ν − 1. It is called the ν-th order Hermite-Fejér interpolation polynomial

for f based at {xj,n}. Its degree is nν − 1. When ν = 1 it is the Lagrange interpolation, ν = 2 is the

usual Hermite-Fejér interpolation and Hn(4; f, ·) is called the Krylov-Stayermann interpolation polynomial.

We assume w ∈ F(C2+) and is regular (for definition see [1] and [5]) . We write w(x) = exp(−Q(x)) and
put T (x) := xQ′(x)/Q(x). When T is unbounded, we say w is an Erdös-type weight. Set

Φn(x) := max{1− |x|/an, (nT (an))−2/3}

where an is the MRS number for w. The following new estimate is established.

Theorem. Let w ∈ F(C2+) be regular and Erdös-type, and let ν ≥ 2 be even. Suppose that wf ′ ∈ C0(R) and
Q(x) ≤ CQ′(x) (x ≥ 1). Then for any 0 < η < 1 there exists a constant Cη > 0 such that

‖Φν/4
n wν+1(f −Hn(ν; f, ·))‖L∞(R) ≤ Cη

1

n1−η

Note that when ν is odd, the above norm is unbounded in general. This is a joint work with Ryozi Sakai.
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Thurston defined the earthquake deformation and proved the earthquake theorem. The earthquake theorem

states that for any two point of the universal Teichmüller space there is only one earthquake deformation. It

was used to solve the Nielsen realization problem. Fomin and Zelevinsky defined the cluster algebra. Fock

and Goncharov pointed out the relation between the cluster algebra and the Teichmüller space. In this talk, we

introduce the earthquake deformation for the cluster algebra of finite type and prove the earthquake theorem for

the cluster algebra of finite type. This is joint work with Tsukasa Ishibashi and Shunsuke Kano.
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An origami (square-tiled surface), a covering X → E of the unit square torus E branched over one point

∞ ∈ E, defines an arithmetic curve embedded in the moduli space. Möller showed that this embedding is

arithmetic and that the Galois-Teichmüller theory on a particular origami yields another proof of the ĜT -relation
of the absolute Galois group GQ. The Fuchsian group Γ(X) of the embedded curve is a discrete SL(2,Z)-
subgroup acting on the Teichmüller disk, called the Veech group. Schmithüsen characterized the Veech group

of an origami as a stabilizer under a combinatorial group action on the free group F2
∼= π1(E \ {∞}). In

this talk, we present a tiling method to extract the ‘covering part’ of the membership criterion of Veech groups

towards Bauer’s example Y
36:1−−→ X

3:1−−→ E for which Γ(Y ) = Γ(E) = SL(2,Z) and Γ(X) 6= SL(2,Z).
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A family F of holomorphic mappings of a domainG in Cn into complex projective space PN (C) is said to
be normal on G if any sequence in F contains a subsequence which converges uniformly on compact subsets

ofG to a holomorphic mapping ofG into PN (C) andF is said to be normal at a point z0 inG if F is normal on

some neighborhood of z0 in G. We continue investigating finding conditions involving values shared by holo-

morphic functions and their total derivatives which imply the normality for a family of holomorphic functions

concerning the total derivatives inCn. We define Lk
D(f) := λkD

kf+λk−1D
k−1f+ · · ·+λ1Df+λ0f , where

λk( 6= 0), λk−1, . . . , λ1, λ0 are complex constants. Consequently, we obtain the normality criterion of a family

F of holomorphic functions f , where each function shares complex values with their linear total differential

polynomials Lk
D(f) in Cn. This is joint work with Molla Basir Ahamed.
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In this paper, we have proved that all subvarieties of the variety of left (right) regular bands are closed in the

variety of n-nilpotent extension of bands. Also, we have tried to explore the closedness of rectangular bands in
the variety V = [ac = abnc](n ∈ N) of semigroups. Furthermore, we have demonstrated that all subvarieties

of the variety of left (right) normal bands are closed in the variety V = [axy = apyqxr](p, q, r ∈ N) of
semigroups and the closedness of all subvarieties of the variety of left (right) quasinormal bands in the variety

V = [axy = apxqary](p, q, r ∈ N) of semigroups is also discussed in this paper. This is joint work with

Shabnam Abbas and Wajih Ashraf.
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This work investigates different kinds of nilpotent bicomplex linear operators and matrices. It delves into

the connection between them and presents various results. It also includes examples and counterexamples to

substantiate these results.
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This paper discusses the properties of linear maps on bicomplex numbers. We define the concept of eigen-

values and eigenvectors of a particular type of bicomplex operators T = e1T1 + e2T2 and discuss some related

properties of such eigenvalues and eigenvectors.
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LetE2 ⊂ E1 be a pair of nested ellipses and P an n-sided polygon inscribed inE1 and circumscribed about

E2. Poncelet’s theorem guarantees that for any point ofE1, there exists an n-sided polygon inscribed inE1 and

circumscribed aboutE2, which has this point as one of its vertices. Such an n-sided polygon is called an n-sided
Poncelet polygon. For each n-sided Poncelet polygon P we consider the following “centers”, the mean center

Cv(P ) and the centroid Cl(P ). The following Theorem is an interpretation of Shestakov’s Theorem (1814).

Figure 1: The left figures indicate the mean centers of a Poncelet pentagon and pentagram as black dots. The

black dots in the right figures are centroids.

Shestakov’s Theorem ([ST16]) Let E2 ⊂ E1 be a pair of nested ellipses that admit a 1-parameter family of

Poncelet n-sided polygons Pt. Then both loci Cv(Pt) and Cl(Pt) are ellipses similar to E1 or single points.

In this talk, we consider the locus of the “center” for the polygon constructed by the preimages of Blaschke

products. Let B be a Blaschke product of degree d,

B(z) = eiθ
z − a1
1− a1z

· · · z − ad
1− adz

, (ak ∈ D, θ ∈ R).

In the case that θ = 0 and B(0) = 0, B is called canonical. Let z1, · · · , zd be the d distinct preimage of

λ ∈ ∂D by B and lλ the set of lines joining zj and zk with j 6= k. Then, the envelope IB of the family of

lines {lλ}λ∈∂D is called the interior curve associated with B. Moreover, a polygon with vertices at z1, · · · , zd
is called a Blaschke polygon. For d = 3, the interior curve associated with B is an ellipse [DGM02], and each

Blaschke triangle with vertices B−1(λ) (λ ∈ ∂D) is exactly the Poncelet triangle [Fra04]. For d > 3, the
interior curve is not always an ellipse (cf. [Fuj13]). Even so, analogous to Shestakov’s theorem, we obtain the

following result. Theorem 1 Let B be a canonical Blaschke product of degree d and z1, · · · , zd the d distinct

preimages of λ ∈ ∂D by B. As λ ranges over ∂D, the mean center w = (z1 + · · ·+ zd)/d of d-sided polygon
with vertices z1, · · · , zd, forms a circle or a single point. In addition, we discuss results that are extensions of

Theorem 1 by introducing Blaschke-like maps (see [FG23] for details) defined on the domain whose boundary

is an ellipse or a parabola.

References

[DGM02] U. Daepp, P. Gorkin, and R. Mortini. Ellipses and finite Blaschke products. Amer. Math. Monthly,

109 (2002), 785–794.

[Fuj13] M. Fujimura. Inscribed ellipses and Blaschke products, Comput. Methods Funct. Theory, 13 (2013),

557–573.

[FG23] M. Fujimura and Y. Gotoh. Geometric properties of Blaschke-like maps on domains

with a conic boundary. Comput. Methods Funct. Theory, 24 (2024), 389–413. (SharedIt:
https://rdcu.be/dk2g0).

27



[Fra04] M. Frantz. How conics govern Möbius transformations. Amer. Math. Monthly, 111 (2004), 779–790.

[ST16] R. Schwartz, and S. Tabachnikov. Centers of Mass of Poncelet Polygons, 200 Years After. Math.

Intelligencer, 38 (2016), 29–34.

Distortion, Radius of Concavity and Several Other Radii Results for Certain

Classes of Functions

Souvik Biswas

Indian Institute of Technology Kharagpur, Kharagpur

Email: souvikbiswas158@gmail.com

Keywords: meromorphic functions, convex functions, concave functions, growth and distortion

theorems,

2020 MSC: 30C55; 30C45.

We consider the class of all meromorphic univalent functions in the unit disc D with a simple pole at z = p
and normalized by the conditions f(0) = 0 and f ′(0) = 1 and denote this class of functions by S(p). We derive

the region of variability of the quantity zf ′′(z)/f ′(z) and establish an estimate of the quantity |zf ′(z)/f(z)| for
f ∈ S(p). We define radius of concavity and compute the same for S(p) and some other well-known classes

of functions. We also explore the linear combinations of functions belonging to some well-known classes and

investigate their radii of univalence, convexity and concavity. This is joint work with Bappaditya Bhowmik.
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In this talk, we investigate meromorphic univalent harmonic functions having a simple pole at the origin.

Our investigation begins with establishing sufficient conditions that ensure the univalence of these functions

within the larger class of meromorphic harmonic functions. We then delve into coefficient estimates for certain

geometric subclasses of these meromorphic univalent harmonic functions. Subsequently, we provide several

necessary and sufficient conditions for f to be hereditarily λ-spirallike. Finally, we offer a comprehensive

characterization of hereditarily meromorphic harmonic Archimedean and hyperbolic spirallike functions. This

is joint work with A. Sairam Kaliraj.
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It is known that if f is holomorphic in the open unit disc D of the complex plane and if, for some c > 0,
|f(z)| ≤ 1/(1−|z|2)c, z ∈ D, then |f ′(z)| ≤ 2(c+1)/(1−|z|2)c+1. We consider a meromorphic analogue of

this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a

nonzero simple pole inD. In particular, we obtain bounds for the modulus of the Taylor coefficients of functions

in this class. This is joint work with Bappaditya Bhowmik.
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The symbol A denotes the class of all analytic functions ϕ in the unit disk |z| < 1 with the normalization

ϕ(0) = 0 and ϕ′(0) = 1. Some of the subclasses of A containing univalent functions are the class of starlike

and convex functions. Alexander transform plays an important role in geometric function theory as it gives

a relationship between the starlike and convex functions. Univalence properties of the Alexander as well as

the Cesáro transforms are classical problems already studied in literature. In this presentation, for an analytic

function ϕ ∈ A, we consider a generalized complex integral transform which incorporate both Alexander and

Cesáro transforms defined by

Cαβ[ϕ](z) =

∫ z

0

(
ϕ(z)

z(1− z)β

)α

dζ
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In particular,C10[ϕ] andC11[ϕ] respectively represent the Alexander and the Cesáro transforms. Ourmain focus

is to find the condition on the parameters α, β ∈ C for which the integral transformCαβ and its harmonic analog

through horizontal shearing are univalent whenever ϕ is a normalized univalent function. As applications to

our main results, a few non-trivial univalent harmonic mappings generated by the method of shear construction

are also presented. This is a joint work with Prof. S. K. Sahoo.
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Geometric structures on the Heisenberg group serve as powerful tools in complex hyperbolic geometry.

These structures provide insights into the boundary behavior of hyperbolic spaces, facilitate the study of isome-

tries and automorphisms, and contribute to the understanding of rigidity and deformation problems. In this talk,

we will focus primarily on CR structures and Sasakian structures on the Heisenberg group. Additionally, we

will demonstrate how, using the CR structure of the Heisenberg group, we can construct several different Kähler

structures in the Siegel domain. This is a joint work with Ioannis D. Platis and Joonhyung Kim.
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In this paper, we study the Yau sequence concerning the minimal cycle over complete intersection surface

singularities of Brieskorn type, and consider the relations between the minimal cycle and the fundamental cycle.

Further, we also give the coincidence between the canonical cycles and the fundamental cycles from the Yau

sequence concerning the minimal cycle.
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Although the Bergman kernel has a long history of research after its discovery by Stefan Bergman, it is a

hard problem to find a complex domain D ⊂ Cn whose Bergman kernel KD has an explicit expression. In

this talk, we give new examples of explicit Bergman kernels for certain Roos type domains whose definition is

inspired by Roos’ paper [1]. Moreover we also study the Lu Qi-Keng problem for Roos type domains which

asks the Bergman kernel is zero-free.
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The Azukawa pseudometric (cf. [Azu1]) is a function defined from the pluricomplex Green function with

a pole at a point, and it is a generalization of the Robin constant defined from the classical Green function. The

Azukawa pseudometric is useful to analyze behavior of the pluricomplex Green function near its a pole, and it

has deep connections with important objects in complex analysis. In this talk, we consider the counterpart of

the Azukawa pseudometric for the pluricomplex Green function with poles along subvarieties (cf. [Kik]), and

explain about its properties and applications.
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Zeriahi[3] proved a uniform version of Skoda’s integrability theorem of plurisubharmonic functions. This

result has an important application to the study of constant scalar curvature Kähler metrics on compact Kähler

manifolds. In this talk, we consider the integrability theorem for the singular setting. More precisely, we

consider the Skoda-Zeriahi’s integrability theorem for the singular measure defined by a Poincaré type Kähler

metric. As an application, we talk about some compactness result of the relative entropy on the finite energy

space (see [1]). This work is motivated by the variational characterization of constant scalar curvature metrics

by Chen-Cheng[2].
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In this paper,we introduced the concept of Normal spaces called almost SC*- normal spaces by using SC*-

open set and obtained several properties moreover we obtained some new characterization and preservation

theorem of almost SC*- normal Space.
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This paper explores essential new fundamentals concerning bicomplex numbers, discusses the algebraic be-

havior of bicomplex numbers with respect to their three types of ordinary conjugates, and explains the difference

between idempotent components of such conjugates and the conjugates of these Idempotent components.
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Constacyclic codes are a well-known class of linear codes that contain many optimal codes and possess

excellent error-correcting properties. These attributesmake constacyclic codes highly effective for encoding and

decoding using linear shift registers, which is why they are favored in engineering applications. Constacyclic

codes generalize cyclic and negacyclic codes. With the discovery that nonlinear codes relate to linear codes

over the ring of integers modulo four, the algebraic structure of constacyclic codes over finite rings has become

an intriguing problem. In this context, I first determine the algebraic structure of all ∂-constacyclic codes of
length 4pr and their duals over the finite commutative chain ring Fpt + uFpt , where ∂ is an arbitrary unit in

Fpt +uFpt , p is an odd prime, and l and r are positive integers. QuantumMDS (Maximum Distance Separable)

and AMDS (Almost MDS) codes are crucial in quantum communication systems for protecting the transmission

of quantum information over long distances. In my work, I construct non-binary quantum codes using repeated

root cyclic and negacyclic codes of length 4pr over Fpt . Additionally, I investigate the structure of all MDS and

AMDS cyclic and negacyclic codes of length 4pr over Fpt . Through CSS constructions, I also obtain numerous

new quantum MDS and AMDS codes.
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In 1992, Gundersen [1] proposed the following famous open question: if two non-constant meromorphic

functions share three values IM and share a fourth value CM, then do the functions necessarily share all four

values CM? The open question is a long-standing question in the studies of the Nevanlinna′s value distribution
theory of meromorphic functions, and has not been completely resolved by now. In this paper, we prove the
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following result: suppose that f and g are two distinct non-constant meromorphic functions, and one of f and g
has finite order. If f and g share a1, a2, a3 IM and a4 CM, where a1, a2, a3, a4 are four distinct complex values

in the extended complex plane, then f and g share a1, a2, a3 and a4 CM. Applying the main result obtained in

this paper, we completely resolve a question proposed by Gundersen in [2, p.458] concerning the nonexistence

of two distinct non-constant meromorphic functions sharing three distinct values DM and a fourth value CM.

The obtained result also improves the corresponding result in Mues[3, pp.109-117] concerning the nonexistence

of two distinct non-constant entire functions that share three distinct finite values DM. Examples are provided

to show that the main results obtained in this paper, in a sense, are best possible.

This is joint work with Qing-Fei Zhai and Hong-Xun Yi.
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