Quantitative homogenization in nonlinear elasticity Stefan Neukamm (TU Dresden)

We consider a nonlinear elastic composite with a periodic microstructure described by the nonconvex energy functional

$$\int_{\Omega} W(\frac{x}{\varepsilon}, \nabla u(x)) - f(x) \cdot u(x) \, dx$$

It is well-known that under suitable growth conditions the energy Γ -converges to a homogenized functional a homogenized energy density W_{hom} . One of the main problems in homogenization of nonlinear elasticity is that long-wavelength buckling prevents the possibility of homogenization by averaging over a single period cell, and thus W_{hom} is in general given by an infinite-cell formula. Under appropriate assumptions on W (frame indifference, minimality at identity, non-degeneracy) and on the microstructure (e.g., possibly touching smooth inclusions), we show that in a neighbourhood of rotations W_{hom} is characterized by a single-cell homogenization formula. In particular, we prove that correctors are available—a property that we exploit to derive a quantitative two-scale expansion and uniform Lipschitz estimates for minimizers. This is joint work with Mathias Schäffner (TU Dresden).