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Introduction

In the course of the last century, the field of geometric function theory presented many interesting

and fascinating facts. Starting with the mapping theorem of Riemann, Bieberbach [5] gave a

long-lasting conjecture in 1916, which attracted the attention of many mathematicians over the

time. The conjecture concerned the class S of analytic and univalent functions in the unit disk

D = {z ∈ C : |z| < 1}, normalized at the origin to have f(0) = f ′(0)−1 = 0, and stated that the

Taylor coefficients an(f) of these functions f(z) = z +
∑∞

n=0 an(f)zn ∈ S satisfy the inequality

|an(f)| ≤ n. Although the proof for n = 2 was given in 1916 by Bieberbach himself, when he

formulated the conjecture and the case n = 3 was proved shortly afterwards in 1923 by Loewner

[17], it took another 32 years until the proof for the case n = 4 was given by Garabediean and

Schiffer [12] in 1955.

During the time various approaches and many methods were developed in the attempt to

reach this conclusion. One of the first thoughts was the analysis of subclasses of S, which had

additional geometric conditions and provided a different perspective on the problem. Similar

like spirallike, starlike and close-to-convex functions, the class of convex functions was among

these special subclasses, mapping the unit disk conformally onto a convex domain. A notable

problem for this class was the Pólya-Schoenberg conjecture [27] stated in 1958, asking whether

the convolution of two convex functions is again convex. Although disbelieved for some time,

Ruscheweyh and Sheil-Small [30] succeeded in proving this conjecture 25 years later in 1973.

Another way to attack Bieberbach’s conjecture was thought to be the class Σ, mapping the

outside of the unit circle conformally onto a simply connected domain in the Riemann Sphere.

This class was considered to be the counterpart to the class S, which was concerning the interior

of the unit circle, and therefore might lead to a new angle on the problem asserted for the

original class. From Bieberbach’s area theorem and its applications, it was easily shown, that

the first two coefficients of a normalized function g(z) = z +
∑∞

n=0 bn(g)z−n ∈ Σ were bounded

by |b1(g)| ≤ 1 and |b2(g)| ≤ 2
3 . Spencer [31] in 1947 then stated the conjecture that for all

n ∈ N the inequality |bn(g)| ≤ 2
n+1 should be valid for each function g ∈ Σ. However, in 1955

Garabedian and Schiffer [11] verified that for the third coefficient the inequality |b3(g)| ≤ 1
2 +e−6

was sharp and therefore disproved the conjecture by Spencer.

In 1984 deBranges [8] was finally able to prove the original Bieberbach conjecture, but many

of the problems which arouse during the time were still left open. Notably for the class Σ there

is still no conjecture for the coefficients and the inequalities for bn(g) are unknown for n ≥ 4.

As it was the case with the class S, subclasses of Σ with additional geometric attributes

were considered in an attempt to get closer to functions of the class. Among other types
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Introduction v

like meromorphically starlike functions, concave functions were considered. Originally these

functions were defined to map the the outside of the unit circle conformally to the outside of

a convex set, therefore giving the counterpart to the class of convex functions in the class Σ,

fixing the point at infinity. However, in time it turned out to be more convenient to analyze

meromorphic univalent functions in the unit disk, having a simple pole at some point p ∈ D. In

this case the two possible expansions, the Maclaurin expansion at the origin and the Laurent

expansion at the pole, are of main interest.

First considerations were made by Goodman [13] in 1956 and Miller [18, 19] in 1970 and 1980.

They considered the geometrical meaning of a function being “concave” and deduced several

analytic characterizations. The analysis of concave functions was picked up again by Livingston

[16] in 1994, where he considered a simple pole at p ∈ (0, 1) inside the unit disk for the first

time. This point turned out to be important for the coefficient estimates of concave functions,

giving additional information about the function.

Livingston’s thoughts were continued and improved by Avkhadiev and Wirths [2, 3] in the

years from 2002 to 2007. They mainly considered the Maclaurin series expansion of concave

functions f(z) = z
∑

n=2 an(f)zn, |z| < p having a simple pole at p ∈ (0, 1). Due to the pole,

the range of the coefficients was also related to the value of p. In 2007 the finally succeeded in

giving the range of the coefficients an(f) of these concave functions for all n ∈ N. The discussion

about the Laurent series expansion f(z) = c−1(f)
z−p +

∑∞
n=0 cn(f)(z − p)n about the pole p was

started by Bhowmik, Ponnusamy and Wirths [6] in 2007, where they gave the range of the first

coefficient c1(f) under special restrictions.

In the present thesis, we will provide a summary of the most important aspects concerning

concave functions and give a detailed analysis for some of the coefficients as well as several new

necessary and sufficient conditions for concave functions.

The first chapter deals with the basic properties of analytic univalent functions and the sur-

rounding matter. We will introduce important tools as the Schwarz Lemma and the class of

Carathéodory functions. The properties of convex functions, which can be considered to be a

counterpart to the concave functions will also be a matter of this chapter.

Based on the discussion of the first chapter, we introduce basic properties and analytic char-

acterizations of concave functions in the second chapter. They will be the basis for the following

investigations. Some of the presented statements are actually quite well known. However, since

the literature does not give the details and often uses them as definitions rather than theorems,

we will show the proofs for these parts. During the course of this investigation, we will also see,

that concave functions are closely related to convex functions. Integral representations as a tool

to construct concave functions using simple holomorphic functions, satisfying certain conditions

will also be the matter of this chapter. Parts of this were already discussed in the Diplom Thesis

of the author as well as in [20].

Before we continue our investigation, we will take a closer look at know results concerning the

coefficients of concave functions in the third chapter. Here we recall most of the resent work

already mentioned above by Avkhadiev and Wirths. In the end, we will present an alternate
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proof for the range of the residue of Laurent series coefficients of concave functions using the

integral representations of the second chapter. This discussion was also presented in the latter

part of [20].

After dealing with the basics, we are going to improve and extend the theorems of the second

chapter in order to obtain inequalities for the Laurent series coefficients of concave functions.

The idea of the fourth chapter is based on the relation between two concave functions with

the same image domain. This will provide additional information for the analysis and gives an

estimate for the first and second coefficients, c1(f) and c2(f), in relation with the residue c−1(f).

This part of the analysis will be published in [21].

The last chapter finally considers the coefficient body {a1(f), c−1(f), c1(f)} of concave func-

tions, as also discussed in [22]. Historically, functions of S and Σ, and therefore also convex and

concave functions, were usually normalized for the first coefficients as already stated. However,

this normalization is not really necessary and interesting results are obtained if we do not assume

them. For this matter, we will present an additional integral representation and finish with a

conjecture considering the range of an arbitrary coefficient cn(f) of the Laurent expansion for

concave functions.



Notations

This work uses the following notations.

Symbol Explanation

C the complex plane

Ĉ the Riemann sphere

D {z ∈ C : |z| < 1}; open unit disk in C
D(c, r) {z ∈ C : |z − c| < r}; open disk in C with radius r and center c

∆ {z ∈ Ĉ : |z| > 1}; the complement of the unit disk in Ĉ
Ω a simply connected domain in C
H(Ω) {f : Ω→ C, f holomorphic in Ω}; the set of holomorphic (analytic) functions on

Ω

S {f ∈ H(D) : f univalent, f(0) = 0, f ′(0) = 1}; the set of normalized univalent

functions on D
P {f ∈ H(D): Re f(z) > 0 and f(0) = 1}; Carathéodory class of functions, having

positive real part

C {f ∈ S : f(D) is convex}; class of convex functions

S∗ {f ∈ S : f(D) is starlike}; class of starlike functions

Co(Ω) {f : Ω→ Ĉ : Ĉ\f(Ω) convex}; class of concave functions on Ω

Co∆ {f : ∆→ Ĉ : Ĉ\f(∆) convex}; class of concave functions on ∆

Cop {f : D → Ĉ : p := f−1(∞) ∈ D simple pole, f univalent in D\{p} and Ĉ\f(D)

convex}; class of concave functions in D with simple pole at p ∈ D. For simplicity

often p ∈ (0, 1).

an(f) n-th coefficient of the Maclaurin expansion of a function f

cn(f) n-th coefficient of the Laurent expansion of a functions f

vii



1 Basic Properties and Preliminaries

In the first chapter, we will present basic properties of functions which are called concave. To

understand the underlying cause, we start with the discussion of univalent functions in general

and take a closer look at convex functions, as well as starlike functions.

1.1 Univalent Functions and Basic Principles

We begin with the introduction of basic notations and terms used throughout this work.

Let C be the complex plane, Ĉ = C ∪ {∞} the Riemann sphere, D = {z ∈ C : |z| < 1} the

open unit disk and ∆ = {z ∈ Ĉ : |z| > 1} the exterior of the unit circle.

In general, a function is called univalent in a domain, if it is meromorphic and injective, i.e.

one-to-one. There are two classes of univalent functions notable.

A function f belongs to the class S of univalent functions, if f is injective, f(0) = 0 and

f ′(0) = 1.

S = {f : D→ C : f univalent, f(0) = 0, f ′(0) = 1}

Functions in S can be expanded as

f(z) = z +

∞∑
n=2

an(f)zn,

where an(f) is the n-th coefficient of the Taylor series.

The other important class is Σ, containing all functions

f(z) =
1

z

∞∑
n=0

bnz
−n

univalent for z ∈ ∆, having a simple pole at ∞.

Univalent functions have a long history, going back to 1916 when the Bieberbach Conjecture

was formulated.

Theorem 1.1 (Bieberbach Conjecture). The coefficients an(f) of functions f ∈ S satisfy

|an(f)| ≤ n for n ∈ N. Equality is attained if and only if f is the Koebe function fk(z) = z
(1−z)−2

or one of its rotations.

This statement was finally proved in 1984 by deBranges after almost seven decades. However,

along the way, a lot of new problems involving univalent functions - originally with the aim to

1



1 Basic Properties and Preliminaries 2

work towards the Bieberbach Conjecture - were formulated and discussed.

Before we look at some of these problems, we introduce two useful lemmas, which we will use

later without further reference.

The first lemma considers holomorphic functions.

Lemma 1.2 (Schwarz Lemma, see e.g. [9]). Let f be holomorphic with f(0) = 0 and f(D) ⊂ D.

Then |f(z)| ≤ |z| and |f ′(0)| ≤ 1 in D. Equality is attained in both inequalities, if and only if f

is a rotation of the disk, i.e. f(z) = eiϑz, ϑ ∈ R.

The proof of this Lemma uses the maximum modulus principle and can be found in most

textbooks.

Another useful tool is given in for the following restriction to holomorphic functions.

Let P be the class of normalized holomorphic functions with positive real part.

P = {f : D→ C : f holomorphic ,Ref(z) > 0 and f(0) = 1}

This class is sometimes called the Carathéodory class and we know the following about functions

belonging to P.

Lemma 1.3 (Carathéodory, 1911, see e.g. [9]). Let P (z) = 1 +
∑∞

n=0 an(P )zn ∈ P. Then

|an(p)| ≤ 2

for all n ∈ N.

Proof. First consider the function

q(z) =
1

k0

k0∑
l=1

P
(
e

2πil
k0 z

)
with k0 ∈ N. Since the properties of P are preserved, q ∈ P and we have

q(z) =
1

k0

k0∑
l=1

∞∑
k=0

pk

(
e

2πil
k0 z

)k
=

∞∑
k=0

pk

(
k0∑
l=1

1

k0
e

2πilk
k0

)
zk.

Now
k0∑
l=1

1

k0
e

2πilk
k0 =

0 for k 6 | k0

1 for k | k0

.

Therefore

q(z) = 1 + pk0z
k0 + p2k0z

2k0 + ....
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The function

z 7→ 1− z
1 + z

maps the right half of the complex plane onto the unit disk, such that

Q(z) =
1− q(z)
1 + q(z)

=
−pk0zk0 − p2k0z

2k0 − ...

2
(

1 +
pk0
2 zk0 + ...

)
= −pk0

2
zk0 − ...

is a mapping Q : D→ D. With the well known Cauchy-Formula we obtain∣∣∣−pk0
2

∣∣∣ ≤ 1

for all k0 ∈ N, which leads to the statement.

1.2 Convex Functions

Using the previously introduced notations, we can define convex functions in the following way.

Definition 1.4. A functions f ∈ S is convex, if and only if the domain f(D) is convex. We

denote this subclass of S by C.

These functions present a subclass of S with additional restrictions, providing a way to get to

Bieberbachs Conjecture.

From this geometrical Definition, we get the following analytic characterization.

Theorem 1.5 (see e.g. [9]). Let f be a holomorphic function with f(0) = f ′(0) − 1 = 0. The

function f belongs to C if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ D,

i.e.

f ∈ C ⇔ 1 +
zf ′′(z)

f ′(z)
∈ P.

The proof is straight forward and can be found in e.g. [9] or [29].

A similar characterization can be made for the subclass S∗ of functions starlike in D.

Corollary 1.6. A holomorphic function f with f(0) = f ′(0)−1 = 0 belongs to S∗ if and only if

Re

(
zf ′(z)

f(z)

)
> 0, z ∈ D,
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i.e.

f ∈ S∗ ⇔ zf ′(z)

f(z)
∈ P.

The connection between convex and starlike functions is given by the following Theorem of

Alexander.

Theorem 1.7 (See e.g. [9, 29]). A function f is convex, if and only if g(z) = z f ′(z) is starlike.

Proof. A simple calculation gives

zg′(z)

g(z)
=
z(zf ′(z))′

zf ′(z)
=
f ′(z) + zf ′′(z)

f ′(z)
= 1 + z

f ′′(z)

f ′(z)
, (1.1)

which shows the relation between the two presented analytic characterizations.

For coefficients of convex functions we have the following result.

Theorem 1.8. Let f(z) = z +
∑∞

n=2 an(f)zn ∈ C. Then

|an(f)| ≤ 1

for all n ∈ N. The function f(z) = z
1−z provides equality.

Proof. Let f(z) = z +
∑∞

k=2 ak(f)zk ∈ C. Using Theorem 1.7 we define

g(z) := zf ′(z) =
∞∑
k=1

kak(f)zk ∈ S∗.

Obviously the analytic characterizations for convex and starlike functions are valid, such that

there exists a function P (z) =
∑∞

k=0 ak(P )zk ∈ P for which

Re

( ∞∑
k=0

ak(P )zk

)
= Re

(
zg′(z)

g(z)

)
> 0

holds. Setting bk := kak(f), we have

zg′(z) =
∞∑
k=1

kbkz
k =

( ∞∑
k=1

bkz
k

)( ∞∑
k=0

ak(P )zk

)
.

Equating the coefficients gives

nbn =

n−1∑
k=0

pkbn−k = bn +

n−1∑
k=1

pkbn−k

for all n ∈ N. Using the Lemma of Carathéodory shows |ak(P )| ≤ 2 and inductively |bn| ≤ n.

Due to the definition of bn we obtain the statement.



2 Concave Functions

Generally, a univalent function f : Ω → Ĉ is said to be concave, if the complement Ĉ\f is

convex, where Ω is some arbitrary domain. Since the class S dealt with the interior and Σ the

exterior of the unit circle, concave functions (= functions mapping on the exterior of a convex

curve) are considered to be a counterpart to the convex functions in Σ.

However, it is important to note, that so far there is no conjecture like Bieberbach’s considering

the coefficients of functions in Σ. Therefore the analysis of concave functions actually gives one

of few footholds towards the more general class.

We also do not consider concave functions with ∆ as the preimage, but rather take the unit

disk and assume that the function has a simple pole inside.

Concerning the characteristics and properties, there are several types of concave functions:

1. A meromorphic, univalent function f is said to be in the class Co0, if it is concave, has a

simple pole at the origin and the representation f(z) = c−1(f)
z +

∑∞
n=0 cn(f)zn.

2. A meromorphic, univalent function f is said to be in the class Cop for p ∈ (0, 1), if it is

concave and has a simple pole at p. The normalization for this class can be done by use

of the Taylor series expansion at the origin with f(z) = z +
∑∞

n=2 an(f)zn.

3. An analytic, univalent function f is said to be in the class Co(α), if it is concave, satisfies

f(1) = ∞ with the representation f(z) = z +
∑∞

n=2 an(f)zn around the origin and an

opening angle of f(D) at ∞ less than or equal to απ with α ∈ (1, 2].

As discussed in the previous section

Re

(
1 + z

f ′′(z)

f ′(z)

)
> 0, z ∈ D

characterizes convex functions, mapping the unit disk onto a convex domain. Due to the simi-

larity, the inequality

Re

(
1 + z

f ′′(z)

f ′(z)

)
< 0, z ∈ D

is used - sometimes also as a definition - for concave functions f ∈ Co0 (see e.g. [26] and others).

Since a complete proof for this statement could not be found in the literature, we are going to

present the details in Section 2.1. Adaptations for the other classes considered in this chapter

were discussed e.g. by Miller in [19] and by Livingston in [16].

5



2 Concave Functions 6

Using the given inequalities, several integral representations can be deduced for concave func-

tions. This was first analyzed by Pfaltzgraff and Pinchuk [26], who stated the following for

Co0.

Theorem 2.1 (see [26]). Let f : D → Ĉ, f(z) = c−1(f)
z +

∑∞
n=0 cn(f)zn be a meromorphic

function. Then f ∈ Co0, if and only if there exists a positive measure µ(t) with
∫ π
−π dµ(t) = 1

and
∫ π
−π e

−itdµ(t) = 0, such that for z ∈ D

f ′(z) = − 1

z2
exp

∫ π

−π
2 log(1− e−itz)dµ(t). (2.1)

They used this expression in combination with a linear transformation T , to obtain a charac-

terization for concave functions with pole at p ∈ (0, 1).

Theorem 2.2 (see [26]). For p ∈ (0, 1), f ∈ Cop if and only if there exists a positive measure

µ(t) with
∫ π
−π dµ(t) = 1 and

∫ π
−π T (eit)dµ(t) = 0, such that for z ∈ D

f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ π

−π
2 log(1− e−itz)dµ(t). (2.2)

We are going to show different representations for these classes in Section 2.2, which avoid

the use of logarithms and measures.

An analysis for functions in Co(α) was done by Avkhadiev and Wirths in [3]. The connection

to an inequality was discussed by Cruz and Pommerenke [7]. This chapter will also deal with

the remaining integral representation, using methods presented by Pfaltzgraff and Pinchuk.

As an application of the presented theorems, we will prove the following formula for residues

of functions in Cop.

Theorem 2.3. Let f(z) ∈ Cop be a concave function with a simple pole at some point p ∈ (0, 1).

Then the residue of this function f can be described by some function

ϕ : D→ D with ϕ(p) = p

holomorphic in D, such that

Resp f = − p2

(1− p2)2
exp

∫ p

0

−2ϕ(x)

1− xϕ(x)
dx. (2.3)

A proof of this theorem will be given in Section 3.3, as well as some further analysis.

The content of this chapter can also be found in [20].

2.1 Characterizations for Concave Functions

In this section, we are going to present a variety of characterizations for the different types of

concave functions introduced previously.
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At first we consider functions in the class Co0, where the pole lies at the origin.

Theorem 2.4. Let f : D→ Ĉ, f(z) = c−1(f)
z +

∑∞
n=0 cn(f)zn be a meromorphic function. The

function f is of class Co0, if and only if the inequality

Re

(
1 + z

f ′′(z)

f ′(z)

)
< 0 (2.4)

holds for every z ∈ D.

A rough idea can be found in [29, p.47]. However, since the details are not carried out, we

give a complete presentation of the proof.

First we need the following Lemma.

Lemma 2.5. Let ∆ := {z ∈ Ĉ : 1 < |z|} be the exterior of the unit circle and f : ∆ → Ĉ be a

meromorphic univalent function, mapping ∆ onto the outside of a bounded Jordan curve Γ and

∞ 7→ ∞. This curve Γ is analytic, if and only if f is analytic and univalent for {z ∈ C : r < |z|}
with some r < 1.

A similar statement can be found in [28, p.41] and the construction of the proof goes accord-

ingly.

Proof. If f is analytic and univalent in {z ∈ C : r < |z|}, the curve Γ is obviously analytic.

Therefore, let Γ be analytic. Then there exists a univalent function ϕ : {z ∈ C : ρ < |z| < 1
ρ} → C

with ρ < 1, such that ϕ(∂D) = Γ. Furthermore, there exists an r < 1, so that h := ϕ−1 ◦ f
is univalent in {z ∈ C : 1 < |z| < 1

r} and 1 < |h(z)| < 1
ρ . Since |h(z)| → 1 as |z| → 1,

we can apply the reflexion principle and it follows, that f can be extended to a holomorphic

function on r < |z| < 1
r , where ρ < |h(z)| < 1

ρ is satisfied. Thus f = ϕ ◦ h is holomorphic on

{z ∈ C : r < |z| < 1
r} and therefore analytic and univalent on r < |z|.

Proof of Theorem 2.4. We may assume that the nonempty compact convex set C\f̃(∆) is not

a line segment, since otherwise the theorem is trivial. Then C\f̃(∆) is a convex closed Jordan

domain bounded by a simple closed curve.

Let f(z) = c−1(f)
z +

∑∞
n=0 cn(f)zn ∈ Co0 for z ∈ D. Applying the transformation u : ∆ →

D, z 7→ 1
z and setting f̃ := f ◦ u, we get a concave function, which maps ∆ conformally onto

the concave domain f(D)\{∞}. Therefore there exists a convex domain G = C\f̃(∆), a curve

Γ = ∂G and a convex function g : D → Int(Γ) by use of the Riemann mapping theorem. The

curves Γk = {g(z) : |z| = 1− 1
k}, k = 2, 3, . . . are analytic and convex because of the properties

of g.

Now let f̃k be the functions, which map ∆ onto Ext(Γk), such that f̃k(∞) =∞ and f̃ ′k(∞) > 0.

Due to the definition of Γk and Lemma 2.5, each curve can also be described by f̃k(e
iϑ) with

ϑ ∈ [0, 2π). Since the interior of the curve Γk is convex, arg
(
f̃k(e

it)− f̃k(eiϑ)
)

is non-decreasing

for t ∈ (ϑ, ϑ+ 2π). Therefore

∂targ
(
f̃k(e

it)− f̃k(eiϑ)
)

= ∂tIm log
(
f̃k(e

it)− f̃k(eiϑ)
)
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= Im
ieitf̃ ′k(e

it)

f̃k(eit)− f̃k(eiϑ)

= Re
zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
≥ 0 (2.5)

for z = eit 6= eiϑ = ζ and

Re
ζ + z

ζ − z
= Re

eiϑ + eit

eiϑ − eit
= Re

1 + ei(t−ϑ)

1− ei(t−ϑ)
= 0 (2.6)

holds for the given z, ζ, t and ϑ.

Using the Taylor series expansion f̃k(ζ) =
∑∞

n=0
f̃
(n)
k (z)

n! (ζ − z)n for z, ζ ∈ ∆, we obtain

2zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
+
ζ + z

ζ − z
=

2zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
+

2z

ζ − z
+ 1

= 1 + z
2
(
f̃ ′k(z)(ζ − z) + f̃k(z)− f̃k(ζ)

)
(f̃k(z)− f̃k(ζ))(ζ − z)

= 1 + z
−f̃ ′′k (z)(ζ − z)2 − 2

∑∞
n=3

f̃
(n)
k (z)

n! (ζ − z)n

−f̃ ′k(z)(ζ − z)2 −
∑∞

n=2
f̃
(n)
k (z)

n! (ζ − z)n+1

= 1 + z
f̃ ′′k (z) + 2

∑∞
n=3

f̃
(n)
k (z)

n! (ζ − z)n−2

f̃ ′k(z) +
∑∞

n=2
f̃
(n)
k (z)

n! (ζ − z)n−1

.

Since

lim
ζ→z

(
2zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
+
ζ + z

ζ − z

)
= 1 +

zf̃ ′′(z)

f̃ ′(z)

ζ = z is a removable singularity.

From (2.5) and (2.6) we obtain

Re

(
2zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
+
ζ + z

ζ − z

)
≥ 0

for all |z| = |ζ| = 1. Applying the maximum principle first for |z| > 1 and then for |ζ| > 1 gives

Re

(
1 +

zf̃ ′′k (z)

f̃ ′k(z)

)
> 0

for all z ∈ ∆ and k = 2, 3, . . . .

Since convex curves Γk converge to Γ for k → ∞, f̃k converges locally uniformly to f̃ in ∆
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due to the kernel theorem of Carathéodory. Therefore

Re

(
1 +

zf̃ ′′(z)

f̃ ′(z)

)
> 0 (2.7)

for all z ∈ ∆.

Considering f̃ = f ◦ u with f̃ ′(z) = − 1
z2
f ′(u) and f̃ ′′(z) = 1

z4
f ′′(u) + 2

z3
f ′(u), we obtain

1 +
zf̃ ′′(z)

f̃ ′(z)
= 1 +

z
(

1
z4
f ′′(u) + 2

z3
f ′(u)

)
− 1
z4
f ′(u)

= 1−
1
zf
′′(u) + 2f ′(u)

f ′(u)

= −1− uf ′′(u)

f ′(u)
, (2.8)

hence (2.4).

The second implication is the same as for the convex case, when one considers z ∈ ∆. This

can be found in various textbooks, see e.g. [29]. Applying transformation (2.8) yields the

statement.

Remark 2.6. It is also

2zf̃ ′(z)

f̃(z)− f̃(ζ)
+
ζ + z

ζ − z
=

2z 1
z2
f̃ ′(u(z))

f(u(z))− f(u(ζ))
+

1
u(ζ) + 1

u(z)

1
u(ζ) −

1
u(z)

= − 2u(z)f ′(u(z))

f(u(z))− f(u(ζ))
− u(ζ) + u(z)

u(ζ)− u(z)

for z, ζ ∈ ∆. Therefore we obtain

Re

(
2zf ′(z)

f(z)− f(ζ)
+
ζ + z

ζ − z

)
≤ 0 (2.9)

for f ∈ Co0 and z, ζ ∈ D from the proof of Theorem 2.4.

Livingston [16] adapted the characterization for functions in Co0 for the class of concave

functions with pole at p ∈ (0, 1), using the transformation z 7→ z+p
1+pz .

Theorem 2.7 (see [16]). Let p ∈ (0, 1) and f be a meromorphic function. It is f ∈ Cop, if and

only if

Re

(
1 + p2 − 2pz +

(z − p)(1− pz)f ′′(z)
f ′(z)

)
< 0 (2.10)

for z ∈ D.

From this theorem, we can obtain a statement similar to Remark 2.6 for functions in Cop. It

should be mentioned, that Theorem 2.7 and the following statements are valid regardless of the
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normalization sometimes introduced to simplify the discussion. We will also take a closer look

at the Theorem by Livingston in Chapter 2.

Corollary 2.8. Let p ∈ (0, 1), f ∈ Cop and z, ζ ∈ D. Then

Re

(
2zf ′(z)

f(z)− f(ζ)
+
ζ + z

ζ − z
+
z + p

z − p
− 1 + pz

1− pz

)
< 0. (2.11)

Originally this was proved by Miller in [19]. Considering Livingston’s analysis in [16], we can

give an alternate proof.

Proof. Let

P (z) := −1− p2 + 2pz − 2(z − p)(1− pz)f
′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)
. (2.12)

Using f(z) =
∑∞

n=−1 bn(z − p)n for ζ 6= p and

(z − p) f ′(z)

f(z)− f(ζ)
=

[
−b−1(z − p)−1 + b1(z − p) + · · ·

]
b−1(z − p)−1 + b0 + · · · − f(ζ)

=

[
−b−1 + b1(z − p)2 + · · ·

]
b−1 + b0(z − p) + · · · − f(ζ)(z − p)

we have

P (p) =− 1− p2 + 2p2 − 2(1− p2)
−b−1(ζ − p)
b−1(ζ − p)

= 1− p2.

Furthermore, observing that

zP (z) + pz2 − p = 3pz2 − z − p2z − p

− 2z(z − p)(1− pz)f
′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)

⇔ zP (z) + pz2 − p
(z − p)(1− pz)

=
2pz2 − 2p2z + p2z − z + pz2 − p

(z − p)(1− pz)

− 2z
f ′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)

=
2pz

1− pz
− z + p

z − p
− 2z

f ′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)

=
1 + pz

1− pz
− z + p

z − p
− 1− 2z

f ′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)

=
1 + pz

1− pz
− z + p

z − p
− 2zf ′(z)

f(z)− f(ζ)
− ζ + z

ζ − z
(2.13)
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and defining

Q(z) :=
zP (z) + pz2 − p
(z − p)(1− pz)

, (2.14)

we obtain Q(p) = 1+p2

1−p2 and

lim
ζ→z

Q(z) = −1− zf ′′(z)

f ′(z)
+

1 + pz

1− pz
− z + p

z − p
.

Therefore the function

F (z, ζ) =


1 +

zf ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz
, for z = ζ

2zf ′(z)

f(z)− f(ζ)
+
ζ + z

ζ − z
+
z + p

z − p
− 1 + pz

1− pz
, for z 6= ζ

(2.15)

is holomorphic for z, ζ ∈ D.

Considering Theorem 2.4, Remark 2.6 and the fact that

Re

(
z + p

z − p
− 1 + pz

1− pz

)
= 0,

we obtain (2.11) by the maximum principle.

The case z = ζ in (2.15) was deduced by different means by Pfaltzgraff and Pinchuk in [26].

ReF (z, z) < 0 for z ∈ D also holds as a necessary and sufficient condition for a meromorphic

function f to be in Cop.

Theorem 2.9 (see [26]). Let f : D→ Ĉ be a meromorphic function. The function f is of class

Cop, if and only if for z ∈ D

Re

(
1 +

zf ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz

)
< 0. (2.16)

Remark 2.10. Equation (2.16) can also be formulated for an arbitrary pole p ∈ D, in which

case we have

Re

(
1 +

zf ′′(z)

f ′(z)
+
z + p

z − p
− 1 + p̄z

1− p̄z

)
< 0. (2.17)

as a necessary and sufficient condition for a function to be in Cop. We obtain this inequality by

considering a rotation of a function with a pole at some point on (0, 1).

For the class Co(α), the following inequality can be deduced.

Theorem 2.11 (see [3, 7]). Let απ, α ∈ (1, 2]. An analytic function f with f(0) = f ′(0)−1 = 0

is of class Co(α), if and only if for z ∈ D

Re

(
1 + z

f ′′(z)

f ′(z)
− α+ 1

2
· 1 + z

1− z

)
< 0. (2.18)
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Avkhadiev and Wirths considered this in [3] and Cruz and Pommerenke discussed a variation

of the theorem in detail in [7]. A factor 2
α−1 has to be added to the characterization in case a

normalization is required.

2.2 Integral Representations for Concave Functions

The inequalities from the previous section provide new representation formulas for concave

functions. These are equivalent to the already presented characterizations.

Theorem 2.12. Let f : D→ Ĉ, f(z) = 1
z +

∑∞
n=0 anz

n be a meromorphic function. If f ∈ Co0,

then there exists a function

ϕ : D→ D with ϕ(0) = 0

holomorphic in D , such that for z ∈ D

f ′(z) = − 1

z2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ. (2.19)

On the other hand, for any holomorphic function ϕ mapping D→ D with ϕ(0) = 0, there exists

a function f ∈ Co0 described by (2.19).

Proof. It is known, that a function which maps D into the right half plane and the origin to

1 can be expressed as 1+zϕ(z)
1−zϕ(z) , where ϕ : D → D is a function holomorphic in D. We combine

this fact with Theorem 2.4. Therefore there exists a holomorphic function ϕ with the given

properties such that

1 + z
f ′′(z)

f ′(z)
= −1 + zϕ(z)

1− zϕ(z)
.

Hence it is also

2 + z
f ′′(z)

f ′(z)
= − 2zϕ(z)

1− zϕ(z)

⇔ 2

z
+
f ′′(z)

f ′(z)
=
−2ϕ(z)

1− zϕ(z)

⇔ d

dz
log
(
−z2f ′(z)

)
=
−2ϕ(z)

1− zϕ(z)

⇔ log
(
−z2f ′(z)

)
− log

(
−ζ2f ′(ζ)

)∣∣
ζ=0

=

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Using ζ2f ′(ζ) = ζ2 ·
(
−1
ζ2

+
∑∞

n=1 nanζ
n−1
)

= −1 +O(ζ2), with O being the Landau symbol as

in the proof of Corollary 2.8, we obtain

log
(
−z2f ′(z)

)
=

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

⇔ f ′(z) = − 1

z2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.
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Since f ′ must not have a residue, it has to be

(
z2 f ′(z)

)′∣∣∣
z=0

= 0.

Considering κ(z) :=
∫ z

0
−2ϕ(ζ)
1−ζϕ(ζ)dζ and g(z) := z2 f ′(z) = −eκ(z), we obtain

g′(z)

g(z)
= κ′(z) =

ϕ(z)

1− zϕ(z)
.

Therefore it has to be ϕ(0) = 0.

Conversely, if ϕ : D→ D is a holomorphic function with ϕ(0) = 0, a function f defined by

f ′(z) = − 1

z2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

does not have a residue of its own. Furthermore we obtain

1 + z
f ′′(z)

f ′(z)
= −1 + zϕ(z)

1− zϕ(z)
.

By the use of Theorem 2.4, concavity follows immediately.

Using the inequality obtained from Theorem 2.9, it is possible to prove a similar statement

for the class Cop.

Theorem 2.13. Let p ∈ (0, 1). If a meromorphic function f : D→ Ĉ belongs to the class Cop,
then there exists a function

ϕ : D→ D with ϕ(p) = p

holomorphic in D, such that the concave function can be represented as

f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ (2.20)

for z ∈ D. Conversely, for any holomorphic function ϕ mapping D → D with ϕ(p) = p, there

exists a concave function of class Cop described by (2.20).

Proof. From Theorem 2.9 it is known, that f ∈ Cop is equivalent to

Re

(
1 + z

f ′′(z)

f ′(z)
+
z + p

z − p
− 1 + zp

1− zp

)
< 0

for p ∈ (0, 1). Therefore there exists a function ϕ : D→ D, holomorphic in D such that

1 + z
f ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz
= −1 + zϕ(z)

1− zϕ(z)

⇔ 1 + z
f ′′(z)

f ′(z)
+

(
2z

z − p
− 1

)
−
(

2pz

1− pz
+ 1

)
= −1− 2zϕ(z)

1− zϕ(z)
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⇔ z
f ′′(z)

f ′(z)
+

2z

z − p
− 2pz

1− pz
= − 2zϕ(z)

1− zϕ(z)

⇔ f ′′(z)

f ′(z)
+

2

z − p
− 2p

1− pz
= − 2ϕ(z)

1− zϕ(z)

⇔ d

dz

(
log(f ′(z)) + 2 log(z − p) + 2 log(1− pz)

)
= − 2ϕ(z)

1− zϕ(z)
.

Integration yields

log
(
f ′(z)(z − p)2(1− pz)2

)
− log p2 =− 2

∫ z

0

ϕ(ζ)

1− ζϕ(ζ)
dζ

⇔ f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Similar to the case of Theorem 2.12, the representation (2.20) must not have a residue of its

own because of the properties of f ′(z). It has to be

(
(z − p)2 f ′(z)

)′∣∣∣
z=p

= 0. (2.21)

Setting κ(z) :=
∫ z

0
−2ϕ(ζ)
1−ζϕ(ζ)dζ and g(z) := (z − p)2 f ′(z) = p2

(1−zp)2 e
κ(z), we obtain

g′(z)

g(z)
= κ′(z) +

2p

1− zp
.

Therefore it is necessary to be

−2ϕ(p)

1− pϕ(p)
+

2p

1− p2
= 0

⇔ ϕ(p) = p,

so that (2.21) is satisfied.

On the other hand, if ϕ : D → D is a holomorphic function with ϕ(p) = p, the function

f defined by (2.20) does not have a residue of its own due to the consideration of the above.

Furthermore it satisfies

1 + z
f ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz
= −1 + zϕ(z)

1− zϕ(z)
.

Using Theorem 2.9, we obtain f ∈ Cop.

The fixed point at p of the function ϕ in Theorem 2.13 might however be complicated and

not very useful, in case one wants to construct a concave function with pole at p. Using several

transformations we obtain an alternate version of Theorem 2.13, where the fixed point of the

involved function is at the origin.
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Corollary 2.14. Let p ∈ (0, 1). If a meromorphic function f : D→ Ĉ belongs to the class Cop,
then there exists a function

Ψ : D→ D with Ψ(0) = 0

holomorphic in D, such that the concave function can be represented as

f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ p−z
1−pz

p

(
1

1− pζ
− 1

1− ζΨ(ζ)

)
2

ζ
dζ (2.22)

for z ∈ D. Conversely, for any holomorphic function Ψ mapping D to D with Ψ(0) = 0, there

exists a concave function of class Cop described by (2.22).

Proof. Let p ∈ (0, 1) and z ∈ D. Applying the transformation ζ = p−x
1−px and Φ(x) = ϕ(ζ) we

obtain ∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ =

∫ p−z
1−pz

p

−2Φ(x)

1− p−x
1−pxΦ(x)

· p2 − 1

(1− px)2
dx

=

∫ p−z
1−pz

p

−2Φ(x)(p2 − 1)

(1− px)2 − (p− x)Φ(x)(1− px)
dx.

Here the function Φ is holomorphic in D with Φ(0) = p. Therefore there exists a function

Ψ : D→ D holomorphic in D with Ψ(0) = 0, such that Φ(x) = p−Ψ(x)
1−pΨ(x) . Then

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ =

∫ p−z
1−pz

p

−2 p−Ψ(x)
1−pΨ(x)(p2 − 1)

(1− px)2 − (p− x) p−Ψ(x)
1−pΨ(x)(1− px)

dx

=

∫ p−z
1−pz

p

−2(p−Ψ(x))(p2 − 1)

(1− px) ((1− p2)− xΨ(x)(1− p2))
dx

=

∫ p−z
1−pz

p

−2(Ψ(x)− p)
(1− px)(1− xΨ(x)

dx

=

∫ p−z
1−pz

p

(
1

1− xΨ(x)
− 1

1− px

)
−2

x
dx.

Changing the variable inside the integration leads to the statement.

Considering the class Co(α) Avkhadiev and Wirths proved the following in [3].

Theorem 2.15 (see [3]). Let α ∈ (1, 2] and f : D → Ĉ be an analytic function with f(0) =

f ′(0)− 1 = 0. Then f ∈ Co(α) if and only if there exists a function ϕ : D→ D, holomorphic in

D, such that for z ∈ D

f ′(z) =
1

(1− z)α+1
exp

∫ z

0
−(α− 1)

ϕ(ζ)

1− ζϕ(ζ)
dζ. (2.23)

Using a positive measure µ(t) as in Theorem 2.1, we can obtain the next statement.
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Theorem 2.16. Let α ∈ (1, 2] and f be an analytic function with f(0) = f ′(0) − 1 = 0. Then

f ∈ Co(α) if and only if there exists a positive measure µ(t) with
∫ π
−π µ(t)dt = 1, such that

f ′(z) =
1

(1− z)α+1
exp

∫ π

−π
(α− 1) log(1− e−itz)dµ(t). (2.24)

Proof. The normalized, analytic function f is of class Co(α) if and only if (2.18) of Theorem

2.11 is valid. It is known, that every function P (z) = 1 +
∑∞

n=1 cnz
n with ReP (z) > 0 for z ∈ D

can be represented as

P (z) =

∫ π

−π

eit + z

eit − z
dµ(t), z ∈ D

with some positive measure µ(t) due to the Herglotz representation formula.

From the normalized form of (2.18) we therefore obtain the existence of a positive measure µ(t),

with
∫ π
−π dµ(t) = 1, such that

− 2

α− 1

(
1 + z

f ′′(z)

f ′(z)
− α+ 1

2
· 1 + z

1− z

)
=

∫ π

−π

eit + z

eit − z
dµ(t)

⇔ 2

α− 1

(
(α+ 1)

z

1− z
+
α− 1

2
− z f

′′(z)

f ′(z)

)
− 1 =

∫ π

−π

2z

eit − z
dµ(t)

⇔ 2z(α+ 1)

(α− 1)(1− z)
− 2

α− 1
· zf

′′(z)

f ′(z)
=

∫ π

−π

2z

eit − z
dµ(t)

⇔ α+ 1

1− z
z − z f

′′(z)

f ′(z)
= (α− 1)

∫ π

−π

z

eit − z
dµ(t).

Considering the derivative leads to

d

dz

(
−(α+ 1) log(1− z)− log f ′(z)

)
= −(α− 1)

∫ π

−π

d

dz
log(1− eitz)dµ(t)

⇔ log(1− z)α+1f ′(z) = (α− 1)

∫ π

−π
log(1− eitz)dµ(t),

which is obviously equivalent to the desired representation formula.

Since we do not have to deal with any complications concerning the logarithm during the

proof of Theorem 2.16, there are no additional conditions for the measure, as it was the case in

the previous theorems.

Remark 2.17. As it can easily be observed, there is a similarity between the representation

formula using a function ϕ (see e.g. Theorem 2.12) and the version considering a positive

measure µ(t) (see e.g. Theorem 2.1).

Since the expression z 7→ 1+zϕ(z)
1−zϕ(z) , with ϕ : D → D, ϕ holomorphic in D, maps the unit disk

onto the right half of the complex plane and is normalized by 0 7→ 1, it can also be described by
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means of the Herglotz representation formula. Therefore

1 + zϕ(z)

1− zϕ(z)
=

∫ π

−π

eit + z

eit − z
dµ(t)

⇔ 2zϕ(z)

1− zϕ(z)
+ 1 =

∫ π

−π

eit + z

eit − z
dµ(t)

⇔ 2ϕ(z)

1− zϕ(z)
=

∫ π

−π

2z

eit − z
dµ(t)

⇔
∫ z

0

ϕ(ζ)

1− ζϕ(ζ)
dζ =

∫ π

−π
log(1− eitz)dµ(t) (2.25)

for z ∈ D. The existence of a certain function ϕ is hereby equivalent to the existence of a positive

measure µ(t) so that (2.25) holds.

However, since the representation using the measure involves logarithms, we have to be careful

with additional conditions, to ensure that the results are well-defined. On the other hand,

additional conditions for ϕ are provided by the fact, that f ′(z) must not have a residue of its

own, as shown in the previous proofs.



3 Coefficients of Concave Functions - Known

Results

In this chapter we will introduce the previously known results for the coefficients of concave

functions. As it is the case for the Bieberbach Conjecture, the variability of the coefficients is

of great interest and there are two different ways for an approach.

Since we have a pole at some point in the unit disk (and we assume this is not the origin),

we have the Taylor Series expansion at the origin, valid up to the pole, and the Laurent Series

expansion, valid up to the closest boundary point.

We begin with the discussion about the domain of the Taylor series coefficients.

3.1 Coefficients of the Taylor Series

First, we need some additional tools describing concave functions. In 1980 Miller [19] showed

that the following theorem is valid for functions in f ∈ Cop.

Theorem 3.1 (see [19]). Let p ∈ (0, 1) and f ∈ Cop. For z ∈ D\{0}∣∣∣∣ 1

f(z)
− 1

z
+

1 + p2

p

∣∣∣∣ ≤ 1. (3.1)

Proof. Let z, ζ ∈ D. We know that a function p defined by

−P (z) =
2zf ′(z)

f(z)− f(ζ)
+
ζ + z

ζ − z
+
z + p

z − p
− 1 + pz

1− pz

has positive real part and P (0) = 1. Further

P ′(z) = − 2f ′(z)

f(z)− f(ζ)
− 2zf ′′(z)

f(z)− f(ζ)
+

2zf ′(z)

(f(z)− f(ζ))2

− 1

ζ − z
− ζ + z

(ζ − z)2
− 1

z − p
+

z + p

(z − p)2
+

p

1− pz
+

p+ p2z

(1− pz)2

For ζ 6= 0, we obtain

P ′(0) =
2

f(ζ)
− 2

1

ζ
+ 2

1

p
+ 2p

18
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which leads to a Maclaurin Series expansion of the form

P (z) = 1 +

(
1

f(ζ)
− 1

ζ
+

1

p
+ p

)
2z + · · · .

Since P ∈ P, we can use Lemma 1.3, which leads to the statement.

Using the above, we have the following lemma, which will be helpful for the following discus-

sion.

Lemma 3.2 (see [4]). Let f ∈ Cop, p ∈ (0, 1). There exists a holomorphic function ω : D→ D,

such that

f(z) =
z − p

1+p2
(1 + ω(z))z2(

1− z
p

)
(1− zp)

(3.2)

for z ∈ D.

Proof. Setting

ω(z) =
1

f(z)
− 1

z
+

1 + p2

p
, (3.3)

we have a holomorphic function ω due to the properties of f and the fact, that there is a

holomorphic continuation at both the origin and p, where ω(p) = −1
p + 1+p2

p = p. From the

previous Theorem, we know that ω(D) ⊂ D̄. Therefore, there exists a holomorphic function v

with v ∈ D̄, such that

ω(z) =
p+ z−p

1−zpv(z)

1 + p z−p
1−zpv(z)

.

Using (3.3) we obtain

f(z) =
zp
(

1 + p z−p
1−zpv(z)

)
zp2 + zp z−p

1−zpv(z) + p+ p2 z−p
1−zpv(z)− (1 + p2)z

(
1 + p z−p

1−zpv(z)
)

and the denominator can be written as

zp2 + zp
z − p
1− zp

v(z) + p+ p2 z − p
1− zp

v(z)− (1 + p2)z

(
1 + p

z − p
1− zp

v(z)

)
= zp2(1− zp) + zp(z − p)v(z) + p(1− zp) + p2(z − p)v(z)

−(1 + p2)z(1− zp)− (1 + p2)zp(z − p)v(z)

= (1− zp)(zp2 + p− z − zp2) + v(z)(z − p)(zp+ p2 − zp− zp3)

= p(1− zp)(1− z

p
)− v(z)p3(1− z

p
)(1− zp)

= p(1− zp)(1− z

p
)(1− p2v(z)).
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Therefore

f(z) = z
1− zp+ p(z − p)v(z)(

1− z
p

)
(1− zp)(1− p2v(z))

. (3.4)

Rewriting v in the form

v(z) =
p2 − ω(z)

1− p2ω(z)

and inserting into (3.4) leads to

f(z) =
z − zp2ω(z)− z2p(1− p2ω(z)) + zp(z − p)(p2 − ω(z))(

1− z
p

)
(1− zp)(1− p2ω(z)− p2(p2 − ω(z)))

=
z(1− p4) + z2(p3 − p) + ω(z)(z2p3 − zp2 − z2p+ p2z)(

1− z
p

)
(1− zp)(1− p2)(1 + p2)

=
z + z2p

(
p2−1

(1−p2)(1+p2)
+ ω(z) p2−1

(1−p2)(1+p2)

)
(

1− z
p

)
(1− zp)

,

which is (3.2).

Using these statements, we are able to prove a general estimate for Taylor Series coefficients

of functions in the class Cop.

Theorem 3.3 (see [4]). Let p ∈ (0, 1), f ∈ Cop and n ≥ 2. Then∣∣∣∣an(f)− 1− p2n+2

pn−1(1− p4)

∣∣∣∣ ≤ p2(1− p2n−2)

pn−1(1− p4)
. (3.5)

Proof. We consider the function

g(z) =
z − pz2

1+p2(
1− z

p

)
(1− zp)

.

By polynomial division we calculate

g′(0) = 1

g′′(0)

2
=

p2 + 1

p
+
−p

1 + p2
=
p4 + p2 + 1

p(1 + p2)
=

1− p6

p(1− p4)

g(3)(0)

3!
=

1− p6

p(1− p4)

p2 + 1

p
− 1 =

1− p8

p2(1− p4)

and obtain by induction

g(n)(0)

n!
=
g(n−1)(0)

(n− 1)!

p2 + 1

p
− g(n−2)(0)

(n− 2)!
.



3 Coefficients of Concave Functions - Known Results 21

in general.

Therefore

g(n)(0)

n!
=

1− p2(n−1)+2

pn−2(1− p4)
· p

2 + 1

p
− 1− p2(n−2)+2

pn−3(1− p4)

=
1

(1− p4)pn−1

(
(1− p2n)(p2 + 1)− p2(1− p2n−2)

)
=

1

(1− p4)pn−1

(
1− p2n + p2 − p2n+2 − p2 + p2n

)
=

1− p2n+2

pn−1(1− p4)
.

which leads to

g(z) =
z − pz2

1+p2(
1− z

p

)
(1− zp)

=
∞∑
n=1

1− p2n+2

pn−1(1− p4)
zn, |z| < p.

Furthermore we define a function h by

h(z) = g(z)− f(z) =

pz2

1+p2
ω(z)(

1− z
p

)
(1− zp)

=

∞∑
n=1

bn(ω)zn, |z| < p,

where f(z) is the function from (3.2) and ω a holomorphic function with ω(D) ⊂ D̄. For the

statement, we need to show

|bn(ω)| ≤ p2(1− p2n−2)

pn−1(1− p4)
. (3.6)

Using ω(z) =
∑∞

k=0 ckz
k we obtain

h(z) =
pc0

1 + p2
z2 +

(
c0 +

pc1

1 + p2

)
z3 +

(
(1− p6)c0

(1− p4)p
+ c1 +

pc2

1 + p2

)
z4 + ...

meaning

bn(ω) =

n−2∑
k=0

ck
p2

pn−k−1

1− p2(n−k)−2

1− p4
.

Setting m = n− 2 and rescaling, we have the equivalent formulation∣∣∣∣∣
n−2∑
k=0

ck
p2

pn−k−1

1− p2(n−k)−2

1− p4

∣∣∣∣∣ ≤ p2(1− p2n−2)

pn−1(1− p4)

⇔

∣∣∣∣∣
n−2∑
k=0

ck
1− p2(n−k)−2

pn−k−1

∣∣∣∣∣ ≤ (1− p2n−2)

pn−1

⇔

∣∣∣∣∣
m∑
k=0

ck
1− p2(m−k)+2

pm−k

∣∣∣∣∣ ≤ 1− p2m+2

pm
. (3.7)

To prove the validity of (3.7), we regard this as a problem of linear functionals in Hp-Spaces. A
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detailed presentation of this theory can be found e.g. in [10].

We consider the linear functional

Φm(ω) =

m∑
k=0

ck
1− p2(m−k)+2

pm−k
, (3.8)

on H∞ and therefore need to show

|Φm(ω)| ≤ 1− p2m+2

pm
. (3.9)

Choosing

κm(z) =

m∑
k=0

1− p2(m−k)+2

pm−k
z−k−1, (3.10)

as the kernel, we obtain

1

2πi

∫
∂D
ω(z)κm(z)dz =

m∑
k=0

ck
1− p2(m−k)+2

pm−k
= Φm(ω).

using the Residue Theorem.

Shifting the indices in (3.10) by k = m− 1 and setting

Km(z) = z−m−1Pm(z) (3.11)

with

Pm(z) =
m−1∑
l=0

1− p2l+2

pl

(
zl + z2m−l

)
+

1− p2m+2

pm
zm, m ≥ 0, (3.12)

we obtain an alternate kernel Km to the original κm, which produces the same functional.

Now we consider the trigonometrical polynomials Qm with m ≥ 0 and ϑ ∈ [0, 2π] of the form

Qm(ϑ) = e−imϑPm(eiϑ) (3.13)

=
m−1∑
l=0

1− p2l+2

pl

(
e−iϑ(m−l) + eiϑ(m−l)

)
+

1− p2m+2

pm

=
m−1∑
l=0

1− p2l+2

pl
2 cos((m− l)ϑ) +

1− p2m+2

pm
.

Let

Λ(z) =
1

2

1− p2(
1− z

p

)
(1− zp)

(
1 + eiϑz

1− eiϑz
+

1 + e−iϑz

1− e−iϑz

)
.

Then

1 + eiϑz

1− eiϑz
+

1 + e−iϑz

1− e−iϑz
=

2− 2z2

1− z (eiϑ + e−iϑ) + z2
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=
1− z2

1
2 − z cosϑ+ 1

2z
2

and we obtain

Λ(z) =
1

2

(1− p2)(1− z2)(
1− z

p

)
(1− zp)(1− eiϑz)(1− e−iϑz)

=
1

2

1− p2

1−
(
p2+1
p z

)
+ z2

· 1− z2

1
2 − z cosϑ+ 1

2z
2

=
1− p2 − (1− p2)z2

1−
(
p2+1
p + 2 cosϑ

)
z + 2

(
1 + cosϑp

2+1
p

)
z2 −

(
p2+1
p + 2 cosϑ

)
+ z4

.

Polynomial division leads to

Λ(z) =

∞∑
m=0

Qm(ϑ)zm.

Decomposition at the poles z1 = p, z2 = 1/p, z3 = eiϑ and z4 = e−iϑ gives

Qm(ϑ) =
(1− p2)(1 + p2m+2 − 2pm+1cos((m+ 1)ϑ))

pm(1 + p2 − 2p cos(ϑ))
.

This expression is always positive for m ≥ 0. Therefore we have

eiϑKm(eiϑ)
(3.11)

= e−imϑPm(eiϑ)

(3.13)
= Qm(ϑ) ≥ 0. (3.14)

Remembering ‖ω‖∞ ≤ 1, we have∣∣∣∣∣
m∑
k=0

ck
1− p2(m−k)+2

pm−k

∣∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
∂D
ω(z)κm(z)dz

∣∣∣∣
=

∣∣∣∣ 1

2πi

∫
∂D
ω(z)Km(z)dz

∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣∣eiϑKm(eiϑ)
∣∣∣ dϑ‖ω‖∞

=
1

2π

∫ 2π

0
Qm(ϑ)dϑ‖ω‖∞

≤ 1

2π

∫ 2π

0
Qm(ϑ)dϑ

=
1

2πi

∫
∂D
Km(z)dz

(3.12)
=

1− p2m+2

pm
. (3.15)

which is the statement of the theorem.

Remark 3.4. Considering the function ω ≡ 1, we obtain equality at every step in (3.15).
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Applying the theory of extremal problems for linear functionals on Φm, there exists a unique

normalized extremal function ωe such that

max{|Φm(ω)||ω ∈ H∞, ‖ω‖∞ ≤ 1} = Φm(ωe),

where this function is ωe ≡ 1 due to the above. As a general extremal function, we have therefore

ω ≡ eiϑ with ϑ ∈ [0, 2π), which leads to

fϑ(z) =
z − p

1+p2
(1 + eiϑ)z2(

1− z
p

)
(1− zp)

. (3.16)

using the lemma above.

3.2 Coefficients of the Laurent Series

Instead of the Maclaurin Series expansion we can also look at the Laurent Series expansion of

functions in Cop. We consider concave functions in Cop of the form

f(z) =
∞∑

n=−1

cn(f) (z − p)n (3.17)

in |z − p| < 1− p. Again we are concerned with the variability of the coefficients.

First we take a closer look at the residue.

Theorem 3.5 (see [33]). Let p ∈ (0, 1) and f(z) =
∑∞

n=−1 cn (z − p)n ∈ Cop. Then for the

residue c−1(f) we have ∣∣∣∣c−1(f) +
p2

1− p4

∣∣∣∣ ≤ p4

1− p4
. (3.18)

Equality occurs if and only if

fϑ(z) =
z − p

1+p2
(1 + eiϑ)z2(

1− z
p

)
(1− zp)

(3.19)

for ϑ ∈ [0; 2π].

Proof. According to Lemma 3.1 we have∣∣∣∣ 1

f(z)
− 1

z
+

1 + p2

p

∣∣∣∣ ≤ 1.

for a concave function f ∈ Cop and z ∈ D\{0}.
Setting

ω(z) =
1

f(z)
− 1

z
+

1 + p2

p
, (3.20)
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as in the proof of Lemma 3.2, we have |ω(z)| ≤ 1 for z ∈ D and ω(p) = p. Due to the Schwarz

Lemma,

|ω′(p)| ≤ 1− |ω(p)|2

1− p2
= 1. (3.21)

Equality is attained if and only if ω is an automorphism of the unit disk with fixed point p. A

short calculation gives

ω′(z) =
−f ′(z)
f2(z)

+
1

z2

=
−
(
−c−1(f)
(z−p)2 + a1 + ...

)
(
c−1(f)
z−p + c0(f) + ...

)2 +
1

z2

=
c−1(f)− c1(f)(z − p)2 + ...

(c−1(f) + c0(f)(z − p) + ...)2 +
1

z2

ω′(p) =
1

c−1(f)
+

1

p2
. (3.22)

Combining with (3.21) leads to ∣∣∣∣ 1

c−1(f)
+

1

p2

∣∣∣∣ ≤ 1.

This gives the first part of the Theorem.

Considering

c−1(f) = lim
z→p

(z − p)fϑ(z) =
p2 − p4

1+p2
(1 + eiϑ)

−(1− p2)

= − p2

1− p4
+

p4

1− p4
eiϑ, (3.23)

we obtain the second part of the Theorem.

After dealing with the residue, the analysis of the coefficient c0(f) will be the second step.

For this we need another Lemma provided by Jenkins in 1962 [15].

Lemma 3.6. (see [15]) Let f(z) = z +
∑∞

n=0 bnz
n be a univalent function with simple pole at

p ∈ (0, 1). Then

|bn| ≤
1 + p2 + ...+ p2n−2

pn−1
(3.24)

for all n ∈ N.

Using this lemma, we are now able to obtain an estimate concerning c0(f) with respect to the

residue.

Theorem 3.7 (see [16]). Let f(z) =
∑∞

n=−1 cn(f) (z − p)n ∈ Cop with p ∈ (0, 1). Then∣∣∣∣p+
c0(f)(1− p2)

c−1(f)

∣∣∣∣ ≤ 1 + p2

p
. (3.25)
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This inequality is sharp

Proof. We define

h(z) =
−c−1(f)

(1− p2)f
(
p−z
1−pz

) .
Due to the properties of f we know that h is univalent in D and has a simple pole at the origin.

Furthermore

h(0) =
−c−1(f)

(1− p2)f(ζ)

∣∣∣∣
ζ=p

= 0

h′(z) =
−c−1(f)

(1− pz)2

f ′
(
p−z
1−pz

)
f2
(
p−z
1−pz

)
h′(0) =

−c−1(f)
(
−c−1(f) 1

(ζ−p)2 + c1(f) + ...
)

(
c−1(f) 1

ζ−p + a0 + ...
)2

∣∣∣∣∣∣∣
ζ=p

=
c−1(f)2 + c−1(f)c1(f)(ζ − p)2 + ...

(c−1(f) + c0(f)(ζ − p) + ...)2

∣∣∣∣
ζ=p

= 1

h′′(0) = 2p+
2c0(f)(1− p2)

c−1(f)
.

For |z − p| < 1− p we therefore have

h(z) = z +

(
p+

(1− p2)c0(f)

c−1(f)

)
z2 + ...

and with the previous Lemma for n = 2∣∣∣∣p+
(1− p2)c0

c−1(f)

∣∣∣∣ ≤ 1 + p2

p

which gives the statement.

Equality is attained for the extremal function

fe(z) =
z

(1− z
p)(1− pz)

. (3.26)

Combining this with the result about the residue, we have the following theorem.

Theorem 3.8. (see [6]) Let p ∈ (0, 1) and f(z) =
∑∞

n=−1 cn(f) (z − p)n ∈ Cop. Then

Re c0(f) ≥ − p

(1− p2)2
. (3.27)
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Proof. Due to the previous proof, for each f ∈ Cop there exists a number ζ ∈ D̄ such that

c0(f) =
c−1(f)

1− p2

(
−p+ ζ

1 + p2

p

)
. (3.28)

Since we want to find the smallest real part, it is sufficient to look at ζ = eiϑ, ϑ ∈ [0, 2π], and

c−1(f) as in (3.18). We therefore have to find the minimum of the expression

−p
(1− p4)(1− p2)

(
(1 + p2) cosϑ− p2

)
− p3

(1− p4)(1− p2)

(
(1 + p2)2 sin2ϑ+

(
(1 + p2) cosϑ− p2

)2) 1
2
.

Setting x = cosϑ ∈ [−1; 1] and calculating the derivative for x, there is no local extremum in

the interval (−1, 1). Therefore we have a minimum for ζ = 1 and c−1(f) = −p2
1−p2 , which gives

the statement.

If the pole is close enough to the origin, we have a more refined statement.

Theorem 3.9 (see [1]). Let p ∈ (0,
√

3− 1] and f(z) =
∑∞

n=−1 cn(f) (z − p)n ∈ Cop. Then∣∣∣∣c0 +
1− p2 + p4

1− p4

∣∣∣∣ ≤ p2(2− p2)

1− p4
. (3.29)

Equality occurs for the previously mentioned fϑ.

Proof. Considering the function fω(z) =
z− p

1+p2
(1+ω(z))z2(

1− z
p

)
(1−zp)

from Lemma 3.2, multiplying with the

denominator and equating the coefficients on both sides using the expansion ω(z) =
∑∞

n=0 cn(ω) (z−
p)n in z ∈ D around p leads to

−1− p2

p
c−1(f) = p− p3

1 + p2
− p3

1 + p2
c0(ω)

⇔ c−1(f) = − p2

1− p4
+

p4

1− p4
c0(ω) (3.30)

and

c−1(f) +
1− p2

p
c0(f) =

1− p2

1 + p2
− 2p2

1 + p2
c0(ω)− p3

1 + p2
c1(ω). (3.31)

Combining (3.30) and (3.31) gives

1− p2

p
c0(f) +

1− p2 + p4

1− p4
=

2p2 − p4

1− p4
c0(ω) +

p3

1 + p2
c1(ω). (3.32)

Since |c0(ω)| ≤ 1 and |c1(ω)| ≤ 1−|c0(ω)|2
1−p2∣∣∣∣1− p2

p
c0(f) +

1− p2 + p4

1− p4

∣∣∣∣ ≤ p2

1− p4

(
(2− p2)|c0(ω)|+ p(1− |c0(ω)|2)

)
.
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If we now look at the function

g(x) = (2− p2)x+ p(1− x2),

this has a local maximum at xp = 2−p2
2p . Since xp ≥ 1 for p ∈]0,

√
3− 1] we obtain

max{g(x) | x ∈ [0; 1]} = g(1) = 2− p2.

For equality it has to be |ω(z)| = |c0| = 1, which is only the case for a function of the form

fϑ.

Remark 3.10. With |c0| ≤ 1 we obtain the result of Theorem 2.3 directly from (3.30).

Similarly to the previous discussion, we can analyze further Laurent series coefficients of

concave functions. To do so, we need some further Lemmas.

Lemma 3.11 (see [16]). Let P (z) be holomorphic in D with ReP (z) > 0, P (p) = 1 − p2 and

P ′(p) = 0 for p ∈ (0, 1]. If p has the expansion

P (z) = (1− p2) + d2 (z − p)2 + d3 (z − p)3 + ... (3.33)

for |z − p| < 1− p, then

|d2| ≤
2

1− p2
, (3.34)∣∣∣∣ p

1− p2
d2 + d3

∣∣∣∣ ≤ 6p

(1− p2)2
,

2

3
≤ p < 1, and (3.35)∣∣∣∣ p

1− p2
d2 + d3

∣∣∣∣ ≤ 2(1 + 9
4p

2)

1− p2
, 0 < p ≤ 2

3
. (3.36)

All inequalities are sharp.

Proof. Let

g(z) =
P (z)− (1− p2)

P (z) + 1− p2
. (3.37)

Then g(p) = 0 and |g(z)| ≤ 1 for z ∈ D, as well as

g′(z) =
2(1− p2)P ′(z)

(P (z) + 1− p2)2
,

with g′(p) = 0. Multiplying (3.37) with the denominator and considering the expansion at p, we

have (
2(1− p2) +

∞∑
n=2

dn(z − p)n
) ∞∑

k=2

g(k)(p)

k!
(z − p)k =

∞∑
n=2

dn(z − p)n. (3.38)

Therefore

d2 = (1− p2)g′′(p) (3.39)
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and
p

1− p2
d2 + d3 = pg′′(p) + (1− p2)

g′′′(p)

3
. (3.40)

Rewriting g as

g(z) = φ

(
z − p
1− pz

)
,

where φ is holomorphic with φ(0) = φ′(0) = 0 and |φ(z)| ≤ 1 for z ∈ D. Furthermore

g′′(p) =
φ′′(0)

(1− p2)2
.

From |φ
′′(0)
2 | ≤ 1 we have |g′′(p)| ≤ 2

(1−p2)2
. In combination with (3.39) this leads to

|d2| = (1− p2)|g′′(p)| ≤ 2

1− p2
,

which is (3.34). Considering (3.40) with

g′′′(p) =
6p

(1− p2)3
φ′′(0) +

φ′′′(0)

(1− p2)3
,

we obtain
p

1− p2
d2 + d3 =

1

(1− p2)2

(
3pφ′′(0) +

φ′′′(0)

3

)
.

Setting φ(z) = a2z
2 + a3z

3 + ... for z ∈ D leads to

p

1− p2
d2 + d3 =

2

(1− p2)2
(3pa2 + a3).

Since φ is bounded, we have

|3pa2 + a3| ≤ 3p|a2|+ |a3| ≤ 1 + 3p|a2| − |a2|2

and therefore ∣∣∣∣ p

1− p2
d2 + d3

∣∣∣∣ ≤ 2

(1− p2)2
(1 + 3p|a2| − |a2|2).

With x = |a2| and h(x) = 1 + 3px− x2 we calculate h′(x) = 3p− 2x.

In case p ≥ 2
3 , it has to be h′(x) ≥ 0 for x ∈ [0, 1]. The maximum is at x = |a2| = 1 for

h(x) ≤ h(1) = 3p, which leads to (3.35). If 0 < p ≤ 2
3 the function h attains its maximum at

x = |a2| = 3p
2 . Since h(x) ≤ 1 + 9

4p
2 and therefore (3.36).

Setting g(z) =
(
z−p
1−pz

)2
and therefore

P (z) =
1 + p2 − 4pz + (1 + p2)z2

1− z2
,
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we obtain equality in (3.34) and (3.35). In case 0 < p ≤ 2
3 , we choose

φ(z) =
z2(z + 3

2p)

1 + 3
2pz

,

for which we can construct a function P satisfying (3.36).

Using this result, we are able to give a range for c1(f) and c2(f).

Theorem 3.12 (see [16]). Let p ∈ (0, 1) and f(z) =
∑∞

n=−1 cn(f) (z − p)n ∈ Cop. Then

|c1(f)| ≤ p2

(1− p2)3
, (3.41)

|c2(f)| ≤ (4 + 9p2)|c−1(f)|
12(1− p2)3

, 0 < p ≤ 2

3
, (3.42)

and |c2(f)| ≤ p |c−1(f)|
(1− p2)3

≤ p3

(1− p2)4
,

2

3
≤ p < 1. (3.43)

As in the previous Lemma all inequalities are sharp.

Proof. Let

P (z) = 2pz − 1− p2 − (z − p)(1− pz)f ′′(z)
f ′(z)

. (3.44)

Then P satisfies the conditions for the previous Lemma and we can use the expression

(
2p(z − p)− (1− p2)

)
f ′(z)−

(
(z − p)(1− p2)− p(z − p)2

)
f ′′(z) = P (z)f ′(z)

to equate the coefficients. This leads to

2c1(f)(1− p2) = c−1(f)d2 (3.45)

and 6(1− p2)c2(f) = 2pc1(f) + c−1(f)d3. (3.46)

Using (3.34) and (3.45), we obtain

|c1(f)| ≤ |c−1(f)|
(1− p2)2

.

With |c−1(f)| ≤ p2

1−p2 from Theorem 2.3 this leads to (3.41).

From (3.45) and (3.46) we obtain

c2(f) =
1

6(1− p2)

(
p

1− p2
d2 + d3

)
c−1(f). (3.47)

For 0 < p ≤ 2
3 (3.35) and (3.47) lead to the desired statement. In case 2

3 ≤ p < 1 we combine

(3.36) and (3.47) to obtain (3.43).
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Equality in (3.41) and (3.43) is attained again for the function fe(z) = z
(1− z

p
)(1−pz) from

equation (3.26).

In case 0 < p ≤ 2
3 we have equality if f has the properties of P of (3.44).

If we assume as in Theorem 3.9, that the poles are closer to the origin, we have the following

statement for the coefficient c1(f).

Theorem 3.13. (see [6]) Let p ∈ (0, 1−
√

2
2 ] and f(z) =

∑∞
n=−1 cn(f) (z − p)n ∈ Cop. Then∣∣∣∣∣c1(f)

(
1− p2

p

)2

+
p2

1− p4

∣∣∣∣∣ ≤ 1

1− p4
. (3.48)

We have again equality for fϑ from (3.19).

Proof. Additionally to (3.30) and (3.31) we can equate the coefficients for (z − p)2 and obtain

c0(f)− 1− p2

p
c1(f) = − p

1 + p2
(1 + c0(ω) + 2pc1(ω) + p2c2(ω)). (3.49)

Inserting this into (3.32) gives

c1(f)

(
1− p2

p

)2

+
p2

1− p4
=

c0(ω)

1− p4
+

2p− p3

1 + p2
c1(ω) +

p2 − p4

1 + p2
c2(ω) =: Φp(ω). (3.50)

We have to show that

|Φp(ω)| ≤ 1

1− p4
(3.51)

holds, where ω is chosen as in the proof for Theorem 3.9.

Considering Φp as a linear functional in H∞ similar to the proof of Theorem 3.3, we can

present the function Φp(ω) in the form

Φp(ω) =
1

2πi

∫
∂D
κp(z)ω(z)dz (3.52)

where

κp(z) =
1

(1− p4)(z − p)
+

2p− p3

(1 + p2)(z − p)2
+

p2 − p4

(1 + p2)(z − p)3
.

The functional Φp does not change, if we consider an equivalent kernel Kp holomorphic in D̄
except for the same singularity p instead of κp.

Therefore let

Kp(z) =
1

1− p4

(
1

z − p
+

p

1− pz

)
+

2p− p3

1 + p2

(
1

(z − p)2
+

1

(1− pz)2

)
+
p2 − p4

1 + p2

(
1

(z − p)3
+

z

(1− pz)3

)
,
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which leads to

eiϑKp(e
iϑ)(1 + p2)|1− peiϑ|6 = (1− 2pcosϑ+ p2)2

+ (2p− p3)(−4p+ 2(1 + p2)cosϑ)(1− 2pcosϑ+ p2)

+ (p2 − p4)(4cos2ϑ− (2p3 + 6p)cosϑ− 2 + 6p2)

= 4p4(−2 + p2)cos2ϑ

+ 4p3(3− p2)cosϑ+ 1− 8p2 + 5p4 − 2p6

=: Qp(cos(ϑ))

with ϑ ∈ [0, 2π].

Considering x = cosϑ, the function Qp has a local minimum at xp = 3−p2
2p(2−p2)

. Since xp > 1

for p ∈ (0, 1) we have

Qp(cos(ϑ)) ≥ Qp(−1) = 1− 8p2 − 12p3 − 3p4 + 4p5 + 2p6 =: S(p).

From S′(p) < 0 for p ∈ (0, 1) and S
(

1−
√

2
2

)
= 0 we obtain

eiϑKp(e
iϑ) ≥ 0, ϑ ∈ [0, 2π] and p ∈

(
0, 1−

√
2

2

]
. (3.53)

Therefore

|Φp(ω)| =

∣∣∣∣ 1

2πi

∫
∂D
κp(z)ω(z)dz

∣∣∣∣
=

∣∣∣∣ 1

2πi

∫
∂D
Kp(z)ω(z)dz

∣∣∣∣
≤ 1

2π

∫ 2π

0
|eiϑKp(e

iϑ)|dϑ‖ω‖∞

=
1

2π

∫ 2π

0
eiϑKp(e

iϑ)dϑ‖ω‖∞

≤ 1

2π

∫ 2π

0
eiϑKp(e

iϑ)dϑ

=
1

2πi

∫
∂D
Kp(z)dz

=
1

1− p4
(3.54)

leads to (3.51), which means (3.48).

In (3.54) we obtain equality at each step, if ω ≡ 1 (also see Remark 3.4). Furthermore with

(3.53) the condition extremal problems in H∞ for Φp is satisfied.

We therefore have a unique normalized function ωe, such that

max{|Φp(ω)| | ω ∈ H∞, ‖ω‖∞ ≤ 1} = Φp(ωe),
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which has to be ωe ≡ 1 from the above consideration. Equality in (3.51) therefore occurs for

ω(z) = eiϑ with a certain ϑ ∈ [0, 2π), which means, that f has to be of the form fϑ. This proves

the statement.

3.3 Alternative Proof for the Residue

Using the integral representation formula of the previous section for the class Cop, we can obtain

Theorem 2.3 for the residue of concave functions.

To recall, the statement of the theorem was as follows.

Theorem. Let f(z) ∈ Cop be a concave function with a simple pole at some point p ∈ (0, 1).

Then the residue of this function f can be described by some function

ϕ : D→ D with ϕ(p) = p

holomorphic in D, such that

Resp f = − p2

(1− p2)2
exp

∫ p

0

−2ϕ(x)

1− xϕ(x)
dx. (3.55)

Proof of Theorem 2.3. Since a function f ∈ Cop is represented by

f(z) =
b−1

z − p
+ b0 +

∞∑
n=1

bn(z − p)n

for |z − p| < 1− p, we obtain

f ′(z) = − b−1

(z − p)2
+ b1 +

∞∑
n=2

n bn(z − p)n−1.

Applying (2.20) from Theorem 2.13, the following equality is valid.

−b−1

(z − p)2
+ b1 +

∞∑
n=2

n bn(z − p)n−1 =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Multiplying both sides with −(z − p)2 we have

b−1 − b1(z − p)2 −
∞∑
n=2

n bn(z − p)n+1 =
−p2

(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Considering z = p leads to the theorem.

Similarly to Corollary 2.14 we can describe the residue in ways of a holomorphic function Ψ,

which has a fixed point at the origin.
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We omit the detailed proof, since the result can be obtained by direct calculation using

Corollary 2.14 instead of Theorem 2.13 in the proof above.

Corollary 3.14. Let f(z) ∈ Cop be a concave function with a simple pole at some point p ∈ (0, 1).

Then the residue of this function f can be described by some function

Ψ : D→ D with Ψ(0) = 0

holomorphic in D, such that

Resp f = − p2

(1− p2)2
exp

∫ p

0

(
1

1− xΨ(x)
− 1

1− px

)
2

x
dx. (3.56)

As we already discussed in Theorem 3.5, Wirths determined this range of the residue in [33],

using the inequality ∣∣∣∣ 1

f(z)
− 1

z
+

1 + p2

p

∣∣∣∣ ≤ 1

for f ∈ Cop provided by Miller in [19].



4 Extension of Necessary and Sufficient

Conditions for Concave Functions

In the previous chapter we discussed the basic properties of concave functions and introduced

necessary and sufficient conditions. These conditions can be extended to have a more compli-

cated, yet useful form. As introduced before, we know that a function f0 belongs to Co0 if and

only if

Re

(
1 +

zf ′′0 (z)

f ′0(z)

)
< 0

for all z ∈ D. For the class Coq with q ∈ D the inequality

Re

(
1 +

zf ′′q (z)

f ′q(z)
+
z + q

z − q
− 1 + q̄z

1− q̄z

)
< 0 (4.1)

is a necessary and sufficient condition provided by Pfaltzgraff and Pinchuk in [26].

For simplicity, in this chapter we will only consider real q, meaning q ∈ (−1, 1).

Again, a concave functions of class Co0 can be expanded as

f0(z) =
c−1(f)

z
+ c0(f0) + c1(f0) z + · · · , |z| < 1, (4.2)

and we have

fq(z) =
Resq fq
z − q

+ c0(fq) + c1(fq) (z − q) + · · · , |z − q| < 1− |q|, (4.3)

as a typical expression for functions fq ∈ Coq, q ∈ (−1, 1), since the normalization usually

considers the Maclaurin expansion for this class (see e.g. [1, 4]). Here Resq fq = c−1(fq) is the

residue of fq at the point z = q.

In the present chapter we shall prove the following:

Theorem 4.1. Let p, q ∈ (−1, 1). A meromorphic function fq with simple pole at q belongs to

the class Coq if and only if for all z ∈ D

Re

(
1− q2 +

2p(1− q2)

1 + p2
· 1− qz
z − q

(4.4)

−
(
z − q
1− qz

+ p

)(
1 + p

z − q
1− qz

)(
2q

1 + p2
+

1− qz
1 + p2

f ′′q (z)

f ′q(z)

))
< 0.

35
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For the case q = 0 we actually have

Corollary 4.2. Let p ∈ (−1, 1). A meromorphic function f0 with a simple pole at the origin

belongs to the class Co0 if and only if for all z ∈ D

Re

(
1 +

2p

1 + p2
· 1

z
+

1

1 + p2
(z + p)(1 + pz)

f ′′0 (z)

f ′0(z)

)
< 0. (4.5)

Remark 4.3. For q = p in (4.4) we obtain the original inequality (4.1) after normalization. If

we put p = 0 in (4.4), we have

Re

(
1 + q2 − 2qz +

(z − q)(1− qz)f ′′q (z)

f ′q(z)

)
< 0.

This is the same result as Livingston obtained in [16].

Additionally, functions in the class Coq and Co0 have the following integral representations.

Theorem 4.4. A meromorphic function fq with a simple pole at the point q ∈ (−1, 1) belongs

to the class Coq if and only if there exists a holomorphic function ϕ : D→ D with ϕ(p) = p such

that fq can be expressed as

f ′q(z) = −(1− qz + p(z − q))2

(z − q)2(1− qz)2
Resq fq exp

∫ T (z)

p

−2ϕ(ζ)

1− ζϕ(ζ)
dζ (4.6)

for z ∈ D, where T is an automorphism of the unit disk, mapping T (q) = p with T ′(q) = 1−p2 >

0. In particular

T (z) =
(1− pq)z + p− q
1− pq + (p− q)z

.

Furthermore in case f0, meaning for q = 0 and Res0 f0 = 1, we obtain the next representation.

Corollary 4.5. A function f0 belongs to the class Co0 if and only if there exists a holomorphic

function ϕ : D→ D with ϕ(p) = p such that f0 can be expressed as

f ′0(z) = −
(

1

z
+ p

)2

exp

∫ z+p
1+pz

p

−2ϕ(ζ)

1− ζϕ(ζ)
dζ (4.7)

for z ∈ D and p ∈ (−1, 1).

The second section will provide the proofs for the Theorems and in the last section, we take

a look at an application of Theorem 4.1. This chapter presents the contents of [21].

4.1 Proofs of the Extended Formluas

We shall begin with Corollary 4.2 and use the steps of the proof for the proof of Theorem 4.1.
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Proof of Corollary 4.2. Let f0 ∈ Co0 and p ∈ (0, 1). Then there exists a function fp ∈ Cop such

that C0 · f0(D) = fp(D) with a constant C0 ∈ C\{0} and fp can be written as

fp(z) = C0 · f0

(
z − p
1− pz

)
. (4.8)

For any function of Cop we also know that (4.1) is valid.

Setting

Q1(z) = 1 +
zf ′′p (z)

f ′p(z)
+
z + p

z − p
− 1 + pz

1− pz

we obtain

Q1(z) = 1 +
2p

z − p
+

(1− p2)zf ′′0

(
z−p
1−pz

)
(1− pz)2f ′0

(
z−p
1−pz

)
in relation to f0.

Since ReQ1(z) < 0 for all z ∈ D is only valid if and only if ReQ1

(
z+p
1+pz

)
< 0 for all z ∈ D,

we obtain by a short calculation that

Q1

(
z + p

1 + pz

)
=

1 + p2

1− p2
+

2p

(1− p2)z
+

(z + p)(1 + pz)f ′′0 (z)

(1− p2)f ′0(z)
. (4.9)

Normalizing (4.9) for z = 0 by multiplication with 1−p2
1+p2

leads to

1− p2

1 + p2
·Q1

(
z + p

1 + pz

)
= 1 +

2p

1 + p2
· 1

z
+

1

1 + p2
(z + p)(1 + pz)

f ′′0 (z)

f ′0(z)
, (4.10)

which has also negative real part for all z ∈ D since 1−p2
1+p2

> 0.

This proves Corollary 4.2.

For Theorem 4.1 we continue the above proof at (4.10).

Proof of Theorem 4.1. Let p, q ∈ (0, 1) and fq ∈ Coq. We set

Q2(z) = 1 +
2p

1 + p2
· 1

z
+

1

1 + p2
(z + p)(1 + pz)

f ′′(z)

f ′(z)

where

C0 f(z) = Cq fq

(
z + q

1 + qz

)
with constants C0, Cq ∈ C\{0}. Therefore

Q2(z) = 1 +
2p

1 + p2
· 1

z
− 2q

1 + q2

(z + p)(1 + pz)

1 + qz

+
1− q2

1 + p2

(z + p)(1 + pz)

(1 + qz)2

f ′′q

(
z+q
1+qz

)
f ′q

(
z+q
1+qz

)
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Again, we have ReQ2(z) < 0 for all z ∈ D if and only if ReQ2

(
z−q
1−qz

)
< 0 for all z ∈ D.

Therefore we know that

Q2

(
z − q
1− qz

)
= 1+

2p

1 + p2
· 1− qz
z − q

−
(
z − q
1− qz

+ p

)(
1 + p

z − q
1− qz

)
×
(

2q

(1 + p2)(1− q2)
− 1− qz

(1 + p2)(1− q2)

f ′′q (z)

f ′q(z)

)
has negative real part for all z ∈ D. Multiplying with 1− q2 > 0 results in (4.4).

This completes the proof for Theorem 4.1.

As in the previous proof, we shall start with the proof for functions f0 ∈ Co0.

Proof of Corollary 4.5. From [20] we know for functions fp ∈ Cop, that the integral representa-

tion is given as

f ′p(z) =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

with a holomorphic function ϕ : D→ D, ϕ(p) = p.

Using (4.8), we obtain

1− p2

(1− pz)2
C0 · f ′0

(
z − p
1− pz

)
=

p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Applying the transformation z 7→ z+p
1+zp yields

f ′0(z) =
p2 (1 + pz)2

C0 (1− p2)3 z2
exp

∫ z+p
1+pz

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ. (4.11)

From [20] we also know, that this residue of functions in Cop can be represented as

Resp fp = − p2

(1− p2)2
exp

∫ p

0

−2ϕ(x)

1− xϕ(x)
dx (4.12)

with some holomorphic function ϕ : D→ D, ϕ(p) = p.

Combining (4.11) with (4.12) we have

−z2 f ′0(z)
∣∣
z=0

= − p
2 (1 + pz)2

C0 (1− p2)3
exp

∫ z+p
1+pz

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

∣∣∣∣∣
z=0

=
Respfp

(1− p2)C0
.

Using the expansion (4.2) for functions in Co0, this leads to

C0 =
Respfp
1− p2

=
p2

(1− p)3
exp

∫ p

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.
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Inserting this result in (4.11) leads to the statement for functions of class Co0.

For functions in Coq we can continue in (4.11).

Proof of Theorem 4.4. By replacing C0 · f0(z) = Cqfq

(
z+q
1+qz

)
we obtain

f ′q

(
z + q

1 + qz

)
=

p2(1 + pz)2(1 + qz)2

Cq(1− p2)3(1− q2)z2
exp

∫ z+p
1+pz

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Applying the transformation z 7→ z−q
1−qz leads to

f ′q(z) =
p2(1− q2)

Cq(1− p2)3

(1− qz + p(z − q))2

(z − q)2(1− qz)2
exp

∫ (1−pq)z+p−q
1−pq+(p−q)z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ. (4.13)

Again with the use of (4.12) we have

−(z − q)2 f ′q(z)
∣∣
z=q

=
−p2(1− q2) (1− qz + p(z − q))2

Cq(1− p2)3(1− qz)2
exp

∫ (1−pq)z+p−q
1−pq+(p−q)z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

∣∣∣∣∣
z=q

= −(1− q2)

Cq
· p2

(1− p2)3
exp

∫ p

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

=
1− q2

1− p2
· Resp fp

Cq
.

Therefore by (4.3) we have

Cq =
1− q2

1− p2
· Resp fp

Resq fq

=
−p2(1− q2)

(1− p2)3 · Resqfq
exp

∫ p

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Using this fact with (4.13) leads to the representation of Theorem 4.4.

This completes the proof.

4.2 Application of the Extended Condition

As discussed in Theorem 3.13, Bhowmik, Ponnusamy and Wirths gave the range of the coefficient

for c1(f) in [6]. For non-normalized concave functions, this is equivalent to the following theorem.

Theorem (see [6]). Let q ∈ (0, 1 −
√

2
2 ) and fq ∈ Coq. Then the variability region of c1(fq) is

given by ∣∣∣∣ c1(fq)

a1(fq)
+

q4

(1 + q2)(1− q2)3

∣∣∣∣ ≤ q2

(1 + q2)(1− q2)3

where equality holds if and only if fq is some specific function.
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Here the value a1(fq) is the first coefficient of the non-normalized Maclaurin expansion of fq.

As an application of the Theorems, we will now take a closer look at {c−1(fq), c1(fq)} and

{c−1(fq), c2(fq)}.
First we set for p, q ∈ (−1, 1) and z ∈ D

P (z) =− (1− q2)− 2p(1− q2)

1 + p2
· 1− qz
z − q

+

(
z − q
1− qz

+ p

)(
1 + p

z − q
1− qz

)(
2q

1 + p2
+

1− qz
1 + p2

f ′′q (z)

f ′q(z)

)
.

Let P have the expansion of the form

P (z) = d0 + d1(z − q) + d2(z − q)2 + · · · .

We calculate

P (q) = 1− q2 = d0,

P ′(q) =
2p

1 + p2

(
1 + (1− q2)2 c1(fq)

c−1(fq)

)
= d1

and

P ′′(q)

2
=

2

(1 + p2)(1− q2)

(
−pq − (1− 2pq + p2)(1− q2)

c1(fq)

c−1(fq)
+ 3p(1− q2)3 c2(fq)

c−1(fq)

)
= d2.

Then the function P̃ (z) defined by

P

(
z + q

1 + qz

)
=(1− q2)

(
1 + d1z +

(
(1− q2)d2 − qd1

)
z2 + · · ·

)
=(1− q2)P̃ (z)

has positive real part for all z ∈ D with P̃ (0) = 1 and we can write

P̃ (z) = 1 + a1z + a2z
2 + · · · .

Since P̃ belongs to the Carathéodory class of functions, |an| ≤ 2 for all n ∈ N and

|a2 + λa1| ≤ 2(1 + |λ|) (4.14)

for λ ∈ C. Furthermore, we have a1 = d1 and a2 = (1− q2)d2− qd1 by equating the coefficients.

This immediately leads us to ∣∣∣∣1 + (1− q2)2 c1(fq)

c−1(fq)

∣∣∣∣ ≤ 1 + p2

|p|
(4.15)
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for {c−1(fq), c1(fq)}.
Since (4.15) is valid for all p ∈ (−1, 1), we can minimize the right hand side by taking p→ 1.

This yields ∣∣∣∣1 + (1− q2)2 c1(fq)

c−1(fq)

∣∣∣∣ ≤ 2,

what is similar to a known result from [22, Theorem 1.1]. We will discuss detailes of this fact in

the next chapter.

In case q = 0 and c−1(f0) = 1 we have

|1 + c1(f0)| ≤ 2,

which is the same result as we would have obtained, if we used the term of Corollary 4.2 for the

definition of P (z) instead of the term from Theorem 4.1.

For {c−1(fq), c2(fq)} we calculate

d2 +
1 + p2 − 2pq

(1− q2)p
d1 =

2

(1 + p2)(1− q2)

(
1 + p2 − 3pq + 3p(1− q2)3 c2(fq)

c−1(fq)

)
.

In terms of a1 and a2 we obtain

a2 +
1− pq + p2

p
a1 =

2

(1 + p2)

(
1 + p2 − 3pq + 3p(1− q2)3 c2(fq)

c−1(fq)

)
.

Therefore using (4.14) we obtain for all p ∈ (−1, 1)∣∣∣∣1 + p2

3p
− q + (1− q2)3 c2(fq)

c−1(fq)

∣∣∣∣ ≤ 1 + p2

3p2
(1 + |p| − pq + p2),

which in case q = 0 becomes∣∣∣∣1 + p2

3p
+ c2(f0)

∣∣∣∣ ≤ 1 + p2

3p2
(1 + |p|+ p2).
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As introduced in the first chapter and discussed in the previous, a meromorphic function f with

a simple pole at p in D, belongs to Cop if and only if

Re

(
1 + p2 − 2pz +

(z − p)(1− pz)f ′′(z)
f ′(z)

)
< 0, z ∈ D. (5.1)

.

A function f ∈ Cop in general can also be expanded as

f(z) = a0(f) + a1(f)z + a2(f)z2 + · · · , |z| < p

and

f(z) =
c−1(f)

z − p
+ c0(f) + c1(f)(z − p) + · · · , |z − p| < 1− p.

The univalence of f forces a1(f) 6= 0 and c−1(f) 6= 0. Usually normalizations like a0 = a1(f)−
1 = 0 or c0(f) = c−1(f) − 1 = 0 are assumed in the definitions of the class Cop. However we

omit them for the following discussion.

The contents of this chapter can also be found in [22].

As already stated in 3.3, the variability region of c−1(f), when f ranges over Cop, was deter-

mined by Wirths. For the non-normalized case, we therefore have

Theorem A (Wirths [33]). For 0 < p < 1{
c−1(f)

a1(f)
: f ∈ Cop

}
= D

(
− p2

1− p4
,

p4

1− p4

)
. (5.2)

Furthermore
c−1(f)

a1(f)
+

p2

1− p4
=

p4

1− p4
eiθ

holds for some real θ if and only if

f(z) = a1(f)
z − p2

1+p2
(1 + eiθ)z2

(1− z
p)(1− pz)

+ C (5.3)

for some constant C ∈ C in D.

The variability region of c1(f)/a1(f), when f ranges over Cop with 0 < p ≤ 1 − 2−1/2, was

given by Bhowmik, Ponnusamy and Wirths, as discussed twice before.

42
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Theorem B (Bhowmik, Ponnusamy and Wirths [6]). For 0 < p < 1−
√

2
2{

c1(f)

a1(f)
: f ∈ Cop

}
= D

(
− p4

(1 + p2)(1− p2)3
,

p2

(1 + p2)(1− p2)3

)
.

Furthermore
c1(f)

a1(f)
= − p4

(1 + p2)(1− p2)3
+

p2

(1 + p2)(1− p2)3
eiθ

holds for some real θ in D if and only if (5.3) holds for some constant C ∈ C in D.

By making use of the same argument as in the proof of Theorem A we shall determine the

coefficient body {(a1(f), c−1(f), c1(f)) ∈ C3 : f ∈ Cop}. Let P be the class of analytic functions

g in D such that Re g(z) > 0 in D and g(0) = 1. Let

P (z) =
1 + z

1− z
, z ∈ D. (5.4)

Then P is a conformal mapping of D onto the right half plane H = {w ∈ C : Rew > 0} with

P (0) = 1 and particularly P ∈ P. For µ ∈ D define τµ by

τµ(z) =
z + µ

1 + µz
, z ∈ D (5.5)

and τµ(z) = µ, when µ ∈ ∂D. Now we define for z ∈ D and w ∈ D

Q1(z, w) =

∫ z

0

P
(
wζ2

)
− 1

ζ
dζ = − log(1− wz2), (5.6)

Q2(z, w, µ) =

∫ z

0

P
(
ζ2τµ(wζ)

)
− 1

ζ
dζ. (5.7)

Notice that if µ ∈ ∂D, Q2(z, w, µ) = Q1(z, µ).

Theorem 5.1. Let 0 < p < 1. For any fixed z0 ∈ D\{p} and µ ∈ D the function w 7→
Q2(z0, w, µ) is convex univalent on D and the function w 7→ exp (−Q2(z0, w, µ)) is univalent on

D. Further

{(a1(f), c−1(f), c1(f)) ∈ C3 : f ∈ Cop}

=

{
(α1, γ−1, γ1) ∈ C3 : γ−1 6= 0, µ = (1− p2)2 γ1

γ−1
∈ D

and α1 ∈ −
γ−1

p2
exp (−Q2(p,D, µ))

}
.

(i) In case that γ−1 6= 0 and µ = (1 − p2)2 γ1
γ−1
∈ ∂D, c−1(f) = γ−1 and c1(f) = γ1 holds for

some f ∈ Cop, if and only if

f(z) = C +
γ−1

z − p
+ (1− p2)

γ1(z − p)
1− pz
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for some constant C ∈ C. In this case specially Q2(p,D, µ) reduces to a singleton {− log(1−
µp2)} and

a1(f) = −γ−1

p2
+ (1− p2)2γ1.

(ii) In case that γ−1 6= 0 and µ = (1 − p2)2 γ1
γ−1
∈ D, equalities c−1(f) = γ−1, c1(f) = γ1 and

a1(f) = −p−2γ−1 exp (−Q2(p, w0, µ)) hold for some f ∈ Cop and w0 ∈ ∂D if and only if

f(z) = C −
∫ z

p

γ−1

(ζ − p)2
exp

(
−Q2

(
p− ζ
1− pζ

, w0, µ

))
dζ (5.8)

for some constant C ∈ C.

Remark 5.2. We understand the integral in (5.8) as formal integration, i.e.∫ z

p

−γ1

(ζ − p)2
exp(−Q2)dζ =

∫ z

p

−γ1

(ζ − p)2
+ γ + · · · dζ

=
γ1

z − p
+ γ (z − p) + · · · ,

giving a single-valued meromorphic function in D, since the integrand has no residue.

5.1 Representation Formula for Cop and Lemmas

For f ∈ Cop with 0 < p < 1 let

hf (z) = −
(

1 + p2 − 2pz +
(z − p)(1− pz)f ′′(z)

f ′(z)

)
, (5.9)

gf (z) =
1

1− p2
hf

(
p− z
1− pz

)
. (5.10)

Then Re hf (z) > 0 and Re gf (z) > 0 in D. Since f(z) = c−1(f)(z−p)−1+c0(f)+c1(f)(z−p)+· · ·
in D(p, 1− p), we have

(z − p)(1− pz)f ′′(z)
f ′(z)

=
(z − p){1− p2 − p(z − p)}(2c−1(f)(z − p)−3 + 2c2(f) + · · · )

−c−1(f)(z − p)−2 + c1(f) + · · ·

=− 2

(
1− p2 − p(z − p) + (1− p2)

c1(f)

c−1(f)
(z − p)2 + · · ·

)
and hence

hf (z) = 1− p2 + 2(1− p2)
c1(f)

c−1(f)
(z − p)2 + · · · .
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From this, it follows that

hf (p) = 1− p2, h′f (p) = 0, h′′f (p) = 4(1− p2)
c1(f)

c−1(f)
(5.11)

and that

gf (0) =
1

1− p2
hf (p) = 1, g′f (0) = −h′f (p) = 0, (5.12)

g′′f (0) = (1− p2)h′′f (p) = 4(1− p2)2 c1(f)

c−1(f)
.

By (5.9) we have

d

dz
log

{
f ′(z)(z − p)2

−c−1(f)

}
=
f ′′(z)

f ′(z)
+

2

z − p
= −

hf (z)− (1− p2)

(z − p)(1− pz)
,

where the branch of logarithm is taken such that log
{
f ′(z)(z−p)2
−c−1(f)

}∣∣∣
z=p

= 0. By integration

log

{
f ′(z)(z − p)2

−c−1(f)

}
= −

∫ z

p

hf (ζ)− (1− p2)

(ζ − p)(1− pζ)
dζ

= −
∫ p−z

1−pz

0

gf (ζ)− 1

ζ
dζ =

g′′f (0)

4(1− p2)2
(z − p)2 + · · ·

Thus

f(z) = c0(f)−
∫ z

p

c−1(f)

(ζ − p)2
exp

(
−
∫ p−ζ

1−pζ

0

gf (t)− 1

t
dt

)
dζ. (5.13)

From (5.1) it is easy to see that the following holds.

Proposition 5.3. For f ∈ Cop let hf and gf be the functions defined by (5.9) and (5.10),

respectively. Then both hf and gf have positive real parts in D and satisfy (5.11) and (5.12).

Particularly gf ∈ P and (5.13) holds. Conversely for any g ∈ P with g′(0) = 0 and γ0, γ−1 ∈ C
with γ−1 6= 0, the function f defined by

f(z) = γ0 −
∫ z

p

γ−1

(ζ − p)2
exp

(
−
∫ p−ζ

1−pζ

0

g(t)− 1

t
dt

)
dζ. (5.14)

belongs to Cop, and satisfies c−1(f) = γ−1, c0(f) = γ0 and c1(f) =
γ−1g

′′(0)

4(1− p2)2
.

Proposition 5.4. For any fixed z0 ∈ D\{0}, Q1(z0, w) is convex univalent on D and exp (−Q1(z0, w))

is univalent on D. {∫ z0

0

g(ζ)− 1

ζ
dζ : g ∈ P with g′(0) = 0

}
= Q1(z0,D) (5.15)
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Furthermore ∫ z0

0

g(ζ)− 1

ζ
dζ = Q1(z0, w0)(= − log(1− w0z

2
0))

holds for some g ∈ P with g′(0) = 0 and w0 ∈ ∂D if and only if g(z) = P (w0z
2) in D.

Proposition 5.5. For any fixed z0 ∈ D\{0} and µ ∈ D, Q2(z0, w, µ) is a convex univalent

function of w ∈ D and exp(−Q2(z0, w, µ)) is a univalent function of w ∈ D, and{∫ z0

0

g(ζ)− 1

ζ
dζ : g ∈ P with g′(0) = 0 and g′′(0) = 4µ

}
(5.16)

=Q2(z0,D, µ).

Furthermore ∫ z0

0

g(ζ)− 1

ζ
dζ = Q2(z0, w0, µ)

holds for some g ∈ P with g′(0) = 0, g′′(0) = 4µ and w0 ∈ ∂D if and only if g(z) = P (z2τµ(w0z))

in D.

Remark 5.6. Notice that if µ ∈ ∂D, then g(z) = P (z2τµ(wz)) = P (µz2) is the unique function

satisfying g ∈ P with g′(0) = 0 and g′′(0) = 4µ.

We shall only prove Proposition 5.5. Because our proofs of Propositions 5.4 and 5.5 are quite

similar and the former is much easier than the latter. First we provide some lemmas.

Lemma 5.7. Let G be an analytic functions in D with G(z) = zn+ · · · for some positive integer

n satisfying

Re

(
1 + z

G′′(z)

G′(z)

)
> 0

in D. Then there exists a starlike univalent analytic function G0 in D satisfying G = Gn0 .

For a proof see e.g. [34].

Proof of Proposition 5.5. Let g ∈ P with g′(0) = 0 and g′′(0) = 4µ. Then ω = P−1 ◦ g satisfies

ω(D) ⊂ D with ω(z) = µz2 + · · · and P from (5.4). With τµ from (5.5), we can apply the

Schwarz lemma and obtain for any fixed ζ ∈ D

∣∣∣∣τ−1
µ

(
ω(ζ)

ζ2

)∣∣∣∣ =

∣∣∣∣∣∣
ω(ζ)
ζ2
− µ

1− µω(ζ)
ζ2

∣∣∣∣∣∣ ≤ |ζ|.
Thus successively we have

τ−1
µ

(
ω(ζ)

ζ2

)
∈ D(0, |ζ|),

ω(ζ) ∈ ζ2τµ(D(0, |ζ|))
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and

g(ζ) = P (ω(ζ)) ∈ P
(
ζ2τµ(D(0, |ζ|))

)
.

Since P is a convex, univalent function in D, P maps the closed disk ζ2τµ(D(0, |ζ|)) conformally

onto the convex closed domain P (ζ2τµ(D(0, |ζ|))) bounded by the curve ∂D 3 w 7→ P (ζ2τµ(wζ)).

Since g(ζ) belongs to the half plane left of the tangential line at P (ζ2τµ(wζ)) of the boundary

curve, the inequality

Re

(
P (ζ2τµ(wζ))− g(ζ)

wζ3P ′(ζ2τµ(wζ))τ ′µ(wζ)

)
≥ 0

holds for all ζ ∈ D\{0} and w ∈ ∂D. Furthermore equality holds at some ζ and w ∈ ∂D if and

only if g(z) = P (z2τµ(wz)) in D. Put

G(z) =

∫ z

0
wζ2P ′(ζ2τµ(wζ))τ ′µ(wζ) dζ, z ∈ D.

Then

G′(z) = wz2P ′(z2τµ(wz))τ ′µ(wz)

=
2wz2(

1− z2 wz+µ
1+µwz

)2

1− |µ|2

(1 + µwz)2

and

Re

(
P (z2τµ(wz))− g(z)

zG′(z)

)
≥ 0, z ∈ D\{0}. (5.17)

Notice that

z 7→ 1− z2 wz + µ

1 + µwz

from the denominator of G′(z) is a rational function of z and has three zeros in ∂D counted with

multiplicity. Let ζj ∈ ∂D, j = 1, 2, 3 be the zeros. Thus G′ can be written of the form

G′(z) =
2 (1− |µ|2)wz2∏3
j=1(1− ζ−1

j z)2
.

Hence we have

Re

(
1 + z

G′′(z)

G′(z)

)
=

3∑
j=1

Re

(
1 + ζ−1

j z

1− ζ−1
j z

)
> 0

in D. Applying Lemma 5.7 there exists a starlike univalent function G0 in D with G = G3
0.

For any z1 ∈ D\{0} let γ be a path in D defined by

z(t) = G−1
0 (t1/3G0(z1)), 0 ≤ t ≤ 1.
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Then since G(z(t)) = G0(z(t))3 = tG0(z1)3 = tG(z1),

G′(z(t))z′(t) = G(z1), 0 < t ≤ 1.

Combining this and (5.17) we have

Re

[
1

G(z1)

(
Q2(z1, w, µ)−

∫ z1

0

g(ζ)− 1

ζ
dζ

)]
= Re

[
1

G(z1)

(∫ z1

0

P (ζ2τµ(wζ))− 1

ζ
dζ −

∫ z1

0

g(ζ)− 1

ζ
dζ

)]
= Re

(∫
γ

P (ζ2τµ(wζ))− g(ζ)

ζG(z1)
dζ

)
= Re

[∫ 1

0

{P (z(t)2τµ(wz(t)))− g(z(t))}z′(t)
z(t)G′(z(t))z′(t)

dt

]
=

∫ 1

0
Re

[
{P (z(t)2τµ(wz(t)))− g(z(t))}

z(t)G′(z(t))

]
dt ≥ 0.

Let V (z1, µ) = {
∫ z1

0 ζ−1(g(ζ) − 1) dζ : g ∈ P g′(0) = 0 and g′′(0) = 4µ}. Then the above

inequality implies V (z1, µ) is contained in a half plane. Precisely

V (z1, µ) ⊂ H(z1, w, µ) =

{
χ ∈ C : Re

(
Q2(z1, w, µ)− χ

G(z1)

)
≥ 0

}
.

Since for any w ∈ D the function g0(z) = P (z2τµ(wz)) belongs to P and satisfies g′0(0) = 0

and g′′0(0) = 4µ, we have Q2(z1,D, µ) ⊂ V (z1, µ) and particularly when w ∈ ∂D, Q2(z1, w, µ) ∈
V (z1, µ)∩∂H(z1, w, µ)). ThereforeQ2(z1, w, µ) ∈ ∂V (z1, µ) for w ∈ ∂D. Furthermore

∫ z1
0 ζ−1(g(ζ)−

1) dζ = Q2(z1, w, µ) holds for some g ∈ P with g′(0) = 0 and g′′(0) = 4µ and w ∈ ∂D if and

only if g(z) = Q2(z, w, µ) in D.

Notice that P is a compact convex subset of the class of analytic functions in D with respect

to the topology of locally uniform convergence and so is the closed subset {g ∈ P : g′(0) =

0 and g′′(0) = 4µ}. Hence V (z1, µ) is a compact convex subset of C. Now we show that the

analytic function w 7→ Q2(z1, w, µ) is a non constant open map. Indeed using (5.7) and τµ(0) = µ

we obtain

k(z) =
d

dw
Q2(z, w, µ)

∣∣∣∣
w=0

= (1− |µ|2)

∫ z

0
P ′(µζ2)ζ2 dζ,

which satisfies

Re

(
1 + z

k′′(z)

k′(z)

)
= 1 + 2 Re

(
1 + µz2P

′′(µz2)

P ′(µz2)

)
> 0

in D. By Lemma 5.7 there exists a starlike univalent function k0 with k(z) = k0(z)3. In particular

k(z1) = k0(z1)3 6= 0 and w 7→ Q2(z1, w, µ) is an open map. Thus Q2(z1, 0, µ) is an interior point
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of Q2(z1,D, µ) ⊂ V (z1, µ).

Since V (z1, µ) is a compact convex subset of C with nonempty interior, the boundary ∂V (z1, µ)

is a simple closed curve and V (z1, µ) is a Jordan domain bounded by ∂V (z1, µ). We have

therefore shown that Q2(z1, w, µ) ∈ ∂V (z1, µ) for w ∈ ∂D. Furthermore the mapping ∂D 3 w 7→
Q2(z1, w, µ) is simple. Indeed by uniqueness if Q2(z1, w1, µ) = Q2(z1, w2, µ) for w1, w2 ∈ ∂D,

then Q2(z, w1, µ) = Q2(z, w2, µ) holds for w1, w2 ∈ D and hence successively we have by (5.7)

P (z2τµ(w1z))− 1

z
=
P (z2τµ(w2z))− 1

z
.

τµ(w1z) = τµ(w2z),

w1 = w2.

Thus the mapping ∂D 3 w 7→ Q2(z1, w, µ) gives a simple closed curve contained in ∂V (z1, µ).

This implies the mapping is a parameterization of V (z1, µ).

Since the analytic function of w 7→ Q2(z1, w, µ) maps ∂D univalently onto the convex Jordan

curve ∂V (z1, µ), it follows from Darboux’s theorem that Q2(z1, w, µ) is convex univalent on D.

Since P is a conformal mapping of D onto the right half plane, it is starlike univalent with

respect to 1 and for any g ∈ P, g − 1 ≺ P − 1, i.e. g − 1 is subordinate to P − 1. Thus by

Suffridge’s theorem (see [32])
∫ z

0 ζ
−1(g(ζ) − 1) dζ ≺

∫ z
0 ζ
−1(P (ζ) − 1) dζ = −2 log(1 − z). This

implies
∫ z

0 ζ
−1(g(ζ) − 1) dζ ∈ {χ ∈ C : |Imχ| < π} for all g ∈ P and z ∈ D. In particular

Q2(z1, w, µ) ⊂ {χ ∈ C : |Imχ| < π} and exp(−Q2(z1, w, µ)) is also a univalent function of

w ∈ D.

5.2 Proof of the Theorems

Now we shall determine the variability region {log f ′(z0)(z0−p)2
−c−1(f) : f ∈ Cop} for fixed z0 ∈ D\{p}.

Particularly by putting z0 = 0 we can show that the variability region { a1(f)
c−1(f) : f ∈ Cop}

coincides with the closed disk D(−p−2, 1). This gives another formulation for Theorem A.

Theorem 5.8. Let 0 < p < 1. Then for any fixed z0 ∈ D\{p}

{
f ′(z0)(z0 − p)2

−c−1(f)
: f ∈ Cop

}
=

{
1− w

(
z − p
1− pz

)2

: w ∈ D

}
(5.18)

with
f ′(z0)(z0 − p)2

−c−1(f)
= 1− w0

(
z − p
1− pz

)2

(5.19)

for some w0 ∈ ∂D if and only if

f(z)

c−1(f)
= C +

1

z − p
+

w0

1− p2
· z − p

1− pz
(5.20)

in D for some constant C.
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Proof. By Proposition 5.3 and 5.4 for any fixed z0 ∈ D\{p} the variability region of log
{
f ′(z0)(z0−p)2
−c−1(f)

}
for Cop can be expressed as{

log

(
f ′(z0)(z0 − p)2

−c−1(f)

)
: f ∈ Cop

}
(5.21)

=

{
−
∫ p−z0

1−pz0

0

g(ζ)− 1

ζ
dζ : g ∈ P with g′(0) = 0

}
.

=

{
log

(
1− w

(
p− z0

1− pz0

)2
)

: w ∈ D

}

This implies (5.18).

By the second part of Proposition 5.4, the expression (5.19) holds for some w0 ∈ ∂D if and

only if gf (z) = P (w0z
2) in D. Using Proposition 5.3, this is equivalent to (5.20).

We notice that (5.18) is equivalent to the known estimate∣∣∣∣ f ′(z0)

c−1(f)
+

1

(z0 − p)2

∣∣∣∣ ≤ 1

|1− pz0|2
.

See also [26, Cor.5.2].

Corollary 5.9. For 0 < p < 1{
a1(f)

c−1(f)
: f ∈ Cop

}
= D

(
− 1

p2
, 1

)
(5.22)

with
a1(f)

c−1(f)
= − 1

p2
+ w0

for some w0 ∈ ∂D if and only if (5.20) holds for some constant C in D.

We shall prove the above Corollary implies Theorem A and vice versa.

Proof. First since w ∈ D
(
−p−2, 1

)
if and only if w−1 ∈ D

(
−p2/(1− p4), p4/(1− p4)

)
, (5.2) is

equivalent to (5.22).

Replace c−1(f) in (5.20) by ã1 and C by

C

ã1
+

1

p
+

pw0

1− p2
.

Then we have

f(z) = ã1

(
1

z − p
+

1

p
+

w0(z − p)
(1− p2)(1− pz)

)
+ C

= ã1

(
z

p(z − p)
+

w0z

1− pz

)
+ C
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= ã1
z(1− p2w0 − p(1− w0)z)

p(z − p)(1− pz)
+ C.

Replacing ã1 by −p2a1(f)/(1− p2w0) we have

f(z) =
z(1 + p(1−w0)

1−p2w0
z)

(1− z/p)(1− pz)
.

Since the function p(1− w)/(1− p2w) maps ∂D bijectively onto ∂D(p/(1 + p2), p/(1 + p2)), for

any w0 ∈ ∂D there exists a real θ satisfying

p(1− w0)

1− p2w0
=
p(1 + eiθ)

1 + p2
.

Thus extremal functions in (5.20) can be expressed of the form (5.3) and vice versa.

Using the previous results, we can move to the proof of Theorem 5.1.

Proof of Theorem 5.1. Let f ∈ Cop and µ = (1− p2)2 c1(f)
c−1(f) . Then by Proposition 5.3 we have

µ = 4−1g′′f (0). Since gf satisfies g′f (0) = 0, ωf = P−1 ◦ gf satisfies ωf (D) ⊂ D and ωf (0) =

ω′f (0) = 0. Hence by applying the Schwarz lemma to z−1ωf (z) we have |µ| = 4−1|g′′f (0)| =

2−1|ω′′f (0)| ≤ 1.

Assume |µ| < 1. Then by Propositions 5.3 and 5.5

log

(
f ′(z)(z − p)2

−c−1(f)

)
= −

∫ p−z
1−pz

0

gf (ζ)− 1

ζ

∈ −

{∫ p−z
1−pz

0

g(ζ)− 1

ζ
: g ∈ P, g′(0) = 0 and g′′(0) = 4µ

}

= −Q2

(
p− z
1− pz

,D, µ
)

for z ∈ D\{p}. Letting z = 0 we have

− a1(f)

c−1(f)
p2 ∈ exp

(
−Q2(p,D, µ)

)
.

Next assume µ ∈ ∂D. Then by the uniqueness part of the Schwarz lemma we successively

have ωf (z) = µz2, gf (z) = 1+µz2

1−µz2 and

f ′(z)(z − p)2

−c−1(f)
= 1− µ

(
p− z
1− pz

)2

.

From this it follow that
a1(f)

−c−1(f)
p2 = 1− µp2
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and by integration

f(z) = c0(f) +
c−1(f)

z − p
+
µc−1(f)

1− p2

z − p
1− pz

= c0(f) +
c−1(f)

z − p
+ (1− p2)c1(f)

z − p
1− pz

.

Due to Remark 5.6 for µ ∈ ∂D the set Q2(p,D, µ) is reduced to a singleton and

{Q1(p, µ)} = {− log(1− µp2)}, a1(f) ∈ − c−1(f)
p2

exp(−Q2(p,D, µ)) holds.

Thus we have shown {(a1(f), c−1(f), c1(f)) ∈ C3 : f ∈ Cop} is contained in

{
(α1, γ−1, γ1) ∈ C3 : γ−1 6= 0, µ = (1− p2)2 γ1

γ−1
∈ D

and α1 ∈ −
γ−1

p2
exp

(
−Q2(p,D, µ)

)}
.

The reverse inclusion relation follows from the fact that the function

f(z) = −
∫ z

p

γ1

(ζ − p)2
exp

(
−Q2

(
p− z
1− pz

, w, µ

))
dζ

satisfies f ∈ Cop, c−1(f) = γ−1, (1− p2)2 c1(f)
c−1(f) = µ and a1(f) = −p−2γ−1 exp(−Q2(p, w, µ)).

This implies (i) and (ii) are direct consequences of the second part of Proposition 5.5.

From [20] we know furthermore, that f ∈ Cop and its residue can also be expressed by

f ′(z) =
a1p

2

(z − p)2(1− zp)2
exp

(
2

∫ z−p
1−pz

p

p

1− pζ
− ψ(ζ)

1− ζψ(ζ)
dζ

)

c−1(f) =
a1p

2

(1− p2)2
exp

(
2

∫ p

0

ψ(x)

1− xψ(x)
− p

1− px
dx

)
with ψ : D → D holomorphic in D and ψ(0) = 0. The functions satisfying sharpness can be

constructed by ψw(z) = w z, w ∈ D, leading to

f ′w(z) =
a1p

2

(z − p)2(1− pz)2

(
w − p2

p2w − 1
z2 +

1− w
p2w − 1

2pz + 1

)
.

Considering the analytic function

Aw(z) = fw(z)− c−1(fw)

z − p

we obtain

A′w(z) =
w

p2w − 1
· a1p

2

(1− pz)2
,

A(n)
w (z) =

w

p2w − 1
· n!a1p

n+1

(1− pz)n+1
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and therefore

A(n)
w (p) =

w

p2w − 1
· a1n!pn+1

(1− p2)n+1
.

Since cn(Aw) = cn(fw) for n ∈ N and { w
p2w−1

: w ∈ D} is a disk, we have

{
cn(fw)

a1(fw)

}
=

{
w

p2w − 1
· pn+1

(1− p2)n+1
: w ∈ D

}
= D

(
−pn+3

(1− p2)n+2(1 + p2)
,

pn+1

(1− p2)n+2(1 + p2)

)
⊂
{
cn(f)

a1(f)
: f ∈ Cop

}
.

Thus the following statement holds.

Corollary 5.10. For 0 < p < 1 and n ∈ N

D
(

−pn+3

(1− p2)n+2(1 + p2)
,

pn+1

(1− p2)n+2(1 + p2)

)
⊂
{
cn(f)

a1(f)
: f ∈ Cop

}
.

We also conjecture, that the opposite inclusion holds. This would describe a generalization of

Theorem B without the restriction of p.

However, it was suggested by Prof. Wirths, that this might not be true in the general case.

The further analysis of this problem will be one of the many future tasks in this field.
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